JP2006041200A - Film formation method and film formation device - Google Patents

Film formation method and film formation device Download PDF

Info

Publication number
JP2006041200A
JP2006041200A JP2004219340A JP2004219340A JP2006041200A JP 2006041200 A JP2006041200 A JP 2006041200A JP 2004219340 A JP2004219340 A JP 2004219340A JP 2004219340 A JP2004219340 A JP 2004219340A JP 2006041200 A JP2006041200 A JP 2006041200A
Authority
JP
Japan
Prior art keywords
gas
film forming
normal pressure
processing container
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004219340A
Other languages
Japanese (ja)
Inventor
Takayasu Asano
貴庸 浅野
Masaru Nakao
中尾  賢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2004219340A priority Critical patent/JP2006041200A/en
Publication of JP2006041200A publication Critical patent/JP2006041200A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a film formation method by which particles can be prevented from scattering when the pressure is restored to normal pressure in a processing vessel. <P>SOLUTION: An object W to be processed supported by a plurality of steps is housed in a vertical processing vessel 22 for evacuation, and while the object is heated, a gas for film formation is fed into the processing vessel and a thin film is deposited on the object in pressure-reduced atmosphere. In such the film formation method, when the pressure in the processing vessel is restored to normal pressure, a gas for normal pressure restoration is fed in the processing vessel so that it may flow in the reverse direction to the flow direction of the gas for film formation. Thus, particles can be prevented from scattering when the pressure in the processing vessel is restored to normal pressure. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体ウエハ等の被処理体の表面に薄膜を堆積させる成膜方法及び成膜装置に係り、特に処理容器内の常圧復帰時におけるパーティクルの飛散を防止するようにした成膜方法及び成膜装置に関する。   The present invention relates to a film forming method and film forming apparatus for depositing a thin film on the surface of an object to be processed such as a semiconductor wafer, and more particularly to a film forming method for preventing scattering of particles when returning to normal pressure in a processing container. And a film forming apparatus.

一般に、半導体集積回路を製造するためにはシリコン基板等よりなる半導体ウエハに対して、成膜処理、エッチング処理、酸化処理、拡散処理、改質処理等の各種の処理が行われる。上記各種の処理の中で、例えば成膜処理を例にとれば、この種の成膜処理は、例えば特許文献1や特許文献2に開示されているような例えばバッチ式の成膜装置内で行われる。具体的には、図4に示すように、縦型の処理容器2内に、被処理体である半導体ウエハWをウエハボート4に多段に支持させた状態でこれを収容し、上記処理容器2を囲むようにして設けた加熱手段6でウエハWを所定の温度、例えば600〜800℃程度に加熱する。そして、成膜用ガス供給手段8よりジクロロシラン(以下、「DCS」とも称す)やNH ガス等の成膜用ガスを処理容器2内へこの下部より供給しつつ処理容器2の天井部に設けた排気口10より真空排気系12で処理容器2内を真空引きし、所定の圧力に内部雰囲気を維持して成膜処理を行う。 In general, in order to manufacture a semiconductor integrated circuit, various processes such as a film formation process, an etching process, an oxidation process, a diffusion process, and a modification process are performed on a semiconductor wafer made of a silicon substrate or the like. Of the various types of processing described above, for example, film forming processing is used as an example, and this type of film forming processing is performed in, for example, a batch type film forming apparatus as disclosed in Patent Document 1 and Patent Document 2, for example. Done. Specifically, as shown in FIG. 4, semiconductor wafers W that are objects to be processed are accommodated in a plurality of stages in a wafer boat 4 in a vertical processing container 2, and the processing container 2 The wafer W is heated to a predetermined temperature, for example, about 600 to 800 ° C. by the heating means 6 provided so as to surround the wafer. Then, a film forming gas such as dichlorosilane (hereinafter also referred to as “DCS”) or NH 3 gas is supplied from the lower part to the ceiling of the processing container 2 while being supplied into the processing container 2 from the film forming gas supply means 8. The inside of the processing container 2 is evacuated by the vacuum exhaust system 12 from the provided exhaust port 10, and the film forming process is performed while maintaining the internal atmosphere at a predetermined pressure.

上記した成膜処理が終了すると、NH ガスやDCSガス等の成膜用ガスの供給を停止し、次に、処理済みのウエハをアンロードするために真空状態の処理容器2内に常圧復帰用ガスとして不活性ガス、例えばN ガス供給手段14よりN ガスを供給しつつ残留ガスを排気し、これと同時にウエハ温度をアンロードする温度、例えば600℃程度まで冷却する。そして、処理容器2内の圧力が常圧まで戻って、ウエハ温度もハンドリングが可能な温度まで低下したならば、ウエハボート4を下方へ降下させてアンロードし、処理済みのウエハWを処理容器2内から取り出すことになる。 When the film formation process described above is completed, the supply of the film formation gas such as NH 3 gas or DCS gas is stopped, and then the atmospheric pressure is placed in the vacuum processing container 2 in order to unload the processed wafer. inert gas as the return gas, evacuating the example N 2 gas supply unit 14 residual gas while supplying from N 2 gas, and at the same time to cool the wafer temperature unloading temperature, for example up to about 600 ° C.. When the pressure in the processing container 2 returns to the normal pressure and the wafer temperature also falls to a temperature at which handling can be performed, the wafer boat 4 is lowered and unloaded, and the processed wafer W is processed into the processing container. 2 will be taken out from inside.

特開平9−246257号公報Japanese Patent Laid-Open No. 9-246257 特開2002−9009号公報Japanese Patent Laid-Open No. 2002-9209

ところで、成膜処理が完了すると、処理容器2内に常圧復帰用ガスとしてN ガスを供給するが、この時のN ガスはスループット向上のために迅速に常圧復帰を行う必要から、かなり短時間で大流量供給される。この場合、処理容器2内の底部は、容器中央部と比べて比較的温度が低いことからウエハボート4を支持する保温筒16の表面や処理容器2の内壁面等に不要な膜や反応副生成物が付着しており、この不要な膜や反応副生成物が上記常圧復帰用ガスの導入時にこの導入ガスの勢いに追随して巻き上げられて、処理容器2内にパーティクルとなって飛散して残留し、ウエハWに付着してしまう、という問題があった。特に、この種の不要な膜や反応副生成物には、成膜処理の繰り返しによって、昇降温が繰り返されて大きな熱ストレスが加わり、比較的膜剥がれが生じ易くなってるので、上記問題点の早期な解決が望まれている。
本発明は、以上のような問題点に着目し、これを有効に解決すべく創案されたものである。本発明の目的は、処理容器内の常圧復帰時におけるパーティクルの飛散を防止することが可能な成膜方法及び成膜装置を提供することにある。
By the way, when the film forming process is completed, N 2 gas is supplied into the processing container 2 as a normal pressure restoring gas. At this time, the N 2 gas needs to be quickly restored to normal pressure in order to improve throughput. Large flow rate is supplied in a fairly short time. In this case, since the temperature in the bottom of the processing container 2 is relatively lower than that in the central part of the container, an unnecessary film or reaction auxiliary is not formed on the surface of the heat insulating cylinder 16 that supports the wafer boat 4 or the inner wall surface of the processing container 2. The product is adhered, and the unnecessary film and reaction by-product are wound up following the momentum of the introduced gas when the normal pressure restoring gas is introduced, and are scattered as particles in the processing container 2. There remains a problem that it remains and adheres to the wafer W. In particular, this kind of unnecessary film or reaction by-product is subjected to repeated heating and deposition, and is subjected to repeated heating and cooling, resulting in large thermal stress and relatively easy film peeling. An early solution is desired.
The present invention has been devised to pay attention to the above problems and to effectively solve them. The objective of this invention is providing the film-forming method and film-forming apparatus which can prevent scattering of the particle at the time of a normal pressure return in a processing container.

請求項1に係る発明は、真空引き可能になされた縦型の処理容器内に、複数段に支持された被処理体を収容し、前記被処理体を加熱しつつ前記処理容器内に成膜用ガスを流して減圧雰囲気中で前記被処理体に薄膜を堆積させるようにした成膜方法において、前記処理容器内を常圧復帰させる際に、前記処理容器内に前記成膜用ガスの流れ方向とは逆方向になるように常圧復帰用ガスを流すようにしたことを特徴とする成膜方法である。
このように、処理容器内を常圧復帰させる際に、処理容器内に成膜用ガスの流れ方向とは逆方向になるように常圧復帰用ガスを流すようにしたので、不要な膜や反応副生成物等が付着する傾向にある部分に常圧復帰用ガスが吹き付けられることがなくなり、従って、処理容器内の常圧復帰時におけるパーティクルの飛散を防止することができる。
According to the first aspect of the present invention, an object to be processed supported in a plurality of stages is accommodated in a vertical processing container that can be evacuated, and a film is formed in the processing container while heating the object to be processed. In a film forming method in which a thin film is deposited on the object to be processed in a reduced pressure atmosphere by flowing a working gas, the flow of the film forming gas into the processing container when the inside of the processing container is returned to normal pressure. The film forming method is characterized in that the normal pressure return gas is allowed to flow in a direction opposite to the direction.
As described above, when the inside of the processing container is returned to the normal pressure, the normal pressure returning gas is caused to flow in the processing container in the direction opposite to the flow direction of the film forming gas. The normal pressure recovery gas is not blown to the portion where the reaction by-product or the like tends to adhere, and therefore, scattering of particles at the time of normal pressure recovery in the processing container can be prevented.

この場合、例えば請求項2に規定するように、前記処理容器内に、成膜処理時に前記成膜用ガスは下方より上方に向けて流れ、常圧復帰時に前記常圧復帰用ガスは上方より下方に向けて流れるようにする。
また例えば請求項3に規定するように、前記常圧復帰用ガスは不活性ガスよりなる。
請求項4に係る発明は、被処理体を収容することができる縦型の処理容器と、前記被処理体を複数段に亘って支持する保持手段と、前記被処理体を加熱する加熱手段と、前記処理容器内へ成膜用ガスを供給する成膜用ガス供給手段と、成膜時に前記処理容器内を真空引きする成膜時真空排気手段と、装置全体の動作を制御する制御手段と、を有する成膜装置において、前記処理容器内を常圧復帰させる際に前記処理容器内に前記成膜用ガスの流れ方向とは逆方向になるように常圧復帰用ガスを流すための常圧復帰用ガス供給手段と常圧復帰用ガス排気手段とを設けるように構成したことを特徴とする成膜装置である。
In this case, for example, as defined in claim 2, the film-forming gas flows in the processing container from below to above during film-forming processing, and the pressure-returning gas from above to return to normal pressure. Make it flow downward.
For example, as defined in claim 3, the normal pressure recovery gas is made of an inert gas.
According to a fourth aspect of the present invention, there is provided a vertical processing container capable of accommodating an object to be processed, holding means for supporting the object to be processed in a plurality of stages, and heating means for heating the object to be processed. A film forming gas supply means for supplying a film forming gas into the processing container, a film forming vacuum exhaust means for evacuating the processing container during film formation, and a control means for controlling the operation of the entire apparatus. In the film forming apparatus, the normal pressure return gas is caused to flow in the processing container in a direction opposite to the flow direction of the film forming gas when the inside of the processing container is returned to normal pressure. The film forming apparatus is characterized in that a pressure return gas supply means and a normal pressure return gas exhaust means are provided.

この場合、例えば請求項5に規定するように、前記処理容器は単管構造であり、前記成膜用ガス供給手段のガスノズルのガス噴射口及び前記常圧復帰用ガス排気手段が接続される排気口は前記処理容器の下部に位置され、前記成膜時真空排気手段が接続される排気口及び前記常圧復帰用ガス供給手段のガスノズルのガス噴射口は前記処理容器の上部に位置される。
或いは例えば請求項6に規定するように、前記処理容器は単管構造であり、前記成膜用ガス供給手段のガスノズルのガス噴射口及び前記常圧復帰用ガス排気手段が接続される排気口は前記処理容器の上部に位置され、前記成膜時真空排気手段が接続される排気口及び前記常圧復帰用ガス供給手段のガスノズルのガス噴射口は前記処理容器の下部に位置される。
In this case, for example, as defined in claim 5, the processing vessel has a single tube structure, and an exhaust gas to which a gas nozzle of the gas nozzle of the film forming gas supply unit and the gas exhaust unit for returning to normal pressure are connected. The mouth is located at the lower part of the processing container, and the gas outlet of the gas nozzle of the gas supply means for returning to the normal pressure and the gas outlet of the gas supply means for returning to the normal pressure are located at the upper part of the processing container.
Alternatively, for example, as defined in claim 6, the processing vessel has a single tube structure, and a gas injection port of a gas nozzle of the film forming gas supply unit and an exhaust port to which the normal pressure return gas exhaust unit is connected are An exhaust port connected to the vacuum evacuation unit at the time of film formation and a gas injection port of a gas nozzle of the normal pressure return gas supply unit are positioned below the process vessel.

また例えば請求項7に規定するように、前記処理容器は所定の間隔を隔てて同心円状に配置された内筒と外筒とよりなる2重管構造であり、前記成膜用ガス供給手段のガスノズルのガス噴射口及び常圧復帰用ガス供給手段が接続される排気口は前記処理容器の下部であって前記内筒と外筒を臨むように設けられ、前記成膜時真空排気手段が接続される排気口及び前記常圧復帰用ガス供給手段のガスノズルのガス噴射口は前記処理容器の下部であって前記内筒と前記外筒との間の間隙を臨むように設けられる。
また例えば請求項8に規定するように、前記常圧復帰用ガスは不活性ガスよりなる。
Further, for example, as defined in claim 7, the processing container has a double-pipe structure including an inner cylinder and an outer cylinder arranged concentrically at a predetermined interval, and the film-forming gas supply means An exhaust port to which the gas injection port of the gas nozzle and the gas supply means for returning to normal pressure are connected is provided at the lower part of the processing container so as to face the inner cylinder and the outer cylinder, and the vacuum exhaust means at the time of film formation is connected The exhaust port and the gas injection port of the gas nozzle of the normal pressure return gas supply means are provided at the lower part of the processing container so as to face the gap between the inner cylinder and the outer cylinder.
For example, as defined in claim 8, the normal pressure recovery gas is made of an inert gas.

本発明に係る成膜方法及び成膜装置によれば、次のような優れた作用効果を発揮することができる。
処理容器内を常圧復帰させる際に、処理容器内に成膜用ガスの流れ方向とは逆方向になるように常圧復帰用ガスを流すようにしたので、不要な膜や反応副生成物等が付着する傾向にある部分に常圧復帰用ガスが吹き付けられることがなくなり、従って、処理容器内の常圧復帰時におけるパーティクルの飛散を防止することができる。
According to the film forming method and the film forming apparatus of the present invention, the following excellent effects can be exhibited.
When returning to normal pressure in the processing vessel, the normal pressure return gas is made to flow in the direction opposite to the flow direction of the film forming gas in the processing vessel. The gas for returning to normal pressure is no longer sprayed on the portion where the etc. tend to adhere, and therefore, scattering of particles when returning to normal pressure in the processing container can be prevented.

以下に、本発明に係る成膜方法及び成膜装置の一実施例を添付図面に基づいて詳述する。
<第1実施例>
図1は本発明方法を実施するための成膜装置の第1実施例を示す構成図である。まずこの成膜装置について説明する。図示するように、この成膜装置20は下端が開放されて上下方向に所定の長さを有して円筒体状になされた縦型の処理容器22を有している。この処理容器22は、例えば耐熱性の高い石英を用いることができる。
この処理容器22の下方より複数枚の被処理体としての半導体ウエハWを複数段に亘って所定のピッチで載置した保持手段としてのウエハボート24が昇降可能に挿脱自在になされている。このウエハボート24は例えば石英よりなり、これには、例えば50〜100枚程度の直径が300mmのウエハWを略等ピッチで多段に支持できるようになっている。
Hereinafter, an embodiment of a film forming method and a film forming apparatus according to the present invention will be described in detail with reference to the accompanying drawings.
<First embodiment>
FIG. 1 is a block diagram showing a first embodiment of a film forming apparatus for carrying out the method of the present invention. First, this film forming apparatus will be described. As shown in the figure, the film forming apparatus 20 has a vertical processing container 22 having a cylindrical shape with a lower end opened and a predetermined length in the vertical direction. For example, quartz having high heat resistance can be used for the processing container 22.
A wafer boat 24 as a holding means on which a plurality of semiconductor wafers W as processing objects are placed at a predetermined pitch over a plurality of stages from below the processing container 22 is detachably inserted and removed. The wafer boat 24 is made of, for example, quartz. For example, about 50 to 100 wafers W having a diameter of 300 mm can be supported in multiple stages at substantially equal pitches.

またウエハボート24の挿入時には、上記処理容器22の下端の開口部は、例えば石英やステンレス板よりなる蓋部26により塞がれて密閉される。この際、処理容器22の下端部と蓋部26との間には、気密性を維持するために例えばOリング等のシール部材28が介在される。このウエハボート24は、石英製の保温筒30を介してテーブル32上に載置されており、このテーブル32は、処理容器22の下端開口部を開閉する蓋部26を貫通する回転軸34の上端部に支持される。そして、この回転軸34の貫通部には、例えば磁性流体シール36が介設され、この回転軸34を気密にシールしつつ回転可能に支持している。上記した回転軸34は、例えばボートエレベータ等の昇降機構38に支持されたアーム40の先端に取り付けられており、ウエハボート24及び蓋部26等を一体的に昇降できるようになされている。尚、上記テーブル32を上記蓋部26側へ固定して設け、ウエハボート24を回転させることなくウエハWの処理を行うようにしてもよい。   When the wafer boat 24 is inserted, the opening at the lower end of the processing vessel 22 is closed and sealed with a lid 26 made of, for example, quartz or stainless steel. At this time, a seal member 28 such as an O-ring is interposed between the lower end portion of the processing container 22 and the lid portion 26 in order to maintain airtightness. The wafer boat 24 is placed on a table 32 via a quartz heat insulating cylinder 30, and the table 32 has a rotating shaft 34 that passes through a lid portion 26 that opens and closes a lower end opening of the processing container 22. Supported by the upper end. For example, a magnetic fluid seal 36 is interposed in the penetrating portion of the rotating shaft 34 and supports the rotating shaft 34 so as to be rotatable while hermetically sealing. The above-described rotating shaft 34 is attached to the tip of an arm 40 supported by an elevating mechanism 38 such as a boat elevator, for example, so that the wafer boat 24 and the lid 26 can be integrally raised and lowered. The table 32 may be fixed to the lid portion 26 side, and the wafer W may be processed without rotating the wafer boat 24.

上記処理容器22の側部には、これを取り囲むようにしてた例えばカーボンワイヤ製のヒータよりなる加熱手段42が設けられており、この内側に位置する処理容器22及びこの中の上記半導体ウエハWを加熱し得るようになっている。またこの加熱手段42の外周には、断熱材44が設けられており、この熱的安定性を確保するようになっている。また上記処理容器22の下部には、この側壁を気密に貫通させて例えば石英よりなる第1、第2及び第3のガスノズル46、48、50がそれぞれ設けられている。上記第1及び第2のガスノズル46、48の各ガス噴射口46A、48Aは、それぞれ処理容器22内の下部に臨ませて設けられる。また第3のガスノズル50は、上方へ屈曲されて容器側壁に沿って上方向へ延び、そのガス噴射口50Aは処理容器22内の天井部に臨ませて設けられている。また上記処理容器22の天井部には、横方向へL字状に屈曲させた第1の排気口52が設けられると共に、この処理容器22の下部の側壁には、第2の排気口54が設けられている。   A heating means 42 made of, for example, a carbon wire heater is provided on the side of the processing container 22 so as to surround the processing container 22, and the processing container 22 positioned inside the processing container 22 and the semiconductor wafer W therein. Can be heated. Further, a heat insulating material 44 is provided on the outer periphery of the heating means 42 so as to ensure this thermal stability. Further, first, second, and third gas nozzles 46, 48, and 50 made of, for example, quartz are provided in the lower portion of the processing container 22 so as to penetrate the side wall in an airtight manner. The gas injection ports 46A and 48A of the first and second gas nozzles 46 and 48 are provided facing the lower part in the processing container 22, respectively. The third gas nozzle 50 is bent upward and extends upward along the side wall of the container, and the gas injection port 50 </ b> A is provided facing the ceiling portion in the processing container 22. In addition, a first exhaust port 52 bent in an L shape in the lateral direction is provided in the ceiling portion of the processing container 22, and a second exhaust port 54 is formed in the lower side wall of the processing container 22. Is provided.

そして、この第1実施例では、上記第1及び第2のガスノズル46、48に成膜用ガス供給手段60が接続され、上記第3のガスノズル50には常圧復帰用ガス供給手段62が接続される。具体的には、上記成膜用ガス供給手段60は、DCSガス供給系64とNH ガス供給系66とよりなり、上記DCSガス供給系64のガス通路64AとNH ガス供給系66のガス通路66Aは、それぞれ上記第1及び第2のガスノズル46、48へ接続されると共に、各ガス通路64A、66Aには、マスフローコントローラのような流量制御器64B、66B及び開閉弁64C、66Cがそれぞれ順次介設されており、必要に応じてDCSガス及びNH ガスを共に流量制御しつつ供給できるようになっている。
これに対して、上記常圧復帰用ガス供給手段62は、不活性ガスとして例えばN ガスを供給するN ガス供給系68よりなり、このN ガス供給系68のガス通路68Aは上記第3のガスノズル50へ接続されると共に、このガス通路68Aはマスフローコントローラのような流量制御器68B及び開閉弁68Cがそれぞれ順次介設されており、必要に応じてN ガスを流量制御しつつ供給できるようになっている。尚、不活性ガスとして、N ガスの他に、Arガス、Heガス等を用いるようにしてもよい。
In this first embodiment, a film forming gas supply means 60 is connected to the first and second gas nozzles 46, 48, and a normal pressure return gas supply means 62 is connected to the third gas nozzle 50. Is done. Specifically, the film forming gas supply means 60 includes a DCS gas supply system 64 and an NH 3 gas supply system 66, and the gas passage 64 A of the DCS gas supply system 64 and the gas of the NH 3 gas supply system 66. The passage 66A is connected to the first and second gas nozzles 46 and 48, respectively, and the gas passages 64A and 66A are respectively provided with flow controllers 64B and 66B such as a mass flow controller and on-off valves 64C and 66C. The DCS gas and the NH 3 gas can be supplied while controlling the flow rate as necessary.
In contrast, the atmospheric pressure returning gas supply means 62 is made of a N 2 gas supply system 68 for supplying for example N 2 gas as the inert gas, the gas passage 68A of the N 2 gas supply system 68 is the first The gas passage 68A is provided with a flow rate controller 68B such as a mass flow controller and an open / close valve 68C in order, and supplies N 2 gas while controlling the flow rate as necessary. It can be done. As the inert gas, Ar gas, He gas or the like may be used in addition to N 2 gas.

また上記第1の排気口52には、成膜時に真空引きする成膜時真空排気手段70が接続され、これに対して、上記第2の排気口54には常圧復帰時に排気する常圧復帰用ガス排気手段72が接続される。具体的には、上記成膜時真空排気手段70のガス通路70A及び上記常圧復帰用ガス排気手段72のガス通路72Aには、開閉弁70B、72B、バタフライ弁のような圧力制御弁70C、72C及び真空ポンプ70D、72Dがそれぞれ順次介設されている。尚、上記開閉弁70B、72Bよりも下流側のガス通路70A、72Aを合流させ、圧力制御弁と真空ポンプを共用するようにしてもよい。そして、この装置全体の動作は、例えばマイクロコンピュータ等よりなる制御手段80により制御される。   The first exhaust port 52 is connected to a vacuum exhaust means 70 during film formation for evacuation during film formation. In contrast, the second exhaust port 54 is connected to normal pressure for exhausting when normal pressure is restored. A return gas exhaust means 72 is connected. Specifically, a pressure control valve 70C such as an on-off valve 70B, 72B, a butterfly valve, or the like is provided in the gas passage 70A of the vacuum exhaust means 70 during film formation and the gas passage 72A of the gas exhaust means 72 for returning to normal pressure. 72C and vacuum pumps 70D and 72D are sequentially provided. The gas passages 70A and 72A on the downstream side of the on-off valves 70B and 72B may be merged so that the pressure control valve and the vacuum pump are shared. The operation of the entire apparatus is controlled by a control means 80 composed of, for example, a microcomputer.

次に、以上のように構成された成膜装置20を用いて行なわれる成膜方法について説明する。
まず、例えばシリコンウエハよりなる半導体ウエハWがアンロード状態で成膜装置20が待機状態の時には、処理容器22はプロセス温度より低い温度に維持されており、常温の多数枚、例えば50枚のウエハWが載置された状態のウエハボート24をホットウォール状態になされた処理容器22内にその下方より上昇させてロードし、蓋部26で処理容器22の下端開口部を閉じることにより処理容器22内を密閉する。
そして、処理容器22内を真空引きして所定のプロセス圧力に維持すると共に、加熱手段42への供給電力を増大させることにより、ウエハ温度を上昇させて成膜処理用のプロセス温度まで昇温して安定させ、その後、成膜処理工程を行なうに必要とされる所定の処理ガス、すなわちここでは成膜用ガス供給手段60のDCSガス供給系64及びNH ガス供給系66よりDCSガスとNH ガスとを流量制御しつつ第1及び第2のガスノズル46、48よりそれぞれ処理容器22内へ供給する。尚、この成膜処理時には常圧復帰用ガス供給手段62の開閉弁68Cは閉じてN ガスは供給せず、また常圧復帰用ガス排気手段72の駆動は停止して、成膜時真空排気手段70のみを駆動している。
Next, a film forming method performed using the film forming apparatus 20 configured as described above will be described.
First, when the semiconductor wafer W made of, for example, a silicon wafer is in an unloaded state and the film forming apparatus 20 is in a standby state, the processing container 22 is maintained at a temperature lower than the process temperature, and a large number of normal temperature sheets, for example, 50 wafers. The wafer boat 24 in a state where W is placed is loaded into the processing container 22 in a hot wall state by being lifted from below, and the lower end opening of the processing container 22 is closed by the lid portion 26 to thereby close the processing container 22. Seal the inside.
Then, the inside of the processing container 22 is evacuated and maintained at a predetermined process pressure, and the power supplied to the heating means 42 is increased to raise the wafer temperature to the film processing temperature. The DCS gas and the NH 3 are supplied from a predetermined processing gas required for performing the film forming process step, that is, the DCS gas supply system 64 and the NH 3 gas supply system 66 of the film forming gas supply means 60 here. Three gases are supplied into the processing vessel 22 from the first and second gas nozzles 46 and 48 while controlling the flow rate. During this film formation process, the on-off valve 68C of the normal pressure return gas supply means 62 is closed so that N 2 gas is not supplied, and the drive of the normal pressure return gas exhaust means 72 is stopped, and the vacuum during film formation is stopped. Only the exhaust means 70 is driven.

このDCSとNH の両ガスは処理容器22内を矢印82に示すように上昇しつつ真空雰囲気下にて反応してこの雰囲気が回転しているウエハボート24に収容されているウエハWと接触してウエハ表面に対してシリコン窒化膜(SiN)が堆積されることになる。そして、この処理ガス、或いは反応により生成したガスは処理容器22の天井部の第1の排気口52から成膜時真空排気手段70により系外へ排気される。このように成膜時には成膜用ガスを処理容器22内に、その下方より上方向に向けて流すようにする。所定の時間の成膜処理が完了したならば、成膜用ガス制御手段60の各開閉弁64C、66Cを閉じてDCSガス及びNH ガスの両ガスの供給を停止すると共に、成膜時真空排気手段70の開閉弁70Bを閉じてこの駆動を停止する。 Both the DCS and NH 3 gases rise in the processing vessel 22 as indicated by an arrow 82 and react in a vacuum atmosphere to come into contact with the wafer W accommodated in the rotating wafer boat 24. Thus, a silicon nitride film (SiN) is deposited on the wafer surface. The processing gas or the gas generated by the reaction is exhausted from the first exhaust port 52 in the ceiling of the processing container 22 to the outside by the vacuum exhaust means 70 during film formation. As described above, during the film formation, the film forming gas is caused to flow into the processing container 22 upward from below. When the film forming process for a predetermined time is completed, the on-off valves 64C and 66C of the film forming gas control means 60 are closed to stop the supply of both the DCS gas and the NH 3 gas, and the film forming vacuum is performed. The on-off valve 70B of the exhaust means 70 is closed to stop this drive.

これと共に、処理容器22内の残留ガスを排除し、且つウエハ温度をアンロード温度まで低下させるために、常圧復帰用ガス供給手段62の開閉弁68Cを開き、第3のガスノズル50より処理容器22の天井部にN ガスを流量制御しつつ供給する。これと同時に、上記処理容器22の下部に接続した常圧復帰用ガス排気手段72を駆動すると共に、この開閉弁72Bを開き、第2の排気口54から処理容器22内の雰囲気に排気する。これにより、処理容器22内には白抜き矢印84に示すように上方より下方に向けて雰囲気ガスが流れ、処理容器22内は常圧復帰されると共に、ウエハ温度もアンロード温度まで低下されることになる。
このようにして、処理容器22内が常圧復帰し、ウエハ温度も低下したならば、常圧復帰用ガスの供給を停止すると共に、常圧復帰用ガス排気手段72の駆動も停止し、その後、ウエハボート24を降下させてアンロードすることにより、処理済みのウエハWを処理容器22外へ取り出すことになる。
At the same time, in order to eliminate the residual gas in the processing container 22 and lower the wafer temperature to the unload temperature, the on-off valve 68C of the normal pressure return gas supply means 62 is opened, and the processing container is supplied from the third gas nozzle 50. N 2 gas is supplied to the ceiling part 22 while controlling the flow rate. At the same time, the normal pressure return gas exhaust means 72 connected to the lower portion of the processing container 22 is driven, and the on-off valve 72B is opened to exhaust the atmosphere in the processing container 22 from the second exhaust port 54. As a result, the atmosphere gas flows from the upper side to the lower side in the processing container 22 as indicated by the white arrow 84, the normal pressure is restored in the processing container 22, and the wafer temperature is also lowered to the unloading temperature. It will be.
In this manner, when the inside of the processing chamber 22 returns to normal pressure and the wafer temperature also decreases, the supply of the normal pressure return gas is stopped and the driving of the normal pressure return gas exhaust means 72 is also stopped. When the wafer boat 24 is lowered and unloaded, the processed wafer W is taken out of the processing container 22.

以上のように、この第1実施例においては、成膜用ガスを処理容器22内の下部より供給して上方へ流すようにしていることから、比較的低温になる処理容器22内の下部近傍に不要な膜や反応副生成物が付着することになるが、比較的勢い良く供給される常圧復帰用ガス(N )は処理容器22内の上部より導入して下方へ流すようになっているので、上記不要な膜や反応副生成物が比較的剥がれることが少なくなり、その分、パーティクルを巻き上げることがなくなって、パーティクルの発生を抑制することができる。 As described above, in the first embodiment, since the film forming gas is supplied from the lower part in the processing container 22 and flows upward, the vicinity of the lower part in the processing container 22 that is relatively low in temperature. An unnecessary film or reaction by-product adheres to the substrate, but the normal pressure return gas (N 2 ) supplied relatively vigorously is introduced from the upper part in the processing vessel 22 and flows downward. Therefore, the unnecessary film and reaction by-products are less likely to be peeled off, and accordingly, the particles are not wound up, and the generation of particles can be suppressed.

<第2実施例>
次に本発明装置の第2実施例について説明する。
図2は本発明装置の第2実施例を示す構成図である。尚、図1に示す第1実施例と同一構成部分については同一符号を付してその説明を省略する。
この第2実施例においては、成膜用ガスの流れ方向と常圧復帰用ガスの流れ方向とをそれぞれ第1実施例の場合とは互いに逆に設定する。すなわち、ここでは第2のガスノズル48を第3のガスノズル50と同様に、上方へ屈曲させて処理容器22の内壁に沿って上方へ立ち上げてそのガス噴射口48Aを処理容器22内の天井部に位置させる。
第2及び第3のガスノズル48、50には、成膜用ガス供給手段60のNH ガス供給系66及びDCSガス供給系64をそれぞれ接続し、NH ガス及びDCSガスを処理容器22内の天井部に供給するようになっている。
<Second embodiment>
Next, a second embodiment of the device of the present invention will be described.
FIG. 2 is a block diagram showing a second embodiment of the apparatus of the present invention. In addition, the same code | symbol is attached | subjected about the same component as 1st Example shown in FIG. 1, and the description is abbreviate | omitted.
In the second embodiment, the flow direction of the film forming gas and the flow direction of the normal pressure restoring gas are set opposite to each other in the case of the first embodiment. That is, here, similarly to the third gas nozzle 50, the second gas nozzle 48 is bent upward and raised upward along the inner wall of the processing vessel 22, and the gas injection port 48 </ b> A is formed in the ceiling portion in the processing vessel 22. To be located.
The NH 3 gas supply system 66 and the DCS gas supply system 64 of the film forming gas supply means 60 are connected to the second and third gas nozzles 48 and 50, respectively, and the NH 3 gas and the DCS gas are supplied into the processing vessel 22. It is designed to be supplied to the ceiling.

また第1のガスノズル46には常圧復帰用ガス供給手段62のN ガス供給系68を接続し、N ガスを処理容器22内の下部に供給するようになっている。また、上記処理容器22の下部の第2の排気口54には、成膜時真空排気手段70を接続し、これに対して、処理容器22の天井部の第1の排気口52には、常圧復帰用ガス排気手段72を接続する。
これにより、処理容器22内に成膜用ガスは矢印82に示すように上方より下方に向けて流れ、これに対して、常圧復帰用ガスは白抜き矢印84に示すように下方より上方に向けて流れるようになる。この場合にも、第1実施例の場合と同様に、不要な膜や反応副生成物が比較的剥がれることが少なくなり、その分、パーティクルを巻き上げることがなくなって、パーティクルの発生を抑制することができる。
The N 2 gas supply system 68 of the normal pressure return gas supply means 62 is connected to the first gas nozzle 46 so that N 2 gas is supplied to the lower part in the processing vessel 22. Further, a vacuum exhaust means 70 is connected to the second exhaust port 54 at the lower part of the processing container 22, while the first exhaust port 52 on the ceiling of the processing container 22 is connected to the first exhaust port 54. The normal pressure return gas exhaust means 72 is connected.
As a result, the film forming gas flows into the processing vessel 22 from the upper side as shown by the arrow 82, whereas the normal pressure return gas flows from the lower side and up as shown by the white arrow 84. It begins to flow toward. In this case as well, as in the case of the first embodiment, unnecessary films and reaction by-products are less likely to be peeled off, so that the particles are not rolled up and the generation of particles is suppressed. Can do.

<第3実施例>
次に本発明装置の第3実施例について説明する。
図3は本発明装置の第3実施例を示す構成図である。尚、図1に示す第1実施例と同一構成部分については同一符号を付してその説明を省略する。
この第3実施例においては、処理容器を内筒と外筒とよりなる2重管構造にしており、上記内筒内を流れる成膜用ガスの流れ方向と常圧復帰用ガスの流れ方向とはそれぞれ第1実施例の場合と同じになるように設定している。すなわち、この第3実施例においては、処理容器22は、所定の間隔を隔てて同心円状に配置された内筒22Aと外筒22Bとよりなる。そして、処理容器22の下端部は、円筒体状に成形された例えばステンレスよりなるマニホールド86がOリング等のシール部材90を介して接続されている。上記内筒22Aの下端部は、上記マニホールド86より突き出た支持凸部88により支持されている。
<Third embodiment>
Next, a third embodiment of the device of the present invention will be described.
FIG. 3 is a block diagram showing a third embodiment of the apparatus of the present invention. In addition, the same code | symbol is attached | subjected about the same component as 1st Example shown in FIG. 1, and the description is abbreviate | omitted.
In this third embodiment, the processing vessel has a double tube structure consisting of an inner cylinder and an outer cylinder, and the flow direction of the film forming gas flowing in the inner cylinder and the flow direction of the normal pressure restoring gas are as follows. Are set to be the same as those in the first embodiment. That is, in the third embodiment, the processing container 22 includes an inner cylinder 22A and an outer cylinder 22B arranged concentrically at a predetermined interval. The lower end of the processing vessel 22 is connected to a manifold 86 made of, for example, stainless steel formed in a cylindrical shape via a seal member 90 such as an O-ring. The lower end portion of the inner cylinder 22A is supported by a support convex portion 88 protruding from the manifold 86.

そして、第1及び第2のノズル46、48は、上記マニホールド86を貫通するようにしてそれぞれ設けられており、そのガス噴射口46A、48Aは上記内筒22Aの内側を臨むように設置されている。そして、上記第1及び第2のノズル46、48に、それぞれDCSガス供給系64及びNH ガス供給系66がそれぞれ接続される。また第2の排気口54も上記マニホールド86に設けられて上記内筒22Aの内側を臨むように設置されている。そして、この第2の排気口54に常圧復帰用ガス排気手段72が接続される。 The first and second nozzles 46 and 48 are provided so as to penetrate the manifold 86, and the gas injection ports 46A and 48A are installed so as to face the inner side of the inner cylinder 22A. Yes. A DCS gas supply system 64 and an NH 3 gas supply system 66 are connected to the first and second nozzles 46 and 48, respectively. The second exhaust port 54 is also provided in the manifold 86 so as to face the inner cylinder 22A. Then, the normal pressure return gas exhaust means 72 is connected to the second exhaust port 54.

これに対して、第1の排気口52は、上記処理容器22の下部であって上記内筒22Aと外筒22Bとの間の間隙92を臨むようにして設けられており、この第1の排気口52に成膜時真空排気手段70が接続される。同様に、第3のガスノズル50は、上記処理容器22の下部であって上記内筒22Aと外筒22Bとの間の間隙92を臨むようにして設けられており、この第3のガスノズル50に常圧復帰用ガス供給手段62のN ガス供給系68が接続される。
この第3実施例の場合には、成膜用ガスは矢印82に示すようにウエハWが収容されている内筒22A内を下方より上方に向かって流れ、処理容器22の天井部で折り返して内筒22Aと外筒22Bとの間の間隙92を下方に向けて流れ、第1の排気口52より容器外へ真空引きされる。
On the other hand, the first exhaust port 52 is provided at the lower part of the processing container 22 so as to face the gap 92 between the inner tube 22A and the outer tube 22B. The vacuum evacuation means 70 is connected to the film 52 at the time of film formation. Similarly, the third gas nozzle 50 is provided at the lower part of the processing container 22 so as to face the gap 92 between the inner cylinder 22A and the outer cylinder 22B. An N 2 gas supply system 68 of the return gas supply means 62 is connected.
In the case of the third embodiment, the film forming gas flows from the lower side to the upper side in the inner cylinder 22A in which the wafer W is accommodated as shown by an arrow 82, and is folded at the ceiling portion of the processing vessel 22. It flows downward through the gap 92 between the inner cylinder 22A and the outer cylinder 22B, and is evacuated from the first exhaust port 52 to the outside of the container.

これに対して、常圧復帰用ガスであるN ガスは、内筒22Aと外筒22Bとの間の間隙92内を白抜き矢印84に示すように、下方より上方に向かって流れ、処理容器22の天井部で折り返し、内筒22A内を上方より下方に向かって流れて第2の排気口54より容器外へ排出される。この場合にも、第1実施例の場合と同様に、不要な膜や反応副生成物が比較的剥がれることが少なくなり、その分、パーティクルを巻き上げることがなくなって、パーティクルの発生を抑制することができる。
尚、以上の各実施例においては、成膜用ガスとしてDCSガスとNH ガスとを用いてシリコン窒化膜を形成する場合を例にとって説明したが、成膜用ガス及び堆積させる膜種はこれらに限定されず、どのような種類の成膜用ガス及び膜種に対しても本発明を適用できるのは勿論である。
また被処理体としては半導体ウエハに限定されず、LCD基板、ガラス基板等に対しても本発明を適用することができる。
On the other hand, N 2 gas, which is a normal pressure recovery gas, flows from below to above in the gap 92 between the inner cylinder 22A and the outer cylinder 22B, as indicated by the white arrow 84, and is processed. It is folded at the ceiling of the container 22, flows in the inner cylinder 22 </ b> A downward from above, and is discharged out of the container through the second exhaust port 54. In this case as well, as in the case of the first embodiment, unnecessary films and reaction by-products are less likely to be peeled off, so that the particles are not rolled up and the generation of particles is suppressed. Can do.
In each of the above embodiments, the case where the silicon nitride film is formed using DCS gas and NH 3 gas as the film forming gas has been described as an example. Of course, the present invention can be applied to any kind of film forming gas and film type.
The object to be processed is not limited to a semiconductor wafer, and the present invention can be applied to an LCD substrate, a glass substrate, and the like.

本発明方法を実施するための成膜装置の第1実施例を示す構成図である。It is a block diagram which shows 1st Example of the film-forming apparatus for enforcing the method of this invention. 本発明装置の第2実施例を示す構成図である。It is a block diagram which shows 2nd Example of this invention apparatus. 本発明装置の第3実施例を示す構成図である。It is a block diagram which shows 3rd Example of this invention apparatus. 従来のバッチ式の成膜装置を示す概略構成図である。It is a schematic block diagram which shows the conventional batch type film-forming apparatus.

符号の説明Explanation of symbols

20 成膜装置
22 処理容器
24 ウエハボート(保持手段)
42 加熱手段
46 第1のガスノズル
46A ガス噴射口
48 第2のガスノズル
48A ガス噴射口
50 第3のガスノズル
50A ガス噴射口
52 第1の排気口
54 第2の排気口
60 成膜用ガス供給手段
62 常圧復帰用ガス供給手段
64 DCSガス供給系
66 NH ガス供給系
68 N ガス供給系
70 成膜時真空排気手段
72 常圧復帰用ガス排気手段
80 制御手段
W 半導体ウエハ(被処理体)

20 Film deposition apparatus 22 Processing container 24 Wafer boat (holding means)
42 heating means 46 first gas nozzle 46A gas injection port 48 second gas nozzle 48A gas injection port 50 third gas nozzle 50A gas injection port 52 first exhaust port 54 second exhaust port 60 film forming gas supply unit 62 Gas supply means for returning to normal pressure 64 DCS gas supply system 66 NH 3 gas supply system 68 N 2 gas supply system 70 Vacuum exhaust means during film formation 72 Gas exhaust means for returning to normal pressure 80 Control means W Semiconductor wafer (object to be processed)

Claims (8)

真空引き可能になされた縦型の処理容器内に、複数段に支持された被処理体を収容し、前記被処理体を加熱しつつ前記処理容器内に成膜用ガスを流して減圧雰囲気中で前記被処理体に薄膜を堆積させるようにした成膜方法において、
前記処理容器内を常圧復帰させる際に、前記処理容器内に前記成膜用ガスの流れ方向とは逆方向になるように常圧復帰用ガスを流すようにしたことを特徴とする成膜方法。
A processing object supported in a plurality of stages is accommodated in a vertical processing container that can be evacuated, and a film forming gas is allowed to flow in the processing container while heating the processing object in a reduced-pressure atmosphere. In the film forming method in which a thin film is deposited on the object to be processed,
The film forming method is characterized in that when the inside of the processing container is returned to normal pressure, the normal pressure returning gas is caused to flow in the processing container so as to be in a direction opposite to the flow direction of the film forming gas. Method.
前記処理容器内に、成膜処理時に前記成膜用ガスは下方より上方に向けて流れ、常圧復帰時に前記常圧復帰用ガスは上方より下方に向けて流れるようにしたことを特徴とする請求項1記載の成膜方法。   In the processing container, the film forming gas flows upward from below during film forming processing, and the normal pressure returning gas flows downward from above when returning to normal pressure. The film forming method according to claim 1. 前記常圧復帰用ガスは不活性ガスよりなることを特徴とする請求項1または2記載の成膜方法。   The film forming method according to claim 1, wherein the normal pressure recovery gas is made of an inert gas. 被処理体を収容することができる縦型の処理容器と、
前記被処理体を複数段に亘って支持する保持手段と、
前記被処理体を加熱する加熱手段と、
前記処理容器内へ成膜用ガスを供給する成膜用ガス供給手段と、
成膜時に前記処理容器内を真空引きする成膜時真空排気手段と、
装置全体の動作を制御する制御手段と、
を有する成膜装置において、
前記処理容器内を常圧復帰させる際に前記処理容器内に前記成膜用ガスの流れ方向とは逆方向になるように常圧復帰用ガスを流すための常圧復帰用ガス供給手段と常圧復帰用ガス排気手段とを設けるように構成したことを特徴とする成膜装置。
A vertical processing container capable of accommodating an object to be processed;
Holding means for supporting the object to be processed in a plurality of stages;
Heating means for heating the object to be processed;
A film forming gas supply means for supplying a film forming gas into the processing container;
A vacuum evacuation means during film formation for evacuating the inside of the processing container during film formation;
Control means for controlling the operation of the entire apparatus;
In a film forming apparatus having
When the inside of the processing container is returned to normal pressure, a normal pressure returning gas supply means for flowing the normal pressure returning gas into the processing container in a direction opposite to the flow direction of the film forming gas, A film forming apparatus comprising a pressure return gas exhaust unit.
前記処理容器は単管構造であり、前記成膜用ガス供給手段のガスノズルのガス噴射口及び前記常圧復帰用ガス排気手段が接続される排気口は前記処理容器の下部に位置され、前記成膜時真空排気手段が接続される排気口及び前記常圧復帰用ガス供給手段のガスノズルのガス噴射口は前記処理容器の上部に位置されることを特徴とする請求項4記載の成膜装置。   The processing vessel has a single tube structure, and a gas injection port of a gas nozzle of the film forming gas supply unit and an exhaust port to which the normal pressure return gas exhaust unit is connected are located in a lower part of the processing vessel, and 5. The film forming apparatus according to claim 4, wherein an exhaust port to which a film vacuum exhaust unit is connected and a gas injection port of a gas nozzle of the normal pressure return gas supply unit are located above the processing vessel. 前記処理容器は単管構造であり、前記成膜用ガス供給手段のガスノズルのガス噴射口及び前記常圧復帰用ガス排気手段が接続される排気口は前記処理容器の上部に位置され、前記成膜時真空排気手段が接続される排気口及び前記常圧復帰用ガス供給手段のガスノズルのガス噴射口は前記処理容器の下部に位置されることを特徴とする請求項4記載の成膜装置。   The processing vessel has a single tube structure, and a gas injection port of a gas nozzle of the film forming gas supply unit and an exhaust port to which the normal pressure return gas exhaust unit is connected are located above the processing vessel, and 5. The film forming apparatus according to claim 4, wherein an exhaust port to which a film vacuum exhaust unit is connected and a gas injection port of a gas nozzle of the normal pressure return gas supply unit are positioned below the processing vessel. 前記処理容器は所定の間隔を隔てて同心円状に配置された内筒と外筒とよりなる2重管構造であり、前記成膜用ガス供給手段のガスノズルのガス噴射口及び常圧復帰用ガス供給手段が接続される排気口は前記処理容器の下部であって前記内筒と外筒を臨むように設けられ、前記成膜時真空排気手段が接続される排気口及び前記常圧復帰用ガス供給手段のガスノズルのガス噴射口は前記処理容器の下部であって前記内筒と前記外筒との間の間隙を臨むように設けられることを特徴とする請求項4記載の成膜装置。   The processing container has a double-pipe structure composed of an inner cylinder and an outer cylinder arranged concentrically at a predetermined interval, and includes a gas injection port of a gas nozzle of the film forming gas supply means and a normal pressure return gas. An exhaust port to which the supply means is connected is provided at the lower part of the processing container so as to face the inner cylinder and the outer cylinder. The film forming apparatus according to claim 4, wherein a gas injection port of a gas nozzle of the supply unit is provided at a lower portion of the processing container so as to face a gap between the inner cylinder and the outer cylinder. 前記常圧復帰用ガスは不活性ガスよりなることを特徴とする請求項4乃至7のいずれかに記載の成膜装置。

The film forming apparatus according to claim 4, wherein the normal pressure return gas is made of an inert gas.

JP2004219340A 2004-07-27 2004-07-27 Film formation method and film formation device Pending JP2006041200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004219340A JP2006041200A (en) 2004-07-27 2004-07-27 Film formation method and film formation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004219340A JP2006041200A (en) 2004-07-27 2004-07-27 Film formation method and film formation device

Publications (1)

Publication Number Publication Date
JP2006041200A true JP2006041200A (en) 2006-02-09

Family

ID=35905870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004219340A Pending JP2006041200A (en) 2004-07-27 2004-07-27 Film formation method and film formation device

Country Status (1)

Country Link
JP (1) JP2006041200A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020066829A1 (en) * 2018-09-27 2020-04-02 株式会社Kokusai Electric Substrate processing apparatus and method for manufacturing semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020066829A1 (en) * 2018-09-27 2020-04-02 株式会社Kokusai Electric Substrate processing apparatus and method for manufacturing semiconductor device
CN112740374A (en) * 2018-09-27 2021-04-30 株式会社国际电气 Substrate processing apparatus and method for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
KR101521466B1 (en) Gas supply apparatus, thermal treatment apparatus, gas supply method, and thermal treatment method
JP6270575B2 (en) Reaction tube, substrate processing apparatus, and semiconductor device manufacturing method
JP2008010685A (en) Film forming method and film forming device as well as storage medium
JP2008078448A (en) Substrate treatment device
US20110309562A1 (en) Support structure and processing apparatus
WO2016125626A1 (en) Substrate treatment apparatus and reaction tube
JP2016025243A (en) Semiconductor manufacturing apparatus and method of manufacturing semiconductor
US20100024728A1 (en) Substrate processing apparatus
JP2012178492A (en) Substrate processing device, gas nozzle, and method of manufacturing substrate or semiconductor device
JP5303984B2 (en) Film forming apparatus and film forming method
JP2007073746A (en) Substrate processing device
US8051870B2 (en) Pressure reduction process device, pressure reduction process method, and pressure regulation valve
US20210189557A1 (en) Substrate processing apparatus
JP2014232816A (en) Substrate processing device, manufacturing method of semiconductor apparatus, and substrate processing method
JPH06140379A (en) Treatment equipment
CN115132560A (en) Reaction tube, processing apparatus, and method for manufacturing semiconductor device
JP2006041200A (en) Film formation method and film formation device
JP2005050955A (en) Substrate processor
JP2018186235A (en) Substrate processing device, method for removing particles in injector and substrate processing method
JP2006086186A (en) Substrate processing apparatus
JP2009016426A (en) Manufacturing method for semiconductor device, and board processing apparatus
JP2011222656A (en) Substrate treatment apparatus
CN112740373A (en) Substrate processing apparatus
KR102652334B1 (en) Substrate processing apparatus, method of manufacturing semiconductor device and program
JP7179962B2 (en) Semiconductor device manufacturing method, substrate processing method, substrate processing apparatus, and program