JP2006039166A - Spatial phase modulator having elastic deforming part for inclination control - Google Patents

Spatial phase modulator having elastic deforming part for inclination control Download PDF

Info

Publication number
JP2006039166A
JP2006039166A JP2004218286A JP2004218286A JP2006039166A JP 2006039166 A JP2006039166 A JP 2006039166A JP 2004218286 A JP2004218286 A JP 2004218286A JP 2004218286 A JP2004218286 A JP 2004218286A JP 2006039166 A JP2006039166 A JP 2006039166A
Authority
JP
Japan
Prior art keywords
phase modulator
parallel plates
parallel
spatial phase
optical path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004218286A
Other languages
Japanese (ja)
Inventor
Arata Nakamura
新 中村
Masashi Tamegai
昌司 為我井
Kazuya Takasago
一弥 高砂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cyber Laser Inc
Original Assignee
Cyber Laser Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cyber Laser Inc filed Critical Cyber Laser Inc
Priority to JP2004218286A priority Critical patent/JP2006039166A/en
Publication of JP2006039166A publication Critical patent/JP2006039166A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To contrive miniaturization, stable performance and cost reduction of a spatial phase modulator for short pulse laser. <P>SOLUTION: This is the wide band spatial phase modulator which is provided with a plurality of parallel plates composed of an optically transmissive material, a holding means for arraying the parallel plates in a freely spatially movable state, and a tilting means for changing the inclination of the parallel plates. The comprising parallel plates are made up of an optically transmissive material having a transparent laser beam-transmitting material. As the tilting means for changing the inclination of the parallel plates, the parallel plates are supported by a member that tends to be more elastically deformable than a light transmitting optical path section, with the part in question elastically deformed by an actuator. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、改良した弾性変形部を備えた空間位相変調器に関するものである。   The present invention relates to a spatial phase modulator having an improved elastic deformation portion.

短パルスレーザ光の発生、あるいは、物質中を透過・伝播する間に伸延してしまった短パルスレーザ光のパルス幅を再圧縮する際に使用することができるレーザ光の空間位相変調器が特開2000−187167に開示されている。当該空間位相変調器は、分散補償を精密制御することができ、幅広い波長域において使用することができ、かつレーザ光のパルスの強弱にかかわらず使用することができるものである。   A special feature is the spatial phase modulator of laser light that can be used to generate short pulse laser light or to recompress the pulse width of short pulse laser light that has been extended during transmission and propagation through a substance. No. 2000-187167. The spatial phase modulator can precisely control dispersion compensation, can be used in a wide wavelength range, and can be used regardless of the intensity of a pulse of laser light.

図1に、上記の従来技術における短パルスレーザー光のパルス幅圧縮の概念を示す。短パルス発振器1から出たレーザビーム2は、45度の角度で設置された反射鏡3で反射されてビーム4として回折格子5に入射する。入射光の、短パルスを構成するスペクトルの短波長側はビーム7として、長波長側はビーム8として波長分散され空間的に異なる経路を伝播してコリメート反射鏡6に入射する。当該入射光は、反射されて平行なビーム10として位相変調器11に向かうが、異なる空間断面を走行するビームは夫々異なる位相変調用要素13−19を透過する間に夫々の位相変調を受けて、その後、反射鏡12で反射されて元の方向に戻される。   FIG. 1 shows the concept of compression of the pulse width of the short pulse laser light in the above-described prior art. The laser beam 2 emitted from the short pulse oscillator 1 is reflected by the reflecting mirror 3 installed at an angle of 45 degrees and enters the diffraction grating 5 as a beam 4. The short wavelength side of the spectrum constituting the short pulse of the incident light is a beam 7 and the long wavelength side is a wavelength 8 which is wavelength-dispersed and propagates through spatially different paths and enters the collimating reflector 6. The incident light is reflected and directed to the phase modulator 11 as a parallel beam 10, but the beams traveling in different spatial sections undergo respective phase modulation while passing through different phase modulation elements 13-19. Thereafter, the light is reflected by the reflecting mirror 12 and returned to the original direction.

この際、ビームを元の方向から回折格子5の角度分散の方向とは直角な方向に微少角度だけ変化させるようにする。この反射ビームは再び位相変調器の各要素を通り反射鏡6で集光され、回折格子5に戻る。戻る位置は紙面に垂直方向に変位した位置になり、ここで再び平行なビームとなり、ビーム20として反射鏡3の方向にもどされ、反射鏡3の横を通過してビーム20となる。ビーム20は、加工に用いる場合にはレンズ21などの光学系により集光されて加工物24などに照射され目的を達成する。   At this time, the beam is changed from the original direction by a minute angle in a direction perpendicular to the direction of angular dispersion of the diffraction grating 5. This reflected beam again passes through each element of the phase modulator, is collected by the reflecting mirror 6, and returns to the diffraction grating 5. The returning position is a position displaced in the direction perpendicular to the paper surface, where it becomes a parallel beam again, returned to the direction of the reflecting mirror 3 as a beam 20, passes through the side of the reflecting mirror 3 and becomes a beam 20. When the beam 20 is used for processing, the beam 20 is condensed by an optical system such as a lens 21 and irradiated onto a workpiece 24 or the like to achieve the purpose.

図1に示した従来の位相変調器の構造のA-A断面を図2に示す。ベース31にボールベアリング32などの回転自在な構造体に透明平行平板34を取り付け、通過するビーム35が所定の位相変調を受けるように、平行平板をバイモルフまたはピエゾリニアアクチュエータで回転駆動して平行平板を回転させる構造である。複数の平行平板を平行に図1の13−19のようにレーザ光軸方向と直角方向に整列させるために、軸に回転自在なボールベアリングを複数個通して、そのベアリングに位相変調用の光学的透過材料によって形成された平行平板を複数個平行に取り付けてある。平行平板は軸の周りに回転する。   FIG. 2 shows an AA cross section of the structure of the conventional phase modulator shown in FIG. A transparent parallel plate 34 is attached to a rotatable structure such as a ball bearing 32 on the base 31, and the parallel plate is rotationally driven by a bimorph or piezo linear actuator so that the passing beam 35 is subjected to predetermined phase modulation. It is a structure that rotates. In order to align a plurality of parallel plates in parallel with each other in the direction perpendicular to the laser optical axis direction as indicated by 13-19 in FIG. 1, a plurality of rotatable ball bearings are passed through the shaft, and phase modulation optics is passed through the bearings. A plurality of parallel flat plates made of a transparent material are attached in parallel. The parallel plate rotates around the axis.

この平行平板13−19は、平行平板がベアリング軸の回りに回動することによって独立に光軸35に対して傾斜可能に回動する構造であるために、平行平板の位置決め精度に関してベアリングの固定軸回りの遊びが問題になる。つまり、平行平板の角度はベアリングの製造精度に依存し、ベアリング動作の十分な精度を得るにはベアリングとベアリングの取り付けハウジングに精度の高いサブミクロンの製作精度が必要になる。   Since this parallel plate 13-19 has a structure in which the parallel plate rotates about the bearing axis so that it can be tilted independently with respect to the optical axis 35, the bearing is fixed with respect to the positioning accuracy of the parallel plate. Play around the axis becomes a problem. In other words, the angle of the parallel plate depends on the manufacturing accuracy of the bearing, and in order to obtain sufficient accuracy of the bearing operation, a highly accurate submicron manufacturing accuracy is required for the bearing and the mounting housing of the bearing.

通常のベアリングを用いると、平行平板の個別の回転駆動を行う時に、複数の平行平板の平行度が悪くなり、傾斜角の制御指令に対する実際の平行平板の傾斜角がばらつき、したがって透過光の空間的位相変調度が各平行平板の設置された空間によって、角度指令値に対して設定された平行平板の位置誤差となって空間的な位相誤差が現れる。このことは、短パルスのパルス幅圧縮を行う場合には空間的な位相制御の不完全性により十分な短パルス圧縮ができないことにつながる。このため、十分なパルス圧縮ができず、かえって、パルス幅の増大を招きかねないなどの欠点がある。
特開2000-187167号公報
When normal bearings are used, the parallelism of multiple parallel plates deteriorates when individual parallel plates are driven to rotate, and the actual parallel plate tilt angle with respect to the tilt angle control command varies, so the transmitted light space The spatial phase error appears as a position error of the parallel plate set with respect to the angle command value depending on the space in which the parallel phase modulation degree is installed in each parallel plate. This leads to insufficient short pulse compression due to imperfect spatial phase control when performing pulse width compression of short pulses. For this reason, there is a drawback in that sufficient pulse compression cannot be performed and the pulse width may be increased.
JP 2000-187167 A

従来技術が有する上記のような課題を解決するために、本発明は、空間位相変調器において、空間に応じて位相変調度を高精度で変調を可能にする平行平板の精密駆動構造を有する空間位相変調器を提供することを目的とする。   In order to solve the above-described problems of the prior art, the present invention provides a spatial phase modulator having a parallel plate precision drive structure that enables high-precision modulation of the phase modulation degree according to the space. An object is to provide a phase modulator.

本発明は、光学的透過材料から構成される複数の平行平板と、前記平行平板を空間的に可動自在な状態で整列させる支持手段と、平行平板の傾きを変更する傾斜手段とを有する広帯域空間光位相変調器において、前記平行平板の傾きを変更する傾斜手段はアクチュエータを備えたものである空間位相変調器によって上記の課題を解決する。   The present invention relates to a broadband space having a plurality of parallel flat plates made of an optically transmissive material, support means for aligning the parallel flat plates in a spatially movable state, and tilting means for changing the tilt of the parallel flat plates. In the optical phase modulator, the tilting means for changing the tilt of the parallel plate solves the above problem by a spatial phase modulator which includes an actuator.

本発明の好ましい1つの実施形態によれば、前記平行平板は、光透過光路部より弾性変形し易い部材に取り付けられている。他の好ましい1つの実施形態によれば、さらに、前記光透過光路部より弾性変形しやすい部材は、該光透過光路部と同一材料かつ一体である。また、前記光透過光路部より弾性変形しやすい部材は、該光透過光路部と同一材料かつ該光透過光路部よりも薄い部分を有するものであっても良い。   According to a preferred embodiment of the present invention, the parallel plate is attached to a member that is more easily elastically deformed than the light transmission optical path portion. According to another preferred embodiment, the member that is more easily elastically deformed than the light transmission optical path is made of the same material and integral with the light transmission optical path. Further, the member that is more easily elastically deformed than the light transmission optical path portion may have a portion that is the same material as the light transmission optical path portion and is thinner than the light transmission optical path portion.

本発明の他の好ましい実施形態によれば、本発明は、光学的透過材料から構成される複数の平行平板と、前記平行平板を空間的に可動自在な状態で整列させる支持手段と、平行平板の傾きを変更する傾斜手段とを有する広帯域空間光位相変調器において、前記平行平板の傾きを変更する傾斜手段は積層型ピエゾ素子およびその変位を拡大および傾斜運動に変換する機構を有する空間位相変調器によって上記の課題を解決する。   According to another preferred embodiment of the present invention, the present invention provides a plurality of parallel plates made of an optically transmissive material, support means for aligning the parallel plates in a spatially movable state, and parallel plates. In the wideband spatial light phase modulator having a tilting means for changing the tilt of the parallel plate, the tilting means for changing the tilt of the parallel plate has a stacked piezo element and a mechanism for converting the displacement into an expanding and tilting motion. The above-mentioned problem is solved by a vessel.

また、前記傾斜手段は、平行平板ごとに個別に角度を設定することができるものであることが好ましい。   Moreover, it is preferable that the said inclination means can set an angle separately for every parallel plate.

上記の構造によって、平行平板を支持する可動部分の機械的遊びを排除できたので傾斜角度の指令による平行平板の傾斜は一義的に決定でき、したがってパルス圧縮などが正確にでき、パルス波形制御の高精度化が測れる空間位相変調器が実現できた。   With the above structure, the mechanical play of the movable part supporting the parallel plate can be eliminated, so that the inclination of the parallel plate according to the command of the tilt angle can be uniquely determined. A spatial phase modulator that can measure high accuracy was realized.

本発明によって、光学的透過材料から構成される複数の平行平板と前記平行平板を空間的に可動自在な状態で整列させる支持手段と平行平板の傾きを変更する傾斜手段とを有する広帯域空間光位相変調器において、光学的透過材料が透明な平行平板からなり、平行平板の傾きを変更する傾斜手段として少なくとも平行平板の取り付け部材の弾性変形により平行平板が角度変化を起こさせ、それにより平行平板を透過する光線の光学的な光路長を変化させるようにして取り付け可動部における機械的な遊びを無くしたので、従来のベアリング回転構造のような平行平板のベアリング回転誤差による光透過面の傾斜角方向と直角方向の倒れによる位相変調誤差は解消でき傾斜指令信号に応じた正確な空間位相変調が可能になった。   According to the present invention, there is provided a broadband spatial optical phase having a plurality of parallel plates made of an optically transmissive material, support means for aligning the parallel plates in a spatially movable state, and tilting means for changing the tilt of the parallel plates. In the modulator, the optical transmission material is a transparent parallel plate, and the parallel plate causes an angle change by elastic deformation of at least the mounting member of the parallel plate as a tilting means for changing the tilt of the parallel plate. By changing the optical path length of the transmitted light beam and eliminating the mechanical play in the mounting movable part, the tilt angle direction of the light transmission surface due to the bearing rotation error of the parallel plate like the conventional bearing rotation structure The phase modulation error due to the tilt in the right-angle direction can be eliminated, and the accurate spatial phase modulation according to the tilt command signal becomes possible.

光学的透過材料から構成される複数の平行平板と前記平行平板を空間的に可動自在な状態で整列させる支持手段と平行平板の傾きを変更する傾斜手段とを有する広帯域空間光位相変調器において、光学的透過材料がレーザ光に透明な平行平板からなり、平行平板の傾きを変更する傾斜手段として少なくとも平行平板の透過部分を光透過光路部より弾性変形し易い部材に光透過性平行平板を取り付け、弾性変形を生じさせるアクチュエータを備えた複数の平行平板を用いた空間位相変調器とした。
本発明の請求項記載の発明は、図3〜図6に基づいて説明する。
In a broadband spatial light phase modulator comprising a plurality of parallel plates made of an optically transmissive material, support means for aligning the parallel plates in a spatially movable state, and tilting means for changing the tilt of the parallel plates, The optically transparent material consists of a parallel flat plate transparent to the laser beam, and as a tilting means to change the tilt of the parallel flat plate, attach the light-transmitting parallel flat plate to a member that easily elastically deforms the transmission part of the parallel flat plate from the light transmitting optical path A spatial phase modulator using a plurality of parallel plates provided with an actuator that causes elastic deformation was obtained.
The invention described in the claims of the present invention will be described with reference to FIGS.

本発明の実施例1を図3に基づいて説明する。透明な平行平板45の一部分44を平行平板45の厚みより十分な薄い厚さに加工する。あるいは平行平板に別な薄い薄板弾性変形板状ばねを設けて接合体とし、この薄い部分をベース31に接着剤などで界面43を接着固定する。平行平板45は固定端部44と反対側の端部を矢印48の方向に駆動するため、一端がベース40に固定されたバイモルフ・ピエゾ・アクチュエータ39の他端を駆動源としてこの非固定端を矢印50の方向に駆動する。レーザビームはこの平行平板45の一部を通過する際に、平行平板の傾斜角度と平行平板の屈折率、厚さにより決まる光路長は傾斜角度変化により位相変調を受ける。この位相変調量は他の空間部分の相対的な位相の変調量の多少で被変調ビーム20の特性が左右される。したがって他の空間のスペクトルとは波長以下の位相差を正確に制御する必要があるため変調量は高精度で制御が必要となっている。   A first embodiment of the present invention will be described with reference to FIG. A portion 44 of the transparent parallel plate 45 is processed to a thickness sufficiently smaller than the thickness of the parallel plate 45. Alternatively, another thin thin elastic deformation plate spring is provided on the parallel plate to form a joined body, and this thin portion is bonded and fixed to the base 31 with an adhesive or the like. Since the parallel plate 45 drives the end opposite to the fixed end 44 in the direction of the arrow 48, the other end of the bimorph piezo actuator 39 having one end fixed to the base 40 is used as a drive source. Drive in the direction of arrow 50. When the laser beam passes through a part of the parallel plate 45, the optical path length determined by the inclination angle of the parallel plate, the refractive index and the thickness of the parallel plate is subjected to phase modulation by the change of the inclination angle. This phase modulation amount depends on the relative phase modulation amount of other spatial portions, and the characteristics of the modulated beam 20 are affected. Therefore, since it is necessary to accurately control the phase difference below the wavelength with respect to the spectrum of the other space, the modulation amount needs to be controlled with high accuracy.

この実施例では透明な平行平板の厚みを一部だけ薄く加工した一体構造なので、駆動時に機械的な遊びがなく、バイモルフ・ピエゾ・アクチュエータの駆動信号に応じた位相変調量が得られるので、高精度な変調器が実現できる。変調器11は空間的に多数の変調要素13−19として示した以上の数が用いられることが多く、その場合にもボールベアリングなどのように取り付け用の無駄な空間を要しないので、高密度で平行平板を並べて構成でき、位相変調器を小型化できる。   In this embodiment, since the transparent parallel plate is partly made of a thin part, there is no mechanical play during driving, and a phase modulation amount corresponding to the driving signal of the bimorph piezo actuator can be obtained. An accurate modulator can be realized. In many cases, the modulator 11 has a larger number than the number of modulation elements 13-19 spatially used, and in this case as well, a useless space for mounting such as a ball bearing is not required. Thus, parallel plates can be arranged side by side, and the phase modulator can be downsized.

位相変調に必要な傾斜角度は2度以内で十分なので、上記の構造によって場合にも機能的な不足なない。このような構成でバイモルフ・ピエゾ・アクチュエータによる駆動によって入射ビーム47に対する平行平板の相対角度が変化を受けて、平行平板45を通過する光路長が傾斜角度により変化し、入射ビームの位相を変化させることができる。   Since the tilt angle required for phase modulation is sufficient within 2 degrees, there is no functional shortage even with the above structure. With such a configuration, the relative angle of the parallel plate with respect to the incident beam 47 is changed by driving by the bimorph piezo actuator, and the optical path length passing through the parallel plate 45 is changed by the inclination angle, thereby changing the phase of the incident beam. be able to.

なお、平行平板より薄く形成した部分44が1箇所の例を示したが、平行平板を作成する際に、その端部分を複数の薄く加工した部分を設け、この薄い複数部分で弾性変形を分担させてもよい。また、アクチュエータとしてはピエゾ・リニア・アクチュエータ、その他の電磁的アクチュエータを用いることも設計の実態に合わせて選択することができる。   In addition, although the example where the part 44 formed thinner than the parallel flat plate is shown at one place, when creating the parallel flat plate, a plurality of thinly processed portions are provided and elastic deformation is shared by the thin multiple parts. You may let them. In addition, the use of a piezoelectric linear actuator or other electromagnetic actuator as the actuator can be selected in accordance with the actual design.

本発明の実施例2を図4により基づいて説明する。ベース31に固定した平行四辺形の中空断面を有する変形体53に接着剤などで平行平板54を接着して固定する。平行平板54はバイモルフ・ピエゾ・アクチュエータ39により矢印58方向に変形体53の変形による傾斜につれて角度変化を起こす。この変形駆動は駆動信号の印加されたバイモルフ・ピエゾ・アクチュエータ39により接触部38’によって平行平板54が矢印58方向に移動させられることにより行われる。平行四辺形変形体51は平行平板の傾斜角度が高々2度以内の変形であるので弾性変形の領域の変形で十分である。バイモルフ・ピエゾ・アクチュエータなどによる駆動によって平行平板54は傾斜角度を制御でき、入射ビーム55は位相変調を受けて出射ビーム57となる。   A second embodiment of the present invention will be described with reference to FIG. A parallel plate 54 is bonded and fixed to a deformed body 53 having a parallelogram-shaped hollow cross section fixed to the base 31 with an adhesive or the like. The parallel flat plate 54 is changed in angle by the bimorph piezo-actuator 39 in the direction of the arrow 58 as it is inclined by the deformation of the deformable body 53. This deformation drive is performed by the parallel plate 54 being moved in the direction of the arrow 58 by the contact portion 38 ′ by the bimorph piezo actuator 39 to which the drive signal is applied. Since the parallelogram-shaped deformable body 51 is a deformation in which the inclination angle of the parallel plate is at most 2 degrees, the deformation in the elastic deformation region is sufficient. The parallel plate 54 can be controlled in tilt angle by driving with a bimorph piezo actuator or the like, and the incident beam 55 is subjected to phase modulation to become an outgoing beam 57.

図5に示す実施例は変形駆動体にバイモルフ・ピエゾ・アクチュエータの変形自体を用いる構造である。バイモルフ・ピエゾ・アクチュエータ61をベース31に接着剤などを界面60に用いて固定し、他端部62は平行平板63を接着剤で固定する。これによりバイモルフ・ピエゾ・アクチュエータの駆動電圧を印加することで変形を起こし、それにより平行平板を傾斜させる。この構造はバイモルフ・ピエゾ・アクチュエータ自体の変形に連れて平行平板の傾斜角を制御できるので取り付けの機械的な遊びによる変形誤差を解消できる。などバイモルフ・ピエゾ・アクチュエータの長さ方向の変形部分から外れた場所に剛体であるベース31や平行平板を固定する必要はある。これにより入射ビーム64は位相変調を受けて出射ビーム65となる。   The embodiment shown in FIG. 5 has a structure using the deformation itself of the bimorph piezo actuator as the deformation driver. The bimorph piezo actuator 61 is fixed to the base 31 using an adhesive or the like at the interface 60, and the other end 62 fixes the parallel plate 63 with an adhesive. Thus, deformation is caused by applying a drive voltage of the bimorph piezo actuator, thereby tilting the parallel plate. This structure can control the inclination angle of the parallel plate with the deformation of the bimorph piezo actuator itself, so that the deformation error due to the mechanical play of mounting can be eliminated. For example, it is necessary to fix the base 31 and the parallel plate which are rigid bodies at a place deviated from the deformed portion in the longitudinal direction of the bimorph piezo actuator. As a result, the incident beam 64 undergoes phase modulation to become an outgoing beam 65.

第4の実施例を図6を用いて説明する。本発明の実施例は変形駆動体に積層ピエゾ・アクチュエータを用いる構造である。積層ピエゾ・アクチュエータの変位を、金属の弾性変形を利用した変位拡大および回転運動への変換機構を用いて回転運動に変換する。積層ピエゾ・アクチュエータへ駆動電圧を印加することで変換機構に変形を起こし、それにより平行平板を傾斜させる。この構造は積層ピエゾ・アクチュエータの変形がひとつの部材で平行平板の傾斜角に変換されるので取り付けや石英板の接着などの機械的な遊びによる変形誤差や取り付け位置誤差を解消できる。これにより入射ビーム64は位相変調を受けて出射ビーム65となる。   A fourth embodiment will be described with reference to FIG. The embodiment of the present invention has a structure in which a laminated piezo-actuator is used as a deformation driving body. The displacement of the laminated piezo-actuator is converted into a rotational motion by using a mechanism for expanding the displacement and converting it into a rotational motion using elastic deformation of metal. By applying a driving voltage to the laminated piezo actuator, the conversion mechanism is deformed, thereby tilting the parallel plate. In this structure, the deformation of the laminated piezo-actuator is converted into the inclination angle of the parallel plate with a single member, so that the deformation error and the mounting position error due to mechanical play such as attachment and adhesion of the quartz plate can be eliminated. As a result, the incident beam 64 undergoes phase modulation to become an outgoing beam 65.

本発明の活用例として、チタンサファイヤレーザのモードロックパルスレーザのパルスで力を回折格子やプリズムで分散し、波長域毎の光学的位相を変化させ、再度圧縮したときのパルス波形を伸延したり圧縮したりすることに用いることが可能である。これにより、短パルス波形の制御が行え、レーザ加工などの応用に際して加工特性の高度化を図ることができる。   As an application example of the present invention, the force is dispersed by a diffraction grating or a prism by a pulse of a mode-locked pulse laser of a titanium sapphire laser, the optical phase of each wavelength region is changed, and the pulse waveform when compressed again is stretched. It can be used for compression. As a result, the short pulse waveform can be controlled, and the processing characteristics can be enhanced in applications such as laser processing.

位相変調器を用いた従来からのパルスレーザのパルス波形制御装置Conventional pulse laser pulse waveform control device using phase modulator 図1におけるA−A断面にボールベアリングを軸上部に採用した位相変調器の構成図Configuration diagram of a phase modulator that uses ball bearings at the top of the AA cross section in FIG. 弾性変形体として傾斜角度の変位部に平行平板と同一材料を用いた実施例図Example drawing using the same material as the parallel plate for the displacement part of the inclination angle as the elastic deformation body 弾性変形体として傾斜角度の変位部に平行四辺形変形体を用いた実施例図Example drawing using a parallelogram deformable body as an elastic deformable body at an inclination angle displacement portion 弾性変形体として傾斜角度の変位部にバイモルフ・ピエゾ・アクチュエータを用いた実施例の図Diagram of an embodiment using a bimorph piezo actuator in the displacement part of the inclination angle as an elastic deformation body 弾性変形体として傾斜角度の変位部に積層ピエゾ・アクチュエータを用いた実施例の図Diagram of an embodiment using a laminated piezo-actuator in the displacement part of the inclination angle as an elastic deformable body

符号の説明Explanation of symbols

1…レーザ発振器、
3…45度反射鏡、
5…回折格子、
6…コリメート用凹面反射鏡、
11…位相変調器、
12…反射鏡、
13−19…位相変調用平行平板、
21…集光レンズ、
24…加工物、
31…ベース、
32…ベアリング、
34,54,45,63.…平行平板、
39,61…バイモルフ・ピエゾ・アクチュエータ、
40…ベース、
1 ... Laser oscillator,
3 ... 45 degree reflector,
5 ... Diffraction grating,
6 ... concave reflector for collimation,
11 ... Phase modulator,
12 ... Reflector,
13-19 ... Parallel plate for phase modulation,
21 ... Condensing lens,
24 ... Workpiece,
31 ... Base,
32 ... Bearing,
34, 54, 45, 63 ... Parallel plates,
39, 61 ... bimorph piezo actuator,
40 ... Base,

Claims (6)

光学的透過材料から構成される複数の平行平板と、前記平行平板を空間的に可動自在な状態で整列させる支持手段と、平行平板の傾きを変更する傾斜手段とを有する広帯域空間光位相変調器において、
前記平行平板の傾きを変更する傾斜手段はアクチュエータを備えたものである空間位相変調器。
Broadband spatial light phase modulator comprising a plurality of parallel plates made of an optically transmissive material, support means for aligning the parallel plates in a spatially movable state, and tilting means for changing the tilt of the parallel plates In
The tilting means for changing the tilt of the parallel plate is a spatial phase modulator having an actuator.
前記平行平板は、光透過光路部より弾性変形し易い部材に取り付けられた請求項1に記載の空間位相変調器。   The spatial phase modulator according to claim 1, wherein the parallel plate is attached to a member that is more easily elastically deformed than the light transmission optical path portion. 前記光透過光路部より弾性変形しやすい部材は、該光透過光路部と同一材料かつ一体である請求項2に記載の空間位相変調器。   The spatial phase modulator according to claim 2, wherein the member that is more easily elastically deformed than the light transmission optical path portion is made of the same material and is integral with the light transmission optical path portion. 前記光透過光路部より弾性変形しやすい部材は、該光透過光路部と同一材料かつ該光透過光路部よりも薄い部分を有する請求項3に記載の空間位相変調器。   The spatial phase modulator according to claim 3, wherein the member that is more easily elastically deformed than the light transmission optical path has a portion that is the same material as the light transmission optical path and is thinner than the light transmission optical path. 光学的透過材料から構成される複数の平行平板と、前記平行平板を空間的に可動自在な状態で整列させる支持手段と、平行平板の傾きを変更する傾斜手段とを有する広帯域空間光位相変調器において、
前記平行平板の傾きを変更する傾斜手段は積層型ピエゾ素子およびその変位を拡大および傾斜運動に変換する機構を有する空間位相変調器。
Broadband spatial light phase modulator comprising a plurality of parallel plates made of an optically transmissive material, support means for aligning the parallel plates in a spatially movable state, and tilting means for changing the tilt of the parallel plates In
The tilting means for changing the tilt of the parallel flat plate is a spatial phase modulator having a laminated piezo element and a mechanism for converting the displacement into a magnifying and tilting motion.
前記傾斜手段は、平行平板ごとに個別に角度を設定することができる請求項1ないし5のいずれかに記載の空間位相変調器。   The spatial phase modulator according to claim 1, wherein the tilting unit can individually set an angle for each parallel plate.
JP2004218286A 2004-07-27 2004-07-27 Spatial phase modulator having elastic deforming part for inclination control Pending JP2006039166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004218286A JP2006039166A (en) 2004-07-27 2004-07-27 Spatial phase modulator having elastic deforming part for inclination control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004218286A JP2006039166A (en) 2004-07-27 2004-07-27 Spatial phase modulator having elastic deforming part for inclination control

Publications (1)

Publication Number Publication Date
JP2006039166A true JP2006039166A (en) 2006-02-09

Family

ID=35904231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004218286A Pending JP2006039166A (en) 2004-07-27 2004-07-27 Spatial phase modulator having elastic deforming part for inclination control

Country Status (1)

Country Link
JP (1) JP2006039166A (en)

Similar Documents

Publication Publication Date Title
JP2003014997A (en) Microminiature optoelectronic machine system(moems)
JPH10341057A (en) External resonator type wavelength-variable semiconductor laser optical source and wavelength variable method therefor
WO2005085125A1 (en) Micro actuator and device having micro actuator
WO2010047147A1 (en) Semiconductor laser module and method for manufacturing the same
JP2008130805A (en) External resonator wavelength variable light source
CN101711341A (en) Interferometer actuator
JP2014521087A (en) Scanner with phase and pitch adjustment
US20030081321A1 (en) Optical cross-connect having an array of micro-mirrors
US6922277B2 (en) Optical interleaver/deinterleaver device having an array of micro-mirrors
WO2005102909A1 (en) Actuator
US7327508B2 (en) Display device using light modulator and having improved numerical aperture of after-edge lens system
JP2006324561A (en) Laser and driving method of grating
US6192059B1 (en) Wavelength-tunable laser configuration
JP2006039166A (en) Spatial phase modulator having elastic deforming part for inclination control
JP4609257B2 (en) Interface position measuring method and position measuring apparatus
JP2007109979A (en) Semiconductor light source module
US20050185680A1 (en) Tunable semiconductor laser apparatus with external resonator
JP2007109978A (en) Semiconductor light source module
US11550163B2 (en) Tunable blazed grating
JPH0980330A (en) Multibeam scanning optical system
KR100611601B1 (en) Point diffraction interferometer comprising automatic collimator
US8477573B2 (en) Optical pickup head
JP2004128072A (en) Variable wavelength light source
KR20060033575A (en) Color display apparatus with united virtual light source
US20230213753A1 (en) Method and apparatus for moving a fibre tip

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070620

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20090519

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20090602

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091027