JP2006040812A - Non-aqueous electrolyte battery - Google Patents

Non-aqueous electrolyte battery Download PDF

Info

Publication number
JP2006040812A
JP2006040812A JP2004222310A JP2004222310A JP2006040812A JP 2006040812 A JP2006040812 A JP 2006040812A JP 2004222310 A JP2004222310 A JP 2004222310A JP 2004222310 A JP2004222310 A JP 2004222310A JP 2006040812 A JP2006040812 A JP 2006040812A
Authority
JP
Japan
Prior art keywords
insulating tape
adhesive
mass
positive electrode
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004222310A
Other languages
Japanese (ja)
Other versions
JP4774482B2 (en
Inventor
Tetsuya Murai
村井  哲也
Morihiko Okuda
守彦 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo GS Soft Energy Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo GS Soft Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo GS Soft Energy Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004222310A priority Critical patent/JP4774482B2/en
Publication of JP2006040812A publication Critical patent/JP2006040812A/en
Application granted granted Critical
Publication of JP4774482B2 publication Critical patent/JP4774482B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-aqueous electrolyte battery which prevents a problem from occurring, where the problem is caused by a reaction between an adhesive of an insulating tape and a positive electrode when left at a high temperature. <P>SOLUTION: An insulating tape 11 adheres to a positive electrode 4. The adhesive of the insulating tape 11 contains 2-ethylhexyl-acrylic acid copolymer and/or methacrylic acid, and butyl acrylic acid of 3 mass% or less of the total mass of the adhesive, or contains 2-ethylhexyl-acrylic acid copolymer and/or methacrylic acid, but does not contain butyl acrylic acid. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、正極と、負極と、セパレータと、前記正極に接着される絶縁テープと、電解質とを有する非水電解質電池に関する。   The present invention relates to a nonaqueous electrolyte battery having a positive electrode, a negative electrode, a separator, an insulating tape bonded to the positive electrode, and an electrolyte.

リチウムイオン電池などの極板の金属露出部分には絶縁テープが接着されているが、絶縁テープの接着剤としては、ゴム系、アクリル酸系、シリコーン系、又はエポキシ系の接着剤が使用されている(例えば、特許文献1参照)。その中でもアクリル酸系の接着剤は、適度な接着性を有し、テープ貼り付け工程でのテープの取り扱いが容易であるため広く使用されている。
特開平8−138687号公報
Insulating tape is adhered to the exposed metal part of the electrode plate such as a lithium ion battery, but rubber, acrylic acid, silicone, or epoxy adhesive is used as the adhesive for the insulating tape. (For example, refer to Patent Document 1). Among them, acrylic acid adhesives are widely used because they have appropriate adhesiveness and are easy to handle the tape in the tape attaching process.
JP-A-8-138687

しかし、アクリル酸系の接着剤を使用した場合、接着剤が電解液中に溶解し、接着力が弱くなって巻き止めテープとしての機能が低下したり、絶縁テープの接着剤が電解液中に溶解し、溶解した接着剤成分が電極と反応して電池の放電性能を低下させるという問題がある。   However, when an acrylic acid adhesive is used, the adhesive dissolves in the electrolyte, weakening the adhesive force and reducing the function of the anti-winding tape, or insulating tape adhesive in the electrolyte. There exists a problem that it melt | dissolves and the melt | dissolved adhesive component reacts with an electrode and reduces the discharge performance of a battery.

また、極板の金属露出部分同士の接触を完全に防止するために、製造工程における絶縁テープの貼り着け位置のズレなどを考慮して、金属露出部分だけでなく金属露出部分に隣接する活物質層まで絶縁テープで覆う場合が多いが、この場合、活物質層に絶縁テープの接着剤層が直接接触し、接触部分で活物質と接着剤とが反応することにより、電池を高温放置した際、ガス発生によって電池が膨れたり、電池電圧が異常に低下するという問題がある。さらに、電解質にシクロヘキシルベンゼン、2,4ジフルオロアニソール、又はビフェニル等の芳香族化合物が添加されている場合、上記反応が更に加速されるという問題もある。   In addition, in order to completely prevent contact between the exposed metal parts of the electrode plate, considering the displacement of the position where the insulating tape is applied in the manufacturing process, the active material adjacent to the exposed metal part as well as the exposed metal part In many cases, the adhesive layer of the insulating tape is in direct contact with the active material layer, and the active material reacts with the adhesive at the contact portion, so that the battery is left at high temperature. There is a problem that the battery swells due to gas generation or the battery voltage drops abnormally. Further, when an aromatic compound such as cyclohexylbenzene, 2,4 difluoroanisole, or biphenyl is added to the electrolyte, there is a problem that the above reaction is further accelerated.

本発明は斯かる事情に鑑みてなされたものであり、絶縁テープの接着剤に、2−エチルヘキシル−アクリル酸共重合体及び/もしくはメタアクリル酸と、接着剤の全質量に対して3質量%以下のブチルアクリル酸とを含ませる、又は、2−エチルヘキシル−アクリル酸共重合体及び/もしくはメタアクリル酸を含ませるがブチルアクリル酸を含ませないことにより、絶縁テープの接着剤と正極との反応による高温放置時の問題の発生を抑制できる非水電解質電池を提供することを目的とする。   This invention is made | formed in view of such a situation, and is 3 mass% with respect to the total mass of 2-ethylhexyl-acrylic acid copolymer and / or methacrylic acid, and the adhesive agent of an insulating tape. By including 2-butylhexyl-acrylic acid copolymer and / or methacrylic acid but not including butylacrylic acid, the adhesive between the insulating tape and the positive electrode An object of the present invention is to provide a non-aqueous electrolyte battery that can suppress the occurrence of problems when left at high temperatures due to reaction.

また、本発明は、絶縁テープの接着剤に、その含有量が接着剤の全質量に対して0.01質量%以下である、ヒドロキノン誘導体、フェノール系化合物、芳香族アミン系化合物からなる群より選択される1又は複数種類の化合物(劣化防止剤)を含ませたことにより、接着力の劣化を抑制できると共に、劣化防止剤と正極との反応による高温放置時の問題の発生を抑制できる非水電解質電池を提供することを他の目的とする。   Further, the present invention relates to an adhesive for an insulating tape, the content of which is 0.01% by mass or less based on the total mass of the adhesive, from the group consisting of a hydroquinone derivative, a phenol compound, and an aromatic amine compound. By including one or more kinds of selected compounds (deterioration preventing agent), it is possible to suppress the deterioration of adhesive strength and to suppress the occurrence of problems when left at high temperatures due to the reaction between the deterioration preventing agent and the positive electrode. Another object is to provide a water electrolyte battery.

また、本発明は、絶縁テープの接着剤に、その含有量が接着剤の全質量に対して0.01質量%以下である、石油系樹脂、ロジン系樹脂、アルキルフェノール樹脂、スチレン系樹脂、水添石油系樹脂からなる群より選択される1又は複数種類の合成樹脂(接着付与剤)を含ませたことにより、接着力を向上させると共に、接着付与剤と正極との反応による高温放置時の問題の発生を抑制できる非水電解質電池を提供することを他の目的とする。   Further, the present invention provides an insulating tape adhesive having a content of 0.01% by mass or less based on the total mass of the adhesive, petroleum resin, rosin resin, alkylphenol resin, styrene resin, water By including one or more kinds of synthetic resins (adhesion imparting agent) selected from the group consisting of petroleum-added resins, the adhesive force is improved and at the time of standing at high temperature due to the reaction between the adhesion imparting agent and the positive electrode. Another object is to provide a non-aqueous electrolyte battery capable of suppressing the occurrence of problems.

また、本発明は、絶縁テープの基材を、ポリプロピレン、ポリイミド、ポリフェニレンサルファイドからなる群より選択していることにより、絶縁テープと正極との反応による高温放置時の問題の発生を抑制できる非水電解質電池を提供することを他の目的とする。   Further, the present invention provides a non-aqueous solution that can suppress the occurrence of problems when left at high temperatures due to the reaction between the insulating tape and the positive electrode by selecting the base material of the insulating tape from the group consisting of polypropylene, polyimide, and polyphenylene sulfide. Another object is to provide an electrolyte battery.

また、本発明は、電解質が芳香族化合物を含む場合であっても、活物質と接着剤との反応による高温放置時の問題の発生を抑制できる非水電解質電池を提供することを他の目的とする。   Another object of the present invention is to provide a non-aqueous electrolyte battery that can suppress the occurrence of problems during standing at high temperatures due to the reaction between the active material and the adhesive even when the electrolyte contains an aromatic compound. And

第1発明に係る非水電解質電池は、組成式Lix MO2 もしくはLiy 2 4 (ただし、Mは1種類以上の遷移金属、0≦x≦1、0≦y≦2)で表される複合酸化物、トンネル構造もしくは層状構造の金属カルコゲン化物、又は、トンネル構造もしくは層状構造の金属酸化物を含む正極と、リチウムイオンを吸蔵放出することが可能な負極と、正極及び負極の短絡を防止する絶縁テープとを有する非水電解質電池において、前記絶縁テープは前記正極に接着されており、前記絶縁テープの接着剤は、2−エチルヘキシル−アクリル酸共重合体及び/又はメタアクリル酸と、接着剤の全質量に対して3質量%以下のブチルアクリル酸とを含むことを特徴とする。 The nonaqueous electrolyte battery according to the first invention is represented by a composition formula Li x MO 2 or Li y M 2 O 4 (where M is one or more transition metals, 0 ≦ x ≦ 1, 0 ≦ y ≦ 2). Composite oxide, tunnel structure or layered structure metal chalcogenide, or positive electrode including tunnel structure or layered structure metal oxide, anode capable of occluding and releasing lithium ions, and cathode and anode short circuit In the non-aqueous electrolyte battery having an insulating tape for preventing the insulating tape, the insulating tape is adhered to the positive electrode, and the adhesive of the insulating tape is composed of 2-ethylhexyl-acrylic acid copolymer and / or methacrylic acid. And 3% by mass or less of butylacrylic acid with respect to the total mass of the adhesive.

第2発明に係る非水電解質電池は、組成式Lix MO2 もしくはLiy 2 4 (ただし、Mは1種類以上の遷移金属、0≦x≦1、0≦y≦2)で表される複合酸化物、トンネル構造もしくは層状構造の金属カルコゲン化物、又は、トンネル構造もしくは層状構造の金属酸化物を含む正極と、リチウムイオンを吸蔵放出することが可能な負極と、正極及び負極の短絡を防止する絶縁テープとを有する非水電解質電池において、前記絶縁テープは前記正極に接着されており、前記絶縁テープの接着剤は、2−エチルヘキシル−アクリル酸共重合体及び/又はメタアクリル酸を含み、ブチルアクリル酸を含まないことを特徴とする。 The nonaqueous electrolyte battery according to the second invention is represented by a composition formula Li x MO 2 or Li y M 2 O 4 (where M is one or more transition metals, 0 ≦ x ≦ 1, 0 ≦ y ≦ 2). Composite oxide, tunnel structure or layered structure metal chalcogenide, or positive electrode including tunnel structure or layered structure metal oxide, anode capable of occluding and releasing lithium ions, and cathode and anode short circuit And the insulating tape is bonded to the positive electrode, and the adhesive of the insulating tape comprises 2-ethylhexyl-acrylic acid copolymer and / or methacrylic acid. It is characterized by containing butylacrylic acid.

第3発明に係る非水電解質電池は、第1又は第2発明において、前記絶縁テープの接着剤は、ヒドロキノン誘導体、フェノール系化合物、芳香族アミン系化合物からなる群より選択される1又は複数種類の化合物を含有し、該化合物の含有量は接着剤の全質量に対して0.01質量%以下であることを特徴とする。   The nonaqueous electrolyte battery according to a third aspect of the present invention is the first or second aspect, wherein the insulating tape adhesive is selected from the group consisting of hydroquinone derivatives, phenolic compounds, and aromatic amine compounds. The content of the compound is 0.01% by mass or less based on the total mass of the adhesive.

第4発明に係る非水電解質電池は、第1〜第3発明の何れかにおいて、前記絶縁テープの接着剤は、石油系樹脂、ロジン系樹脂、アルキルフェノール樹脂、スチレン系樹脂、水添石油系樹脂からなる群より選択される1又は複数種類の合成樹脂を含有し、該合成樹脂の含有量は接着剤の全質量に対して0.01質量%以下であることを特徴とする。   The nonaqueous electrolyte battery according to a fourth invention is the nonaqueous electrolyte battery according to any one of the first to third inventions, wherein the insulating tape adhesive is a petroleum resin, a rosin resin, an alkylphenol resin, a styrene resin, or a hydrogenated petroleum resin. 1 or a plurality of types of synthetic resins selected from the group consisting of: and a content of the synthetic resin is 0.01% by mass or less based on the total mass of the adhesive.

第5発明に係る非水電解質電池は、第1〜第4発明の何れかにおいて、前記絶縁テープの基材は、ポリプロピレン、ポリイミド、ポリフェニレンサルファイドからなる群より選択されていることを特徴とする。   The nonaqueous electrolyte battery according to a fifth aspect of the present invention is characterized in that, in any one of the first to fourth aspects, the base material of the insulating tape is selected from the group consisting of polypropylene, polyimide, and polyphenylene sulfide.

第6発明に係る非水電解質電池は、第1〜第5発明の何れかにおいて、芳香族化合物を含む電解質を有することを特徴とする。   A nonaqueous electrolyte battery according to a sixth aspect of the present invention is characterized in that in any one of the first to fifth aspects of the present invention, the nonaqueous electrolyte battery includes an electrolyte containing an aromatic compound.

第1、第2発明においては、絶縁テープの接着剤に、正極と反応し難い2−エチルヘキシル−アクリル酸共重合体及び/又はメタアクリル酸を用い、正極と反応し易いブチルアクリル酸は用いない、又は、3質量%以下の僅かなブチルアクリル酸しか用いないことにより、絶縁テープの接着剤と正極との反応による高温放置時の問題の発生を抑制できる。ブチル基は、2−エチルヘキシル基よりも溶剤との親和性を有するために溶出し易く、また、分子量が小さいために酸化に対して不安定であったり、コバルト酸リチウムとの反応性が高い。ブチルアクリル酸は電解質中に溶出し易く、溶出したブチルアクリル酸は正極と反応して自己放電を誘発する。また、溶出したブチルアクリル酸はセパレータに吸着して目詰まりを生じさせ、リチウムイオンの伝導性を低下させるため、放電性能が低下する。さらに、溶出したアクリル酸はLiPF6 などの電解質塩と反応して加水分解し、電解質塩を失活させるため、放電性能が低下する。また、正極にリチウム含有遷移金属を用いた場合、電解質中に溶出したブチルアクリル酸は、リチウム含有遷移金属と反応して、金属イオンを溶出させる。溶出した金属イオンは負極上で還元されて金属デンドライトとなり、正極に到達して微小短絡を誘発するため、高温放置時の電圧の異常低下を引き起こす。特に正極活物質に絶縁テープを直接貼り付けている場合、上記反応が起こり易く、電圧の異常低下が多発する。一方、2−エチルヘキシル−アクリル酸共重合体は耐溶剤性に優れており、メタアクリル酸は接着性に優れているため、2−エチルヘキシル−アクリル酸共重合体及びメタアクリル酸を併用した場合、適当な接着力を有すると共に、電解質中でも安定な接着剤を得ることができる。 In the first and second inventions, 2-ethylhexyl-acrylic acid copolymer and / or methacrylic acid, which does not easily react with the positive electrode, is used for the adhesive of the insulating tape, and butyl acrylic acid, which is likely to react with the positive electrode, is not used. Alternatively, by using only 3% by mass or less of butylacrylic acid, it is possible to suppress the occurrence of problems when left at high temperatures due to the reaction between the adhesive of the insulating tape and the positive electrode. The butyl group has a higher affinity with the solvent than the 2-ethylhexyl group, so that it can be easily eluted, and since it has a low molecular weight, it is unstable to oxidation and has a high reactivity with lithium cobaltate. Butyl acrylic acid is easily eluted in the electrolyte, and the eluted butyl acrylic acid reacts with the positive electrode to induce self-discharge. In addition, the eluted butylacrylic acid is adsorbed on the separator to cause clogging, and the lithium ion conductivity is lowered, so that the discharge performance is lowered. Furthermore, since the eluted acrylic acid reacts with an electrolyte salt such as LiPF 6 to hydrolyze and deactivate the electrolyte salt, the discharge performance is lowered. When a lithium-containing transition metal is used for the positive electrode, butylacrylic acid eluted in the electrolyte reacts with the lithium-containing transition metal to elute metal ions. The eluted metal ions are reduced on the negative electrode to become metal dendrite and reach the positive electrode to induce a micro short circuit, which causes an abnormal drop in voltage when left at high temperature. In particular, when an insulating tape is directly attached to the positive electrode active material, the above reaction is likely to occur, and abnormal voltage drop frequently occurs. On the other hand, since 2-ethylhexyl-acrylic acid copolymer is excellent in solvent resistance and methacrylic acid is excellent in adhesiveness, when 2-ethylhexyl-acrylic acid copolymer and methacrylic acid are used in combination, An adhesive having an appropriate adhesive strength and stable even in an electrolyte can be obtained.

第3発明においては、絶縁テープの接着剤は、ヒドロキノン誘導体、フェノール系化合物、芳香族アミン系化合物からなる群より選択される1又は複数種類の化合物(劣化防止剤)を含んでいるため、接着力の劣化が抑制される。また、劣化防止剤の含有量は接着剤の全質量に対して0.01質量%以下であるため、劣化防止剤と正極との反応による高温放置時の問題の発生を抑制できる。なお、劣化防止剤が0.01質量%よりも多く含まれる場合は、劣化防止剤に含まれる芳香族系の官能基が酸化されてガスを発生したり、コバルト溶出を促進して電圧低下を誘発する可能性が非常に高くなり、劣化防止剤と正極との反応による高温放置時の問題が発生し易くなるため好ましくない。   In the third invention, the adhesive for the insulating tape contains one or more kinds of compounds (degradation inhibitors) selected from the group consisting of hydroquinone derivatives, phenolic compounds, and aromatic amine compounds. Force degradation is suppressed. In addition, since the content of the deterioration preventing agent is 0.01% by mass or less with respect to the total mass of the adhesive, it is possible to suppress the occurrence of a problem when left at a high temperature due to the reaction between the deterioration preventing agent and the positive electrode. When the degradation inhibitor is contained in an amount of more than 0.01% by mass, the aromatic functional group contained in the degradation inhibitor is oxidized to generate gas, or cobalt elution is promoted to reduce the voltage. This is not preferable because the possibility of inducing becomes very high and a problem at the time of standing at high temperature due to the reaction between the deterioration preventing agent and the positive electrode is likely to occur.

第4発明においては、絶縁テープの接着剤は、石油系樹脂、ロジン系樹脂、アルキルフェノール樹脂、スチレン系樹脂、水添石油系樹脂からなる群より選択される1又は複数種類の合成樹脂(接着付与剤)を含んでいるため、接着力が向上する。また、接着付与剤の含有量は、接着剤の全質量に対して0.01質量%以下であるため、接着付与剤と正極との反応による高温放置時の問題の発生を抑制できる。なお、接着付与剤が0.01質量%よりも多く含まれる場合は、接着付与剤に含まれるカルボキシル基又はヒドロキシル基などの官能基と正極との反応によってガスが発生する可能性が非常に高くなり、接着付与剤と正極との反応による高温放置時の問題が発生し易くなるため好ましくない。   In the fourth invention, the insulating tape adhesive is one or more kinds of synthetic resins selected from the group consisting of petroleum resins, rosin resins, alkylphenol resins, styrene resins, and hydrogenated petroleum resins (adhesion imparting). Adhesive strength is improved because it contains (agent). Moreover, since content of an adhesion | attachment imparting agent is 0.01 mass% or less with respect to the total mass of an adhesive agent, generation | occurrence | production of the problem at the time of leaving at high temperature by reaction with an adhesion imparting agent and a positive electrode can be suppressed. When the adhesion-imparting agent is contained in an amount of more than 0.01% by mass, there is a very high possibility that gas will be generated by the reaction between the functional group such as a carboxyl group or hydroxyl group contained in the adhesion-imparting agent and the positive electrode. This is not preferable because a problem during standing at high temperature due to the reaction between the adhesion-imparting agent and the positive electrode tends to occur.

第5発明においては、ポリプロピレン、ポリイミド、及びポリフェニレンサルファイドは、正極との反応性が低いため、絶縁テープと正極との反応による高温放置時の問題の発生を抑制できる。   In the fifth invention, since polypropylene, polyimide, and polyphenylene sulfide have low reactivity with the positive electrode, it is possible to suppress the occurrence of problems when left at high temperature due to the reaction between the insulating tape and the positive electrode.

第6発明においては、電解質にシクロヘキシルベンゼン、2,4ジフルオロアニソール、又はビフェニルなどの芳香族化合物を添加した場合であっても、絶縁テープの接着剤は、ブチルアクリル酸を含まない、又は、含んでいても3質量%以下と少ないため、活物質と接着剤との反応による高温放置時の問題の発生を抑制できる。なお、接着剤にブチルアクリル酸を含ませた場合は、金属イオンの溶出又は負極上での金属の析出が加速されて微小短絡が発生する確率が非常に高くなり、活物質と接着剤との反応による高温放置時の問題が発生し易くなるため好ましくない。   In the sixth invention, even when an aromatic compound such as cyclohexylbenzene, 2,4 difluoroanisole, or biphenyl is added to the electrolyte, the adhesive of the insulating tape does not contain or contain butylacrylic acid. However, since it is as small as 3% by mass or less, it is possible to suppress the occurrence of problems when left at high temperature due to the reaction between the active material and the adhesive. When butyl acrylic acid is included in the adhesive, the elution of metal ions or the deposition of metal on the negative electrode is accelerated, and the probability that a micro short circuit will occur becomes very high. This is not preferable because problems at high temperature due to the reaction tend to occur.

第1、第2発明によれば、絶縁テープの接着剤と正極との反応による高温放置時の問題の発生を抑制できる。   According to the 1st and 2nd invention, generation | occurrence | production of the problem at the time of high temperature leaving by reaction of the adhesive agent of an insulating tape and a positive electrode can be suppressed.

第3発明によれば、接着力の劣化を抑制できると共に、劣化防止剤と正極との反応による高温放置時の問題の発生を抑制できる。   According to the third aspect of the present invention, it is possible to suppress the deterioration of the adhesive force, and it is possible to suppress the occurrence of a problem when left at a high temperature due to the reaction between the deterioration preventing agent and the positive electrode.

第4発明によれば、接着力を向上させると共に、接着付与剤と正極との反応による高温放置時の問題の発生を抑制できる。   According to the 4th invention, while improving adhesive force, generation | occurrence | production of the problem at the time of leaving at high temperature by reaction with an adhesion | attachment imparting agent and a positive electrode can be suppressed.

第5発明によれば、絶縁テープと正極との反応による高温放置時の問題の発生を抑制できる。   According to the fifth aspect of the present invention, it is possible to suppress the occurrence of a problem when left at a high temperature due to the reaction between the insulating tape and the positive electrode.

第6発明によれば、電解質がシクロヘキシルベンゼン、2,4ジフルオロアニソール、又はビフェニルなどの芳香族化合物を含む場合であっても、活物質と接着剤との反応による高温放置時の問題の発生を抑制することができる。   According to the sixth aspect of the invention, even when the electrolyte contains an aromatic compound such as cyclohexylbenzene, 2,4 difluoroanisole, or biphenyl, the problem of standing at high temperature due to the reaction between the active material and the adhesive is prevented. Can be suppressed.

以下に好適な実施例を用いて本発明を説明するが、本発明は、本実施例により、何ら限定されるものではなく、その主旨を変更しない範囲において、適宜変更して実施することができる。   The present invention will be described below with reference to preferred examples. However, the present invention is not limited to the examples, and can be appropriately modified and implemented without departing from the scope of the present invention. .

(実施例1)
図1は、本発明に係る非水電解質電池の一例を示す断面図である。図1において、1は非水電解質電池(以下、電池という)、2は電極群、3は負極、4は正極、5はセパレータ、6は電池ケース、7は電池蓋、9は負極端子、10は負極リードである。電極群2は、負極3と正極4とをセパレータ5を介して巻回したものである。電極群2は電解質と共にアルミ製の電池ケース6に収納してあり、電池ケース6の開口部は、負極端子9を備えるアルミ製の電池蓋7をレーザー溶接することにより密封されている。負極3は負極リード10と接続され、正極4は電池ケース6と接続されている。
Example 1
FIG. 1 is a cross-sectional view showing an example of a nonaqueous electrolyte battery according to the present invention. In FIG. 1, 1 is a nonaqueous electrolyte battery (hereinafter referred to as a battery), 2 is an electrode group, 3 is a negative electrode, 4 is a positive electrode, 5 is a separator, 6 is a battery case, 7 is a battery lid, 9 is a negative electrode terminal, 10 Is a negative electrode lead. The electrode group 2 is obtained by winding a negative electrode 3 and a positive electrode 4 with a separator 5 interposed therebetween. The electrode group 2 is housed in an aluminum battery case 6 together with an electrolyte, and the opening of the battery case 6 is sealed by laser welding an aluminum battery lid 7 having a negative electrode terminal 9. The negative electrode 3 is connected to the negative electrode lead 10, and the positive electrode 4 is connected to the battery case 6.

正極合剤は、正極活物質としてLiCoO2 90質量%と、導電助剤としてアセチレンブラック5質量%と、結着剤としてポリフッ化ビニリデン(PVDF)5質量%とを混合し、N−メチル−2−ピロリドン(NMP)に分散させることによりペーストを調製した。このペーストを厚さ20μmのアルミニウム集電体に均一に塗布して、乾燥させた後、ロールプレスで圧縮成形することにより正極を作製した。 The positive electrode mixture is a mixture of 90% by mass of LiCoO 2 as a positive electrode active material, 5% by mass of acetylene black as a conductive additive, and 5% by mass of polyvinylidene fluoride (PVDF) as a binder, and N-methyl-2 -A paste was prepared by dispersing in pyrrolidone (NMP). This paste was uniformly applied to an aluminum current collector with a thickness of 20 μm, dried, and then compression molded with a roll press to produce a positive electrode.

負極合剤は、負極活物質として黒鉛95質量%と、結着剤としてカルボキシメチルセルロース3質量%と、スチレンブタジエンゴム2質量%とを混合し、蒸留水を適宜加えて分散させ、スラリーを調製した。このスラリーを厚さ15μmの銅集電体に均一に塗布し、100℃で5時間乾燥させた後、ロールプレスで圧縮成形することにより負極を作製した。   The negative electrode mixture was prepared by mixing 95% by mass of graphite as a negative electrode active material, 3% by mass of carboxymethyl cellulose as a binder, and 2% by mass of styrene butadiene rubber, and adding and dispersing distilled water as appropriate to prepare a slurry. . This slurry was uniformly applied to a 15 μm thick copper current collector, dried at 100 ° C. for 5 hours, and then subjected to compression molding with a roll press to produce a negative electrode.

セパレータとしては、厚さ20μm程度の微多孔性ポリエチレンフィルムを用いた。セパレータは、多孔性であり、融点は115℃〜130℃である。電解質としては、エチレンカーボネート(EC)及びエチルメチルカーボネート(EMC)の体積比3:7混合溶媒にLiPF6 を1.1mol/l溶解させたものを用いた。 As the separator, a microporous polyethylene film having a thickness of about 20 μm was used. The separator is porous and has a melting point of 115 ° C to 130 ° C. As the electrolyte, a solution obtained by dissolving 1.1 mol / l of LiPF 6 in a 3: 7 mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) was used.

正極4は、上述したように、アルミニウム集電体に正極合剤が塗布されているが、アルミニウム集電体の一部には正極合剤が塗布されておらず、アルミニウム集電体が露出している部分(以下、絶縁処理部という)を有する。正極4の絶縁処理部及びその周辺の正極合剤が塗布されている部分(以下、周辺塗布部分という)は、絶縁テープ11で覆われている。   As described above, in the positive electrode 4, the positive electrode mixture is applied to the aluminum current collector, but the positive electrode mixture is not applied to a part of the aluminum current collector, and the aluminum current collector is exposed. (Hereinafter referred to as an insulation processing section). A portion where the insulating treatment portion of the positive electrode 4 and the peripheral positive electrode mixture are applied (hereinafter referred to as a peripheral application portion) is covered with an insulating tape 11.

絶縁テープ11は、基材にポリフェニレンサルファイド(PPS)、接着剤に2−エチルヘキシルアクリル酸共重合体(2HA)を用いたものであり、接着剤側を正極4の絶縁処理部及び周辺塗布部に接着してある。絶縁テープ11は、多孔性ではなく、融点は270℃程度である。また、絶縁テープ11は電解質と接触している。   The insulating tape 11 uses polyphenylene sulfide (PPS) as a base material and 2-ethylhexylacrylic acid copolymer (2HA) as an adhesive, and the adhesive side is used as an insulating treatment part and a peripheral application part of the positive electrode 4. Glued. The insulating tape 11 is not porous and has a melting point of about 270 ° C. The insulating tape 11 is in contact with the electrolyte.

図2は、絶縁処理部及び周辺塗布部の例を示す要部拡大断面図である。正極4はアルミニウム集電体4aに正極合剤4b,4bが塗布されており、アルミニウム集電体4aの図中の中央内側付近は正極合剤4b,4bが塗布されておらず、アルミニウム集電体4aが露出している。また、負極3は銅集電体3aに負極合剤3b,3bが塗布されているが、銅集電体3aの図中の先端部は負極合剤3b,3bが塗布されておらず、銅集電体3aが露出している。正極4のアルミニウム集電体4aが露出している部分(絶縁処理部)及びその周辺の正極合剤4b,4bが塗布されている部分(周辺塗布部)には、絶縁テープ11の接着剤側が接着されている。また、絶縁テープ11は、例えば正極の巻き終わりの集電体露出部分(絶縁処理部)に接着されている。このように、絶縁テープ11は、集電体(金属部分)が露出している絶縁処理部に接着され、他の金属部分との短絡を防止する。また、絶縁テープ11は、絶縁処理部の周辺の周辺塗布部にも接着されており、製造工程での位置ずれが生じた場合であっても、絶縁処理部と他の金属部分との短絡を防止する。   FIG. 2 is an enlarged cross-sectional view of a main part showing an example of an insulation processing part and a peripheral application part. In the positive electrode 4, the positive electrode mixture 4 b, 4 b is applied to the aluminum current collector 4 a, and the positive electrode mixture 4 b, 4 b is not applied in the vicinity of the center inside of the aluminum current collector 4 a in the drawing. The body 4a is exposed. Further, the negative electrode 3 is coated with the negative electrode mixture 3b, 3b on the copper current collector 3a, but the tip of the copper current collector 3a in the figure is not coated with the negative electrode mixture 3b, 3b. The current collector 3a is exposed. The adhesive side of the insulating tape 11 is on the portion of the positive electrode 4 where the aluminum current collector 4a is exposed (insulation processing portion) and the portion where the positive electrode mixture 4b, 4b is applied (peripheral coating portion). It is glued. Further, the insulating tape 11 is bonded to, for example, a current collector exposed portion (insulating portion) at the end of winding of the positive electrode. In this way, the insulating tape 11 is bonded to the insulating treatment part where the current collector (metal part) is exposed, and prevents a short circuit with other metal parts. Further, the insulating tape 11 is also bonded to the peripheral application portion around the insulating processing portion, and even if a positional shift occurs in the manufacturing process, the insulating processing portion and other metal portions are short-circuited. To prevent.

(実施例2)
絶縁テープ11の接着剤として、2−エチルヘキシルアクリル酸共重合体(2HA)95質量%と、メタアクリル酸(AA)5質量%とを用い、他は実施例1と同様の電池を作製した。
(Example 2)
As the adhesive for the insulating tape 11, a battery similar to Example 1 was prepared except that 95% by mass of 2-ethylhexylacrylic acid copolymer (2HA) and 5% by mass of methacrylic acid (AA) were used.

(実施例3)
絶縁テープ11の接着剤として、2−エチルヘキシルアクリル酸共重合体(2HA)50質量%と、メタアクリル酸(AA)50質量%とを用い、他は実施例1と同様の電池を作製した。
(Example 3)
As the adhesive for the insulating tape 11, a battery similar to Example 1 was prepared except that 50% by mass of 2-ethylhexylacrylic acid copolymer (2HA) and 50% by mass of methacrylic acid (AA) were used.

(実施例4)
絶縁テープ11の接着剤として、2−エチルヘキシルアクリル酸共重合体(2HA)5質量%と、メタアクリル酸(AA)95質量%とを用い、他は実施例1と同様の電池を作製した。
Example 4
As the adhesive for the insulating tape 11, a battery similar to that of Example 1 was prepared except that 5% by mass of 2-ethylhexylacrylic acid copolymer (2HA) and 95% by mass of methacrylic acid (AA) were used.

(実施例5)
絶縁テープ11の接着剤として、ブチルアクリル酸(BA)3質量%と、メタアクリル酸(AA)97質量%とを用い、他は実施例1と同様の電池を作製した。
(Example 5)
A battery similar to that of Example 1 was prepared except that 3% by mass of butylacrylic acid (BA) and 97% by mass of methacrylic acid (AA) were used as the adhesive for the insulating tape 11.

(実施例6)
絶縁テープ11の接着剤として、ブチルアクリル酸(BA)2質量%と、メタアクリル酸(AA)98質量%とを用い、他は実施例1と同様の電池を作製した。
(Example 6)
As the adhesive for the insulating tape 11, a battery was manufactured in the same manner as in Example 1 except that 2% by mass of butylacrylic acid (BA) and 98% by mass of methacrylic acid (AA) were used.

(実施例7)
絶縁テープ11の接着剤として、ブチルアクリル酸(BA)1質量%と、メタアクリル酸(AA)99質量%とを用い、他は実施例1と同様の電池を作製した。
(Example 7)
A battery similar to that of Example 1 was prepared except that 1% by mass of butylacrylic acid (BA) and 99% by mass of methacrylic acid (AA) were used as the adhesive for the insulating tape 11.

(実施例8)
絶縁テープ11の接着剤として、ブチルアクリル酸(BA)0.5質量%と、メタアクリル酸(AA)99.5質量%とを用い、他は実施例1と同様の電池を作製した。
(Example 8)
A battery similar to that of Example 1 was manufactured except that 0.5% by mass of butylacrylic acid (BA) and 99.5% by mass of methacrylic acid (AA) were used as the adhesive for the insulating tape 11.

(実施例9)
絶縁テープ11の接着剤として、メタアクリル酸(AA)を用い、他は実施例1と同様の電池を作製した。
Example 9
A battery similar to that of Example 1 was prepared except that methacrylic acid (AA) was used as an adhesive for the insulating tape 11.

(実施例10)
絶縁テープ11の接着剤の総質量に対し、劣化防止剤として、ヒドロキノン誘導体0.01質量%を添加し、他は実施例2と同様の電池を作製した。
(Example 10)
A battery was prepared in the same manner as in Example 2 except that 0.01% by mass of the hydroquinone derivative was added as a deterioration preventing agent with respect to the total mass of the adhesive of the insulating tape 11.

(実施例11)
絶縁テープ11の接着剤の総質量に対し、劣化防止剤として、フェノール系劣化防止剤0.005質量%を添加し、他は実施例2と同様の電池を作製した。
(Example 11)
A battery was prepared in the same manner as in Example 2 except that 0.005% by mass of a phenol-based degradation inhibitor was added as a degradation inhibitor to the total mass of the adhesive of the insulating tape 11.

(実施例12)
絶縁テープ11の接着剤の総質量に対し、劣化防止剤として、フェノール系劣化防止剤0.01質量%を添加し、他は実施例2と同様の電池を作製した。
(Example 12)
A battery was manufactured in the same manner as in Example 2 except that 0.01% by mass of the phenol-based degradation inhibitor was added as a degradation inhibitor to the total mass of the adhesive of the insulating tape 11.

(実施例13)
絶縁テープ11の接着剤の総質量に対し、劣化防止剤として、フェノール系劣化防止剤0.05質量%を添加し、他は実施例2と同様の電池を作製した。
(Example 13)
A battery was manufactured in the same manner as in Example 2 except that 0.05% by mass of a phenol-based degradation inhibitor was added as a degradation inhibitor to the total mass of the adhesive of the insulating tape 11.

(実施例14)
絶縁テープ11の接着剤の総質量に対し、劣化防止剤として、フェノール系劣化防止剤0.075質量%を添加し、他は実施例2と同様の電池を作製した。
(Example 14)
A battery was prepared in the same manner as in Example 2 except that 0.075% by mass of a phenol-based degradation inhibitor was added as a degradation inhibitor to the total mass of the adhesive of the insulating tape 11.

(実施例15)
絶縁テープ11の接着剤の総質量に対し、劣化防止剤として、芳香族アミン系劣化防止剤0.01質量%を添加し、他は実施例2と同様の電池を作製した。
(Example 15)
A battery was manufactured in the same manner as in Example 2 except that 0.01 mass% of the aromatic amine-based degradation inhibitor was added as a degradation inhibitor to the total mass of the adhesive of the insulating tape 11.

(実施例16)
絶縁テープ11の接着剤の総質量に対し、接着付与剤として、石油系樹脂0.01質量%を添加し、他は実施例2と同様の電池を作製した。
(Example 16)
A battery was manufactured in the same manner as in Example 2 except that 0.01% by mass of a petroleum resin was added as an adhesion-imparting agent with respect to the total mass of the adhesive of the insulating tape 11.

(実施例17)
絶縁テープ11の接着剤の総質量に対し、接着付与剤として、ロジン系樹脂0.005質量%を添加し、他は実施例2と同様の電池を作製した。
(Example 17)
A battery was manufactured in the same manner as in Example 2 except that 0.005% by mass of a rosin resin was added as an adhesion-imparting agent with respect to the total mass of the adhesive of the insulating tape 11.

(実施例18)
絶縁テープ11の接着剤の総質量に対し、接着付与剤として、ロジン系樹脂0.01質量%を添加し、他は実施例2と同様の電池を作製した。
(Example 18)
A battery was manufactured in the same manner as in Example 2 except that 0.01% by mass of rosin resin was added as an adhesion-imparting agent with respect to the total mass of the adhesive of the insulating tape 11.

(実施例19)
絶縁テープ11の接着剤の総質量に対し、接着付与剤として、ロジン系樹脂0.05質量%を添加し、他は実施例2と同様の電池を作製した。
(Example 19)
A battery was manufactured in the same manner as in Example 2 except that 0.05% by mass of rosin resin was added as an adhesion-imparting agent with respect to the total mass of the adhesive of the insulating tape 11.

(実施例20)
絶縁テープ11の接着剤の総質量に対し、接着付与剤として、ロジン系樹脂0.075質量%を添加し、他は実施例2と同様の電池を作製した。
(Example 20)
A battery was prepared in the same manner as in Example 2 except that 0.075% by mass of rosin resin was added as an adhesion-imparting agent with respect to the total mass of the adhesive of the insulating tape 11.

(実施例21)
絶縁テープ11の接着剤の総質量に対し、接着付与剤として、アルキルフェノール樹脂0.01質量%を添加し、他は実施例2と同様の電池を作製した。
(Example 21)
A battery was manufactured in the same manner as in Example 2 except that 0.01% by mass of an alkylphenol resin was added as an adhesion-imparting agent with respect to the total mass of the adhesive of the insulating tape 11.

(実施例22)
絶縁テープ11の接着剤の総質量に対し、接着付与剤として、スチレン系樹脂0.01質量%を添加し、他は実施例2と同様の電池を作製した。
(Example 22)
A battery was manufactured in the same manner as in Example 2 except that 0.01% by mass of a styrene resin was added as an adhesion-imparting agent with respect to the total mass of the adhesive of the insulating tape 11.

(実施例23)
絶縁テープ11の接着剤の総質量に対し、接着付与剤として、水添石油系樹脂0.01質量%を添加し、他は実施例2と同様の電池を作製した。
(Example 23)
A battery was manufactured in the same manner as in Example 2 except that 0.01% by mass of a hydrogenated petroleum resin was added as an adhesion-imparting agent with respect to the total mass of the adhesive of the insulating tape 11.

(実施例24)
絶縁テープ11の基材として、ポリプロピレン(PP)を用い、他は実施例2と同様の電池を作製した。
(Example 24)
A battery similar to that of Example 2 was prepared except that polypropylene (PP) was used as the base material of the insulating tape 11.

(実施例25)
絶縁テープ11の基材として、ポリイミド(PI)を用い、他は実施例2と同様の電池を作製した。
(Example 25)
A battery similar to that of Example 2 was prepared using polyimide (PI) as the base material of the insulating tape 11.

(実施例26)
電解液の総質量に対し、シクロヘキシルベンゼン(CHB)2質量%を添加し、他は実施例2と同様の電池を作製した。
(Example 26)
A battery was manufactured in the same manner as in Example 2 except that 2% by mass of cyclohexylbenzene (CHB) was added to the total mass of the electrolytic solution.

(実施例27)
電解液の総質量に対し、2,4ジフルオロアニソール(2FA)2質量%を添加し、他は実施例2と同様の電池を作製した。
(Example 27)
A battery was prepared in the same manner as in Example 2 except that 2% by mass of 2,4 difluoroanisole (2FA) was added to the total mass of the electrolytic solution.

(実施例28)
電解液の総質量に対し、ビフェニル(BP)2質量%を添加し、他は実施例2と同様の電池を作製した。
(Example 28)
A battery was prepared in the same manner as in Example 2 except that 2% by mass of biphenyl (BP) was added to the total mass of the electrolytic solution.

(実施例29)
正極合剤の活物質として、LiNiO2 90質量%を用い、他は実施例2と同様の電池を作製した。
(Example 29)
A battery was manufactured in the same manner as in Example 2 except that 90% by mass of LiNiO 2 was used as the active material of the positive electrode mixture.

(実施例30)
正極合剤の活物質として、LiMn2 4 90質量%を用い、他は実施例2と同様の電池を作製した。
(Example 30)
A battery was prepared in the same manner as in Example 2 except that 90% by mass of LiMn 2 O 4 was used as the active material for the positive electrode mixture.

(実施例31)
正極合剤の活物質として、LiNi0.4 Co0.3 Mn0.3 2 90質量%を用い、他は実施例2と同様の電池を作製した。
(Example 31)
A battery was manufactured in the same manner as in Example 2 except that 90% by mass of LiNi 0.4 Co 0.3 Mn 0.3 O 2 was used as the active material of the positive electrode mixture.

(比較例1)
絶縁テープ11は用いず、他は実施例1と同様の電池を作製した。
(Comparative Example 1)
A battery similar to that of Example 1 was manufactured except that the insulating tape 11 was not used.

(比較例2)
絶縁テープ11の接着剤として、ブチルアクリル酸(BA)5質量%と、メタアクリル酸(AA)95質量%とを用い、他は実施例1と同様の電池を作製した。
(Comparative Example 2)
A battery similar to that of Example 1 was prepared except that 5% by mass of butylacrylic acid (BA) and 95% by mass of methacrylic acid (AA) were used as the adhesive for the insulating tape 11.

(比較例3)
絶縁テープ11の接着剤として、ブチルアクリル酸(BA)95質量%と、メタアクリル酸(AA)5質量%とを用い、他は実施例1と同様の電池を作製した。
(Comparative Example 3)
A battery similar to that of Example 1 was prepared except that 95% by mass of butylacrylic acid (BA) and 5% by mass of methacrylic acid (AA) were used as the adhesive for the insulating tape 11.

(比較例4)
絶縁テープ11の接着剤の総質量に対し、劣化防止剤として、ヒドロキノン誘導体0.1質量%を添加し、他は実施例2と同様の電池を作製した。
(Comparative Example 4)
A battery was prepared in the same manner as in Example 2 except that 0.1% by mass of the hydroquinone derivative was added as a deterioration preventing agent with respect to the total mass of the adhesive of the insulating tape 11.

(比較例5)
絶縁テープ11の接着剤の総質量に対し、劣化防止剤として、フェノール系劣化防止剤0.1質量%を添加し、他は実施例2と同様の電池を作製した。
(Comparative Example 5)
A battery was prepared in the same manner as in Example 2 except that 0.1% by mass of the phenol-based degradation inhibitor was added as a degradation inhibitor to the total mass of the adhesive of the insulating tape 11.

(比較例6)
絶縁テープ11の接着剤の総質量に対し、劣化防止剤として、芳香族アミン系劣化防止剤0.1質量%を添加し、他は実施例2と同様の電池を作製した。
(Comparative Example 6)
A battery was manufactured in the same manner as in Example 2 except that 0.1 mass% of the aromatic amine-based degradation inhibitor was added as a degradation inhibitor to the total mass of the adhesive of the insulating tape 11.

(比較例7)
絶縁テープ11の接着剤の総質量に対し、接着付与剤として、石油系樹脂0.1質量%を添加し、他は実施例2と同様の電池を作製した。
(Comparative Example 7)
A battery was prepared in the same manner as in Example 2 except that 0.1% by mass of a petroleum resin was added as an adhesion-imparting agent with respect to the total mass of the adhesive of the insulating tape 11.

(比較例8)
絶縁テープ11の接着剤の総質量に対し、接着付与剤として、ロジン系樹脂0.1質量%を添加し、他は実施例2と同様の電池を作製した。
(Comparative Example 8)
A battery was prepared in the same manner as in Example 2 except that 0.1% by mass of rosin resin was added as an adhesion-imparting agent to the total mass of the adhesive of the insulating tape 11.

(比較例9)
絶縁テープ11の接着剤の総質量に対し、接着付与剤として、アルキルフェノール樹脂0.1質量%を添加し、他は実施例2と同様の電池を作製した。
(Comparative Example 9)
A battery was manufactured in the same manner as in Example 2 except that 0.1% by mass of an alkylphenol resin was added as an adhesion promoter with respect to the total mass of the adhesive of the insulating tape 11.

(比較例10)
絶縁テープ11の接着剤の総質量に対し、接着付与剤として、スチレン系樹脂0.1質量%を添加し、他は実施例2と同様の電池を作製した。
(Comparative Example 10)
A battery was prepared in the same manner as in Example 2 except that 0.1% by mass of a styrene resin was added as an adhesion-imparting agent with respect to the total mass of the adhesive of the insulating tape 11.

(比較例11)
絶縁テープ11の接着剤の総質量に対し、接着付与剤として、水添石油系樹脂0.1質量%を添加し、他は実施例2と同様の電池を作製した。
(Comparative Example 11)
A battery similar to that of Example 2 was prepared except that 0.1% by mass of a hydrogenated petroleum resin was added as an adhesion-imparting agent with respect to the total mass of the adhesive of the insulating tape 11.

(比較例12)
絶縁テープ11の基材として、ポリエチレンテレフタラート(PET)を用い、他は実施例2と同様の電池を作製した。
(Comparative Example 12)
A battery similar to that of Example 2 was fabricated using polyethylene terephthalate (PET) as the base material of the insulating tape 11.

(比較例13)
電解液の総質量に対し、シクロヘキシルベンゼン(CHB)2質量%を添加し、他は比較例3と同様の電池を作製した。
(Comparative Example 13)
A battery was manufactured in the same manner as in Comparative Example 3 except that 2% by mass of cyclohexylbenzene (CHB) was added to the total mass of the electrolytic solution.

(比較例14)
電解液の総質量に対し、2,4ジフルオロアニソール(2FA)2質量%を添加し、他は比較例3と同様の電池を作製した。
(Comparative Example 14)
A battery was prepared in the same manner as in Comparative Example 3 except that 2% by mass of 2,4 difluoroanisole (2FA) was added to the total mass of the electrolytic solution.

(比較例15)
電解液の総質量に対し、ビフェニル(BP)2質量%を添加し、他は比較例3と同様の電池を作製した。
(Comparative Example 15)
A battery was prepared in the same manner as in Comparative Example 3 except that 2% by mass of biphenyl (BP) was added to the total mass of the electrolytic solution.

(比較例16)
正極合剤の活物質として、LiNiO2 90質量%を用い、他は比較例3と同様の電池を作製した。
(Comparative Example 16)
A battery was prepared in the same manner as in Comparative Example 3 except that 90% by mass of LiNiO 2 was used as the active material for the positive electrode mixture.

(比較例17)
正極合剤の活物質として、LiMn2 4 90質量%を用い、他は比較例3と同様の電池を作製した。
(Comparative Example 17)
A battery was manufactured in the same manner as in Comparative Example 3 except that 90% by mass of LiMn 2 O 4 was used as the active material of the positive electrode mixture.

(比較例18)
正極合剤の活物質として、LiNi0.4 Co0.3 Mn0.3 2 90質量%を用い、他は比較例3と同様の電池を作製した。
(Comparative Example 18)
A battery was prepared in the same manner as in Comparative Example 3 except that 90% by mass of LiNi 0.4 Co 0.3 Mn 0.3 O 2 was used as the active material for the positive electrode mixture.

上述した各実施例及び各比較例に対して、放置特性(電池膨れ、電圧低下分、容量保持率)を計測した。計測においては、同じ条件の電池を各10セルずつ作製し、これらの電池を、600mAの電流で4.2Vまで3時間定電流定電圧充電し、その後600mAの電流で3Vまで放電を行い、放電容量を測定した。その後、600mAの電流で4.2Vまで3時間定電流定電圧充電し、電池電圧と電池厚みとを測定した後、80℃で200時間放置し、放置後の電池電圧と電池厚みとを測定し、放置前に対する放置後の電池電圧の低下分(電圧低下分[mV])、電池厚み増大分(電池膨れ[mm])を求めた。そして、放置後の電池を、600mAの電流で3Vまで放電し、放置後の放電容量を測定し、容量保持率(=「放置後の放電容量」÷「放置前の放電容量」×100[%])を求めた。放置特性(電池膨れ、電圧低下分、容量保持率)の測定結果を表1〜6に示す。なお、測定結果は10セルの平均を示している。   The leaving characteristics (battery swelling, voltage drop, capacity retention) were measured for each of the above-described examples and comparative examples. In the measurement, 10 cells each of the same conditions were produced, and these batteries were charged at a constant current and a constant voltage for 3 hours up to 4.2 V at a current of 600 mA, and then discharged to 3 V at a current of 600 mA. The capacity was measured. After that, the battery was charged at a constant current of 600 mA to 4.2 V for 3 hours, and the battery voltage and battery thickness were measured. Then, the battery voltage and battery thickness were measured at 80 ° C. for 200 hours. Then, the battery voltage drop after being left (voltage drop [mV]) and battery thickness increase (battery swelling [mm]) after being left alone were determined. Then, the battery after being left is discharged to 3 V at a current of 600 mA, the discharge capacity after being left is measured, and the capacity retention rate (= “discharge capacity after being left” ÷ “discharge capacity before being left” × 100 [% ]). Tables 1 to 6 show the measurement results of the leaving characteristics (battery swelling, voltage drop, capacity retention). In addition, the measurement result has shown the average of 10 cells.

Figure 2006040812
Figure 2006040812

表1の実施例1〜4及び9に示すように、絶縁テープの接着剤として2HA及び/又はAAを用いた場合、正極と絶縁テープの接着剤との反応はほとんど生じておらず、電池膨れ、電圧低下分、及び容量保持率の何れも良好である。例えば、絶縁テープを用いない比較例1とほぼ同様の電池膨れ、電圧低下分、及び容量保持率が得られている。なお、絶縁テープの接着剤として2HA及びAAを使用する場合、取り扱い易さの点から、一方が5質量%から95質量%の混合比が好ましい。   As shown in Examples 1 to 4 and 9 in Table 1, when 2HA and / or AA is used as the adhesive for the insulating tape, the reaction between the positive electrode and the adhesive for the insulating tape hardly occurs, and the battery swells. The voltage drop and the capacity retention rate are all good. For example, almost the same battery swelling, voltage drop, and capacity retention as in Comparative Example 1 without using an insulating tape are obtained. In addition, when using 2HA and AA as an adhesive of an insulating tape, the mixing ratio of one to 5 mass% to 95 mass% is preferable from the point of the ease of handling.

また、表1の比較例2〜3に示すように、絶縁テープの接着剤としてAA及び5質量%以上のBAを用いた場合、BAと正極との反応によってガスが発生するため、電池膨れが大きく、また電圧低下も大きい。さらに、BAは、正極と反応して自己放電を促進したり、正極活物質を失活させるため、正極の放電抵抗が増大し、容量保持率が低下する。ただし、表1の実施例5〜8に示すように、絶縁テープの接着剤としてAA及び3質量%以下のBAを用いた場合は、電池膨れ、電圧低下分、及び容量保持率の何れも特に問題はない。なお、表1の実施例5〜8に示すように、BAが少ない方が、電池膨れ、電圧低下分、及び容量保持率の何れもより良好となり、より好ましい。   Further, as shown in Comparative Examples 2 to 3 in Table 1, when AA and 5% by mass or more of BA are used as the adhesive of the insulating tape, gas is generated due to the reaction between the BA and the positive electrode, so that the battery swells. Large and the voltage drop is large. Furthermore, since BA reacts with the positive electrode to promote self-discharge or deactivate the positive electrode active material, the discharge resistance of the positive electrode increases and the capacity retention rate decreases. However, as shown in Examples 5 to 8 in Table 1, when AA and 3% by mass or less of BA are used as the adhesive of the insulating tape, all of the battery swelling, the voltage drop, and the capacity retention rate are particularly high. No problem. In addition, as shown in Examples 5 to 8 in Table 1, it is more preferable that the BA is smaller because battery swelling, voltage drop, and capacity retention are all better.

Figure 2006040812
Figure 2006040812

表2において、「耐劣化特性」は、劣化防止剤を接着剤に添加した絶縁テープと、未添加の絶縁テープとを、40℃の環境下で6ヶ月間放置した際の接着力の劣化度合いを表す。表2の各実施例及び各比較例に示すように、劣化防止剤を添加することにより、未添加の場合と比べて、接着力の劣化が抑制され、接着力は良好に保たれている。   In Table 2, “deterioration resistance” refers to the degree of deterioration of adhesive strength when an insulating tape with an anti-degradation agent added to an adhesive and an unadded insulating tape are left in a 40 ° C. environment for 6 months. Represents. As shown in each Example and each Comparative Example in Table 2, by adding a deterioration preventing agent, the deterioration of the adhesive force is suppressed and the adhesive force is kept good as compared with the case where it is not added.

しかし、表2の比較例4〜6に示すように、劣化防止剤が0.1質量%添加されている場合、電池の膨れ及び電圧低下が大きくなり、また容量保持率が低下している。これらの原因としては、劣化防止剤に含まれる芳香族系の官能基が酸化されてガスを発生すること、芳香族系の添加剤を電解液に添加したときと同様にコバルト溶出を促進して電圧低下を誘発することなどが考えられる。一方、表2の実施例10〜15に示すように、0.01質量%以下の劣化防止剤が添加されている場合は、電池膨れ、電圧低下分、及び容量保持率の何れも良好である。劣化防止剤の添加量は0.01質量%以下が好ましい。   However, as shown in Comparative Examples 4 to 6 in Table 2, when 0.1 mass% of the deterioration preventing agent is added, the battery swells and the voltage decreases greatly, and the capacity retention rate decreases. These causes include the fact that the aromatic functional group contained in the degradation inhibitor is oxidized to generate gas, and the cobalt elution is promoted in the same way as when the aromatic additive is added to the electrolyte. It may be possible to induce a voltage drop. On the other hand, as shown in Examples 10 to 15 in Table 2, when the deterioration inhibitor of 0.01% by mass or less is added, all of the battery swelling, voltage drop, and capacity retention are good. . The addition amount of the deterioration inhibitor is preferably 0.01% by mass or less.

Figure 2006040812
Figure 2006040812

表3において、「接着性」は、接着付与剤を接着剤に添加した絶縁テープと、未添加の絶縁テープとの接着力の度合いを表す。表3の各実施例及び各比較例に示すように、接着付与剤を添加することにより、未添加の場合と比べて、接着力は向上し、良好な接着力が得られている。   In Table 3, “adhesiveness” represents the degree of adhesive strength between an insulating tape to which an adhesion-imparting agent is added and an unadded insulating tape. As shown in each Example and each Comparative Example of Table 3, by adding an adhesion-imparting agent, the adhesive force is improved and a good adhesive force is obtained as compared with the case where no adhesion is added.

しかし、表3の比較例7〜11に示すように、接着付与剤が0.1質量%添加されている場合、電池の膨れ及び電圧低下が大きくなり、また容量保持率が低下している。これらの原因としては、接着付与剤はカルボキシル基又はヒドロキシル基などの官能基を持つものが多く、これらの官能基と正極との反応によってガスが発生することが考えられる。一方、表3の実施例16〜23に示すように、接着付与剤が0.01質量%以下の場合は、電池膨れ、電圧低下分、及び容量保持率の何れも良好である。接着付与剤の添加量は0.01質量%以下が好ましい。なお、接着性を考えた場合、接着付与剤の添加量は0.01質量%程度が好ましい。   However, as shown in Comparative Examples 7 to 11 in Table 3, when 0.1% by mass of the adhesion-imparting agent is added, the battery swells and the voltage decreases, and the capacity retention rate decreases. As these causes, many adhesion imparting agents have a functional group such as a carboxyl group or a hydroxyl group, and it is considered that gas is generated by the reaction between these functional group and the positive electrode. On the other hand, as shown in Examples 16 to 23 in Table 3, when the adhesion-imparting agent is 0.01% by mass or less, all of the battery swelling, voltage drop, and capacity retention are good. The addition amount of the adhesion promoter is preferably 0.01% by mass or less. In addition, when adhesiveness is considered, about 0.01 mass% is preferable for the addition amount of an adhesion | attachment imparting agent.

Figure 2006040812
Figure 2006040812

表4の比較例12に示すように、PETを絶縁テープの基材に用いた場合、電池の膨れ及び電圧低下が大きくなり、また容量保持率が低下している。この原因としては、PETが加水分解した溶解物又はPETと正極とが反応するためであると考えられる。一方、表4の実施例24〜25に示すように、PP又はPIを絶縁テープの基材に用いた場合、電池膨れ、電圧低下分、及び容量保持率の何れも良好である。従って、絶縁テープの基材には、正極との反応性が低い、PPS、PP、又はPIを用いることが好ましい。   As shown in Comparative Example 12 in Table 4, when PET is used as the base material of the insulating tape, the battery swells and the voltage decreases greatly, and the capacity retention rate decreases. This is considered to be because a dissolved product obtained by hydrolyzing PET or a reaction between PET and the positive electrode. On the other hand, as shown in Examples 24 to 25 in Table 4, when PP or PI is used for the base material of the insulating tape, all of battery swelling, voltage drop, and capacity retention are good. Therefore, it is preferable to use PPS, PP, or PI, which has low reactivity with the positive electrode, as the base material of the insulating tape.

Figure 2006040812
Figure 2006040812

表5の比較例13〜15に示すように、絶縁テープの接着剤にBA及びAAを用い、電解液にCHB、2FA、又はBPを添加した場合、電圧低下分が異常に大きくなっている。また、容量保持率も大きくて低下している。しかし、電池膨れに関しては、電圧低下分が大きいために、正極と電解液との反応が抑制され、小さくなっている。この原因としては、試験後の電池を解体したところ、負極上に正極活物質から溶出した金属コバルトが大量に析出していたことから、電圧の異常低下は負極上に析出した金属コバルトのデンドライトが正極に到達して微小短絡を引き起こしたためと考えられる。   As shown in Comparative Examples 13 to 15 in Table 5, when BA and AA are used as the adhesive for the insulating tape and CHB, 2FA, or BP is added to the electrolyte, the voltage drop is abnormally large. In addition, the capacity retention rate is large and decreased. However, with respect to battery swelling, since the voltage drop is large, the reaction between the positive electrode and the electrolyte is suppressed and reduced. The reason for this was that when the battery after the test was disassembled, a large amount of metallic cobalt eluted from the positive electrode active material was deposited on the negative electrode, and therefore the abnormal drop in voltage was caused by the dendrites of metallic cobalt deposited on the negative electrode. This is thought to be due to reaching the positive electrode and causing a short circuit.

一方、表5の実施例26〜28に示すように、絶縁テープの接着剤に2HA及びAAを用い、電解液にCHB、2FA、又はBPを添加した場合、電池膨れ、電圧低下分、及び容量保持率の何れも特に問題はない。このように2HA及びAAを接着剤に使用した場合は特に問題がないことから、BAと上述した芳香族系化合物とを組み合わせた場合、遷移金属酸化物が溶出し易くなると推察される。   On the other hand, as shown in Examples 26 to 28 in Table 5, when 2HA and AA are used as the adhesive of the insulating tape and CHB, 2FA, or BP is added to the electrolyte, battery swelling, voltage drop, and capacity There is no particular problem with any of the retention rates. Thus, when 2HA and AA are used for the adhesive, there is no particular problem. Therefore, it is presumed that the transition metal oxide is likely to be eluted when BA is combined with the aromatic compound described above.

Figure 2006040812
Figure 2006040812

表6の比較例16〜18に示すように、絶縁テープの接着剤にBA及びAAを用い、正極活物質として遷移金属酸化物を用いた場合、電圧低下分が大きくなり、また容量保持率も低下している。一方、表6の実施例29〜31に示すように、絶縁テープの接着剤に2HA及びAAを用い、正極活物質として遷移金属酸化物を用いた場合、電池膨れ、電圧低下分、及び容量保持率の何れも特に問題はない。   As shown in Comparative Examples 16 to 18 in Table 6, when BA and AA are used as the adhesive of the insulating tape and a transition metal oxide is used as the positive electrode active material, the voltage drop increases and the capacity retention rate also increases. It is falling. On the other hand, as shown in Examples 29 to 31 of Table 6, when 2HA and AA were used as the adhesive for the insulating tape and a transition metal oxide was used as the positive electrode active material, battery swelling, voltage drop, and capacity retention There is no particular problem with any of the rates.

本発明に係る非水電解質電池の一例を示す断面図である。It is sectional drawing which shows an example of the nonaqueous electrolyte battery which concerns on this invention. 絶縁処理部及び周辺塗布部の例を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the example of an insulation process part and a peripheral application part.

符号の説明Explanation of symbols

1 電池(非水電解質電池)
2 電極群
3 負極
4 正極
5 セパレータ
6 電池ケース
7 電池蓋
9 負極端子
10 負極リード

1 battery (non-aqueous electrolyte battery)
2 Electrode group 3 Negative electrode 4 Positive electrode 5 Separator 6 Battery case 7 Battery lid 9 Negative electrode terminal 10 Negative electrode lead

Claims (6)

組成式Lix MO2 もしくはLiy 2 4 (ただし、Mは1種類以上の遷移金属、0≦x≦1、0≦y≦2)で表される複合酸化物、トンネル構造もしくは層状構造の金属カルコゲン化物、又は、トンネル構造もしくは層状構造の金属酸化物を含む正極と、リチウムイオンを吸蔵放出することが可能な負極と、正極及び負極の短絡を防止する絶縁テープとを有する非水電解質電池において、
前記絶縁テープは前記正極に接着されており、
前記絶縁テープの接着剤は、2−エチルヘキシル−アクリル酸共重合体及び/又はメタアクリル酸と、接着剤の全質量に対して3質量%以下のブチルアクリル酸とを含むことを特徴とする非水電解質電池。
A composite oxide, tunnel structure or layered structure represented by a composition formula Li x MO 2 or Li y M 2 O 4 (where M is one or more transition metals, 0 ≦ x ≦ 1, 0 ≦ y ≦ 2) A non-aqueous electrolyte comprising a positive electrode containing a metal chalcogenide or a metal oxide having a tunnel structure or a layered structure, a negative electrode capable of occluding and releasing lithium ions, and an insulating tape for preventing a short circuit between the positive electrode and the negative electrode In batteries,
The insulating tape is bonded to the positive electrode;
The adhesive of the insulating tape contains 2-ethylhexyl-acrylic acid copolymer and / or methacrylic acid and 3% by mass or less of butylacrylic acid based on the total mass of the adhesive. Water electrolyte battery.
組成式Lix MO2 もしくはLiy 2 4 (ただし、Mは1種類以上の遷移金属、0≦x≦1、0≦y≦2)で表される複合酸化物、トンネル構造もしくは層状構造の金属カルコゲン化物、又は、トンネル構造もしくは層状構造の金属酸化物を含む正極と、リチウムイオンを吸蔵放出することが可能な負極と、正極及び負極の短絡を防止する絶縁テープとを有する非水電解質電池において、
前記絶縁テープは前記正極に接着されており、
前記絶縁テープの接着剤は、2−エチルヘキシル−アクリル酸共重合体及び/又はメタアクリル酸を含み、ブチルアクリル酸を含まないことを特徴とする非水電解質電池。
A composite oxide, tunnel structure or layered structure represented by a composition formula Li x MO 2 or Li y M 2 O 4 (where M is one or more transition metals, 0 ≦ x ≦ 1, 0 ≦ y ≦ 2) A non-aqueous electrolyte comprising a positive electrode containing a metal chalcogenide or a metal oxide having a tunnel structure or a layered structure, a negative electrode capable of occluding and releasing lithium ions, and an insulating tape for preventing a short circuit between the positive electrode and the negative electrode In batteries,
The insulating tape is bonded to the positive electrode;
The non-aqueous electrolyte battery characterized in that the adhesive of the insulating tape contains 2-ethylhexyl-acrylic acid copolymer and / or methacrylic acid and does not contain butyl acrylic acid.
前記絶縁テープの接着剤は、ヒドロキノン誘導体、フェノール系化合物、芳香族アミン系化合物からなる群より選択される1又は複数種類の化合物を含有し、該化合物の含有量は接着剤の全質量に対して0.01質量%以下であることを特徴とする請求項1又は2記載の非水電解質電池。   The adhesive of the insulating tape contains one or more kinds of compounds selected from the group consisting of hydroquinone derivatives, phenolic compounds, and aromatic amine compounds, and the content of the compound is based on the total mass of the adhesive. The nonaqueous electrolyte battery according to claim 1, wherein the content is 0.01% by mass or less. 前記絶縁テープの接着剤は、石油系樹脂、ロジン系樹脂、アルキルフェノール樹脂、スチレン系樹脂、水添石油系樹脂からなる群より選択される1又は複数種類の合成樹脂を含有し、該合成樹脂の含有量は接着剤の全質量に対して0.01質量%以下であることを特徴とする請求項1乃至3の何れかに記載の非水電解質電池。   The adhesive for the insulating tape contains one or more kinds of synthetic resins selected from the group consisting of petroleum resins, rosin resins, alkylphenol resins, styrene resins, and hydrogenated petroleum resins. Content is 0.01 mass% or less with respect to the total mass of an adhesive agent, The nonaqueous electrolyte battery in any one of the Claims 1 thru | or 3 characterized by the above-mentioned. 前記絶縁テープの基材は、ポリプロピレン、ポリイミド、ポリフェニレンサルファイドからなる群より選択されていることを特徴とする請求項1乃至4の何れかに記載の非水電解質電池。   The nonaqueous electrolyte battery according to any one of claims 1 to 4, wherein the base material of the insulating tape is selected from the group consisting of polypropylene, polyimide, and polyphenylene sulfide. 芳香族化合物を含む電解質を有することを特徴とする請求項1乃至5の何れかに記載の非水電解質電池。   The nonaqueous electrolyte battery according to claim 1, comprising an electrolyte containing an aromatic compound.
JP2004222310A 2004-07-29 2004-07-29 Non-aqueous electrolyte battery Expired - Fee Related JP4774482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004222310A JP4774482B2 (en) 2004-07-29 2004-07-29 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004222310A JP4774482B2 (en) 2004-07-29 2004-07-29 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JP2006040812A true JP2006040812A (en) 2006-02-09
JP4774482B2 JP4774482B2 (en) 2011-09-14

Family

ID=35905568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004222310A Expired - Fee Related JP4774482B2 (en) 2004-07-29 2004-07-29 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP4774482B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106299376A (en) * 2016-10-12 2017-01-04 漳州万利达能源科技有限公司 A kind of high power capacity high safety performance lithium battery anode and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012277A (en) * 1996-06-21 1998-01-16 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte battery
JPH11176476A (en) * 1997-12-15 1999-07-02 Nitto Denko Corp Binder or adhesive for battery, and pressure sensitive adhesive tape or sheet
JP2003132875A (en) * 2001-10-24 2003-05-09 Matsushita Electric Ind Co Ltd Lithium secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012277A (en) * 1996-06-21 1998-01-16 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte battery
JPH11176476A (en) * 1997-12-15 1999-07-02 Nitto Denko Corp Binder or adhesive for battery, and pressure sensitive adhesive tape or sheet
JP2003132875A (en) * 2001-10-24 2003-05-09 Matsushita Electric Ind Co Ltd Lithium secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106299376A (en) * 2016-10-12 2017-01-04 漳州万利达能源科技有限公司 A kind of high power capacity high safety performance lithium battery anode and preparation method thereof

Also Published As

Publication number Publication date
JP4774482B2 (en) 2011-09-14

Similar Documents

Publication Publication Date Title
JP4859373B2 (en) Non-aqueous electrolyte secondary battery
JP4986629B2 (en) Lithium ion secondary battery and manufacturing method thereof
KR100732803B1 (en) Lithium ion secondary battery
JP5072242B2 (en) Non-aqueous electrolyte secondary battery
JP4049328B2 (en) Cathode for lithium secondary battery and lithium secondary battery including the same
WO2010131401A1 (en) Electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2000215897A (en) Lithium secondary battery
US20130029218A1 (en) Nonaqueous electrolyte secondary battery
JP2014199714A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2014007120A (en) Negative electrode for lithium secondary battery, manufacturing method thereof, and lithium secondary battery
JP2022002216A (en) Electro-chemical apparatus and electronic apparatus
JP2007265668A (en) Cathode for nonaqueous electrolyte secondary battery and its manufacturing method
WO2015083262A1 (en) Negative electrode material for lithium ion secondary batteries, method for producing same, negative electrode for lithium ion secondary batteries, method for producing negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP2013152870A (en) Nonaqueous electrolytic secondary battery and method of manufacturing the same
JP2010049909A (en) Nonaqueous electrolyte secondary battery
JP2009231058A (en) Anode for nonaqueous electrolyte battery and its manufacturing method
JP2006172860A (en) Negative electrode for lithium secondary battery and its manufacturing method, and lithium secondary battery
JP4242997B2 (en) Non-aqueous electrolyte battery
JP4774482B2 (en) Non-aqueous electrolyte battery
TW201205920A (en) Lithium-ion secondary battery
JP2008243441A (en) Nonaqueous electrolyte secondary battery
WO2022266893A1 (en) Electrochemical device and electronic device
WO2022266894A1 (en) Electrochemical device and electronic device
JP5086644B2 (en) Nonaqueous electrolyte secondary battery
JP2006164883A (en) Winding electrode and its manufacturing method, and method of manufacturing battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110322

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110520

R151 Written notification of patent or utility model registration

Ref document number: 4774482

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees