JP2006041789A - Non-radiative dielectric line, high frequency transmitter-receiver and radar employing the same, radar mounted vehicle and radar mounted small ship - Google Patents

Non-radiative dielectric line, high frequency transmitter-receiver and radar employing the same, radar mounted vehicle and radar mounted small ship Download PDF

Info

Publication number
JP2006041789A
JP2006041789A JP2004217120A JP2004217120A JP2006041789A JP 2006041789 A JP2006041789 A JP 2006041789A JP 2004217120 A JP2004217120 A JP 2004217120A JP 2004217120 A JP2004217120 A JP 2004217120A JP 2006041789 A JP2006041789 A JP 2006041789A
Authority
JP
Japan
Prior art keywords
dielectric line
output
frequency
frequency signal
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004217120A
Other languages
Japanese (ja)
Inventor
Nobuki Hiramatsu
信樹 平松
Yuji Kishida
裕司 岸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004217120A priority Critical patent/JP2006041789A/en
Publication of JP2006041789A publication Critical patent/JP2006041789A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Waveguides (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-radiative dielectric line with a stabilized transmission characteristic in a structure for interconnecting the non-radiative dielectric line to a high frequency transmission line. <P>SOLUTION: The non-radiative dielectric line H1 is configured such that an input output dielectric line 3 and a connection purpose dielectric line 4 are arranged between flat plate conductors 1, 2 arranged in parallel at an interval of 1/2 wavelength of a high frequency signal or below, and a deviation L<SB>1</SB>between a through-hole 1a of the flat plate conductor 1 provided in the vicinity of a position P2 at which the electric field of a standing wave in the LSM mode at one end 3a of the input output dielectric line 3 is strong and the position P2 at which the electric field of the standing wave in the LSM mode is strong is smaller than an interval L<SB>2</SB>between the other end 3b of the input output dielectric line 3 and one end 4a of the connection purpose dielectric line 4 connected to the other end 3b at an interval. Since the interval L<SB>2</SB>gives a smaller effect on the deterioration in the reflection characteristic than the interval L<SB>1</SB>gives, the reflectance can relatively be reduced. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ミリ波集積回路等に組み込まれ、高周波信号の伝送用として用いられる非放射性誘電体線路と高周波用伝送線路とを接続するための構造に用いられる非放射性誘電体線路において伝送特性を安定にすることができる非放射性誘電体線路およびそれを用いた高周波送受信器に関するものである。   The present invention is incorporated in a millimeter-wave integrated circuit or the like, and has transmission characteristics in a non-radiative dielectric line used in a structure for connecting a non-radiative dielectric line used for high-frequency signal transmission and a high-frequency transmission line. The present invention relates to a non-radiative dielectric line that can be stabilized and a high-frequency transceiver using the same.

また本発明は、上記高周波送受信器を具備するレーダ装置ならびにそれを搭載したレーダ装置搭載車両およびレーダ装置搭載小型船舶に関するものである。   The present invention also relates to a radar apparatus including the above-described high-frequency transmitter / receiver, a radar apparatus-equipped vehicle equipped with the radar apparatus, and a radar apparatus-equipped small ship.

従来より、誘電体線路を1対の平板導体によって挟持した単純な構造からなる非放射性誘電体線路(以下、NRDガイドともいう。)が、高周波信号の伝送線路の1つとして用いられている。そして、この非放射性誘電体線路を配線基板等に組み入れる場合、回路設計上、この非放射性誘電体線路を他の高周波用伝送線路と接続することが必要不可欠であり、その場合、伝送特性の劣化なく接続することが重要である。   Conventionally, a non-radiative dielectric line (hereinafter also referred to as an NRD guide) having a simple structure in which a dielectric line is sandwiched between a pair of flat plate conductors has been used as one of high-frequency signal transmission lines. When this non-radiative dielectric line is incorporated into a wiring board or the like, it is indispensable to connect the non-radiative dielectric line to another high-frequency transmission line in circuit design, in which case the transmission characteristics deteriorate. It is important to connect without.

従来、非放射性誘電体線路と導波管とを接続するための非放射性誘電体線路は、例えば、図11(a)に透視斜視図で、図11(b)に平面図で、および図11(c)にそのC−C’線断面図でそれぞれ示すように、平行に配置された平板導体51,52間に誘電体線路53を配設してなる非放射性誘電体線路Hにおいて、誘電体線路53のLSMモードの定在波の電界が強い箇所(誘電体線路53の一端である開放端53aから所定の長さLだけ誘電体線路53の中央側の位置)の平板導体51に貫通孔51aを設けていた(例えば、特許文献1を参照。)。なお、図11(b)において、P1,P2,P3,P4はそれぞれLSMモードの定在波の電界が強い箇所、すなわち貫通孔51aを設けるのに好適な位置を表している。   Conventionally, a nonradiative dielectric line for connecting a nonradiative dielectric line and a waveguide is, for example, a perspective view shown in FIG. 11A, a plan view shown in FIG. 11B, and FIG. In the non-radiative dielectric line H in which the dielectric line 53 is disposed between the flat conductors 51 and 52 arranged in parallel, as shown in the sectional view taken along the line CC ′ in FIG. A through-hole is formed in the flat conductor 51 at a position where the electric field of the standing wave of the LSM mode of the line 53 is strong (a position on the center side of the dielectric line 53 by a predetermined length L from the open end 53a which is one end of the dielectric line 53). 51a was provided (for example, refer to Patent Document 1). In FIG. 11B, P1, P2, P3, and P4 represent locations where the electric field of the standing wave in the LSM mode is strong, that is, positions suitable for providing the through hole 51a.

なお、上記のとおりこのLSMモードの定在波の電界が強い箇所の位置は、誘電体線路53においてその開放端53aの位置が基準となって決まるものである。   As described above, the position of the portion where the electric field of the standing wave in the LSM mode is strong is determined based on the position of the open end 53a in the dielectric line 53.

そして、図11(a)に示すような非放射性誘電体線路Hは、貫通孔51aに導波管Gの一端の開放終端部が接続されるとともに、この導波管Gの他端に例えばピル型のガンダイオード発振器といった高周波発振器やアンテナ等が接続されて、これら高周波発振器やアンテナ等と誘電体線路53の他端である接続端53bに接続される他の高周波回路要素とを接続する高周波用伝送線路として用いられる。なお、非放射性誘電体線路と導波管とを接続する技術については、特許文献1〜特許文献8にも同様の構成が開示されている。   A nonradiative dielectric line H as shown in FIG. 11 (a) is connected to the through hole 51a at one end of the waveguide G and to the other end of the waveguide G, for example, a pill. A high-frequency oscillator such as a Gunn diode oscillator, an antenna, or the like is connected, and the high-frequency oscillator or antenna is connected to another high-frequency circuit element connected to the connection end 53b that is the other end of the dielectric line 53. Used as a transmission line. In addition, about the technique which connects a nonradiative dielectric material line | wire and a waveguide, the same structure is also disclosed by patent document 1-patent document 8. FIG.

また、非放射性誘電体線路を用いて構成される従来の高周波送受信器およびレーダ装置の例は、例えば特許文献9に開示されている。   Moreover, the example of the conventional high frequency transmitter / receiver and radar apparatus comprised using a nonradiative dielectric track is disclosed by patent document 9, for example.

また、その他にも従来のレーダ装置およびそれを搭載したレーダ装置搭載車両の例が、例えば、特許文献10に開示されている。
特開2000−22407号公報 特開2000−22408号公報 特開2002−76721号公報 特開2002−16406号公報 特開2001−237618号公報 特開2002−299920号公報 特開2002−344210号公報 特開2003−198218号公報 特開2000−258525号公報 特開2003−35768号公報
In addition, for example, Patent Document 10 discloses an example of a conventional radar device and a radar device-equipped vehicle equipped with the radar device.
JP 2000-22407 JP 2000-22408 JP 2002-76721 A Japanese Patent Laid-Open No. 2002-16406 Japanese Patent Laid-Open No. 2001-237618 JP 2002-299920 A Japanese Patent Laid-Open No. 2002-344210 JP 2003-198218 JP 2000-258525 A JP 2003-35768 A

しかしながら、従来の非放射性誘電体線路では、通常は誘電体線路53の線路長に製造上のばらつきがあることから、誘電体線路53の開放端53aおよび接続端53bの平板導体51,52に対する位置が変動することがあり、そのために誘電体線路53のLSMモードの電界が強くなる箇所から貫通孔51aの位置がずれたり、接続端53bと他の高周波回路要素との間隔が大きくなったりして、接続端53bおよび貫通孔51aを通して高周波発振器やアンテナ等の高周波回路要素と他の高周波回路要素との間で透過させる高周波信号の反射特性や透過特性が変動しやすいという問題点があった。   However, in the conventional non-radiative dielectric line, the line length of the dielectric line 53 usually has a manufacturing variation. Therefore, the positions of the open end 53a and the connection end 53b of the dielectric line 53 with respect to the flat conductors 51 and 52 are different. As a result, the position of the through hole 51a is shifted from the location where the electric field in the LSM mode of the dielectric line 53 becomes strong, or the interval between the connection end 53b and other high-frequency circuit elements is increased. There is a problem that the reflection characteristic and transmission characteristic of a high-frequency signal transmitted between a high-frequency circuit element such as a high-frequency oscillator and an antenna and other high-frequency circuit elements through the connection end 53b and the through hole 51a are likely to fluctuate.

また、このような非放射性誘電体線路を用いた従来の高周波送受信器では、高周波発振器またはアンテナから出力される高周波信号の強度が変動しやすいものとなるため、良好な送受信性能を安定して得にくいという問題点があった。   In addition, in a conventional high-frequency transmitter / receiver using such a non-radiative dielectric line, the strength of a high-frequency signal output from a high-frequency oscillator or antenna tends to fluctuate, so that good transmission / reception performance can be stably obtained. There was a problem that it was difficult.

本発明は上記事情に鑑みて完成されたものであり、その目的は、非放射性誘電体線路と高周波用伝送線路とを接続するための構造に用いられる非放射性誘電体線路において伝送特性を安定にすることができる非放射性誘電体線路およびそれを用いた高性能な高周波送受信器を提供することにある。   The present invention has been completed in view of the above circumstances, and an object thereof is to stabilize transmission characteristics in a non-radiative dielectric line used in a structure for connecting a non-radiative dielectric line and a high-frequency transmission line. It is an object of the present invention to provide a non-radiative dielectric line that can be used and a high-performance high-frequency transceiver using the same.

また、本発明の他の目的は、そのような高性能な高周波送受信器を具備するレーダ装置ならびにそのレーダ装置を備えたレーダ装置搭載車両およびレーダ装置搭載小型船舶を提供することにある。   Another object of the present invention is to provide a radar apparatus equipped with such a high-performance high-frequency transmitter / receiver, a radar apparatus-equipped vehicle equipped with the radar apparatus, and a radar apparatus-equipped small ship.

上記課題を解決するにあたり、本発明者らは、接続端53bの位置ずれよりも開放端53aの位置ずれのほうがこのような非放射性誘電体線路の反射特性や透過特性に大きな影響を与えることを見出した。そして、以下に記載する本発明を完成するに至った。   In solving the above problems, the present inventors have found that the positional deviation of the open end 53a has a greater influence on the reflection characteristics and transmission characteristics of such a non-radiative dielectric line than the positional deviation of the connection end 53b. I found it. And it came to complete this invention described below.

本発明の非放射性誘電体線路は、高周波信号の波長の2分の1以下の間隔で平行に配置した平板導体間に入出力用誘電体線路および接続用誘電体線路を配置しており、前記平板導体の一方に対して前記入出力用誘電体線路の一端側のLSMモードの定在波の電界が強い箇所付近に設けられる貫通孔と前記LSMモードの定在波の電界が強い箇所とのずれを、前記入出力用誘電体線路の他端と、この他端に間隔をおいて一端が接続される前記接続用誘電体線路の前記一端との前記間隔よりも小さくしたことを特徴とするものである。   The non-radiative dielectric line of the present invention has an input / output dielectric line and a connecting dielectric line arranged between flat conductors arranged in parallel at intervals of half or less of the wavelength of a high-frequency signal, A through hole provided in the vicinity of a portion where the electric field of the LSM mode standing wave is strong on one end side of the input / output dielectric line with respect to one of the flat conductors, and a portion where the electric field of the standing wave of the LSM mode is strong The shift is made smaller than the distance between the other end of the input / output dielectric line and the one end of the connecting dielectric line with one end connected to the other end. Is.

また、本発明の非放射性誘電体線路は、上記構成において、前記平板導体の他方に対して前記入出力用誘電体線路の一端側のLSMモードの定在波の電界が強い箇所付近に設けられる貫通孔と前記LSMモードの定在波の電界が強い箇所とのずれを、前記入出力用誘電体線路の他端と、この他端に間隔をおいて一端が接続される接続用誘電体線路の前記一端との前記間隔よりも小さくしたことを特徴とするものである。   The non-radiative dielectric line of the present invention is provided in the vicinity of a place where the electric field of the standing wave in the LSM mode on one end side of the input / output dielectric line is stronger than the other of the flat conductors in the above configuration. A connecting dielectric line having one end connected to the other end of the input / output dielectric line with a gap between the through hole and a portion where the electric field of the standing wave in the LSM mode is strong This is characterized in that it is smaller than the distance from the one end.

また、本発明の非放射性誘電体線路は、上記各構成において、前記貫通孔は、導波管の開放終端部が接続されることを特徴とするものである。   The non-radiative dielectric line of the present invention is characterized in that, in each of the above configurations, the through hole is connected to an open terminal portion of a waveguide.

本発明の第1の高周波送受信器は、高周波信号を発生する高周波発振器と、この高周波発振器の出力端側に接続された、前記高周波信号を分岐して一方の出力端と他方の出力端とに出力する分岐器と、前記一方の出力端に接続された、この一方の出力端に分岐された高周波信号を変調して送信用高周波信号を出力する変調器と、磁性体の周囲に第1の端子,第2の端子および第3の端子を有し、この順に一つの端子から入力された高周波信号を隣接する次の端子より出力する、前記変調器の出力が前記第1の端子に入力されるサーキュレータと、このサーキュレータの前記第2の端子に接続された送受信アンテナと、前記分岐器の前記他方の出力端と前記サーキュレータの前記第3の端子との間に接続された、前記他方の出力端に分岐された高周波信号と前記送受信アンテナで受信した高周波信号とを混合して中間周波信号を出力するミキサーとを具備しており、前記高周波発振器および前記分岐器または前記サーキュレータおよび前記送受信アンテナは、上記各構成の本発明のいずれかの非放射性誘電体線路で接続されていることを特徴とするものである。   A first high-frequency transmitter / receiver of the present invention includes a high-frequency oscillator that generates a high-frequency signal, and the high-frequency signal that is connected to an output end of the high-frequency oscillator is branched to one output end and the other output end. An output branching device, a modulator connected to the one output end, modulating a high-frequency signal branched to the one output end and outputting a high-frequency signal for transmission, and a first around the magnetic body A modulator having a terminal, a second terminal, and a third terminal, and outputting a high-frequency signal input from one terminal in this order from an adjacent next terminal, the output of the modulator being input to the first terminal The circulator, the transmission / reception antenna connected to the second terminal of the circulator, and the other output connected between the other output terminal of the branching device and the third terminal of the circulator. Branched to the end A mixer that mixes a frequency signal and a high-frequency signal received by the transmission / reception antenna to output an intermediate frequency signal, and the high-frequency oscillator and the branching device or the circulator and the transmission / reception antenna are configured as described above. They are connected by any one of the non-radiative dielectric lines of the present invention.

本発明の第2の高周波送受信器は、高周波信号を発生する高周波発振器と、この高周波発振器の出力端側に接続された、前記高周波信号を分岐して一方の出力端と他方の出力端とに出力する分岐器と、前記一方の出力端に接続された、この一方の出力端に分岐された高周波信号を変調して送信用高周波信号を出力する変調器と、この変調器の出力端に一端が接続された、前記一端側から他端側へ前記送信用高周波信号を透過させるアイソレータと、このアイソレータに接続された送信アンテナと、前記分岐器の前記他方の出力端側に接続された受信アンテナと、前記分岐器の前記他方の出力端と前記受信アンテナとの間に接続された、前記他方の出力端に分岐された高周波信号と前記受信アンテナで受信した高周波信号とを混合して中間周波信号を出力するミキサーとを具備しており、前記高周波発振器および前記分岐器、前記アイソレータおよび前記送信アンテナまたは前記ミキサーおよび前記受信アンテナは、上記各構成の本発明のいずれかの非放射性誘電体線路で接続されていることを特徴とするものである。   A second high-frequency transmitter / receiver of the present invention includes a high-frequency oscillator that generates a high-frequency signal, and the high-frequency signal that is connected to the output end of the high-frequency oscillator and branches to one output end and the other output end. An output branching device, a modulator connected to the one output end, modulating a high-frequency signal branched to the one output end and outputting a transmission high-frequency signal, and one end at the output end of the modulator An isolator that transmits the high-frequency signal for transmission from the one end side to the other end side, a transmission antenna connected to the isolator, and a reception antenna connected to the other output end side of the branching device A high-frequency signal branched to the other output end connected between the other output end of the branching device and the receiving antenna and a high-frequency signal received by the receiving antenna are mixed to obtain an intermediate frequency The high-frequency oscillator, the branching device, the isolator, and the transmitting antenna, or the mixer and the receiving antenna are any of the non-radiative dielectric lines according to the present invention having the above-described configurations. It is characterized by being connected by.

本発明のレーダ装置は、上記各構成の本発明の第1および第2のいずれかの高周波送受信器と、この高周波送受信器から出力される前記中間周波信号を処理して探知対象物までの距離情報を検出する距離情報検出器とを具備することを特徴とするものである。   The radar apparatus according to the present invention is a distance between the first and second high-frequency transmitter / receiver of the present invention having the above-described configuration and a detection target by processing the intermediate frequency signal output from the high-frequency transmitter / receiver. And a distance information detector for detecting information.

本発明のレーダ装置搭載車両は、上記構成の本発明のレーダ装置を備え、このレーダ装置を探知対象物の検出に用いることを特徴とするものである。   The radar device-equipped vehicle of the present invention includes the radar device of the present invention having the above-described configuration, and is characterized in that this radar device is used for detection of an object to be detected.

本発明のレーダ装置搭載小型船舶は、上記構成の本発明のレーダ装置を備え、このレーダ装置を探知対象物の検出に用いることを特徴とするものである。   A small ship equipped with a radar apparatus according to the present invention includes the radar apparatus according to the present invention having the above-described configuration, and is characterized in that this radar apparatus is used for detection of a detection target.

本発明の非放射性誘電体線路によれば、高周波信号の波長の2分の1以下の間隔で平行に配置した平板導体間に入出力用誘電体線路および接続用誘電体線路を配置しており、前記平板導体の一方に対して前記入出力用誘電体線路の一端側のLSMモードの定在波の電界が強い箇所付近に設けられる貫通孔と前記LSMモードの定在波の電界が強い箇所とのずれを、前記入出力用誘電体線路の他端と、この他端に間隔をおいて一端が接続される前記接続用誘電体線路の前記一端との前記間隔よりも小さくしたことから、入出力用誘電体線路と接続用誘電体線路との間隔が、それら入出力用誘電体線路および接続用誘電体線路の線路長のばらつきを吸収し、入出力用誘電体線路のLSMモードの定在波の電界が強い箇所に貫通孔が位置するように貫通孔の位置を基準に線路長にばらつきがある入出力用誘電体線路を配置しても、入出力用誘電体線路と接続用誘電体線路とが、またはそれらと他の高周波回路要素とが物理的に干渉することなく入出力用誘電体線路および接続用誘電体線路を配置することができるように働くとともに、間隔が開いていても貫通孔と入出力用誘電体線路のLSMモードの定在波の電界が強い箇所とのずれが大きくなるよりかは相対的に反射を小さくする作用があるため、反射した高周波信号が他の高周波信号と干渉しあって透過特性が不安定となったり透過特性の周波数依存性が大きくなったりするといった悪影響を小さくすることができる効果があり、高周波信号を安定に伝送することができる非放射性誘電体線路となる。   According to the non-radiative dielectric line of the present invention, the input / output dielectric line and the connecting dielectric line are arranged between the flat conductors arranged in parallel at intervals of half or less of the wavelength of the high-frequency signal. , A through hole provided in the vicinity of a portion where the electric field of the LSM mode standing wave is strong on one end of the input / output dielectric line with respect to one of the flat conductors, and a portion where the electric field of the standing wave of the LSM mode is strong Because the deviation is smaller than the distance between the other end of the input / output dielectric line and the one end of the connecting dielectric line with one end connected to the other end. The distance between the input / output dielectric lines and the connecting dielectric lines absorbs variations in the line lengths of the input / output dielectric lines and the connecting dielectric lines, and the LSM mode of the input / output dielectric lines is determined. So that the through hole is located at the place where the electric field of the standing wave is strong Even if an input / output dielectric line with a variation in line length with respect to the position of the through hole is arranged, the input / output dielectric line and the connecting dielectric line, or these and other high-frequency circuit elements are not connected. The input / output dielectric line and the connecting dielectric line can be arranged without physical interference, and the LSM mode of the through hole and the input / output dielectric line can be set even if the gap is wide. Since there is an action to relatively reduce the reflection rather than the deviation from the place where the existing electric field is strong, the reflected high-frequency signal interferes with other high-frequency signals and the transmission characteristics become unstable. This has the effect of reducing the adverse effect of increasing the frequency dependence of the transmission characteristics, resulting in a non-radiative dielectric line capable of stably transmitting a high-frequency signal.

また、本発明の非放射性誘電体線路によれば、前記平板導体の他方に対して前記入出力用誘電体線路の一端側のLSMモードの定在波の電界が強い箇所付近に設けられる貫通孔と前記LSMモードの定在波の電界が強い箇所とのずれを、前記入出力用誘電体線路の他端と、該他端に間隔をおいて一端が接続される接続用誘電体線路の前記一端との前記間隔よりも小さくしたときには、平板導体の一方に設けられた貫通孔に接続される導波管と異なる大きさの導波管を他方の平板導体に設けられた貫通孔に接続しても、それら貫通孔のそれぞれを透過させて、表裏の両側において高周波信号を安定に伝送することができる非放射性誘電体線路となる。   Further, according to the non-radiative dielectric line of the present invention, the through hole provided in the vicinity of a place where the electric field of the standing wave in the LSM mode on the one end side of the input / output dielectric line is strong with respect to the other of the flat conductors. Between the other end of the input / output dielectric line and the other end of the connecting dielectric line with one end connected to the other end of the LSM mode. When the gap is smaller than the above-mentioned distance from one end, a waveguide having a different size from the waveguide connected to the through-hole provided in one of the flat conductors is connected to the through-hole provided in the other flat conductor. However, it becomes a non-radiative dielectric line which can transmit each of these through-holes and stably transmit a high-frequency signal on both the front and back sides.

また、本発明の非放射性誘電体線路によれば、貫通孔は、導波管の開放終端部が接続されるものであるときには、貫通孔と様々な開口形状・開口寸法の開放終端部を有する導波管との間で、高周波信号を損失が小さく、かつ安定に透過させることができるものとなる。   Further, according to the non-radiative dielectric line of the present invention, the through hole has an open terminal portion having various opening shapes and sizes when the open terminal portion of the waveguide is connected. A high-frequency signal is small in loss and can be transmitted stably with respect to the waveguide.

本発明の第1の高周波送受信器によれば、高周波信号を発生する高周波発振器と、この高周波発振器の出力端側に接続された、前記高周波信号を分岐して一方の出力端と他方の出力端とに出力する分岐器と、前記一方の出力端に接続された、この一方の出力端に分岐された高周波信号を変調して送信用高周波信号を出力する変調器と、磁性体の周囲に第1の端子,第2の端子および第3の端子を有し、この順に一つの端子から入力された高周波信号を隣接する次の端子より出力する、前記変調器の出力が前記第1の端子に入力されるサーキュレータと、このサーキュレータの前記第2の端子に接続された送受信アンテナと、前記分岐器の前記他方の出力端と前記サーキュレータの前記第3の端子との間に接続された、前記他方の出力端に分岐された高周波信号と前記送受信アンテナで受信した高周波信号とを混合して中間周波信号を出力するミキサーとを具備しており、前記高周波発振器および前記分岐器または前記サーキュレータおよび前記送受信アンテナは、上記各構成の本発明のいずれかの非放射性誘電体線路で接続されていることから、非放射性誘電体線路が、非放射性誘電体線路の平板導体に設けられた貫通孔およびその貫通孔に接続された導波管等の高周波用伝送線路を通して高周波発振器が発生した高周波信号を周波数や強度が安定な状態で伝送するかまたは送受信アンテナで送受信する高周波信号を周波数や強度が安定な状態で伝送するため、送受信アンテナから送信される送信用高周波信号の周波数や強度を安定にしたり送受信アンテナで受信されミキサーに入力される高周波信号の周波数や強度を安定にしたりすることができるので、送受信性能が良好である高性能な高周波送受信器となる。また、高周波発振器や送受信アンテナを非放射性誘電体線路の平板導体は上に設けることができるので、小型化や実装性向上を実現する上で有利な高周波送受信器となる。   According to the first high-frequency transmitter / receiver of the present invention, a high-frequency oscillator that generates a high-frequency signal, and the high-frequency signal that is connected to the output end of the high-frequency oscillator are branched to one output end and the other output end. A modulator connected to the one output terminal, a modulator for modulating the high-frequency signal branched to the one output terminal and outputting a high-frequency signal for transmission, and a magnetic material around the magnetic body. A first terminal, a second terminal, and a third terminal, and a high-frequency signal input from one terminal in this order is output from an adjacent next terminal, and the output of the modulator is output to the first terminal. The other circulator connected between the input circulator, the transmission / reception antenna connected to the second terminal of the circulator, and the other output terminal of the branching device and the third terminal of the circulator Branch to the output end of A mixer that mixes the high-frequency signal received and the high-frequency signal received by the transmission / reception antenna to output an intermediate frequency signal, and the high-frequency oscillator and the branching device or the circulator and the transmission / reception antenna are Since it is connected by any non-radiative dielectric line according to the present invention, the non-radiative dielectric line is connected to the through hole provided in the flat conductor of the non-radiative dielectric line and the through hole. In order to transmit a high-frequency signal generated by a high-frequency oscillator through a high-frequency transmission line such as a waveguide in a state where the frequency and intensity are stable, or to transmit and receive a high-frequency signal transmitted and received by a transmission / reception antenna in a state where the frequency and intensity are stable, Stabilize the frequency and strength of the transmit high-frequency signal transmitted from the transmit / receive antenna, or receive it through the transmit / receive antenna and enter the mixer. Since the frequency and strength of the high-frequency signal can be or stability, a high performance RF transceiver transmitting and receiving performance is good. In addition, since the high-frequency oscillator and the transmitting / receiving antenna can be provided on the flat conductor of the non-radiative dielectric line, the high-frequency transmitter / receiver is advantageous in reducing the size and improving the mountability.

本発明の第2の高周波送受信器によれば、高周波信号を発生する高周波発振器と、この高周波発振器の出力端側に接続された、前記高周波信号を分岐して一方の出力端と他方の出力端とに出力する分岐器と、前記一方の出力端に接続された、この一方の出力端に分岐された高周波信号を変調して送信用高周波信号を出力する変調器と、この変調器の出力端に一端が接続された、前記一端側から他端側へ前記送信用高周波信号を透過させるアイソレータと、このアイソレータに接続された送信アンテナと、前記分岐器の前記他方の出力端側に接続された受信アンテナと、前記分岐器の前記他方の出力端と前記受信アンテナとの間に接続された、前記他方の出力端に分岐された高周波信号と前記受信アンテナで受信した高周波信号とを混合して中間周波信号を出力するミキサーとを具備しており、前記高周波発振器および前記分岐器、前記アイソレータおよび前記送信アンテナまたは前記ミキサーおよび前記受信アンテナは、上記各構成の本発明のいずれかの非放射性誘電体線路で接続されていることから、非放射性誘電体線路が、非放射性誘電体線路の平板導体に設けられた貫通孔およびその貫通孔に接続された導波管等の高周波用伝送線路を通して高周波発振器が発生した高周波信号を周波数や強度が安定な状態で伝送するかまたは送信アンテナおよび受信アンテナで送受信する高周波信号を周波数や強度が安定な状態で伝送するため、送信アンテナから送信される送信用高周波信号の周波数や強度を安定にしたり受信アンテナで受信されミキサーに入力される高周波信号の周波数や強度を安定にしたりすることができるので、送受信性能が良好である高性能な高周波送受信器となる。また、高周波発振器や送信アンテナおよび受信アンテナを非放射性誘電体線路の平板導体上に設けることができるので、小型化や実装性向上を実現する上で有利な高周波送受信器となる。   According to the second high-frequency transmitter / receiver of the present invention, a high-frequency oscillator for generating a high-frequency signal and the high-frequency signal connected to the output end side of the high-frequency oscillator are branched to one output end and the other output end. And a modulator connected to the one output terminal for modulating a high-frequency signal branched to the one output terminal and outputting a high-frequency signal for transmission, and an output terminal of the modulator One end connected to the isolator that transmits the high-frequency signal for transmission from the one end side to the other end side, a transmission antenna connected to the isolator, and the other output end side of the branching device A high frequency signal branched to the other output terminal connected between the reception antenna and the other output terminal of the branching device and the reception antenna and a high frequency signal received by the reception antenna are mixed. During ~ And a mixer for outputting a frequency signal, wherein the high-frequency oscillator, the branching device, the isolator, the transmitting antenna, or the mixer and the receiving antenna are any of the non-radiative dielectrics according to the present invention having the above-described configurations. Since the non-radiative dielectric line is connected by a line, the high-frequency oscillator passes through a high-frequency transmission line such as a through-hole provided in a flat conductor of the non-radiative dielectric line and a waveguide connected to the through-hole. Transmit high-frequency signals with high frequency and strength, or transmit and receive high-frequency signals transmitted and received with the transmitting and receiving antennas with stable frequency and strength. Stabilize the frequency and strength of the signal, or the frequency of the high-frequency signal received by the receiving antenna and input to the mixer Since the strength can be or stability, a high performance RF transceiver transmitting and receiving performance is good. In addition, since the high-frequency oscillator, the transmission antenna, and the reception antenna can be provided on the flat conductor of the non-radiative dielectric line, the high-frequency transmitter / receiver is advantageous in realizing miniaturization and improvement in mountability.

本発明のレーダ装置によれば、上記各構成の本発明の第1および第2のいずれかの高周波送受信器と、この高周波送受信器から出力される前記中間周波信号を処理して探知対象物までの距離情報を検出する距離情報検出器とを具備することから、高周波送受信器の送受信性能が良好であり、また安定しているため、速く確実に探知対象物を探知することができるとともに至近距離や遠方の探知対象物をも確実に探知することができるレーダ装置となる。   According to the radar apparatus of the present invention, either the first or second high-frequency transmitter / receiver of the present invention having the above-described configuration and the intermediate frequency signal output from the high-frequency transmitter / receiver are processed to the detection target. Because it has a distance information detector for detecting the distance information of the high frequency transmitter / receiver, the transmission / reception performance of the high frequency transmitter / receiver is good and stable, so that the object to be detected can be detected quickly and surely, In other words, the radar apparatus can reliably detect an object to be detected at a long distance.

本発明のレーダ装置搭載車両によれば、上記構成の本発明のレーダ装置を備え、このレーダ装置を探知対象物の検出に用いることから、レーダ装置が速く確実に探知対象物である他の車両や障害物等を探知することができるため、例えばそれらを回避するための急激な挙動を車両に起こさせることなく、車両の適切な制御や運転者への適切な警告をすることができるレーダ装置搭載車両となる。   According to the vehicle equipped with the radar apparatus of the present invention, since the radar apparatus of the present invention having the above-described configuration is provided and this radar apparatus is used for detection of the detection target object, the other radar vehicle is a detection target object quickly and reliably. Radar device that can detect a vehicle and an obstacle, for example, without causing the vehicle to take a sudden action to avoid them, for example, to perform appropriate control of the vehicle and appropriate warning to the driver It becomes an on-board vehicle.

本発明のレーダ装置搭載小型船舶によれば、上記構成の本発明のレーダ装置を備え、このレーダ装置を探知対象物の検出に用いることから、レーダ装置が速く確実に探知対象物である他の小型船舶障害物等を探知することができるため、例えばそれらを回避するための急激な挙動を小型船舶に起こさせることなく、小型船舶の適切な制御や操縦者への適切な警告をすることができるレーダ装置搭載小型船舶となる。   According to the small ship equipped with the radar apparatus of the present invention, the radar apparatus of the present invention having the above-described configuration is provided, and this radar apparatus is used for detection of the detection object. Because small boat obstacles can be detected, for example, appropriate control of small boats and appropriate warnings to pilots can be made without causing the small boats to take a sudden action to avoid them. A small ship equipped with a radar device.

まず、本発明の非放射性誘電体線路およびそれを用いた本発明の高周波送受信器について、図面を参照しつつ詳細に説明する。   First, the non-radiative dielectric line of the present invention and the high-frequency transceiver of the present invention using the same will be described in detail with reference to the drawings.

図1は本発明の非放射性誘電体線路の実施の形態の一例である非放射性誘電体線路H1を示す模式図であり、(a)は平面図、(b)および(c)はそれぞれそのA−A’線断面図およびB−B’線断面図である。また、図2は本発明の非放射性誘電体線路の実施の形態の他の例である非放射性誘電体線路H2を示す模式的な断面図である。さらに、図3は本発明の非放射性誘電体線路の実施の形態の一例である非放射性誘電体線路H1に導波管が接続された例を示す模式的な断面図である。これら図1乃至図3において、1は一方の平板導体、2は他方の平板導体、3は入出力用誘電体線路、4は接続用誘電体線路、5は他の入出力用誘電体線路、6は他の接続用誘電体線路、7は導波管Gの開放終端部、1aは一方の平板導体1に設けられた貫通孔、2aは他方の平板導体2に設けられた貫通孔、3aは入出力用誘電体線路3の貫通孔1a側の一端である開放端、3bは入出力用誘電体線路3の他端である接続端である。   FIG. 1 is a schematic diagram showing a non-radiative dielectric line H1 which is an example of an embodiment of a non-radiative dielectric line according to the present invention, where (a) is a plan view, and (b) and (c) are A -A 'line sectional drawing and BB' line sectional drawing. FIG. 2 is a schematic cross-sectional view showing a non-radiative dielectric line H2 which is another example of the embodiment of the non-radiative dielectric line of the present invention. FIG. 3 is a schematic cross-sectional view showing an example in which a waveguide is connected to a non-radiative dielectric line H1, which is an example of an embodiment of the non-radiative dielectric line of the present invention. 1 to 3, 1 is one flat conductor, 2 is the other flat conductor, 3 is an input / output dielectric line, 4 is a connecting dielectric line, 5 is another input / output dielectric line, 6 is another connecting dielectric line, 7 is an open terminal portion of the waveguide G, 1a is a through hole provided in one flat conductor 1, 2a is a through hole provided in the other flat conductor 2, 3a Is an open end that is one end of the input / output dielectric line 3 on the side of the through hole 1 a, and 3 b is a connection end that is the other end of the input / output dielectric line 3.

また、図4および図5は、それぞれ本発明の第1の高周波送受信器の実施の形態の一例を示す模式的なブロック回路図および平面図である。また、図6(a)および(b)は、それぞれ非放射性誘電体線路型の変調器およびミキサーに用いられるダイオードが実装された基板の一例を模式的に示す斜視図である。また、図7および図8は、それぞれ本発明の第2の高周波送受信器の実施の形態の一例を示す模式的なブロック回路図および平面図である。また、図9および図10は、本発明の非放射性誘電体線路の実施例における反射係数S11を示す線図である。これら図4乃至図10において、11は高周波発振器、12は分岐器、13は変調器、14はサーキュレータ、15は送受信アンテナ、16はミキサー、17はスイッチ、18はアイソレータ、19は送信アンテナ、20は受信アンテナ、21,31は下側の平板導体、22,32は第1の誘電体線路、23,33は第2の誘電体線路、24,34は磁性体としてのフェライト板、25,35は第3の誘電体線路、26,36は第4の誘電体線路、27,37は第5の誘電体線路、28,38a,38bは無反射終端器、39は第6の誘電体線路、40,44は基板、41,46はチョーク型バイアス供給線路、42,47は接続端子、43は高周波変調用素子、45は高周波検波用素子、12aは入力端、12bは一方の出力端、12cは他方の出力端、13a,18aは入力端、13b,18bは出力端、14a,24a,34aは第1の端子、14b,24b,34bは第2の端子、14c,24c,34cは第3の端子である。なお、図5および図8において、上側の平板導体は図示していない。 FIGS. 4 and 5 are a schematic block circuit diagram and a plan view, respectively, showing an example of an embodiment of the first high-frequency transceiver of the present invention. FIGS. 6A and 6B are perspective views schematically showing an example of a substrate on which a diode used in a nonradiative dielectric line type modulator and a mixer is mounted, respectively. FIG. 7 and FIG. 8 are a schematic block circuit diagram and a plan view, respectively, showing an example of an embodiment of the second high-frequency transceiver of the present invention. Further, FIGS. 9 and FIG. 10 is a diagram showing the reflection coefficient S 11 of the embodiment of nonradiative dielectric waveguide of the present invention. 4 to 10, 11 is a high-frequency oscillator, 12 is a branching device, 13 is a modulator, 14 is a circulator, 15 is a transmitting / receiving antenna, 16 is a mixer, 17 is a switch, 18 is an isolator, 19 is a transmitting antenna, 20 Is a receiving antenna, 21 and 31 are lower flat conductors, 22 and 32 are first dielectric lines, 23 and 33 are second dielectric lines, 24 and 34 are ferrite plates as magnetic bodies, 25 and 35 Is a third dielectric line, 26 and 36 are fourth dielectric lines, 27 and 37 are fifth dielectric lines, 28, 38a and 38b are non-reflective terminators, 39 is a sixth dielectric line, 40 and 44 are substrates, 41 and 46 are choke-type bias supply lines, 42 and 47 are connection terminals, 43 is a high-frequency modulation element, 45 is a high-frequency detection element, 12a is an input end, 12b is one output end, 12c Is the other output terminal, 13a and 18a are input terminals, 13b and 18b are output terminals, 14a, 24a and 34a are first terminals, 14b, 24b and 34b are second terminals, Reference numerals 14c, 24c, and 34c denote third terminals. 5 and 8, the upper flat conductor is not shown.

図1に示す本発明の非放射性誘電体線路の実施の形態の一例である非放射性誘電体線路H1は、高周波信号の波長の2分の1以下の間隔で平行に配置した平板導体1,2間に入出力用誘電体線路3および接続用誘電体線路4を配置しており、平板導体1,2の一方(この例では平板導体1)に対して入出力用誘電体線路3の一端3a側のLSMモードの定在波の電界が強い箇所P2付近に設けられる貫通孔1aとLSMモードの定在波の電界が強い箇所P2とのずれLを、入出力用誘電体線路3の他端3bと、この他端3bに間隔をおいて一端4aが接続される接続用誘電体線路4の一端4aとの間隔Lよりも小さくした構成である。 A nonradiative dielectric line H1 which is an example of an embodiment of the nonradiative dielectric line of the present invention shown in FIG. 1 is a flat conductor 1, 2 arranged in parallel at an interval of 1/2 or less of the wavelength of a high frequency signal. An input / output dielectric line 3 and a connecting dielectric line 4 are arranged between them, and one end 3a of the input / output dielectric line 3 with respect to one of the flat conductors 1 and 2 (in this example, the flat conductor 1). The difference L 1 between the through hole 1a provided near the portion P2 where the LSM mode standing wave electric field is strong and the portion P2 where the LSM mode standing wave electric field is strong and the end 3b, a structure in which smaller than the distance L 2 between the end 4a of the connection dielectric waveguide 4 having one end 4a at a distance to the other end 3b is connected.

上記構成において、入出力用誘電体線路3は接続用誘電体線路4から入力された高周波信号を平板導体1に設けられた貫通孔1aに透過させ、その高周波信号が貫通孔1aに接続される導波管等の高周波用伝送線路に伝送されるように動作するものである。その際、入出力用誘電体線路3の一端である開放端3aは開放終端部となっているため、このような構造の非放射性誘電体線路H1においては、図11に示した従来の非放射性誘電体線路Hと同様に、図11(b)で模式的に円形の矢印線で表すようなLSMモードによる電界の定在波が生じる。なお、図11(b)において、円形の矢印線は、LSMモードの励振による電界ベクトルが同じ場所で時間的に回転している様子を示している。   In the above configuration, the input / output dielectric line 3 transmits the high-frequency signal input from the connecting dielectric line 4 to the through hole 1a provided in the flat conductor 1, and the high-frequency signal is connected to the through hole 1a. It operates so as to be transmitted to a high-frequency transmission line such as a waveguide. At this time, the open end 3a, which is one end of the input / output dielectric line 3, serves as an open end portion. Therefore, in the non-radiative dielectric line H1 having such a structure, the conventional non-radiative line shown in FIG. As with the dielectric line H, a standing wave of an electric field is generated in the LSM mode as schematically shown by a circular arrow line in FIG. In FIG. 11B, a circular arrow line indicates that the electric field vector generated by the excitation in the LSM mode is rotating in time at the same place.

本発明の非放射性誘電体線路においても、このように入出力用誘電体線路3(従来例の誘電体線路53に相当)のLSMモードの定在波の電界が強い部分に貫通孔1aを設けることを基本とする。即ち、図1(c)に断面図で示すように、LSMモードの定在波の電界が強い部分の1つであるP2からなるべくずれないように貫通孔1aを設けることが望ましい。   Also in the non-radiative dielectric line of the present invention, the through hole 1a is provided in the portion where the electric field of the standing wave in the LSM mode of the input / output dielectric line 3 (corresponding to the dielectric line 53 of the conventional example) is strong. Based on that. That is, as shown in a cross-sectional view in FIG. 1C, it is desirable to provide the through hole 1a so as not to deviate as much as possible from P2, which is one of the portions where the electric field of the standing wave in the LSM mode is strong.

ただし、その際、考慮すべき点としては、従来例の問題点として指摘したとおり、実際には入出力用誘電体線路3の線路長は製造上のばらつきを有しており、そのため予め平板導体1に設けられた貫通孔1aに対して入出力用誘電体線路3のP2の位置が合うように入出力用誘電体線路3を配置すると、入出力用誘電体線路3の他端である接続端3bの位置がばらつくこととなってしまい、接続端3bに接続される高周波回路要素が、物理的に入出力用誘電体線路3と干渉するために所定の位置に配置することができなくなったり、接続端3bとの間隔が開くためにその部分での高周波信号の反射が大きくなったりすることとなる。   However, as pointed out at that time, as pointed out as a problem of the conventional example, the line length of the input / output dielectric line 3 actually has a manufacturing variation, and therefore, a flat conductor in advance. When the input / output dielectric line 3 is arranged so that the position of P2 of the input / output dielectric line 3 is aligned with the through-hole 1a provided in 1, the connection which is the other end of the input / output dielectric line 3 The position of the end 3b varies, and the high-frequency circuit element connected to the connection end 3b physically interferes with the input / output dielectric line 3 and cannot be disposed at a predetermined position. Since the distance from the connection end 3b is increased, the reflection of the high-frequency signal at that portion is increased.

そこで、本発明の非放射性誘電体線路では、入出力用誘電体線路3の接続端3bに直接高周波回路要素を接続せずに、接続端3bに間隔をおいて接続用誘電体線路4の一端4aが配置されるように接続用誘電体線路4を設け、この接続用誘電体線路4の他端に高周波回路要素を接続するようにする。このようにすれば、その接続用誘電体線路4に接続される高周波回路要素および入出力用誘電体線路3を所定の位置に配置したとしても、接続用誘電体線路4が一端4aと接続端3bとの間隔Lでもって入出力用誘電体線路3およびその接続用誘電体線路4自体の線路長のばらつきを吸収して、それら高周波回路要素、接続用誘電体線路4および入出力用誘電体線路3を適切に配置することができる働きをするため、組み立て上の問題点を回避することができる。 Therefore, in the non-radiative dielectric line of the present invention, one end of the connecting dielectric line 4 is not connected directly to the connecting end 3b of the input / output dielectric line 3 but spaced from the connecting end 3b. A connecting dielectric line 4 is provided so that 4a is arranged, and a high-frequency circuit element is connected to the other end of the connecting dielectric line 4. In this way, even if the high frequency circuit element connected to the connecting dielectric line 4 and the input / output dielectric line 3 are arranged at predetermined positions, the connecting dielectric line 4 is connected to the one end 4a and the connecting end. by absorbing variations in the line length of the input and output dielectric line 3 and its connection dielectric waveguide 4 itself with a distance L 2 between 3b, their high-frequency circuit element, connection dielectric waveguide 4 and the input-output dielectric Since the body track 3 can be appropriately arranged, problems in assembly can be avoided.

そして、本発明の非放射性誘電体線路では、次に考慮すべき点である入出力用誘電体線路3と接続用誘電体線路4との隙間(間隔L)部による反射特性の劣化に対しては、入出力用誘電体線路3が貫通孔1aに対する所定の位置からずれることにより貫通孔1aとLSMモードの定在波の電界が強い箇所P2とのずれLが生じて劣化する反射特性の程度と比較して、そのずれLの方が間隔Lよりも反射特性の劣化に与える影響が大きいので、間隔LよりもそのずれLを小さくする。このことは、実施例に後述するとおり実験により確かめられたことに基づいている。このようにすれば、入出力用誘電体線路3に線路長のばらつきがあっても、反射特性の劣化に対してより影響が小さい入出力用誘電体線路3と接続用誘電体線路4との間に設けられる間隔Lにより、そのばらつきをその部分で吸収しつつ反射特性の劣化や変動を小さくすることができる。なお、これと同様に、接続用誘電体線路4に接続される変調器、サーキュレータ、アイソレータもしくはミキサー等の高周波回路要素、接続用誘電体線路4および入出力用誘電体線路3の関係においても、接続用誘電体線路4と入出力用誘電体線路3との間隔Lよりも接続用誘電体線路4とそれら高周波回路要素との間隔を小さくすることが好ましい。このようにすれば、接続用誘電体線路4および入出力用誘電体線路3に線路長のばらつきがあっても、高周波回路要素と貫通孔1に接続される導波管等の高周波用伝送線路との間で反射を抑制することができる。 In the non-radiative dielectric line of the present invention, the reflection characteristics are deteriorated due to the gap (interval L 2 ) between the input / output dielectric line 3 and the connecting dielectric line 4 which is the next point to be considered. In this case, the input / output dielectric line 3 is displaced from a predetermined position with respect to the through hole 1a, so that a deviation L 1 between the through hole 1a and the portion P2 where the electric field of the standing wave in the LSM mode is strong is generated and deteriorated. compared to the degree of, the direction of the deviation L 1 is large influence on the degradation of the reflection characteristic than the distance L 2, to reduce the deviation L 1 than the distance L 2. This is based on what has been confirmed by experiments as described later in Examples. In this way, even if the input / output dielectric line 3 has a variation in line length, the input / output dielectric line 3 and the connecting dielectric line 4 are less affected by the deterioration of the reflection characteristics. the distance L 2 provided between, it is possible to reduce the deterioration and variation of the reflection characteristic while absorbing the variation in that part. Similarly to this, in relation to the high-frequency circuit elements such as a modulator, circulator, isolator or mixer connected to the connecting dielectric line 4, the connecting dielectric line 4 and the input / output dielectric line 3, It is preferable to make the interval between the connecting dielectric line 4 and these high-frequency circuit elements smaller than the interval L 2 between the connecting dielectric line 4 and the input / output dielectric line 3. In this way, even if the connecting dielectric line 4 and the input / output dielectric line 3 have variations in line length, the high-frequency transmission line such as a waveguide connected to the high-frequency circuit element and the through-hole 1 is used. And reflection can be suppressed.

なお、入出力用誘電体線路3に伝送される高周波信号の伝送方向に垂直な方向についても、貫通孔1aの中央部と入出力用誘電体線路3の中央部とのずれLは、入出力用誘電体線路3および接続用誘電体線路4の接続部における入出力用誘電体線路3の中央部と接続用誘電体線路4の中央部とのずれLよりも、反射特性の劣化に与える影響が大きいため、ずれLよりもずれLを小さくするのが好ましい。 In addition, also in the direction perpendicular to the transmission direction of the high-frequency signal transmitted to the input / output dielectric line 3, the deviation L3 between the central part of the through hole 1a and the central part of the input / output dielectric line 3 is The reflection characteristic is deteriorated more than the shift L 4 between the central portion of the input / output dielectric line 3 and the central portion of the connecting dielectric line 4 at the connecting portion of the output dielectric line 3 and the connecting dielectric line 4. Since the influence is large, it is preferable to make the deviation L 3 smaller than the deviation L 4 .

図1に示す本発明の非放射性誘電体線路の実施の形態の一例である非放射性誘電体線路H1は、上記構成とすることから、入出力用誘電体線路3と接続用誘電体線路4との間隔Lが、それら入出力用誘電体線路3および接続用誘電体線路4の線路長のばらつきを吸収し、入出力用誘電体線路3のLSMモードの定在波の電界が強い箇所P2に貫通孔1aが位置するように貫通孔1aの位置を基準に線路長にばらつきがある入出力用誘電体線路3を配置しても、入出力用誘電体線路3と接続用誘電体線路4とかまたはそれらと他の高周波回路要素とが物理的に干渉することなく入出力用誘電体線路3および接続用誘電体線路4を配置することができるように働くとともに、間隔Lが開いていても貫通孔1aと入出力用誘電体線路3のLSMモードの定在波の電界が強い箇所P2とのずれLが大きくなるよりかは相対的に反射を小さくする作用があるため、反射した高周波信号が他の高周波信号と干渉しあって透過特性が不安定となったり透過特性の周波数依存性が大きくなったりするといった悪影響を小さくすることができる効果があり、高周波信号を安定に伝送することができる。 Since the non-radiative dielectric line H1 which is an example of the embodiment of the non-radiative dielectric line of the present invention shown in FIG. 1 has the above-described configuration, the input / output dielectric line 3, the connection dielectric line 4, and distance L 2 is, to absorb the variations in their line lengths of the input and output dielectric line 3 and the connection dielectric waveguide 4, input-output dielectric waveguide 3 places electric field of the standing wave is strong LSM mode P2 Even if the input / output dielectric line 3 having a variation in line length with respect to the position of the through-hole 1a is arranged so that the through-hole 1a is located in the input / output dielectric line 3, the input / output dielectric line 3 and the connecting dielectric line 4 Toka or together with them and other high frequency circuit elements serve to be able to arrange the input and output dielectric line 3 and the connection dielectric waveguide 4 without physical interference, are open interval L 2 LS of through-hole 1a and input / output dielectric line 3 Since the standing wave electric field of the mode is either from displacement L 1 is increased with a strong point P2 has an effect of reducing the relatively reflective, transmissive characteristics reflected high-frequency signal interfere with each other and other high frequency signals Has the effect of reducing adverse effects such as instability and increased frequency dependence of transmission characteristics, and can stably transmit high-frequency signals.

次に、図1に示す非放射性誘電体線路H1は、さらに具体的には次のように構成すればよい。   Next, the non-radiative dielectric line H1 shown in FIG. 1 may be more specifically configured as follows.

まず、貫通孔1aの平面視した形状は、通常は非放射性誘電体線路H1の管内波長の半分以下の長さ(D)と非放射性誘電体線路H1の誘電体線路3と同じ程度の幅(W)とを持つ図1に示すような矩形状とすればよいが、その他、円形状や長孔状であってもよい。   First, the shape of the through-hole 1a in plan view is usually a length (D) that is half or less of the in-tube wavelength of the non-radiative dielectric line H1 and the same width as the dielectric line 3 of the non-radiative dielectric line H1 ( W) may be a rectangular shape as shown in FIG. 1, but may be a circular shape or a long hole shape.

また、貫通孔1aは、好ましくは平板導体1の表裏で開口の大きさを異なるものとするとよい。貫通孔1aに導波管Gの一端の入出力部である開放終端部が接続され、その導波管Gの他端に、例えばアンテナ等が接続される場合のように、導波管Gに閉じ込められる電磁界領域の大きさ(導波管Gの伝送方向に垂直な断面における内側の大きさ)が平板導体1の裏側(誘電体線路3側)での貫通孔1aの開口の大きさよりも大きくなるときには、平板導体1の裏側(誘電体線路3側)の貫通孔1aの開口の大きさよりも平板導体1の表側(導波管G側)の貫通孔1aの開口の大きさを大きくすればよい。また、貫通孔1aに導波管Gの一端の入出力部である開放終端部が接続され、その導波管Gの他端に、例えば電圧制御発振器(VCO)等が接続される場合のように、導波管Gに閉じ込められる電磁界領域の大きさ(導波管Gの伝送方向に垂直な断面における内側の大きさに相当する。)が平板導体1の裏側(誘電体線路3側)での貫通孔1aの開口の大きさよりも小さくなるときには、平板導体1の裏側(誘電体線路3側)の貫通孔1aの開口の大きさよりも平板導体1の表側(導波管G側)の貫通孔1aの開口の大きさを小さくすればよい。   The through hole 1a preferably has different opening sizes on the front and back of the flat conductor 1. An open terminal, which is an input / output unit at one end of the waveguide G, is connected to the through-hole 1a, and an antenna or the like is connected to the other end of the waveguide G. The size of the confined electromagnetic field region (the size of the inside in the cross section perpendicular to the transmission direction of the waveguide G) is larger than the size of the opening of the through hole 1a on the back side of the flat conductor 1 (dielectric line 3 side). When increasing, the size of the opening of the through hole 1a on the front side (waveguide G side) of the flat conductor 1 is made larger than the size of the opening of the through hole 1a on the back side of the flat conductor 1 (dielectric line 3 side). That's fine. In addition, an open terminal as an input / output unit at one end of the waveguide G is connected to the through hole 1a, and a voltage controlled oscillator (VCO) or the like is connected to the other end of the waveguide G, for example. In addition, the size of the electromagnetic field region confined in the waveguide G (corresponding to the inner size in the cross section perpendicular to the transmission direction of the waveguide G) is the back side of the flat conductor 1 (dielectric line 3 side). Is smaller than the size of the opening of the through hole 1a in the plate conductor 1 on the front side (waveguide G side) of the flat conductor 1 than the size of the opening of the through hole 1a on the back side of the flat conductor 1 (dielectric line 3 side). What is necessary is just to make small the magnitude | size of the opening of the through-hole 1a.

平板導体1の表裏での貫通孔1aの開口の大きさをこのように設定すれば、貫通孔1aがこの貫通孔1a内に閉じ込められているミリ波信号等の高周波信号の電磁界領域の大きさを平板導体1の裏側から表側あるいは表側から裏側にかけて次第に変化させるため、貫通孔1aの表裏間で高周波信号の電磁界を滑らかに変化させ、不要な電磁界モードの発生を抑制するように働くので、前述のように様々な開口形状・開口寸法の導波管Gの開放終端部での高周波信号の電磁界領域の大きさに対しても、貫通孔1aを透過する高周波信号の透過損失を小さくして接続することができるものとなる。   If the size of the opening of the through hole 1a on the front and back of the flat conductor 1 is set in this way, the size of the electromagnetic field region of a high frequency signal such as a millimeter wave signal in which the through hole 1a is confined in the through hole 1a. Since the thickness of the flat conductor 1 is gradually changed from the back side to the front side or from the front side to the back side, the electromagnetic field of the high-frequency signal is smoothly changed between the front and back sides of the through hole 1a, and the generation of an unnecessary electromagnetic field mode is suppressed. Therefore, as described above, the transmission loss of the high-frequency signal transmitted through the through-hole 1a is also reduced with respect to the size of the electromagnetic field region of the high-frequency signal at the open end of the waveguide G having various opening shapes and sizes. The connection can be made smaller.

また、非放射性誘電体線路H1において、貫通孔1aの縦断面形状(平板導体1の表裏に対して垂直な方向の断面形状)は、好ましくは平板導体1の表側の開口、裏側の開口およびそれらに繋がる2つの斜辺を有している台形状とするとよい。ここで台形状とは、台形、および台形における2つの斜辺が直線ではなく、曲線状であり、かつそれぞれの斜辺の勾配が単調増加または単調減少のいずれかであるものである。なお、斜辺の勾配とは、例えば、図1(b)に示すような縦断面形状であれば、この図の中のθで示すような角度であり、貫通孔1の中心線と斜辺の接線とがなす角度である。貫通孔1aの縦断面形状をこのようにすれば、貫通孔1aが設けられた平板導体1を金型を用いて作製する場合には貫通孔1aから製造用の金型が抜きやすくなり、金型を用いて貫通孔1aが設けられた平板導体1を容易に成型することができるものとなる。また、このように金型を用いて安定して製造できることから、貫通孔1aの縦断面形状が横断面形状とともに均一になり、大量生産に適したものとなる。   Further, in the non-radiative dielectric line H1, the vertical cross-sectional shape of the through hole 1a (the cross-sectional shape in the direction perpendicular to the front and back surfaces of the flat conductor 1) is preferably the front side opening, the back side opening of the flat plate conductor 1 and those It is good to use the trapezoid shape which has two hypotenuses connected to. Here, the trapezoidal shape is that the trapezoid and the two hypotenuses in the trapezoid are not straight but curved, and the slope of each hypotenuse is either monotonically increasing or monotonically decreasing. Note that the slope of the hypotenuse is, for example, an angle shown by θ in this figure if the longitudinal cross-sectional shape is as shown in FIG. 1B, and the tangent line between the center line of the through hole 1 and the hypotenuse. Is the angle between If the vertical cross-sectional shape of the through-hole 1a is made in this way, when the flat conductor 1 provided with the through-hole 1a is manufactured using a mold, it becomes easy to remove the manufacturing mold from the through-hole 1a. The flat conductor 1 provided with the through hole 1a can be easily molded using a mold. Moreover, since it can be stably manufactured using a mold in this way, the vertical cross-sectional shape of the through hole 1a becomes uniform together with the cross-sectional shape, which is suitable for mass production.

また、貫通孔1aの平板導体1の裏側の開口の大きさと、導波管Gの伝送方向に垂直な断面の内側の大きさとが同じ程度である場合には、貫通孔1aの縦断面形状は、上記のような台形状であって、その台形状の2つの斜辺のそれぞれの勾配が0.5゜以上かつ2゜以下である台形状とすれば好適である。斜辺の勾配が少なくとも0.5゜ないと、貫通孔1から金型が容易に抜けないようになる傾向があるため、金型を用いて縦断面形状が台形状の貫通孔1aが設けられた平板導体1を成型することが安定してできなくなる傾向がある。また、斜辺の勾配が2゜を超えると、貫通孔1aの表側の開口と裏側の開口とで特性インピーダンスが整合しにくくなり、この特性インピーダンスの不整合による高周波信号の反射のため、貫通孔1aを透過する高周波信号の透過特性が悪化する傾向にある。従って、台形状の斜辺の勾配は0.5°以上かつ2°以下の範囲内に設定することが好ましく、より好ましくは、金型が良好に抜ける範囲でなるべく勾配を小さくすればよくて、1゜程度とするのが最も好適である。   When the size of the opening on the back side of the flat conductor 1 of the through hole 1a is the same as the size of the inside of the cross section perpendicular to the transmission direction of the waveguide G, the vertical cross sectional shape of the through hole 1a is It is preferable that the trapezoidal shape has a trapezoidal shape in which the slopes of the two hypotenuses of the trapezoidal shape are not less than 0.5 ° and not more than 2 °. If the slope of the hypotenuse is not at least 0.5 °, the metal mold tends not to easily come out of the through hole 1. Therefore, a flat plate conductor provided with a through hole 1 a having a trapezoidal cross section using a mold. There is a tendency that molding 1 cannot be performed stably. If the slope of the hypotenuse exceeds 2 °, the characteristic impedance becomes difficult to match between the opening on the front side and the opening on the back side of the through-hole 1a. Tend to deteriorate the transmission characteristics of high-frequency signals that pass through. Therefore, the slope of the trapezoidal hypotenuse is preferably set within a range of 0.5 ° or more and 2 ° or less, and more preferably, the slope should be as small as possible within a range where the mold can be satisfactorily removed. Is most preferable.

次に、図2に示す本発明の非放射性誘電体線路の実施の形態の他の例である非放射性誘電体線路H2は、図1に示す非放射性誘電体線路H1に対して、平板導体1,2の他方(この例では平板導体2)に対して他の入出力用誘電体線路5の一端側のLSMモードの定在波の電界が強い箇所付近に設けられる貫通孔2aとLSMモードの定在波の電界が強い箇所とのずれを、他の入出力用誘電体線路5の他端と、この他端に間隔をおいて一端が接続される他の接続用誘電体線路6の一端との間隔よりも小さくしたものである。このような構成により、一方の平板導体1の貫通孔1aに接続される導波管と異なる大きさの導波管を他方の平板導体2の貫通孔2aに接続することができ、貫通孔1aおよび貫通孔2aのそれぞれを透過する高周波信号の透過損失を両方とも小さくすることができるものとなる。   Next, a non-radiative dielectric line H2 which is another example of the embodiment of the non-radiative dielectric line of the present invention shown in FIG. 2 is a flat conductor 1 with respect to the non-radiative dielectric line H1 shown in FIG. , 2 (in this example, the flat conductor 2), a through hole 2a provided in the vicinity of a portion where the electric field of the standing wave of the LSM mode on one end side of the other input / output dielectric line 5 is strong and the LSM mode One end of another input / output dielectric line 6 is connected to the other end of the other input / output dielectric line 5 with one end connected to the other end of the other input / output dielectric line 5 with a gap from a place where the electric field of the standing wave is strong. It is smaller than the interval. With such a configuration, a waveguide having a different size from the waveguide connected to the through hole 1a of one flat conductor 1 can be connected to the through hole 2a of the other flat conductor 2, and the through hole 1a. In addition, the transmission loss of the high-frequency signal transmitted through each of the through holes 2a can be reduced.

次に、本発明の非放射性誘電体線路の実施の形態の一例である非放射性誘電体線路H1は、導波管Gとは、非放射性誘電体線路H1における一方の平板導体1に設けられた貫通孔1aを介して接続される。この接続の方法としては、例えば、図3に示すように、導波管Gの開放終端部7と貫通孔1aとを接続すればよい。この構成において、導波管Gには、金属導波管または誘電体導波管を用いればよい。このように接続することにより、非放射性誘電体線路H1と導波管Gとの間で貫通孔1aを介して高周波信号が安定に透過するものとなる。   Next, the non-radiative dielectric line H1 which is an example of the embodiment of the non-radiative dielectric line of the present invention is provided on one flat conductor 1 in the non-radiative dielectric line H1 with the waveguide G. It is connected through the through hole 1a. As a method for this connection, for example, as shown in FIG. 3, the open terminal portion 7 of the waveguide G and the through hole 1a may be connected. In this configuration, the waveguide G may be a metal waveguide or a dielectric waveguide. By connecting in this way, a high-frequency signal is stably transmitted between the non-radiative dielectric line H1 and the waveguide G through the through hole 1a.

また、本発明の非放射性誘電体線路の実施の形態の他の例である非放射性誘電体線路H2と導波管との接続についてもこれと同様に、貫通孔1aおよび貫通孔2aのそれぞれに対応した導波管を接続すればよい。   Similarly, the connection between the non-radiative dielectric line H2 and the waveguide, which is another example of the embodiment of the non-radiative dielectric line of the present invention, is connected to each of the through hole 1a and the through hole 2a. Corresponding waveguides may be connected.

次に、本発明の非放射性誘電体線路は、さらに具体的には次のように構成すればよい。   Next, more specifically, the non-radiative dielectric line of the present invention may be configured as follows.

本発明の非放射性誘電体線路において、一方の平板導体1に設ける貫通孔1aおよび他方の平板導体2に設ける貫通孔2aは、それぞれ複数個設けても構わない。この場合には、これら複数個の貫通孔1a,2aの開口の条件(形状および平板導体1,2の表裏における開口の大きさ)を個々に設定すればよく、それにより、それぞれの貫通孔1a,2aを透過する高周波信号の透過損失をいずれも小さくすることができるものとなる。   In the non-radiative dielectric line of the present invention, a plurality of through holes 1a provided in one flat conductor 1 and a plurality of through holes 2a provided in the other flat conductor 2 may be provided. In this case, the conditions for the opening of the plurality of through holes 1a, 2a (the shape and the size of the openings on the front and back surfaces of the flat conductors 1, 2) may be set individually, whereby the respective through holes 1a. , 2a, the transmission loss of the high-frequency signal can be reduced.

また、入出力用誘電体線路3、接続用誘電体線路4、他の入出力用誘電体線路5および他の接続用誘電体線路6の材質には、四フッ化エチレン,ポリスチレン等の樹脂、または低比誘電率のコーディエライト(2MgO・2Al・5SiO)セラミックス,アルミナ(Al)セラミックス,ガラスセラミックス等のセラミックスが好ましく、これらはミリ波帯域の高周波信号において低損失である。 The materials of the input / output dielectric line 3, the connection dielectric line 4, the other input / output dielectric lines 5 and the other connection dielectric lines 6 include resins such as tetrafluoroethylene and polystyrene, Or ceramics such as cordierite (2MgO · 2Al 2 O 3 · 5SiO 2 ) ceramics, alumina (Al 2 O 3 ) ceramics, and glass ceramics having a low relative dielectric constant are preferable, and these are low loss in high-frequency signals in the millimeter wave band. It is.

また、入出力用誘電体線路3、接続用誘電体線路4、他の入出力用誘電体線路5および他の接続用誘電体線路6の断面形状は基本的には矩形状であるが、矩形の角部を丸めた形状であってもよく、高周波信号の伝送に使用される種々の断面形状のものを使用することができる。   The cross-sectional shapes of the input / output dielectric line 3, the connection dielectric line 4, the other input / output dielectric lines 5 and the other connection dielectric lines 6 are basically rectangular. The corners may be rounded, and various cross-sectional shapes used for high-frequency signal transmission can be used.

また、平板導体1,2の材質には、高い電気伝導度および良好な加工性等の点で、Cu,Al,Fe,Ag,Au,Pt,SUS(ステンレススチール),真鍮(Cu−Zn合金)等の導体板が好適である。あるいは、セラミックス,樹脂等から成る絶縁板の表面にこれらの導体層を形成したものでもよい。   The flat conductors 1 and 2 are made of Cu, Al, Fe, Ag, Au, Pt, SUS (stainless steel), brass (Cu-Zn alloy) in terms of high electrical conductivity and good workability. A conductive plate such as) is suitable. Or what formed these conductor layers on the surface of the insulating board which consists of ceramics, resin, etc. may be used.

次に、本発明の第1の高周波送受信器の実施の形態の一例は、図4にブロック回路図で示すように、高周波信号を発生する高周波発振器11と、この高周波発振器11に接続された、高周波信号を分岐して一方の出力端12bと他方の出力端12cとに出力する分岐器12と、一方の出力端12bに接続された、この一方の出力端12bに分岐された高周波信号を変調して送信用高周波信号を出力する変調器13と、磁性体の周囲に第1の端子14a,第2の端子14bおよび第3の端子14cを有し、この順に一つの端子から入力された高周波信号を隣接する次の端子より出力する、変調器13の出力が第1の端子14aに入力されるサーキュレータ14と、このサーキュレータ14の第2の端子14bに接続された送受信アンテナ15と、分岐器12の他方の出力端12cとサーキュレータ14の第3の端子14cとの間に2つの入力端16a,16bのそれぞれが接続された、他方の出力端12cに分岐された高周波信号と送受信アンテナ15で受信した高周波信号とを混合して中間周波信号を出力するミキサー16とを備えており、高周波発振器11および分岐器12またはサーキュレータ14および送受信アンテナ15は、上記各構成の本発明のいずれかの非放射性誘電体線路(この例では図2に示す非放射性誘電体線路H2)で接続されている構成である。   Next, an example of an embodiment of the first high-frequency transmitter / receiver of the present invention includes a high-frequency oscillator 11 that generates a high-frequency signal and a high-frequency oscillator 11 connected to the high-frequency oscillator 11, as shown in a block circuit diagram of FIG. A branching device 12 for branching a high-frequency signal and outputting it to one output end 12b and the other output end 12c, and a high-frequency signal branched to this one output end 12b connected to one output end 12b are modulated. And a modulator 13 for outputting a high-frequency signal for transmission, and a first terminal 14a, a second terminal 14b, and a third terminal 14c around the magnetic body, and the high-frequency signals input from one terminal in this order. A circulator 14 that outputs a signal from the next adjacent terminal, the output of the modulator 13 being input to the first terminal 14a, a transmission / reception antenna 15 connected to the second terminal 14b of the circulator 14, and a branching device The other output terminal 12c of 12 and the circulator 14 Two input terminals 16a and 16b are connected to the third terminal 14c, respectively, and a high frequency signal branched to the other output terminal 12c is mixed with a high frequency signal received by the transmission / reception antenna 15 to obtain an intermediate frequency. The high-frequency oscillator 11 and the branching device 12 or the circulator 14 and the transmission / reception antenna 15 are provided with any of the nonradiative dielectric lines according to the present invention having the above-described configurations (in this example, FIG. It is the structure connected by the nonradiative dielectric track | line H2) shown.

また、図4に示す本発明の第1の高周波送受信器は、上記各構成の非放射性誘電体線路で接続されている構成要素以外の各構成要素間を接続するための高周波用伝送線路としても非放射性誘電体線路を用いている。この非放射性誘電体線路は本発明の非放射性誘電体線路でなくても構わない。   Further, the first high-frequency transmitter / receiver of the present invention shown in FIG. 4 can be used as a high-frequency transmission line for connecting components other than the components connected by the nonradiative dielectric lines having the above-described configurations. A non-radiative dielectric line is used. This nonradiative dielectric line may not be the nonradiative dielectric line of the present invention.

すなわち、図4に示す本発明の第1の高周波送受信器は、具体的には、図5に平面図で示すように、高周波信号の波長の2分の1以下の間隔で平行に配置された平板導体21(他方の平板導体は図示していない。)間に、第1の誘電体線路22の一端側の平板導体21に設けられた貫通孔21aに一端が接続された導波管の他端に接続された、高周波ダイオードから出力された高周波信号を周波数変調するとともに高周波信号として第1の誘電体線路22を伝搬させて出力する高周波発振器11と、第1の誘電体線路22の他端に接続された、その高周波信号をパルス信号に応じて入力端13a側に反射するかまたは出力端13b側に透過させる変調器13と、変調器13の出力端13bに一端が接続された第2の誘電体線路23と、平板導体21に平行に配設されたフェライト板24の周縁部に、それぞれ高周波信号の入出力端子とされた第1の端子24a,第2の端子24bおよび第3の端子24cを有し、この順に、一つの端子から入力された高周波信号を隣接する次の端子より出力する、第1の端子24aが第2の誘電体線路23の他端に接続されたサーキュレータ14と、サーキュレータ14のフェライト板24の周縁部に放射状に配置され、かつ第2の端子24bおよび第3の端子24cにそれぞれの一端が接続された第3の誘電体線路25および第4の誘電体線路26と、第3の誘電体線路25の他端側の平板導体(図示していない上側の平板導体の破線で示す位置)に設けられた貫通孔21aに一端が接続された導波管の他端に接続された送受信アンテナ(図示せず)と、中途を第1の誘電体線路22の中途に近接もしくは接合させた、第1の誘電体線路22を伝搬する高周波信号の一部を分岐して伝搬させる第5の誘電体線路27と、第5の誘電体線路27の高周波発振器11側の一端に接続された無反射終端器28と、第4の誘電体線路26の他端と第5の誘電体線路27の他端との間に接続された、第5の誘電体線路27から入力される高周波信号と送受信アンテナ15で受信してサーキュレータ14から入力される高周波信号とを混合して中間周波信号を出力するミキサー16とを備えている構成である。なお、上記貫通孔21aは、平板導体21および図示されていない上側の平板導体において、それぞれ第1の誘電体線路22の一端側および第3の誘電体線路25の他端側のLSMモードの定在波の電界が強い箇所に設けられている。   That is, the first high-frequency transmitter / receiver of the present invention shown in FIG. 4 is specifically arranged in parallel at intervals of 1/2 or less of the wavelength of the high-frequency signal, as shown in a plan view in FIG. Other than the waveguide whose one end is connected to the through hole 21a provided in the flat conductor 21 on one end side of the first dielectric line 22 between the flat conductors 21 (the other flat conductor is not shown). A high-frequency oscillator 11 that is connected to the end and modulates the frequency of the high-frequency signal output from the high-frequency diode and propagates the first dielectric line 22 as a high-frequency signal and outputs the high-frequency signal, and the other end of the first dielectric line 22 And a second modulator having one end connected to the output end 13b of the modulator 13 and a modulator 13 for reflecting the high-frequency signal to the input end 13a side or transmitting to the output end 13b side according to the pulse signal. Dielectric line 23 and ferrite plate 24 arranged in parallel with the flat conductor 21 The peripheral portion has a first terminal 24a, a second terminal 24b, and a third terminal 24c, which are input / output terminals for high-frequency signals, respectively, and the high-frequency signals input from one terminal are adjacent to each other in this order. The first terminal 24a, which is output from the next terminal, is arranged radially on the peripheral portion of the ferrite plate 24 of the circulator 14 connected to the other end of the second dielectric line 23, and the second terminal 24a. A third dielectric line 25 and a fourth dielectric line 26 having one ends connected to the terminal 24b and the third terminal 24c, and a flat-plate conductor on the other end side of the third dielectric line 25 (not shown) A transmission / reception antenna (not shown) connected to the other end of the waveguide having one end connected to a through-hole 21a provided at the upper flat conductor (not shown), and a first dielectric on the way A first dielectric wire that is close to or joined to the middle of the body line 22 A fifth dielectric line 27 for branching and propagating a part of the high-frequency signal propagating through 22, a non-reflection terminator 28 connected to one end of the fifth dielectric line 27 on the high-frequency oscillator 11 side, The circulator receives the high frequency signal input from the fifth dielectric line 27 connected between the other end of the fourth dielectric line 26 and the other end of the fifth dielectric line 27 and the transmitting / receiving antenna 15. And a mixer 16 that mixes the high-frequency signal input from 14 and outputs an intermediate frequency signal. The through-hole 21a has a constant LSM mode on one end side of the first dielectric line 22 and on the other end side of the third dielectric line 25 in the flat conductor 21 and the upper flat conductor not shown. It is provided in a place where the standing wave has a strong electric field.

なお、第1の誘電体線路22および第5の誘電体線路27は、それらの近接部もしくは接合部において分岐器12を構成している。   Note that the first dielectric line 22 and the fifth dielectric line 27 constitute the branching device 12 in their proximity or junction.

なお、図5において、第1の端子24a,第2の端子24b,第3の端子24cは、それぞれ図4における第1の端子14a,第2の端子14b,第3の端子14cに対応している。   In FIG. 5, the first terminal 24a, the second terminal 24b, and the third terminal 24c correspond to the first terminal 14a, the second terminal 14b, and the third terminal 14c in FIG. 4, respectively. Yes.

この構成において、変調器13は、図6(a)に斜視図で示すように、基板40の表面に形成されたチョーク型バイアス供給線路41の途中の途切れた部位に形成された接続端子42に高周波変調用素子としてのダイオード43を接続した高周波変調部を、第1の誘電体線路22と第2の誘電体線路23との間に、第1の誘電体線路22から出力される高周波信号がダイオード43に入射するように挿入している。この構成において、高周波変調用素子としてのダイオード43には、PINダイオードを用いればよい。また、ダイオード43の代わりにトランジスタやマイクロ波モノリシック集積回路(MMIC)を用いても構わない。   In this configuration, the modulator 13 is connected to a connection terminal 42 formed at a discontinuous portion of the choke-type bias supply line 41 formed on the surface of the substrate 40 as shown in a perspective view of FIG. A high-frequency modulation unit connected with a diode 43 as a high-frequency modulation element is connected between the first dielectric line 22 and the second dielectric line 23 and a high-frequency signal output from the first dielectric line 22 It is inserted so as to enter the diode 43. In this configuration, a PIN diode may be used as the diode 43 as the high frequency modulation element. Further, instead of the diode 43, a transistor or a microwave monolithic integrated circuit (MMIC) may be used.

本発明の高周波送受信器における変調器13には、このような透過形の変調器が好適である。また、透過型の変調器の代わりに、高周波信号を透過させたり反射したりすることができる半導体スイッチやMEMS(Micro Electro Mechanical System:微小電気機械システム)スイッチ等のスイッチを用いてもよい。   Such a transmission type modulator is suitable for the modulator 13 in the high-frequency transceiver of the present invention. Instead of the transmissive modulator, a switch such as a semiconductor switch or a MEMS (Micro Electro Mechanical System) switch that can transmit or reflect a high-frequency signal may be used.

また、ミキサー16は、図6(b)に斜視図で示すように、基板44の表面に形成されたチョーク型バイアス供給線路41の途中の途切れた部位に形成された接続端子42に高周波検波用素子としてのダイオード45を接続した高周波検波部を、第4の誘電体線路26の他端および第5の誘電体線路27の他端のそれぞれに、第4の誘電体線路26および第5の誘電体線路27のそれぞれから出力される高周波信号がダイオード45に入射するように配置している。この構成において、高周波検波用素子としてのダイオード45には、ショットキーバリアダイオードを用いればよい。   Further, as shown in a perspective view of FIG. 6B, the mixer 16 is used for high-frequency detection at a connection terminal 42 formed at an interrupted portion of the choke-type bias supply line 41 formed on the surface of the substrate 44. A high-frequency detector connected to a diode 45 as an element is connected to the other end of the fourth dielectric line 26 and the other end of the fifth dielectric line 27, respectively. A high-frequency signal output from each of the body lines 27 is arranged to enter the diode 45. In this configuration, a Schottky barrier diode may be used as the diode 45 as the high frequency detection element.

以上のように構成された図4および図5に示す本発明の第1の高周波送受信器は、従来の高周波送受信器と同様に動作する。ただし、その際、非放射性誘電体線路H2が、非放射性誘電体線路H2の平板導体1,2に設けられた貫通孔1a,2aおよびそれら貫通孔1a,2aに接続された導波管を通して高周波発振器11が発生した高周波信号を周波数や強度が安定な状態で伝送するとともに、送受信アンテナ15で送受信する高周波信号を周波数や強度が安定な状態で伝送するため、送受信アンテナ15から送信される送信用高周波信号の周波数や強度を安定にしたり送受信アンテナ15で受信されミキサー16に入力される高周波信号の周波数や強度を安定にしたりすることができるので、送受信性能が良好である高性能な高周波送受信器となる。また、高周波発振器11や送受信アンテナ15を非放射性誘電体線路H2の平板導体1,2(21)上(入出力用誘電体線路3等が設けられない側の面)に設けることができるので、小型化や実装性向上を実現する上で有利な高周波送受信器となる。   The first high-frequency transmitter / receiver of the present invention shown in FIGS. 4 and 5 configured as described above operates in the same manner as a conventional high-frequency transmitter / receiver. However, at that time, the non-radiative dielectric line H2 has a high frequency through the through holes 1a and 2a provided in the flat conductors 1 and 2 of the non-radiative dielectric line H2 and the waveguide connected to the through holes 1a and 2a. Transmits the high-frequency signal generated by the oscillator 11 with a stable frequency and intensity, and transmits the high-frequency signal transmitted and received by the transmission / reception antenna 15 with a stable frequency and intensity. A high-performance high-frequency transmitter / receiver with good transmission / reception performance because it can stabilize the frequency and strength of high-frequency signals and stabilize the frequency and strength of high-frequency signals received by the transmission / reception antenna 15 and input to the mixer 16 It becomes. Further, since the high-frequency oscillator 11 and the transmission / reception antenna 15 can be provided on the flat conductors 1 and 2 (21) of the non-radiating dielectric line H2 (the surface on the side where the input / output dielectric line 3 etc. are not provided) It becomes a high-frequency transmitter / receiver that is advantageous in realizing downsizing and improvement in mountability.

次に、本発明の第2の高周波送受信器の実施の形態の一例は、図7にブロック回路図で示すように、高周波信号を発生する高周波発振器11と、この高周波発振器11に接続された、高周波信号を分岐して一方の出力端12bと他方の出力端12cとに出力する分岐器12と、一方の出力端12bに接続された、この一方の出力端12bに分岐された高周波信号を変調して送信用高周波信号を出力する変調器13と、この変調器13の出力端13bに一端18aが接続された、一端18a側から他端18b側へ送信用高周波信号を透過させるアイソレータ18と、このアイソレータ18に接続された送信アンテナ19と、分岐器12の他方の出力端12c側に接続された受信アンテナ20と、分岐器12の他方の出力端12cと受信アンテナ20との間に2つの入力端16a,16bのそれぞれが接続された、他方の出力端12cに分岐された高周波信号と受信アンテナ20で受信した高周波信号とを混合して中間周波信号を出力するミキサー16とを備えており、高周波発振器11および分岐器12、アイソレータ18および送信アンテナ19またはミキサー16および受信アンテナ20は、上記各構成の本発明のいずれかの非放射性誘電体線路(この例では図2に示す非放射性誘電体線路H2)で接続されている構成である。   Next, an example of an embodiment of the second high-frequency transceiver according to the present invention includes a high-frequency oscillator 11 that generates a high-frequency signal and a high-frequency oscillator 11 connected to the high-frequency oscillator 11 as shown in a block circuit diagram of FIG. A branching device 12 for branching a high-frequency signal and outputting it to one output end 12b and the other output end 12c, and a high-frequency signal branched to this one output end 12b connected to one output end 12b are modulated. A modulator 13 for outputting a transmission high-frequency signal, and an isolator 18 having one end 18a connected to the output end 13b of the modulator 13 and transmitting the transmission high-frequency signal from the one end 18a side to the other end 18b side; Between the transmitting antenna 19 connected to the isolator 18, the receiving antenna 20 connected to the other output terminal 12c side of the branching device 12, and between the other output terminal 12c of the branching device 12 and the receiving antenna 20, two Each of input terminals 16a and 16b connected, etc. And a mixer 16 for mixing the high-frequency signal branched to the output terminal 12c and the high-frequency signal received by the receiving antenna 20 and outputting an intermediate-frequency signal. The high-frequency oscillator 11, the branching device 12, the isolator 18, and the transmission The antenna 19 or the mixer 16 and the receiving antenna 20 are connected by any of the non-radiative dielectric lines of the present invention having the above-described configurations (in this example, the non-radiative dielectric line H2 shown in FIG. 2).

また、図7に示す本発明の第2の高周波送受信器は、上記各構成の非放射性誘電体線路で接続されている構成要素以外の各構成要素間を接続するための高周波用伝送線路としても非放射性誘電体線路を用いている。なお、この非放射性誘電体線路は本発明の非放射性誘電体線路でなくても構わない。   Further, the second high-frequency transmitter / receiver of the present invention shown in FIG. 7 can be used as a high-frequency transmission line for connecting components other than the components connected by the nonradiative dielectric lines having the above-described configurations. A non-radiative dielectric line is used. This non-radiative dielectric line may not be the non-radiative dielectric line of the present invention.

すなわち、図7に示す本発明の第2の高周波送受信器は、具体的には、図8に平面図で示すように、高周波信号の波長の2分の1以下の間隔で平行に配置された平板導体31(他方の平板導体は図示していない。)間に、第1の誘電体線路32の一端側の平板導体31に設けられた貫通孔31aに一端が接続された導波管の他端に接続された、高周波ダイオードから出力された高周波信号を周波数変調するとともに第1の誘電体線路32を伝搬させて出力する高周波発振器11と、第1の誘電体線路32の他端に接続された、その高周波信号をパルス信号に応じて入力端13a側に反射するかまたは出力端13b側に透過させる変調器13と、変調器13の出力端13bに一端が接続された第2の誘電体線路33と、平板導体31に平行に配設されたフェライト板34の周縁部に、それぞれ高周波信号の入出力端子とされた第1の端子34a,第2の端子34bおよび第3の端子34cを有し、この順に、一つの端子から入力された高周波信号を隣接する次の端子より出力する、第1の端子34aが第2の誘電体線路33の他端に接続されたサーキュレータ14と、サーキュレータ14のフェライト板34の周縁部に放射状に配置され、かつ第2の端子34bおよび第3の端子34cにそれぞれの一端が接続された第3の誘電体線路35および第4の誘電体線路36と、第3の誘電体線路35の他端側の平板導体(図示していない上側の平板導体の破線で示す位置)に設けられた貫通孔31aに一端が接続された導波管の他端に接続された送信アンテナ19と、中途を第1の誘電体線路32の中途に近接もしくは接合させた、第1の誘電体線路32を伝搬する高周波信号の一部を分岐して伝搬させる第5の誘電体線路37と、第4の誘電体線路36の他端に接続された無反射終端器38aと、第5の誘電体線路37の高周波発振器11側の一端に接続された無反射終端器38bと、一端が平板導体(図示していない上側の平板導体の破線で示す位置)に設けられた貫通孔に配置された第6の誘電体線路39と、第6の誘電体線路39側の貫通孔に一端が接続された導波管の他端に接続された受信アンテナ20と、第5の誘電体線路37の他端と第6の誘電体線路39の他端との間に接続された、第5の誘電体線路37から入力される高周波信号と受信アンテナ20で受信して第6の誘電体線路39から入力される高周波信号とを混合して中間周波信号を出力する上記各構成の本発明の実施の形態の例のいずれかのミキサー16とを備えている構成である。なお、第1の誘電体線路32および第5の誘電体線路37は、それらの近接部もしくは接合部において分岐器12を構成している。なお、上記貫通孔31aは、平板導体31の第1の誘電体線路32の一端側のLSMモードの定在波の電界が強い箇所に設けられており、図示されていない上側の平板導体の第3の誘電体線路35の他端側および第6の誘電体線路39の一端側のそれぞれLSMモードの定在波の電界が強い箇所に設けられている。   That is, the second high-frequency transmitter / receiver of the present invention shown in FIG. 7 is specifically arranged in parallel at intervals of 1/2 or less of the wavelength of the high-frequency signal, as shown in a plan view in FIG. Other than the waveguide whose one end is connected to the through hole 31a provided in the flat conductor 31 on one end side of the first dielectric line 32 between the flat conductors 31 (the other flat conductor is not shown). A high frequency oscillator 11 that is connected to the end and modulates the frequency of the high frequency signal output from the high frequency diode and propagates through the first dielectric line 32 and is output, and is connected to the other end of the first dielectric line 32. Further, a modulator 13 that reflects the high-frequency signal to the input end 13a side or transmits the high-frequency signal to the output end 13b side, and a second dielectric having one end connected to the output end 13b of the modulator 13 At the peripheral edge of the ferrite plate 34 arranged in parallel to the line 33 and the flat conductor 31, The first terminal 34a, the second terminal 34b, and the third terminal 34c are input / output terminals for the high-frequency signal. In this order, the high-frequency signal input from one terminal is received from the adjacent next terminal. The first terminal 34a that outputs the circulator 14 connected to the other end of the second dielectric line 33, and is arranged radially on the periphery of the ferrite plate 34 of the circulator 14, and the second terminal 34b and the second terminal 34b A third dielectric line 35 and a fourth dielectric line 36, each having one end connected to each of the three terminals 34c, and a flat conductor (not shown) on the other end side of the third dielectric line 35 A transmission antenna 19 connected to the other end of the waveguide having one end connected to a through-hole 31a provided at a broken line of the flat conductor), and the middle is close to the middle of the first dielectric line 32 or Part of the high-frequency signal that propagates through the first dielectric line 32 that has been joined. A fifth dielectric line 37 that is branched and propagated, a non-reflection terminator 38a connected to the other end of the fourth dielectric line 36, and one end of the fifth dielectric line 37 on the high-frequency oscillator 11 side. A connected non-reflective terminator 38b, a sixth dielectric line 39 disposed at one end of a flat conductor (a position indicated by a broken line of an upper flat conductor not shown), Receiving antenna 20 connected to the other end of the waveguide having one end connected to the through hole on the dielectric line 39 side, the other end of the fifth dielectric line 37 and the other of the sixth dielectric line 39 The high frequency signal input from the fifth dielectric line 37 connected between the two ends and the high frequency signal received by the receiving antenna 20 and input from the sixth dielectric line 39 are mixed to obtain an intermediate frequency. This is a configuration including the mixer 16 of any of the embodiments of the present invention having the above-described configurations for outputting signals. Note that the first dielectric line 32 and the fifth dielectric line 37 constitute the branching device 12 in the proximity portion or the junction portion thereof. The through hole 31a is provided at a location where the electric field of the LSM mode standing wave on one end of the first dielectric line 32 of the flat conductor 31 is strong, and the upper flat conductor not shown in FIG. The other end of the third dielectric line 35 and the one end of the sixth dielectric line 39 are provided at locations where the electric field of the standing wave in the LSM mode is strong.

以上のように構成された本発明の第2の高周波送受信器は、従来の高周波送受信器と同様に動作する。ただし、その際、非放射性誘電体線路H2が、非放射性誘電体線路H2の平板導体1,2に設けられた貫通孔1a,2aおよびそれら貫通孔1a,2aに接続された導波管を通して高周波発振器11が発生した高周波信号を周波数や強度が安定な状態で伝送するとともに、送信アンテナ19および受信アンテナ20で送受信する高周波信号を周波数や強度が安定な状態で伝送するため、送信アンテナ19から送信される送信用高周波信号の周波数や強度を安定にしたり受信アンテナ20で受信されミキサー16に入力される高周波信号の周波数や強度を安定にしたりすることができるので、送受信性能が良好である高性能な高周波送受信器となる。また、高周波発振器11や送信アンテナ19および受信アンテナ20を非放射性誘電体線路H2の平板導体1,2(31)(入出力用誘電体線路3等が設けられない側の面)上に設けることができるので、小型化や実装性向上を実現する上で有利な高周波送受信器となる。   The second high frequency transmitter / receiver of the present invention configured as described above operates in the same manner as a conventional high frequency transmitter / receiver. However, at that time, the non-radiative dielectric line H2 has a high frequency through the through holes 1a and 2a provided in the flat conductors 1 and 2 of the non-radiative dielectric line H2 and the waveguide connected to the through holes 1a and 2a. The high-frequency signal generated by the oscillator 11 is transmitted with a stable frequency and intensity, and the high-frequency signal transmitted and received by the transmitting antenna 19 and the receiving antenna 20 is transmitted with a stable frequency and intensity. High frequency signal and transmission strength can be stabilized, and the frequency and strength of the high frequency signal received by the receiving antenna 20 and input to the mixer 16 can be stabilized. It becomes a high frequency transceiver. Further, the high frequency oscillator 11, the transmitting antenna 19 and the receiving antenna 20 are provided on the flat conductors 1 and 2 (31) of the non-radiative dielectric line H2 (surface on the side where the input / output dielectric line 3 etc. are not provided). Therefore, it becomes a high-frequency transmitter / receiver that is advantageous in realizing downsizing and improvement in mountability.

本発明の高周波送受信器において、第1〜第6の誘電体線路22,23,25〜27,32,33,35〜37,39の材質には、四フッ化エチレン,ポリスチレン等の樹脂、または低比誘電率のコーディエライト(2MgO・2Al・5SiO)セラミックス,アルミナ(Al)セラミックス,ガラスセラミックス等のセラミックスが好ましく、これらはミリ波帯域の高周波信号において低損失である。 In the high frequency transceiver of the present invention, the material of the first to sixth dielectric lines 22, 23, 25 to 27, 32, 33, 35 to 37, 39 is a resin such as ethylene tetrafluoride or polystyrene, or Low dielectric constant cordierite (2MgO · 2Al 2 O 3 · 5SiO 2 ) ceramics such as alumina (Al 2 O 3 ) ceramics and glass ceramics are preferred, and these are low loss in high frequency signals in the millimeter wave band. is there.

また、第1〜第6の誘電体線路22,23,25〜27,32,33,35〜37,39の断面形状は基本的には矩形状であるが、矩形の角部を丸めた形状であってもよく、高周波信号の伝送に使用される種々の断面形状のものを使用することができる。   The first to sixth dielectric lines 22, 23, 25 to 27, 32, 33, 35 to 37, 39 are basically rectangular in shape, but rounded at the corners of the rectangle. It is possible to use various cross-sectional shapes used for transmitting high-frequency signals.

また、フェライト板24,34の材質には、フェライトの中でも、例えば高周波信号に対しては、亜鉛・ニッケル・鉄酸化物(ZnNiFe)が好適である。 The ferrite plates 24 and 34 are preferably made of zinc, nickel, and iron oxide (Zn a Ni b Fe c O x ), for example, for high frequency signals among ferrites.

また、フェライト板24,34の形状は、通常は円板状とされるが、その他、平面形状が正多角形状であってもよい。その場合は、接続される誘電体線路の本数をn本(nは3以上の整数)とすると、その平面形状は正m角形(mは3以上のnより大きい整数)とするのがよい。   In addition, the shape of the ferrite plates 24 and 34 is usually a disc shape, but the planar shape may be a regular polygonal shape. In that case, when the number of dielectric lines to be connected is n (n is an integer of 3 or more), the planar shape is preferably a regular m-square (m is an integer greater than n of 3 or more).

また、平板導体21,31および図示していない他方の平板導体の材質には、高い電気伝導度および良好な加工性等の点で、Cu,Al,Fe,Ag,Au,Pt,SUS(ステンレススチール),真鍮(Cu−Zn合金)等の導体板が好適である。あるいは、セラミックス,樹脂等から成る絶縁板の表面にこれらの導体層を形成したものでもよい。   Further, the materials of the flat conductors 21, 31 and the other flat conductor not shown are Cu, Al, Fe, Ag, Au, Pt, SUS (stainless steel) in terms of high electrical conductivity and good workability. A conductive plate such as steel or brass (Cu-Zn alloy) is suitable. Or what formed these conductor layers on the surface of the insulating board which consists of ceramics, resin, etc. may be used.

また、無反射終端器28,38a,38bは、それら無反射終端器28,38a,38bが接続される第5の誘電体線路27,第4および第5の誘電体線路36,37の端部に対して、両側の側面(平板導体21,31および図示していない他方の平板導体の内面と対向しない面)の上下端部に、膜状の抵抗体または電波吸収体を付着させて構成すればよい。その際、抵抗体の材質としては、ニッケルクロム合金またはカーボンが好適である。また、電波吸収体の材質としては、パーマロイまたはセンダストが好適である。これらの材質を用いれば、効率良くミリ波信号を減衰させることができる。また、これら以外の材質で、ミリ波信号を減衰させることができるものを用いても構わない。   The non-reflective terminators 28, 38a, 38b are end portions of the fifth dielectric line 27, the fourth and fifth dielectric lines 36, 37 to which the non-reflective terminators 28, 38a, 38b are connected. On the other hand, a film-like resistor or wave absorber is attached to the upper and lower ends of the side surfaces (the surfaces not facing the inner surfaces of the flat conductors 21, 31 and the other flat conductor not shown). That's fine. At that time, the material of the resistor is preferably a nickel chromium alloy or carbon. In addition, as the material of the radio wave absorber, permalloy or sendust is suitable. If these materials are used, the millimeter wave signal can be attenuated efficiently. Further, materials other than these that can attenuate the millimeter wave signal may be used.

また、基板40,44は、四フッ化エチレン,ポリスチレン,ガラスセラミックス,ガラスエポキシ樹脂,エポキシ樹脂、いわゆる液晶ポリマー等の熱可塑性樹脂等から成る板状の基体の一主面に、アルミニウム(Al),金(Au),銅(Cu)等から成るストリップ導体等によるチョーク型バイアス供給線路41,46を形成したものが使用される。   The substrates 40 and 44 are made of aluminum (Al) on one main surface of a plate-like substrate made of thermoplastic resin such as tetrafluoroethylene, polystyrene, glass ceramics, glass epoxy resin, epoxy resin, so-called liquid crystal polymer. , A choke-type bias supply line 41, 46 formed of a strip conductor made of gold (Au), copper (Cu), or the like is used.

なお、高周波信号として使用する周波数帯域は、ミリ波帯の他にも、マイクロ波帯またはそれ以下の周波数帯にも有効である。   The frequency band used as the high frequency signal is effective not only for the millimeter wave band but also for the microwave band or lower frequency band.

また、サーキュレータ14の代わりに、デュプレクサ,スイッチ,ハイブリッド回路等を用いても構わない。また、高周波発振器,変調器およびミキサーには、ダイオードの代わりにバイポーラトランジスタ,電界効果トランジスタ(FET)またはこれらを集積化した集積回路(CMOS,MMIC等)を用いても構わない。   Further, instead of the circulator 14, a duplexer, a switch, a hybrid circuit, or the like may be used. Further, for the high-frequency oscillator, the modulator, and the mixer, a bipolar transistor, a field effect transistor (FET), or an integrated circuit (CMOS, MMIC, etc.) in which these are integrated may be used instead of the diode.

次に、本発明のレーダ装置ならびにそれを搭載したレーダ装置搭載車両およびレーダ装置搭載小型船舶について説明する。   Next, a radar apparatus according to the present invention, a vehicle equipped with the radar apparatus and a small ship equipped with the radar apparatus will be described.

本発明のレーダ装置の実施の形態の一例は、上記各構成の本発明の第1および第2のいずれかの高周波送受信器と、この高周波送受信器から出力される中間周波信号を処理して探知対象物までの距離情報を検出する距離情報検出器とを具備している構成である。   An example of an embodiment of a radar apparatus according to the present invention is to detect by processing either the first or second high-frequency transmitter / receiver of the present invention having the above-described configuration and an intermediate frequency signal output from the high-frequency transmitter / receiver. A distance information detector for detecting distance information to the object.

本発明のレーダ装置によれば、上記構成としたことから、本発明の高周波送受信器が良好な送受信性能を安定して得られる高性能なものであり、また、送信出力や送信周波数が安定した良好な送信用高周波信号を送信するため、速く確実に探知対象物を探知することができるとともに至近距離や遠方の探知対象物をも確実に探知することができるレーダ装置を提供することができる。   According to the radar apparatus of the present invention, because of the above configuration, the high-frequency transmitter / receiver of the present invention is a high-performance one that can stably obtain good transmission / reception performance, and the transmission output and transmission frequency are stable. Since a good high-frequency signal for transmission is transmitted, it is possible to provide a radar apparatus that can detect a detection object quickly and reliably and can also detect a detection object at a short distance or a distant place.

本発明のレーダ装置搭載車両は、上記本発明のレーダ装置を備え、このレーダ装置を探知対象物の検出に用いる構成である。   The radar device-equipped vehicle of the present invention includes the above-described radar device of the present invention and is configured to use this radar device for detection of a detection target.

本発明のレーダ装置搭載車両によれば、このような構成としたことから、従来のレーダ装置搭載車両と同様に、レーダ装置で検出された距離情報に基づいて車両の挙動を制御したり、運転者に例えば路上の障害物や他の車両等を探知したことを音,光もしくは振動で警告したりすることができるが、本発明のレーダ装置搭載車両においては、探知対象物である路上の障害物や他の車両等をレーダ装置が早く確実に探知するため、急激な挙動を車両に起こさせることなく、車両の適切な制御や運転者への適切な警告をすることができる。   According to the radar device-equipped vehicle of the present invention, since it has such a configuration, the behavior of the vehicle is controlled based on the distance information detected by the radar device, and the vehicle is operated as in the conventional radar device-equipped vehicle. For example, it is possible to warn the person who has detected an obstacle or other vehicle on the road by sound, light, or vibration. However, in the vehicle equipped with the radar device of the present invention, the obstacle on the road that is the detection target object. Since the radar device quickly and reliably detects objects and other vehicles, it is possible to perform appropriate control of the vehicle and appropriate warning to the driver without causing the vehicle to take a sudden action.

なお、本発明のレーダ装置搭載車両は、具体的には、汽車,電車,自動車等旅客や貨物を輸送するための車はもちろんのこと、自転車,原動機付き自転車,遊園地の乗り物,ゴルフ場のカート等にも用いることができる。   The radar device-equipped vehicle of the present invention is not limited to a vehicle for transporting passengers and cargo such as trains, trains, and automobiles, but also bicycles, motorbikes, amusement park vehicles, golf courses, etc. It can also be used for carts and the like.

また、本発明のレーダ装置搭載小型船舶は、上記本発明のレーダ装置を備え、このレーダ装置を探知対象物の検出に用いる構成である。   A small ship equipped with a radar apparatus according to the present invention includes the radar apparatus according to the present invention, and the radar apparatus is used to detect a detection target.

本発明のレーダ装置搭載小型船舶によれば、このような構成としたことから、従来のレーダ装置搭載車両と同様に、小型船舶において、レーダ装置で検出された距離情報に基づいて小型船舶の挙動を制御したり、操縦者に例えば暗礁等の障害物,他の船舶もしくは他の小型船舶等を探知したことを音,光もしくは振動で警告したりするように動作するが、本発明のレーダ装置搭載小型船舶においては、探知対象物である暗礁等の障害物,他の船舶もしくは他の小型船舶等をレーダ装置が早く確実に探知するため、急激な挙動を小型船舶に起こさせることなく、小型船舶の適切な制御や操縦者への適切な警告をすることができる。   According to the radar device-equipped small ship of the present invention, the behavior of the small ship is based on the distance information detected by the radar device in the small ship, similarly to the conventional radar device-equipped vehicle. The radar apparatus according to the present invention operates to control the vehicle, and warn the operator of sound, light, or vibration that an obstacle such as a reef, another ship or other small ship has been detected. In the onboard small vessel, the radar device detects obstacles such as reefs, other vessels or other small vessels, which are detection objects, quickly and reliably, so that the small vessel does not cause a sudden behavior and is small. Appropriate control of the ship and appropriate warning to the operator can be provided.

なお、本発明のレーダ装置搭載小型船舶は、具体的には、小型船舶の免許もしくは免許なしで操縦することができる船舶であって、総トン数20トン未満の船舶である手漕ぎボート,ディンギー,水上オートバイ,船外機搭載の小型バスボート,船外機搭載のインフレータブルボート(ゴムボート),漁船,遊漁船,作業船,屋形船,トーイングボート,スポーツボート,フィッシングボート,ヨット,外洋ヨット,クルーザーまたは総トン数20トン以上のプレジャーボートに用いることができる。   The small-sized ship equipped with the radar device of the present invention is specifically a ship that can be operated without a license for a small ship or a license, and is a boat with a total tonnage of less than 20 tons. Motorcycles, small bass boats with outboard motors, inflatable boats with inboard motors (rubber boats), fishing boats, recreational fishing boats, work boats, houseboats, towing boats, sports boats, fishing boats, yachts, open-sea yachts, cruisers or gross tonnage 20 It can be used for pleasure boats of tons or more.

かくして、本発明によれば、非放射性誘電体線路と高周波用伝送線路とを接続するための構造に用いられる非放射性誘電体線路において伝送特性を安定にすることができる非放射性誘電体線路およびそれを用いた高性能な高周波送受信器を提供することができる。   Thus, according to the present invention, a nonradiative dielectric line capable of stabilizing transmission characteristics in a nonradiative dielectric line used in a structure for connecting a nonradiative dielectric line and a high frequency transmission line, and the same It is possible to provide a high-performance high-frequency transceiver using the

また、本発明によれば、そのような高性能な高周波送受信器を具備するレーダ装置ならびにそのレーダ装置を備えたレーダ装置搭載車両およびレーダ装置搭載小型船舶を提供することができる。   Further, according to the present invention, it is possible to provide a radar apparatus equipped with such a high-performance high-frequency transmitter / receiver, a radar apparatus-equipped vehicle equipped with the radar apparatus, and a radar apparatus-equipped small ship.

図1に示す非放射性誘電体線路H1を以下のように作製した。厚さ4mmのアルミニウム(Al)製の平板導体1および平板導体2を1.8mmの間隔で平行に配置し、平板導体1および平板導体2の間に、断面形状が幅0.8mm、高さ1.8mmで、比誘電率が4.8の入出力用誘電体線路3および接続用誘電体線路4を挟んで配設した。貫通孔1aは、幅Wが1.5mm、長さDが3.0mmの矩形であり、縦断面における斜辺の勾配θが1゜である台形状の形状で平板導体1に設けた。なお、第1の平板導体1は、金型を用いてダイキャスト法により貫通孔1aを設けた状態で成型して作製した。このとき、金型の抜き勾配の好適な条件とされる1゜に合わせて貫通孔1aの縦断面の斜辺の勾配を設定したところ、この条件で満足に作製できることが確認できた。   A nonradiative dielectric line H1 shown in FIG. 1 was produced as follows. A flat conductor 1 and a flat conductor 2 made of aluminum (Al) having a thickness of 4 mm are arranged in parallel at an interval of 1.8 mm, and the cross-sectional shape is 0.8 mm in width and 1.8 mm in height between the flat conductor 1 and the flat conductor 2. Thus, the input / output dielectric line 3 having a relative dielectric constant of 4.8 and the connecting dielectric line 4 are interposed. The through-hole 1a has a rectangular shape with a width W of 1.5 mm and a length D of 3.0 mm, and is provided in the flat conductor 1 in a trapezoidal shape with a slope θ of 1 ° in the longitudinal section. In addition, the 1st flat conductor 1 was shape | molded and produced in the state which provided the through-hole 1a with the die-casting method using the metal mold | die. At this time, when the slope of the hypotenuse of the longitudinal section of the through hole 1a was set in accordance with 1 °, which is a preferable condition for the draft of the mold, it was confirmed that the mold could be satisfactorily manufactured under this condition.

そして、入出力用誘電体線路3の一端3a側のLSMモードの定在波の電界が強い箇所P2である入出力用誘電体線路3の端部3aからの距離が4mmの位置に貫通孔1aの中央部が位置しているときに、入出力用誘電体線路3の一端3a側のLSMモードの定在波の電界が強い箇所P2と貫通孔1aとのずれ量であるずれL(単位:mm)が0であり、入出力用誘電体線路3の他端である接続端3bに隙間なく接続用誘電体線路4が接続されているときに、入出力用誘電体線路3と接続用誘電体線路4との間隔L(単位:mm)が0であるとして、それらずれLおよび間隔Lをそれぞれ変化させたときの非放射性誘電体線路H1の反射特性S11について測定した。また、入出力用誘電体線路3に伝送される高周波信号の伝送方向に垂直な方向についても、貫通孔1aの中央部と入出力用誘電体線路3の中央部とが合っているときに、それら中央部のずれであるずれL(単位:mm)が0であり、入出力用誘電体線路3および接続用誘電体線路4の接続部における入出力用誘電体線路3の中央部と接続用誘電体線路4の中央部とが合っているときに、それら中央部のずれであるずれL(単位:mm)が0であるとして、それらずれL,Lをそれぞれ変化させたときの非放射性誘電体線路H1の反射特性S11についても測定した。 The through hole 1a is located at a distance of 4 mm from the end 3a of the input / output dielectric line 3 which is the portion P2 where the electric field of the standing wave in the LSM mode is strong on the one end 3a side of the input / output dielectric line 3. When the center portion of the input / output dielectric line 3 is located, a shift L 1 (unit: shift amount between the portion P2 where the electric field of the standing wave in the LSM mode on the one end 3a side of the input / output dielectric line 3 is strong and the through hole 1a is : Mm) is 0, and when the connecting dielectric line 4 is connected to the connecting end 3b which is the other end of the input / output dielectric line 3 without a gap, the input / output dielectric line 3 and the connecting end Assuming that the distance L 2 (unit: mm) from the dielectric line 4 is 0, the reflection characteristic S 11 of the non-radiative dielectric line H 1 when the deviation L 1 and the distance L 2 are changed was measured. Further, also in the direction perpendicular to the transmission direction of the high-frequency signal transmitted to the input / output dielectric line 3, when the central portion of the through hole 1a and the central portion of the input / output dielectric line 3 are aligned, The deviation L 3 (unit: mm), which is the deviation between these central portions, is 0, and is connected to the central portion of the input / output dielectric line 3 at the connection portion of the input / output dielectric line 3 and the connecting dielectric line 4. When the deviation L 4 (unit: mm), which is the deviation of the central portion, is zero when the central portion of the dielectric line 4 is aligned, the deviations L 3 and L 4 are respectively changed. was also measured reflection characteristic S 11 of nonradiative dielectric waveguide H1 of.

なお、その際、ずれLおよび間隔Lのいずれか一方を変化されるときには他方は0となるようにした。また、同様にずれLおよびずれLのいずれか一方を変化されるときには他方は0となるようにした。 At that time, when one of the deviation L 1 and the interval L 2 is changed, the other is set to 0. Similarly, when one of the deviation L 3 and the deviation L 4 is changed, the other is set to 0.

また、反射特性S11の測定方法としては、具体的には次のようにした。図3に示すように、この非放射性誘電体線路H1の貫通孔1aに対して、貫通孔1aと同じ断面形状を持つ金属製の導波管Gを接続し、この構成による接続溝造について、ネットワークアナライザによって非放射性誘電体線路H1と導波管Gとの間の反射特性(S11)を、周波数が76〜77GHzの高周波信号について非放射性誘電体線路H1の端部側をポート1とし、導波管Gの端部側をポート2として測定した。その測定結果の例を図9および図10に示す。 As the measuring method of the reflection characteristic S 11, in particular were as follows. As shown in FIG. 3, a metal waveguide G having the same cross-sectional shape as the through-hole 1a is connected to the through-hole 1a of the nonradiative dielectric line H1, and the connection groove structure by this configuration is as follows. The reflection characteristic (S 11 ) between the non-radiative dielectric line H1 and the waveguide G by a network analyzer is set to port 1 on the end side of the non-radiative dielectric line H1 for a high-frequency signal having a frequency of 76 to 77 GHz. Measurement was performed with the end side of the waveguide G as the port 2. Examples of the measurement results are shown in FIGS.

図9および図10に線図で示す非放射性誘電体線路H1と導波管Gとの接続構造の反射特性(S11)は、横軸がずれあるいは間隔(単位:mm)を、縦軸が反射係数S11(単位:dB)を示しており、図9の黒丸の点は入出力用誘電体線路3に沿う方向における入出力用誘電体線路3の貫通孔1aに対する位置ずれLに対する非放射性誘電体線路H1の反射係数S11の変化を、同図の黒四角の点は入出力用誘電体線路2と接続用誘電体線路4との間隔Lに対する非放射性誘電体線路H1の反射係数S11の変化をそれぞれ示してるいる。また、図10の黒丸の点は入出力用誘電体線路3に伝送される高周波信号の伝送方向に垂直な方向における入出力用誘電体線路3の貫通孔1aに対する位置ずれLに対する非放射性誘電体線路H1の反射係数S11の変化を、同図の黒四角の点は接続用誘電体線路に対する入出力用誘電体線路3の位置ずれLに対する非放射性誘電体線路H1の反射係数S11の変化をそれぞれ示している。なお、反射係数S11の各測定点は測定周波数が76〜77GHzにおける最大値(反射係数としては最も悪い値)を表している。 In the reflection characteristics (S 11 ) of the connection structure between the non-radiative dielectric line H1 and the waveguide G shown by the diagrams in FIGS. 9 and 10, the horizontal axis is shifted or spaced (unit: mm), and the vertical axis is The reflection coefficient S 11 (unit: dB) is shown, and black dots in FIG. 9 indicate non-positions relative to the displacement L 1 with respect to the through hole 1 a of the input / output dielectric line 3 in the direction along the input / output dielectric line 3. reflection of the nonradiative dielectric waveguide H1 is a change in the reflection coefficient S 11, the point of black squares in the figure for the distance L 2 between the connection dielectric waveguide 4 and the input-output dielectric waveguide 2 radioactive dielectric line H1 which shows the change in the coefficient S 11, respectively. Also, the black dots in FIG. 10 are non-radiative dielectrics for the positional deviation L 3 with respect to the through hole 1 a of the input / output dielectric line 3 in the direction perpendicular to the transmission direction of the high-frequency signal transmitted to the input / output dielectric line 3. reflection coefficient S 11 of the nonradiative dielectric waveguide H1 changes in the reflection coefficient S 11, with respect to the position deviation L 4 of the input and output dielectric line 3 points black squares in the figure with respect to the connecting dielectric waveguide body line H1 Each change is shown. Each measurement point of the reflection coefficient S 11 represents a (worst value as a reflection coefficient) maximum measurement frequency in 76~77GHz.

図9から、ずれLと間隔Lとが同じ量であるときで比較すると、常にずれLが生じたときの方が反射が大きくなっていることがわかり、ずれLを間隔Lよりも小さくした方が、非放射性誘電体線路H1の反射を小さくすることができ、反射特性として良好にすることができることについて確認することができた。 9, when the deviation L 1 and distance L 2 are compared when the same amount is always better when a deviation L 1 has occurred can see that the reflection is large, the interval deviation L 1 L 2 It was confirmed that the reflection of the non-radiative dielectric line H1 can be made smaller and the reflection characteristics can be improved by making it smaller than that.

また、図10から、ずれLとずれLとが同じ量であるときで比較すると、常にずれLが生じたときの方が反射が大きくなっていることがわかり、ずれLをずれLよりも小さくした方が、非放射性誘電体線路H1の反射を小さくすることができ、反射特性として良好にすることができることについても確認することができた。 Further, from FIG. 10, when the L 4 shift with shift L 3 are compared when the same amount, who when always shifted L 3 has occurred can see that the reflection is large, the deviation of the deviation L 3 better to be smaller than L 4 is a reflection of the nonradiative dielectric waveguide H1 can be made small, it was possible to confirm the fact that it is possible to improve the reflection characteristics.

次に、このように反射が小さくなるようにした非放射性誘電体線路H2を用いて図4および図5に示す高周波送受信器を30台試作して、第3の誘電体線路25の他端側に設けられた貫通孔1aに一端である開放終端部4が接続された導波管の他端に接続された送受信アンテナ15を取り外してその他端にスペクトラムアナライザの試験端子(テストポート)を接続して、その接続部から出力される周波数変調がかかった送信用高周波信号を30台全てについて測定したところ、30台とも周波数変調がかかった送信用高周波信号の発振周波数(周波数変調の中心周波数)および出力強度が均一であり、良好な送信特性を有していることが確認された。また、導波管Gの他端に送受信アンテナ15を接続して送受信テストを行なったところ、いずれも良好な送受信特性を有していることが確認された。   Next, 30 high-frequency transceivers shown in FIGS. 4 and 5 were made using the non-radiative dielectric line H2 in which the reflection was reduced in this way, and the other end side of the third dielectric line 25 was made. The transmitter / receiver antenna 15 connected to the other end of the waveguide connected to the open terminal 4 at one end is connected to the through hole 1a provided in the terminal, and the test terminal (test port) of the spectrum analyzer is connected to the other end. When all the 30 high frequency signals for transmission output from the connection portion were subjected to frequency modulation, the oscillation frequency (center frequency of frequency modulation) of the high frequency signals for transmission subjected to frequency modulation for all 30 units and It was confirmed that the output intensity was uniform and had good transmission characteristics. Further, when a transmission / reception test was performed with the transmission / reception antenna 15 connected to the other end of the waveguide G, it was confirmed that all of them had good transmission / reception characteristics.

かくして、本発明によれば、非放射性誘電体線路と高周波用伝送線路とを接続するための構造に用いられる非放射性誘電体線路において、伝送特性を安定にすることができる非放射性誘電体線路となった。また、それを用いた高周波送受信器は高性能なものとなった。   Thus, according to the present invention, in the non-radiative dielectric line used in the structure for connecting the non-radiative dielectric line and the high-frequency transmission line, the non-radiative dielectric line capable of stabilizing the transmission characteristics, became. Moreover, the high frequency transmitter / receiver using it became a high performance thing.

なお、本発明は以上の実施の形態の例および実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の変更を行なうことは何等差し支えない。例えば、接続用誘電体線路4は、複数個の小片からなるものとし、それら複数個の小片からなる接続用誘電体線路4のそれぞれの間隔をなるべく小さくするようにしてもよい。この場合には、高周波回路要素の寸法の誤差や組み立ての誤差があっても、特性変化に比較的鈍感である複数個の小片からなる接続用誘電体線路4の接続部分に冗長性を持たせて、高周波回路の組み立てをしやすくすることができるものとなる。   Note that the present invention is not limited to the above-described embodiments and examples, and various modifications may be made without departing from the scope of the present invention. For example, the connecting dielectric line 4 may be made up of a plurality of small pieces, and the interval between the connecting dielectric lines 4 made up of the plurality of small pieces may be made as small as possible. In this case, even if there is a dimensional error of the high-frequency circuit element or an assembly error, the connecting portion of the connecting dielectric line 4 composed of a plurality of small pieces that are relatively insensitive to characteristic changes is made redundant. As a result, the high-frequency circuit can be easily assembled.

本発明の非放射性誘電体線路の実施の形態の一例である非放射性誘電体線路H1を示す模式図であり、(a)は平面図、(b)および(c)はそれぞれそのA−A’線断面図およびB−B’線断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram which shows the nonradiative dielectric track | line H1 which is an example of embodiment of the nonradiative dielectric track | line of this invention, (a) is a top view, (b) and (c) are each AA '. They are a line sectional view and a BB 'line sectional view. 本発明の非放射性誘電体線路の実施の形態の他の例である非放射性誘電体線路H2を示す模式的な断面図である。It is typical sectional drawing which shows the nonradiative dielectric track | line H2 which is another example of embodiment of the nonradiative dielectric track | line of this invention. 本発明の非放射性誘電体線路の実施の形態の一例である非放射性誘電体線路H1に導波管Gが接続された例を示す模式的な断面図である。It is typical sectional drawing which shows the example by which the waveguide G was connected to the nonradiative dielectric track | line H1 which is an example of embodiment of the nonradiative dielectric track | line of this invention. 本発明の第1の高周波送受信器の実施の形態の一例を示す模式的なブロック回路図である。It is a typical block circuit diagram which shows an example of embodiment of the 1st high frequency transmitter-receiver of this invention. 図4に示す高周波送受信器の模式的な平面図である。It is a typical top view of the high frequency transmitter-receiver shown in FIG. (a)および(b)は、それぞれ非放射性誘電体線路型の変調器およびミキサーに用いられるダイオードが実装された基板の一例を模式的に示す斜視図である。(A) And (b) is a perspective view which shows typically an example of the board | substrate with which the diode used for a nonradiative dielectric-line type | mold modulator and a mixer, respectively was mounted. 本発明の第2の高周波送受信器の実施の形態の一例を示す模式的なブロック回路図である。It is a typical block circuit diagram which shows an example of embodiment of the 2nd high frequency transmitter-receiver of this invention. 図7に示す高周波送受信器の模式的な平面図である。It is a typical top view of the high frequency transmitter-receiver shown in FIG. 本発明の非放射性誘電体線路の実施例における反射係数S11を示す線図である。Is a diagram showing the reflection coefficient S 11 of the embodiment of nonradiative dielectric waveguide of the present invention. 本発明の非放射性誘電体線路の実施例における反射係数S11を示す線図である。Is a diagram showing the reflection coefficient S 11 of the embodiment of nonradiative dielectric waveguide of the present invention. (a),(b)および(c)は、それぞれ従来の非放射性誘電体線路の例を模式的に示す斜視図、平面図および断面図である。(A), (b) and (c) are the perspective view, the top view, and sectional drawing which show typically the example of the conventional nonradiative dielectric track | line, respectively.

符号の説明Explanation of symbols

1:一方の平板導体
1a:一方の平板導体1に設けられた貫通孔
2:他方の平板導体
2a:他方の平板導体2に設けられた貫通孔
3:入出力用誘電体線路
3a:入出力用誘電体線路3の貫通孔1a側の一端である開放端
3b:入出力用誘電体線路の他端である接続端
4:接続用誘電体線路
5:他の入出力用誘電体線路
6:他の接続用誘電体線路
7:導波管Gの開放終端部
11:高周波発振器
12:分岐器
12a:入力端
12b:一方の出力端
12c:他方の出力端
13:変調器
13a:入力端
13b:出力端
14:サーキュレータ
14a:第1の端子
14b:第2の端子
14c:第3の端子
15:送受信アンテナ
16:ミキサー
17:スイッチ
18:アイソレータ
18a:入力端
18b:出力端
19:送信アンテナ
20:受信アンテナ
21,31:平板導体
22,32:第1の誘電体線路
23,33:第2の誘電体線路
24,34:フェライト板
24a,34a:第1の端子
24b,34b:第2の端子
24c,34c:第3の端子
25,35:第3の誘電体線路
26,36:第4の誘電体線路
27,37:第5の誘電体線路
28,38a,38b:無反射終端器
39:第6の誘電体線路
40,44:基板
41:チョーク型バイアス供給線路
42:端子
43:高周波変調用素子
45:高周波検波用素子
H,H1,H2:非放射性誘電体線路
G:導波管
1: One flat conductor 1a: Through hole provided in one flat conductor 1 2: The other flat conductor 2a: Through hole provided in the other flat conductor 2 3: Input / output dielectric line 3a: Input / output Open end 3b which is one end of through-hole 1a side of dielectric line 3 for connection 3b: Connection end which is the other end of dielectric line for input / output 4: Dielectric line for connection 5: Dielectric line for other input / output 6: Other connecting dielectric lines 7: Open end of waveguide G
11: High frequency oscillator
12: Turnout
12a: Input terminal
12b: One output terminal
12c: The other output terminal
13: Modulator
13a: Input terminal
13b: Output terminal
14: Circulator
14a: First terminal
14b: Second terminal
14c: Third terminal
15: Transmit / receive antenna
16: Mixer
17: Switch
18: Isolator
18a: Input terminal
18b: Output terminal
19: Transmitting antenna
20: Receive antenna
21, 31: Flat conductor
22, 32: First dielectric line
23, 33: Second dielectric line
24, 34: Ferrite plate
24a, 34a: first terminal
24b, 34b: second terminal
24c, 34c: Third terminal
25, 35: Third dielectric line
26, 36: Fourth dielectric line
27, 37: Fifth dielectric line
28, 38a, 38b: Non-reflective terminator
39: Sixth dielectric line
40, 44: Board
41: Choke-type bias supply line
42: Terminal
43: High-frequency modulation element
45: High-frequency detection element H, H1, H2: Non-radiative dielectric line G: Waveguide

Claims (8)

高周波信号の波長の2分の1以下の間隔で平行に配置した平板導体間に入出力用誘電体線路および接続用誘電体線路を配置しており、前記平板導体の一方に対して前記入出力用誘電体線路の一端側のLSMモードの定在波の電界が強い箇所付近に設けられる貫通孔と前記LSMモードの定在波の電界が強い箇所とのずれを、前記入出力用誘電体線路の他端と、該他端に間隔をおいて一端が接続される前記接続用誘電体線路の前記一端との前記間隔よりも小さくしたことを特徴とする非放射性誘電体線路。 An input / output dielectric line and a connecting dielectric line are arranged between flat conductors arranged in parallel at intervals of half or less of the wavelength of the high-frequency signal, and the input / output is connected to one of the flat conductors. Displacement between a through hole provided in the vicinity of a portion where the electric field of the standing wave of the LSM mode is strong on one end side of the dielectric line for use and a portion where the electric field of the standing wave of the LSM mode is strong is A non-radiative dielectric line characterized in that it is smaller than the distance between the other end of the connecting line and the one end of the connecting dielectric line with one end connected to the other end. 前記平板導体の他方に対して前記入出力用誘電体線路の一端側のLSMモードの定在波の電界が強い箇所付近に設けられる貫通孔と前記LSMモードの定在波の電界が強い箇所とのずれを、前記入出力用誘電体線路の他端と、該他端に間隔をおいて一端が接続される接続用誘電体線路の前記一端との前記間隔よりも小さくしたことを特徴とする請求項1記載の非放射性誘電体線路。 A through-hole provided in the vicinity of a portion where the electric field of the LSM mode standing wave is strong on the one end side of the input / output dielectric line with respect to the other of the flat plate conductor, and a portion where the electric field of the standing wave of the LSM mode is strong The shift is made smaller than the distance between the other end of the input / output dielectric line and the one end of the connecting dielectric line with one end connected to the other end. The non-radiative dielectric line according to claim 1. 前記貫通孔は、導波管の開放終端部が接続されることを特徴とする請求項1または請求項2記載の非放射性誘電体線路。 The non-radiative dielectric line according to claim 1, wherein the through hole is connected to an open end portion of a waveguide. 高周波信号を発生する高周波発振器と、この高周波発振器の出力端側に接続された、前記高周波信号を分岐して一方の出力端と他方の出力端とに出力する分岐器と、前記一方の出力端に接続された、この一方の出力端に分岐された高周波信号を変調して送信用高周波信号を出力する変調器と、磁性体の周囲に第1の端子,第2の端子および第3の端子を有し、この順に一つの端子から入力された高周波信号を隣接する次の端子より出力する、前記変調器の出力が前記第1の端子に入力されるサーキュレータと、このサーキュレータの前記第2の端子に接続された送受信アンテナと、前記分岐器の前記他方の出力端と前記サーキュレータの前記第3の端子との間に接続された、前記他方の出力端に分岐された高周波信号と前記送受信アンテナで受信した高周波信号とを混合して中間周波信号を出力するミキサーとを具備しており、前記高周波発振器および前記分岐器または前記サーキュレータおよび前記送受信アンテナは、請求項1乃至請求項3のいずれかに記載の非放射性誘電体線路で接続されていることを特徴とする高周波送受信器。 A high-frequency oscillator for generating a high-frequency signal; a branching device connected to an output end of the high-frequency oscillator; for branching the high-frequency signal and outputting it to one output end and the other output end; and the one output end A modulator that modulates a high-frequency signal branched to one of the output ends and outputs a high-frequency signal for transmission, and a first terminal, a second terminal, and a third terminal around the magnetic body A circulator in which a high-frequency signal input from one terminal in this order is output from an adjacent next terminal, and an output of the modulator is input to the first terminal, and the second of the circulator A transmission / reception antenna connected to a terminal; a high-frequency signal branched to the other output end; and the transmission / reception antenna connected between the other output end of the branching device and the third terminal of the circulator so A mixer that mixes the received high-frequency signal and outputs an intermediate-frequency signal, and the high-frequency oscillator and the branching device or the circulator and the transmitting and receiving antenna are in any one of claims 1 to 3. A high-frequency transmitter / receiver characterized by being connected by the nonradiative dielectric lines described. 高周波信号を発生する高周波発振器と、この高周波発振器の出力端側に接続された、前記高周波信号を分岐して一方の出力端と他方の出力端とに出力する分岐器と、前記一方の出力端に接続された、この一方の出力端に分岐された高周波信号を変調して送信用高周波信号を出力する変調器と、この変調器の出力端に一端が接続された、前記一端側から他端側へ前記送信用高周波信号を透過させるアイソレータと、このアイソレータに接続された送信アンテナと、前記分岐器の前記他方の出力端側に接続された受信アンテナと、前記分岐器の前記他方の出力端と前記受信アンテナとの間に接続された、前記他方の出力端に分岐された高周波信号と前記受信アンテナで受信した高周波信号とを混合して中間周波信号を出力するミキサーとを具備しており、前記高周波発振器および前記分岐器、前記アイソレータおよび前記送信アンテナまたは前記ミキサーおよび前記受信アンテナは、請求項1乃至請求項3のいずれかに記載の非放射性誘電体線路で接続されていることを特徴とする高周波送受信器。 A high-frequency oscillator for generating a high-frequency signal; a branching device connected to an output end of the high-frequency oscillator; for branching the high-frequency signal and outputting it to one output end and the other output end; and the one output end A modulator that modulates the high-frequency signal branched to one of the output ends and outputs a high-frequency signal for transmission, and one end connected to the output end of the modulator, the other end from the one end side An isolator that transmits the high-frequency signal for transmission to the side, a transmission antenna connected to the isolator, a reception antenna connected to the other output end side of the branching device, and the other output end of the branching device And a mixer for mixing the high-frequency signal branched to the other output end and the high-frequency signal received by the receiving antenna and outputting an intermediate-frequency signal connected between the receiving antenna and the receiving antenna. The high-frequency oscillator and the branching unit, the isolator and the transmitting antenna or the mixer and the receiving antenna are connected by a nonradiative dielectric line according to any one of claims 1 to 3. A high-frequency transceiver characterized. 請求項4または請求項5記載の高周波送受信器と、この高周波送受信器から出力される前記中間周波信号を処理して探知対象物までの距離情報を検出する距離情報検出器とを具備することを特徴とするレーダ装置。 A high-frequency transmitter / receiver according to claim 4 or 5, and a distance information detector for processing the intermediate frequency signal output from the high-frequency transmitter / receiver to detect distance information to a detection target. A characteristic radar device. 請求項6記載のレーダ装置を備え、このレーダ装置を探知対象物の検出に用いることを特徴とするレーダ装置搭載車両。 A radar device-equipped vehicle comprising the radar device according to claim 6, wherein the radar device is used for detection of an object to be detected. 請求項6記載のレーダ装置を備え、このレーダ装置を探知対象物の検出に用いることを特徴とするレーダ装置搭載小型船舶。 7. A small ship equipped with a radar device, comprising the radar device according to claim 6, wherein the radar device is used for detection of a detection object.
JP2004217120A 2004-07-26 2004-07-26 Non-radiative dielectric line, high frequency transmitter-receiver and radar employing the same, radar mounted vehicle and radar mounted small ship Pending JP2006041789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004217120A JP2006041789A (en) 2004-07-26 2004-07-26 Non-radiative dielectric line, high frequency transmitter-receiver and radar employing the same, radar mounted vehicle and radar mounted small ship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004217120A JP2006041789A (en) 2004-07-26 2004-07-26 Non-radiative dielectric line, high frequency transmitter-receiver and radar employing the same, radar mounted vehicle and radar mounted small ship

Publications (1)

Publication Number Publication Date
JP2006041789A true JP2006041789A (en) 2006-02-09

Family

ID=35906328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004217120A Pending JP2006041789A (en) 2004-07-26 2004-07-26 Non-radiative dielectric line, high frequency transmitter-receiver and radar employing the same, radar mounted vehicle and radar mounted small ship

Country Status (1)

Country Link
JP (1) JP2006041789A (en)

Similar Documents

Publication Publication Date Title
JP4446785B2 (en) High-frequency transceiver, radar device including the same, radar device-equipped vehicle equipped with the same, and radar device-equipped small vessel
US20060017607A1 (en) Amplitude modulator, selector switch, high frequency transmitting/receiving apparatus including the same, and radar apparatus, and radar apparatus-mounting vehicle and radar apparatus-mounting small ship
US20060214842A1 (en) Mixer, High-Frequency transmitting/receiving apparatus having the same, radarapparatus having the high-frequency transmitting/receiving apparatus, and vehicle equipped with radar apparatus
US7265711B2 (en) High-frequency oscillator, high-frequency transmission-reception apparatus using the same, radar apparatus, and radar-apparatus-equipped vehicle and small boat equipped with the same
JP4498065B2 (en) Directional coupler type branching device, high-frequency transmitter / receiver including the same, and radar apparatus
JP4624195B2 (en) High frequency transceiver and radar device
JP4712083B2 (en) High frequency transceiver and radar device
JP2006050580A (en) High-frequency oscillator,high-frequency send-receive apparatus and radar apparatus using it, radar apparatus mounting vehicle, and radar apparatus mounting small ship
JP4624319B2 (en) Manufacturing method of directional coupler, high-frequency transceiver and radar device using the same, vehicle mounted with radar device, and small ship equipped with radar device
JP2006041789A (en) Non-radiative dielectric line, high frequency transmitter-receiver and radar employing the same, radar mounted vehicle and radar mounted small ship
JP2005337864A (en) High-frequency transceiver, radar device equipped therewith, radar device-mounted vehicle mounted therewith, and radar device-mounted small vessel
JP4707731B2 (en) Isolator, high-frequency oscillator, high-frequency transmitter / receiver, and radar apparatus using the same
JP4377739B2 (en) High frequency transmitter / receiver, radar apparatus including the same, vehicle mounted with radar apparatus, and small ship mounted with radar apparatus
JP4446798B2 (en) High-frequency transceiver, radar device including the same, radar device-equipped vehicle equipped with the same, and radar device-equipped small vessel
JP4883922B2 (en) High frequency transmitter / receiver and radar apparatus including the same
JP4206358B2 (en) Isolator, high-frequency oscillator, high-frequency transmitter / receiver, and radar apparatus using the same
JP2006157289A (en) Attenuator and high frequency transmitter-receiver using same, radar apparatus, vehicle with radar apparatus mounted thereon, and small craft with radar apparatus mounted therein
JP2006211180A (en) Mixer, high frequency transceiver using the same, radar device, vehicle mounting the same, and small ship mounting the same
JP2005274331A (en) High frequency transceiver, radar system provided therewith, vehicle mounted with radar system, and small vessel mounted with radar system
JP2006064401A (en) Modulator, high-frequency transmitter/receiver using it, radar apparatus, vehicle equipped with radar apparatus, and small vessel equipped with radar apparatus
JP2006014202A (en) Nonradioactive dielectric line, and high-frequency transmitter/receiver, radar device, radar device mounting vehicle, and radar device mounting small-sized ship using same
JP4776225B2 (en) High-frequency transmission line, high-frequency transceiver using the same, and radar apparatus
JP2006128929A (en) Attenuator and high frequency transmitter-receiver using the same, radar apparatus, radar apparatus mounter vehicle, and radar apparatus mounter small ship
JP2006157287A (en) Attenuator and high frequency transmitter-receiver using same, radar apparatus, vehicle with radar apparatus mounted thereon, and small craft with radar apparatus mounted therein
JP4446939B2 (en) Amplitude modulator, changeover switch, high-frequency transmitter / receiver including the same, and radar apparatus