JP2007109978A - Semiconductor light source module - Google Patents

Semiconductor light source module Download PDF

Info

Publication number
JP2007109978A
JP2007109978A JP2005300810A JP2005300810A JP2007109978A JP 2007109978 A JP2007109978 A JP 2007109978A JP 2005300810 A JP2005300810 A JP 2005300810A JP 2005300810 A JP2005300810 A JP 2005300810A JP 2007109978 A JP2007109978 A JP 2007109978A
Authority
JP
Japan
Prior art keywords
light source
semiconductor light
source module
optical
module according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005300810A
Other languages
Japanese (ja)
Inventor
Nobuyoshi Mori
伸芳 森
Fumio Nagai
史生 長井
Yuichi Shin
勇一 新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2005300810A priority Critical patent/JP2007109978A/en
Priority to US11/545,470 priority patent/US7511880B2/en
Publication of JP2007109978A publication Critical patent/JP2007109978A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • G02F1/377Non-linear optics for second-harmonic generation in an optical waveguide structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0092Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for nonlinear frequency conversion, e.g. second harmonic generation [SHG] or sum- or difference-frequency generation outside the laser cavity
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3501Constructional details or arrangements of non-linear optical devices, e.g. shape of non-linear crystals
    • G02F1/3503Structural association of optical elements, e.g. lenses, with the non-linear optical device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3501Constructional details or arrangements of non-linear optical devices, e.g. shape of non-linear crystals
    • G02F1/3505Coatings; Housings; Supports
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/50Protective arrangements
    • G02F2201/503Arrangements improving the resistance to shock
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/50Protective arrangements
    • G02F2201/505Arrangements improving the resistance to acoustic resonance like noise
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/58Arrangements comprising a monitoring photodetector
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/60Temperature independent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0071Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for beam steering, e.g. using a mirror outside the cavity to change the beam direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor light source module that is excellent in assembly ease, can cope with a change in environment, and can increase the utilization efficiency of light. <P>SOLUTION: Conversion luminous flux reflected by a half mirror MR enters the light reception surface of a light receiving element PD. In this case, the center of the light reception surface of the light receiving element PD corresponds to the center of an optical transmission path. Therefore, when the main ray of incident luminous flux passes through the center of the optical transmission path, the center of spot light SB for forming an image on the light reception surface coincides with the center of the light reception surface, thus maximizing combination efficiency. When the main ray of incident luminous flux does not pass through the center of the optical transmission path, the center of spot beams SB does not coincide with the center of the light reception surface, thus driving a lens L2 so that the center of the spot beams SB coincides with the center of the light reception surface. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば光ファイバやSHG素子などの端面に収束光を照射できる半導体光源モジュールに関する。   The present invention relates to a semiconductor light source module that can irradiate convergent light onto end faces of, for example, optical fibers and SHG elements.

半導体レーザから照射されたレーザ光を、集光光学系を介して光伝送路を形成する光ファイバやSHG素子等(SHG素子等という)の端面に集光させる半導体光源モジュールが知られている。ここで、SHG素子の光導波路等の開口径は数μm程度であるので、ここに精度良くスポットを集光させる光の利用効率を高めるために、半導体レーザ、集光光学系、SHG素子等とを相互に精度良く位置決めする必要がある。しかながら、これらを組み付け時に確実に固定したとしても、温度変化など環境変化に応じて、相互の位置関係が狂う恐れがある。そこで、特許文献1には、波長変換素子と熱膨張係数が等しい又は近似した鏡筒を用いて、波長変換素子とレーザ光源とを結合し、それにより温度変化の影響を抑制する技術が開示されている。
特開平3−223727号公報
2. Description of the Related Art There is known a semiconductor light source module that condenses laser light emitted from a semiconductor laser on an end surface of an optical fiber, an SHG element, or the like (referred to as an SHG element) that forms an optical transmission path via a condensing optical system. Here, since the aperture diameter of the optical waveguide of the SHG element is about several μm, in order to increase the use efficiency of the light for condensing the spot with high accuracy, the semiconductor laser, the condensing optical system, the SHG element, etc. Need to be positioned accurately with respect to each other. However, even if they are securely fixed at the time of assembly, there is a risk that the mutual positional relationship will be distorted according to environmental changes such as temperature changes. Therefore, Patent Document 1 discloses a technique for combining the wavelength conversion element and the laser light source using a lens barrel having the same or approximate thermal expansion coefficient as that of the wavelength conversion element, thereby suppressing the influence of temperature change. ing.
JP-A-3-223727

しかるに、波長変換素子と熱膨張係数が等しい又は近似した鏡筒を用いたとしても、温度変化の影響を完全に解消することは困難である。また、湿度変化などが生じた場合、或いは振動などにより、半導体レーザ、集光光学系、SHG素子等の位置関係にズレが生じる恐れもある。更に、半導体光源モジュールの組付をより簡素化させたいという要求もある。   However, even if a lens barrel having the same or similar thermal expansion coefficient as that of the wavelength conversion element is used, it is difficult to completely eliminate the influence of the temperature change. In addition, when the humidity changes or the like, or due to vibration or the like, the positional relationship among the semiconductor laser, the condensing optical system, the SHG element, and the like may be shifted. Further, there is a demand for further simplifying the assembly of the semiconductor light source module.

本発明は、かかる従来技術の問題点に鑑みてなされたものであり、組付性に優れ、環境変化に対応でき、光の利用効率を高めることができる半導体光源モジュールを提供することを目的とする。   The present invention has been made in view of the problems of the prior art, and an object thereof is to provide a semiconductor light source module that is excellent in assembling property, can cope with environmental changes, and can improve the light utilization efficiency. To do.

請求項1に記載の半導体光源モジュールは、所定波長の光束を出射する半導体光源と、当該半導体光源から出射された発散光束を集光させる集光光学系と、当該集光光学系から出射された収束光束を、異なる波長の光束に変換して出射するSHG素子と、前記集光光学系を構成する光学素子を駆動する駆動手段とを備えることを特徴とする。   The semiconductor light source module according to claim 1 is a semiconductor light source that emits a light beam having a predetermined wavelength, a condensing optical system that collects a divergent light beam emitted from the semiconductor light source, and a light that is emitted from the condensing optical system. It comprises an SHG element that converts a convergent light beam into a light beam of a different wavelength and emits it, and a drive means for driving an optical element that constitutes the condensing optical system.

本発明によれば、前記駆動手段により前記光学素子を駆動することにより、前記光学素子を通過したレーザ光束を、前記光伝送路の端部に対して精度良く集光させることができるので、経時劣化に対応できると共に、組み付け時の調整を容易に行うこともできる。   According to the present invention, since the optical element is driven by the driving unit, the laser light beam that has passed through the optical element can be accurately condensed on the end of the optical transmission path. It can cope with deterioration and can be easily adjusted during assembly.

請求項2に記載の半導体光源モジュールは、請求項1に記載の発明において、前記駆動手段は、前記半導体光源から出射された光束の主光線の光軸を曲げるか、あるいは平行移動させるために、前記集光光学系を構成する光学素子を駆動するので、前記光学素子を通過したレーザ光束を、前記光伝送路の端部に対して精度良く集光させることができる。   According to a second aspect of the present invention, there is provided the semiconductor light source module according to the first aspect of the invention, in which the driving means bends or translates the optical axis of the principal ray of the light beam emitted from the semiconductor light source. Since the optical element that constitutes the condensing optical system is driven, the laser light beam that has passed through the optical element can be accurately condensed on the end of the optical transmission path.

請求項3に記載の半導体光源モジュールは、請求項1に記載の発明において、前記駆動手段は、前記集光光学系によって形成されるビームスポット位置を移動させるために、前記集光光学系を構成する光学素子を駆動する駆動手段を有することを特徴とするので、前記光学素子を通過したレーザ光束を、前記光伝送路の端部に対して精度良く集光させることができる。   According to a third aspect of the present invention, there is provided the semiconductor light source module according to the first aspect of the invention, wherein the driving unit configures the condensing optical system to move a beam spot position formed by the condensing optical system. Since it has the drive means which drives the optical element to perform, the laser beam that has passed through the optical element can be focused on the end of the optical transmission line with high accuracy.

請求項4に記載の半導体光源モジュールは、請求項1ないし3のいずれかに記載の発明において、前記集光光学系は複数の光学素子から構成されるとともに、前記駆動手段はそのうちの少なくとも一つを駆動することを特徴とするので、低コストな構成が提供される。   A semiconductor light source module according to a fourth aspect is the invention according to any one of the first to third aspects, wherein the condensing optical system is composed of a plurality of optical elements, and the driving means is at least one of them. Therefore, a low-cost configuration is provided.

請求項5に記載の半導体光源モジュールは、請求項4に記載の発明において、前記複数の光学素子は、正の屈折パワーもしくは屈折パワーがゼロの光学系を有し、正の屈折パワーを持つ光学素子は互いにパワーが異なることを特徴とするので、前記光学素子の駆動量に対して、スポット光の位置の移動量が小さくなり、高精度な位置決めが可能となる。また、前記光伝送路に最も近い側の光学素子を、スポット光の位置を移動させるために駆動したとき、前記光学素子の所定位置からのずれに対する前記光伝送路への光結合効率の低下を少なく抑えることができる。   According to a fifth aspect of the present invention, there is provided the semiconductor light source module according to the fourth aspect of the invention, wherein the plurality of optical elements include an optical system having a positive refractive power or a refractive power of zero and having a positive refractive power. Since the elements have different powers, the amount of movement of the spot light is smaller than the driving amount of the optical element, and high-accuracy positioning is possible. Further, when the optical element closest to the optical transmission path is driven to move the position of the spot light, the optical coupling efficiency to the optical transmission path is reduced with respect to the deviation of the optical element from the predetermined position. It can be kept low.

請求項6に記載の半導体光源モジュールは、請求項5に記載の発明において、前記半導体光源に最も近い側の光学素子の屈折パワーは、前記光伝送路に最も近い側の光学素子の屈折パワーよりも大きいことを特徴とするので、前記光学素子の駆動量に対して、スポット光の位置の移動量が小さくなり、高精度な位置決めが可能となる。また、前記光伝送路に最も近い側の光学素子を、スポット光の位置を移動させるために駆動したとき、前記光学素子の所定位置からのずれに対する前記光伝送路への光結合効率の低下を少なく抑えることができる。   The semiconductor light source module according to claim 6 is the invention according to claim 5, wherein the refractive power of the optical element closest to the semiconductor light source is higher than the refractive power of the optical element closest to the optical transmission path. Therefore, the amount of movement of the spot light is smaller than the driving amount of the optical element, and positioning with high accuracy is possible. Further, when the optical element closest to the optical transmission path is driven to move the position of the spot light, the optical coupling efficiency to the optical transmission path is reduced with respect to the deviation of the optical element from the predetermined position. It can be kept low.

請求項7に記載の半導体光源モジュールは、請求項5に記載の発明において、前記半導体光源に最も近い側の光学素子により、半導体光源からの光束を略平行光にコリメートすることを特徴とするので、例えば前記半導体光源に最も近い側の光学素子が前記半導体光源から出射される発散光束を略平行光束とし、前記光伝送路に最も近い側の光学素子が略平行光束を収束光束に変換すれば、前記光伝送路に最も近い側の光学素子の駆動量と、スポット光の位置の移動量とが等しくなり、高精度な位置決めが可能となる。また、前記光伝送路に最も近い側の光学素子を、スポット光の位置を移動させるために駆動したとき、前記光学素子の所定位置からのずれに対する前記光伝送路への光結合効率の低下を少なく抑えることができる。   The semiconductor light source module according to claim 7 is characterized in that, in the invention according to claim 5, the light beam from the semiconductor light source is collimated into substantially parallel light by the optical element closest to the semiconductor light source. For example, if the optical element closest to the semiconductor light source converts the divergent light beam emitted from the semiconductor light source into a substantially parallel light beam, and the optical element closest to the optical transmission path converts the substantially parallel light beam into a convergent light beam. The drive amount of the optical element closest to the optical transmission path is equal to the movement amount of the spot light position, and high-accuracy positioning is possible. Further, when the optical element closest to the optical transmission path is driven to move the position of the spot light, the optical coupling efficiency to the optical transmission path is reduced with respect to the deviation of the optical element from the predetermined position. It can be kept low.

請求項8に記載の半導体光源モジュールは、請求項7に記載の発明において、前記コリメートされた光束を、1つの集光素子を介して前記光伝送路に集光させることを特徴とするので、低コスト化・コンパクト化を図れる。   The semiconductor light source module according to claim 8 is characterized in that, in the invention according to claim 7, the collimated light beam is condensed on the optical transmission line via a single condensing element. Cost reduction and compactness can be achieved.

請求項9に記載の半導体光源モジュールは、請求項8に記載の発明において、前記1つの集光素子に、開口制限絞りが一体で設けられていることを特徴とするので、前記光伝送路を伝搬しない不要光をカットすることができる。   According to a ninth aspect of the present invention, in the semiconductor light source module according to the eighth aspect of the present invention, an aperture limiting diaphragm is integrally provided in the one light condensing element. Unnecessary light that does not propagate can be cut.

請求項10に記載の半導体光源モジュールは、請求項7に記載の発明において、前記コリメートされた光束を、2つの集光素子を介して前記光伝送路に集光させることを特徴とするので、前記光学素子の駆動量に対して、スポット光の位置の移動量が小さくなり、高精度な位置決めが可能となる。例えば、第1の光学素子の焦点距離をF、第2の光学素子の焦点距離をf、スポット位置の変位量をδ、前記第1の光学素子を駆動させたとき、その移動量をΔとすると、δ/Δ=f/Fとなり、これを1未満とすれば、前記コリメートされた光束を1つの光学素子のみを介して前記光伝送路に集光させる場合に比べて、スポット位置の変位量に対する光学素子の変位量を小さくできるため、より高精度な位置決めが可能となる。   The semiconductor light source module according to claim 10 is characterized in that, in the invention according to claim 7, the collimated light beam is condensed on the optical transmission line via two condensing elements. The amount of movement of the spot light position is smaller than the driving amount of the optical element, and high-precision positioning is possible. For example, the focal length of the first optical element is F, the focal length of the second optical element is f, the displacement amount of the spot position is δ, and when the first optical element is driven, the movement amount is Δ. Then, δ / Δ = f / F, and if this is less than 1, the spot position is displaced as compared with the case where the collimated light beam is condensed on the optical transmission line through only one optical element. Since the amount of displacement of the optical element with respect to the amount can be reduced, more accurate positioning is possible.

請求項11に記載の半導体光源モジュールは、請求項1ないし10のいずれかに記載の発明において、前記駆動手段により駆動される前記光学素子の焦点距離をfとし、前記半導体光源の出射端から前記光伝送路の出射端までの距離をLとしたときに、以下の条件式が成立することを特徴とする。
0.18 ≦ f/L ≦ 0.45 (1)
The semiconductor light source module according to claim 11 is the invention according to any one of claims 1 to 10, wherein f is a focal length of the optical element driven by the driving means, and When the distance to the output end of the optical transmission line is L, the following conditional expression is satisfied.
0.18 ≦ f / L ≦ 0.45 (1)

条件式(1)は、前記駆動手段により駆動される前記光学素子の焦点距離fとし、前記半導体光源の出射端から前記光伝送路の出射端までの距離Lとの適切な関係について規定する。値f/Lが条件式(1)の下限を上回るようにすると、スポット補正許容範囲を大きく確保できる。一方、値f/Lが条件式(1)の上限を下回るようにすると、光伝送路の十分なる長さを確保して、SHG素子の変換効率を高めることができる。   Conditional expression (1) defines the appropriate relationship between the focal length f of the optical element driven by the driving means and the distance L from the emission end of the semiconductor light source to the emission end of the optical transmission line. When the value f / L exceeds the lower limit of the conditional expression (1), a large spot correction allowable range can be secured. On the other hand, when the value f / L is made lower than the upper limit of the conditional expression (1), it is possible to secure a sufficient length of the optical transmission line and increase the conversion efficiency of the SHG element.

請求項12に記載の半導体光源モジュールは、請求項8ないし11のいずれかに記載の発明において、前記光学素子がアナモルフィック素子であることを特徴とするので、前記半導体光源からの光束が非円形断面を有している場合でも、これを整形することができる。   A semiconductor light source module according to a twelfth aspect is characterized in that, in the invention according to any one of the eighth to eleventh aspects, the optical element is an anamorphic element. Even if it has a circular cross section, it can be shaped.

請求項13に記載の半導体光源モジュールは、請求項5ないし12のいずれかに記載の発明において、前記集光光学系において、収束光の光路中に平行平板を配置したことを特徴とするので、前記平行平板を光軸に対して傾けることで、スポット光の位置を任意に調整できる。   The semiconductor light source module according to claim 13 is characterized in that, in the invention according to any one of claims 5 to 12, in the condensing optical system, a parallel plate is disposed in an optical path of convergent light. By tilting the parallel plate with respect to the optical axis, the position of the spot light can be arbitrarily adjusted.

請求項14に記載の半導体光源モジュールは、請求項5ないし12のいずれかに記載の発明において、前記集光光学系において、収束光の光路中に、入射光の光軸に垂直な方向における異なる2方向に向かうにつれて厚さが変化するプリズムを配置したことを特徴とするので、前記プリズムを光軸直交方向に変位させることで、スポット光の位置を任意に調整できる。また、スポット位置の調整を行えるのは、前記プリズムの変位方向が光軸直交方向に限らないことから、光学系全体のレイアウトに応じて最適な変位方向を選択することが可能である。   A semiconductor light source module according to a fourteenth aspect is the invention according to any one of the fifth to twelfth aspects, wherein the condensing optical system is different in the direction perpendicular to the optical axis of the incident light in the optical path of the convergent light. Since the prism whose thickness changes in the two directions is arranged, the position of the spot light can be arbitrarily adjusted by displacing the prism in the direction perpendicular to the optical axis. In addition, the spot position can be adjusted because the displacement direction of the prism is not limited to the direction orthogonal to the optical axis, so that the optimum displacement direction can be selected according to the layout of the entire optical system.

請求項15に記載の半導体光源モジュールは、請求項4ないし14のいずれかに記載の発明において、前記駆動手段は、前記複数の光学素子のうち、一つのみを駆動することを特徴とする。   A semiconductor light source module according to a fifteenth aspect is characterized in that, in the invention according to any one of the fourth to fourteenth aspects, the driving means drives only one of the plurality of optical elements.

請求項16に記載の半導体光源モジュールは、請求項4ないし14のいずれかに記載の発明において、前記駆動手段は、前記複数の光学素子のうち、2つ以上を駆動することを特徴とする。   A semiconductor light source module according to a sixteenth aspect is the invention according to any one of the fourth to fourteenth aspects, wherein the driving unit drives two or more of the plurality of optical elements.

請求項17に記載の半導体光源モジュールは、請求項5ないし12及び16に記載の発明において、前記駆動手段は、前記複数の光学素子であって、互いに異なる正の屈折パワーを有する光学素子のうち、もっともパワーの小さい光学素子を駆動することを特徴とする。   According to a seventeenth aspect of the present invention, there is provided the semiconductor light source module according to the fifth to twelfth and sixteenth aspects, wherein the driving means is the plurality of optical elements, and the optical elements having different positive refractive powers. The optical element having the smallest power is driven.

請求項18に記載の半導体光源モジュールは、請求項8または9に記載の発明において、前記駆動手段は、前記1つの集光素子を駆動することを特徴とする。   According to an eighteenth aspect of the present invention, in the semiconductor light source module according to the eighth or ninth aspect, the driving means drives the one light collecting element.

請求項19に記載の半導体光源モジュールは、請求項10に記載の発明において、前記駆動手段は、前記2つの集光素子を駆動することを特徴とする。   According to a nineteenth aspect of the present invention, in the semiconductor light source module according to the tenth aspect, the driving means drives the two light condensing elements.

請求項20に記載の半導体光源モジュールは、請求項1ないし19のいずれかに記載の発明において、前記駆動手段は、前記集光光学系を構成する光学素子を、前記半導体光源の光軸方向と垂直な方向に駆動させることを特徴とするので、温度変化によるフォーカシング位置のずれなどを調整することができる。又、初期調整も容易になる。   A semiconductor light source module according to a twentieth aspect of the present invention is the semiconductor light source module according to any one of the first to twentieth aspects, wherein the driving means includes an optical element constituting the condensing optical system and an optical axis direction of the semiconductor light source Since it is characterized in that it is driven in the vertical direction, it is possible to adjust the shift of the focusing position due to a temperature change. Also, initial adjustment becomes easy.

請求項21に記載の半導体光源モジュールは、請求項1ないし19のいずれかに記載の発明において、前記駆動手段は、前記集光光学系を構成する光学素子を、前記半導体光源の光軸方向と垂直な1方向に駆動させることを特徴とする。   A semiconductor light source module according to a twenty-first aspect is the invention according to any one of the first to nineteenth aspects, wherein the driving means includes an optical element constituting the condensing optical system and an optical axis direction of the semiconductor light source. It is characterized by being driven in one vertical direction.

請求項22に記載の半導体光源モジュールは、請求項1ないし19のいずれかに記載の発明において、前記駆動手段は、前記集光光学系を構成する光学素子を、前記半導体光源の光軸方向と垂直なX軸方向と、光軸方向及びX軸方向に垂直なY軸方向の2方向に各々独立して駆動させることを特徴とする。ここで、前記光学素子が複数の場合、一つの光学素子は光軸に直交するX軸方向に、そして他の光学素子は光軸及びX軸方向に直交するY軸方向に駆動する場合を含む。   A semiconductor light source module according to a twenty-second aspect is the invention according to any one of the first to nineteenth aspects, wherein the driving means includes an optical element constituting the condensing optical system and an optical axis direction of the semiconductor light source. Driven independently in two directions: a vertical X-axis direction and an optical axis direction and a Y-axis direction perpendicular to the X-axis direction. Here, when there are a plurality of optical elements, one optical element is driven in the X-axis direction orthogonal to the optical axis, and the other optical element is driven in the Y-axis direction orthogonal to the optical axis and the X-axis direction. .

請求項23に記載の半導体光源モジュールは、請求項1ないし22のいずれかに記載の発明において、前記駆動手段は、前記集光光学系を構成する光学素子を、前記半導体光源の光軸方向に沿って駆動させることを特徴とする。   A semiconductor light source module according to a twenty-third aspect is the invention according to any one of the first to twenty-second aspects, wherein the driving means moves an optical element constituting the condensing optical system in an optical axis direction of the semiconductor light source. It is characterized by being driven along.

請求項24に記載の半導体光源モジュールは、請求項1ないし22のいずれかに記載の発明において、前記駆動手段は、前記集光光学系を構成する光学素子を、前記半導体光源の光軸方向に垂直な軸まわりに回動させることを特徴とする。   A semiconductor light source module according to a twenty-fourth aspect is the invention according to any one of the first to twenty-second aspects, wherein the driving means moves an optical element constituting the condensing optical system in an optical axis direction of the semiconductor light source. It is characterized by rotating around a vertical axis.

請求項25に記載の半導体光源モジュールは、請求項1ないし22のいずれかに記載の発明において、前記駆動手段は、前記集光光学系を構成する光学素子を、前記半導体光源の光軸方向に垂直な1つの軸まわりのみに回動させることを特徴とする。   A semiconductor light source module according to a twenty-fifth aspect is the invention according to any one of the first to twenty-second aspects, wherein the driving means moves an optical element constituting the condensing optical system in an optical axis direction of the semiconductor light source. It is characterized by being rotated only around one vertical axis.

請求項26に記載の半導体光源モジュールは、請求項1ないし22のいずれかに記載の発明において、前記駆動手段は、前記集光光学系を構成する光学素子を、前記半導体光源の光軸方向に垂直な軸であって、かつ互いに垂直な第1軸及び第2軸まわりに回動させることを特徴とする。   A semiconductor light source module according to a twenty-sixth aspect is the semiconductor light source module according to any one of the first to twenty-second aspects, wherein the driving means moves an optical element constituting the condensing optical system in an optical axis direction of the semiconductor light source. It is characterized by being rotated about a first axis and a second axis which are vertical axes and perpendicular to each other.

請求項27に記載の半導体光源モジュールは、請求項1ないし25のいずれかに記載の発明において、前記駆動手段は、電気機械変換素子と、前記電気機械変換素子の一端に固定された駆動部材と、前記集光光学系を構成する光学素子に連結され且つ前記駆動部材上に移動可能に保持された可動部材と、を有し、前記電気機械変換素子を、伸び方向と縮み方向とで速度を変えて繰り返し伸縮させることで、前記可動部材を移動させるようになっていることを特徴とする。   A semiconductor light source module according to a twenty-seventh aspect is the invention according to any one of the first to twenty-fifth aspects, wherein the driving means includes an electromechanical conversion element and a driving member fixed to one end of the electromechanical conversion element. A movable member connected to the optical element constituting the condensing optical system and movably held on the driving member, and the electromechanical conversion element is controlled in speed in the extending direction and the contracting direction. It is characterized in that the movable member is moved by repeatedly expanding and contracting.

本発明の前記駆動手段によれば、前記電気機械変換素子に対して例えば鋸歯状の波形をしたパルスなどの駆動電圧をごく短時間印加することで、前記電気機械変換素子を微少に伸長または収縮するように変形させることができるが、そのパルスの形状により伸長又は収縮の速度を変えることができる。ここで、前記電気機械変換素子を伸長または収縮方向へ速い速度で変形したとき、前記可動部材は、その質量の慣性により、前記駆動部材の動作に追随せず、そのままの位置に留まる。一方、前記電気機械変換素子がそれよりも遅い速度で反対方向へと変形したとき、前記可動部材は、その間に作用する摩擦力で駆動部材の動作に追随して移動する。したがって、前記電気機械変換素子が伸縮を繰り返すことにより、前記可動部材は一方向へ連続して移動することができる。即ち、高い応答性を有する本発明の駆動手段を用いることで、前記可動部材に連結した光学素子を高速に移動させることもでき、且つ微小量移動させることもできる。   According to the drive means of the present invention, the electromechanical transducer is slightly expanded or contracted by applying a drive voltage such as a sawtooth-shaped pulse to the electromechanical transducer for a very short time. The speed of expansion or contraction can be changed depending on the shape of the pulse. Here, when the electromechanical conversion element is deformed at a high speed in the extending or contracting direction, the movable member does not follow the operation of the driving member due to the inertia of the mass and remains in the same position. On the other hand, when the electromechanical conversion element is deformed in the opposite direction at a slower speed, the movable member moves following the operation of the drive member by the friction force acting therebetween. Therefore, when the electromechanical conversion element repeats expansion and contraction, the movable member can continuously move in one direction. That is, by using the driving means of the present invention having high responsiveness, the optical element connected to the movable member can be moved at a high speed and can be moved by a minute amount.

請求項28に記載の半導体光源モジュールは、請求項27に記載の発明において、前記駆動部材に回転防止機構が設けられていることを特徴とするので、ガイドが不要となりコンパクトな構成となる。   A semiconductor light source module according to a twenty-eighth aspect is characterized in that, in the invention according to the twenty-seventh aspect, the drive member is provided with an anti-rotation mechanism.

請求項29に記載の半導体光源モジュールは、請求項28に記載の発明において、前記回転防止機構は、前記駆動部材が矩形断面形状であると共に、前記可動部材が当該断面形状に対応した形状とされていることにより構成されることを特徴とする。   A semiconductor light source module according to a twenty-ninth aspect is the invention according to the twenty-eighth aspect, wherein the rotation preventing mechanism is configured such that the driving member has a rectangular cross-sectional shape and the movable member has a shape corresponding to the cross-sectional shape. It is characterized by comprising.

請求項30に記載の半導体光源モジュールは、請求項1ないし29のいずれかに記載の発明において、前記光伝送路は光ファイバーであることを特徴とする。   A semiconductor light source module according to a thirty-third aspect is characterized in that, in the invention according to any one of the first to thirty-ninth aspects, the optical transmission line is an optical fiber.

請求項31に記載の半導体光源モジュールは、請求項1ないし29のいずれかに記載の発明において、前記光伝送路はSHG(Second Harmonic Generation)素子であることを特徴とする。   A semiconductor light source module according to a thirty-first aspect is the invention according to any one of the first to thirty-ninth aspects, wherein the optical transmission line is a SHG (Second Harmonic Generation) element.

本発明によれば、組付性に優れ、環境変化に対応でき、光の利用効率を高めることができる半導体光源モジュールを提供することができる。   According to the present invention, it is possible to provide a semiconductor light source module that is excellent in assemblability, can cope with environmental changes, and can improve the light utilization efficiency.

以下、本発明の実施の形態を図面に基づいて説明する。図1は、本実施の形態にかかる半導体光源モジュールの概略構成図である。図1において、ベースBSには、半導体光源である半導体レーザLDと、正の屈折力を有する半導体レーザLD側のレンズL1と、第2高調波発生装置H2と、一部の光のみを反射し残りを透過するハーフミラーMRと、ハーフミラーMRからの反射光を受光し、受光量に応じて制御回路CNTに信号を送信する受光素子PDとが固定的に配置されている。又、ベースBS上に配置された駆動機構(駆動手段ともいう)DRは、制御回路CNTの信号に応じて、レンズL1より小さい正の屈折力を有する第2高調波発生装置H2側のレンズL2と開口絞りSとを光軸直交方向に駆動するようになっている。なお、それぞれ光学素子であるレンズL1とレンズL2とで集光光学系を構成する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram of a semiconductor light source module according to the present embodiment. In FIG. 1, the base BS reflects only a part of the light, a semiconductor laser LD that is a semiconductor light source, a lens L1 on the semiconductor laser LD side having a positive refractive power, a second harmonic generator H2, and the like. A half mirror MR that transmits the remainder and a light receiving element PD that receives reflected light from the half mirror MR and transmits a signal to the control circuit CNT according to the amount of received light are fixedly disposed. Further, a driving mechanism (also referred to as driving means) DR disposed on the base BS has a lens L2 on the second harmonic generator H2 side having a positive refractive power smaller than that of the lens L1 in accordance with a signal from the control circuit CNT. And the aperture stop S are driven in the direction perpendicular to the optical axis. A condensing optical system is constituted by the lens L1 and the lens L2, which are optical elements.

レンズL1は、半導体レーザLD側と反対側の光伝送路側にその曲率の大きい方の面を向けており、レンズL2は、曲率の大きい方の面を半導体レーザLD側に向けている。レンズL1は、アナモルフィック素子であると好ましい。或いは、レンズ1の半導体レーザLD側を平面とし、もう一方の面を光軸から離れるに従い、曲率が小さくなる非球面とすると好ましい。   The lens L1 has the surface with the larger curvature facing the optical transmission path side opposite to the semiconductor laser LD side, and the lens L2 has the surface with the larger curvature facing the semiconductor laser LD side. The lens L1 is preferably an anamorphic element. Alternatively, it is preferable that the semiconductor laser LD side of the lens 1 is a flat surface, and the other surface is an aspheric surface whose curvature decreases as the distance from the optical axis increases.

レンズ1の焦点距離をf1、レンズ2の焦点距離をf2とすると以下の条件式を満足する。
0.2≦f1/f2≦0.7 (1)
When the focal length of the lens 1 is f1 and the focal length of the lens 2 is f2, the following conditional expression is satisfied.
0.2 ≦ f1 / f2 ≦ 0.7 (1)

図2は、第2高調波発生装置H2の斜視図である。第2高調波発生装置H2は、図2に示すように、ベースBS上に取り付けられた熱電冷却装置HCと、レンズL2に集光されて光導波路(光伝送路ともいう)HTの一端側に入射されたレーザ光の第2高調波を生成する光導波路型SHG素子HSと、光導波路型SHG素子HSを支持する支持体HDと、光導波路型SHG素子HGを支持した状態の支持体HDを覆うカバーHVとが備えられている。支持体HDには、光導波路型SHG素子HSを載置するための溝HGが形成されている。   FIG. 2 is a perspective view of the second harmonic generator H2. As shown in FIG. 2, the second harmonic generation device H2 has a thermoelectric cooling device HC mounted on the base BS, and is condensed on the lens L2 and is disposed on one end side of the optical waveguide (also referred to as an optical transmission path) HT. An optical waveguide SHG element HS that generates a second harmonic of incident laser light, a support HD that supports the optical waveguide SHG element HS, and a support HD that supports the optical waveguide SHG element HG. A cover HV is provided. A groove HG for placing the optical waveguide type SHG element HS is formed in the support HD.

光導波路型SHG素子HSは、光導波路HTを通過する光を、非線形光学結晶を用いて第二高調波に変換して出力する特性を有し、特開2003−338795号公報等に記載されており、良く知られているので詳細は説明しない。光導波路HTの入射開口径は1μm以上15μm以下である。   The optical waveguide type SHG element HS has a characteristic of converting the light passing through the optical waveguide HT into a second harmonic using a non-linear optical crystal and outputting it, and is described in Japanese Patent Application Laid-Open No. 2003-338895 etc. It is well known and will not be described in detail. The incident aperture diameter of the optical waveguide HT is not less than 1 μm and not more than 15 μm.

図3は、駆動装置DRの斜視図である。レンズL2と開口絞りSとは、レンズホルダDHにより保持されており、一体的に移動するようになっている。可動部材となるレンズホルダDHは、駆動力を受ける連結部DHaを有している。   FIG. 3 is a perspective view of the driving device DR. The lens L2 and the aperture stop S are held by a lens holder DH and are moved integrally. The lens holder DH serving as a movable member has a connecting portion DHa that receives a driving force.

連結部DHaには、四角柱状のX軸駆動軸XDSと対応する形状を有し且つそれに接する角溝DHbが設けられ、また角溝DHbとの間にX軸駆動軸XDSを挟むようにして板ばねXSGが取り付けられている。連結部DHaと板ばねXSGとの間で挟持された駆動部材であるX軸駆動軸XDSは、レンズL2の光軸に直交する方向(X軸方向)に延在しており、板ばねXSGの付勢力で適度に押圧されている。X軸駆動軸XDSの一端は自由端であり、その他端は、電気機械変換素子であるX軸圧電アクチュエータXPZに連結されている。X軸圧電アクチュエータXPZは、連結部PZaを有している。   The connecting portion DHa is provided with a square groove DHb having a shape corresponding to and in contact with the quadrangular columnar X-axis drive axis XDS, and the leaf spring XSG with the X-axis drive axis XDS sandwiched between the square groove DHb. Is attached. An X-axis drive axis XDS, which is a drive member sandwiched between the connecting portion DHa and the leaf spring XSG, extends in a direction (X-axis direction) orthogonal to the optical axis of the lens L2, and the leaf spring XSG It is pressed moderately by the urging force. One end of the X-axis drive shaft XDS is a free end, and the other end is connected to an X-axis piezoelectric actuator XPZ that is an electromechanical transducer. The X-axis piezoelectric actuator XPZ has a connecting portion PZa.

連結部PZaには、四角柱状のY軸駆動軸YDSと対応する形状を有し且つそれに接する角溝PZbが設けられ、また角溝PZbとの間にY軸駆動軸YDSを挟むようにして板ばねYSGが取り付けられている。連結部PZaと板ばねYSGとの間で挟持された駆動部材であるY軸駆動軸YDSは、レンズL2の光軸及びX軸方向に直交するように延在しており、板ばねYSGの付勢力で適度に押圧されている。Y軸駆動軸YDSの一端は自由端であり、その他端は、電気機械変換素子であるY軸圧電アクチュエータYPZに連結されている。Y軸圧電アクチュエータYPZは、ベースBSに取り付けられている。圧電アクチュエータXPZ、YPZと、駆動軸XDS、YDSと、連結部DHa、PZaと、板ばねXSG、YSGとで駆動装置DRを構成する。   The connecting portion PZa is provided with a square groove PZb having a shape corresponding to and in contact with the quadrangular columnar Y-axis drive shaft YDS, and the leaf spring YSG with the Y-axis drive shaft YDS sandwiched between the square groove PZb. Is attached. The Y-axis drive shaft YDS, which is a drive member sandwiched between the connecting portion PZa and the leaf spring YSG, extends so as to be orthogonal to the optical axis and the X-axis direction of the lens L2, and is attached to the leaf spring YSG. It is moderately pressed by power. One end of the Y-axis drive shaft YDS is a free end, and the other end is connected to a Y-axis piezoelectric actuator YPZ that is an electromechanical transducer. The Y-axis piezoelectric actuator YPZ is attached to the base BS. The piezoelectric actuators XPZ and YPZ, the drive shafts XDS and YDS, the connecting portions DHa and PZa, and the leaf springs XSG and YSG constitute a drive device DR.

圧電アクチュエータXPZ、YPZは、PZT(ジルコン・チタン酸鉛)などで形成された圧電セラミックスを積層してなる。圧電セラミックスは、その結晶格子内の正電荷の重心と負電荷の重心とが一致しておらず、それ自体分極していて、その分極方向に電圧を印加すると伸びる性質を有している。しかし、圧電セラミックスのこの方向への歪みは微小であり、この歪み量により被駆動部材を駆動することは困難であるため、図4に示すように、複数の圧電セラミックスPEを積み重ねてその間に電極Cを並列接続した構造の積層型圧電アクチュエータが実用可能なものとして提供されている。本実施の形態では、この積層型圧電アクチュエータPZを駆動源として用いている。   The piezoelectric actuators XPZ and YPZ are formed by laminating piezoelectric ceramics formed of PZT (zircon / lead titanate) or the like. Piezoelectric ceramics have a property in which the center of gravity of the positive charge and the center of gravity of the negative charge in the crystal lattice do not coincide with each other, are themselves polarized, and extend when a voltage is applied in the polarization direction. However, since the distortion of the piezoelectric ceramics in this direction is very small and it is difficult to drive the driven member by the amount of distortion, a plurality of piezoelectric ceramics PE are stacked between the electrodes as shown in FIG. A laminated piezoelectric actuator having a structure in which C is connected in parallel is provided as a practical one. In the present embodiment, this stacked piezoelectric actuator PZ is used as a drive source.

次に、このレンズL2の駆動方法について説明する。一般に、積層型圧電アクチュエータは、電圧印加時の変位量は小さいが、発生力は大でその応答性も鋭い。したがって、圧電アクチュエータXPZに、図5(a)に示すように立ち上がりが鋭く立ち下がりがゆっくりとした略鋸歯状波形のパルス電圧を印加すると、圧電アクチュエータXPZは、パルスの立ち上がり時に急激に伸び、立ち下がり時にそれよりもゆっくりと縮む。したがって、圧電アクチュエータXPZの伸長時には、その衝撃力でX軸駆動軸XDSが図3の手前側へ押し出されるが、レンズL2を保持したレンズホルダDHの連結部DHaと板ばねXSGは、その慣性により、X軸駆動軸XDSと一緒には移動せず、X軸駆動軸XDSとの間で滑りを生じてその位置に留まる(わずかに移動する場合もある)。一方、パルスの立ち下がり時には立ち上がり時に比較してX軸駆動軸XDSがゆっくりと戻るので、連結部DHaと板ばねXSGがX軸駆動軸XDSに対して滑らずに、X軸駆動軸XDSと一体的に図3の奥側へ移動する。即ち、周波数が数百から数万ヘルツに設定されたパルスを印加することにより、レンズL2及び開口絞りSを保持したレンズホルダDHを、X軸方向に所望の速度で連続的に移動させることができる。尚、以上より明らかであるが、図5(b)に示すように電圧の立ち上がりがゆっくりで、立ち下がりが鋭いパルスを印加すれば、レンズホルダDHを逆の方向へ移動させることができる。本実施の形態では、X軸駆動軸XDSを四角柱状(回り止め機構)としているので、レンズホルダDHの回り止め機能が発揮され、レンズL2のチルトが抑制されるので、別個にガイド軸を設ける必要はない。   Next, a driving method of the lens L2 will be described. In general, a multilayer piezoelectric actuator has a small displacement when a voltage is applied, but has a large generated force and a sharp response. Therefore, when a pulse voltage having a substantially sawtooth waveform with a sharp rise and a slow fall as shown in FIG. 5A is applied to the piezoelectric actuator XPZ, the piezoelectric actuator XPZ suddenly expands and It shrinks more slowly when it falls. Therefore, when the piezoelectric actuator XPZ is extended, the X-axis drive shaft XDS is pushed to the front side in FIG. 3 by the impact force, but the connecting portion DHa of the lens holder DH holding the lens L2 and the leaf spring XSG are caused by its inertia. , It does not move together with the X-axis drive axis XDS, but slips between the X-axis drive axis XDS and stays in that position (may move slightly). On the other hand, when the pulse falls, the X-axis drive shaft XDS returns more slowly than when the pulse rises. Therefore, the connecting portion DHa and the leaf spring XSG do not slide with respect to the X-axis drive axis XDS, and are integrated with the X-axis drive axis XDS. Therefore, it moves to the back side of FIG. That is, the lens holder DH holding the lens L2 and the aperture stop S can be continuously moved in the X-axis direction at a desired speed by applying a pulse whose frequency is set to several hundreds to tens of thousands of hertz. it can. As is clear from the above, the lens holder DH can be moved in the opposite direction by applying a pulse in which the voltage rises slowly and sharply falls as shown in FIG. In the present embodiment, since the X-axis drive shaft XDS has a quadrangular prism shape (non-rotation mechanism), the anti-rotation function of the lens holder DH is exhibited and the tilt of the lens L2 is suppressed, so that a separate guide shaft is provided. There is no need.

同様に、圧電アクチュエータYPZに、図5(a)に示すように立ち上がりが鋭く立ち下がりがゆっくりとした略鋸歯状波形のパルス電圧を印加すると、圧電アクチュエータYPZは、パルスの立ち上がり時に急激に伸び、立ち下がり時にそれよりもゆっくりと縮む。したがって、圧電アクチュエータYPZの伸長時には、その衝撃力でY軸駆動軸YDSが図3の上側へ押し出されるが、圧電アクチュエータXPZの連結部PZaと板ばねYSGは、その慣性により、Y軸駆動軸YDSと一緒には移動せず、Y軸駆動軸YDSとの間で滑りを生じてその位置に留まる(わずかに移動する場合もある)。一方、パルスの立ち下がり時には立ち上がり時に比較してY軸駆動軸YDSがゆっくりと戻るので、連結部PZaと板ばねYSGがY軸駆動軸YDSに対して滑らずに、Y軸駆動軸YDSと一体的に図3の下側へ移動する。即ち、周波数が数百から数万ヘルツに設定されたパルスを印加することにより、圧電アクチュエータXPZをレンズホルダDHと共に、Y軸方向に所望の速度で連続的に移動させることができる。尚、以上より明らかであるが、図5(b)に示すように電圧の立ち上がりがゆっくりで、立ち下がりが鋭いパルスを印加すれば、圧電アクチュエータXPZをレンズホルダDHと共に逆の方向へ移動させることができる。本実施の形態では、Y軸駆動軸YDSを四角柱状(回り止め機構)としているので、圧電アクチュエータXPZの回り止め機能が発揮され、レンズL2のチルトが抑制されるので、別個にガイド軸を設ける必要はない。   Similarly, when a pulse voltage having a substantially sawtooth waveform with a sharp rise and a slow fall as shown in FIG. 5A is applied to the piezoelectric actuator YPZ, the piezoelectric actuator YPZ expands rapidly at the rise of the pulse, It shrinks more slowly at the fall. Therefore, when the piezoelectric actuator YPZ is extended, the Y-axis drive shaft YDS is pushed upward in FIG. 3 by the impact force, but the connecting portion PZa of the piezoelectric actuator XPZ and the leaf spring YSG are affected by the inertia of the Y-axis drive shaft YDS. It does not move together with the Y-axis drive shaft YDS and slips in the Y-axis drive shaft YDS and stays in that position (may move slightly). On the other hand, when the pulse falls, the Y-axis drive axis YDS returns more slowly than when it rises, so that the connecting portion PZa and the leaf spring YSG do not slide with respect to the Y-axis drive axis YDS and are integrated with the Y-axis drive axis YDS. Therefore, it moves downward in FIG. That is, by applying a pulse whose frequency is set to several hundred to several tens of thousands of hertz, the piezoelectric actuator XPZ can be continuously moved together with the lens holder DH at a desired speed in the Y-axis direction. As is clear from the above, as shown in FIG. 5B, when a pulse with a slow rise and a sharp fall is applied, the piezoelectric actuator XPZ is moved in the opposite direction together with the lens holder DH. Can do. In the present embodiment, since the Y-axis drive shaft YDS has a quadrangular prism shape (non-rotation mechanism), the anti-rotation function of the piezoelectric actuator XPZ is exhibited and the tilt of the lens L2 is suppressed, so that a separate guide shaft is provided. There is no need.

図6は、SHG素子の結合効率の例を示すグラフである。一般的にレーザ光束の光量は、その中心が最大となるガウシアン分布を有している。従って、レーザ光束の主光線と、SHG素子の光伝送路の中心が一致しなければ、結合効率は低下する。レーザ光束の主光線とSHG素子の光伝送路の中心が一致した状態で結合効率を100%とし、そこからレンズシフトを行うと、それにより主光線と光伝送路の中心がずれることで、図6に示すように結合効率が低下する。但し、結合効率の低下は、レンズの焦点距離fに応じて異なっている。即ち、レンズの焦点距離fを短くすると、スポット位置の変位に応じてSHG素子の結合効率が大きく低下することがわかる。これを言い換えると、焦点距離fを短くすると、レンズシフトの許容範囲が狭くなる。   FIG. 6 is a graph showing an example of the coupling efficiency of the SHG element. In general, the light quantity of a laser beam has a Gaussian distribution with the center at its maximum. Therefore, if the chief ray of the laser beam does not coincide with the center of the optical transmission line of the SHG element, the coupling efficiency decreases. When the coupling efficiency is set to 100% in a state where the chief ray of the laser beam coincides with the center of the optical transmission path of the SHG element, and the lens is shifted from there, the center of the chief ray and the optical transmission path is thereby shifted. As shown in FIG. 6, the coupling efficiency decreases. However, the decrease in the coupling efficiency varies depending on the focal length f of the lens. That is, when the focal length f of the lens is shortened, it can be seen that the coupling efficiency of the SHG element is greatly reduced according to the displacement of the spot position. In other words, when the focal length f is shortened, the allowable range of lens shift is narrowed.

本実施の形態にかかる半導体光源モジュールの動作について説明する。半導体レーザLDから波長λのレーザ光を出射すると、かかるレーザ光は第1レンズL1で略平行光束に変換され、開口絞りSを通過して、第2レンズL2で集光されて、第2高調波発生装置H2の光伝送路に入射する。ここで、第2高調波に変換され、すなわち半分の波長(2/λ)を有する変換光束が、第2高調波発生装置H2から出射され、その変換光束の一部がハーフミラーMRで反射され、残りは外部へと出力されるようになっている。   The operation of the semiconductor light source module according to this embodiment will be described. When a laser beam having a wavelength λ is emitted from the semiconductor laser LD, the laser beam is converted into a substantially parallel light beam by the first lens L1, passes through the aperture stop S, and is condensed by the second lens L2, and then the second harmonic. It enters the optical transmission line of the wave generator H2. Here, a converted light beam converted into the second harmonic, that is, a converted light beam having a half wavelength (2 / λ) is emitted from the second harmonic generator H2, and a part of the converted light beam is reflected by the half mirror MR. The rest is output to the outside.

ハーフミラーMRで反射された変換光束は、受光素子PDの受光面に入射する。ここで、受光素子PDの受光面の中央が、光伝送路の中心に対応する。従って、光伝送路の中心を、入射光束の主光線が通過したときは、受光面に結像するスポット光SBの中心が、受光面の中心と一致するようになり、それにより結合効率は最大となる。これに対し、光伝送路の中心を、入射光束の主光線が通過しないと、図8に示すように、スポット光SBの中心が、受光面の中心と不一致の状態となる。そこで、レンズL2の駆動を行い、入射光束の主光線の光軸を曲げるか、或いは平行移動させて、スポット光SBの中心が、受光面の中心と一致するようにする。   The converted light beam reflected by the half mirror MR enters the light receiving surface of the light receiving element PD. Here, the center of the light receiving surface of the light receiving element PD corresponds to the center of the optical transmission path. Therefore, when the chief ray of the incident light beam passes through the center of the optical transmission path, the center of the spot light SB imaged on the light receiving surface becomes coincident with the center of the light receiving surface, so that the coupling efficiency is maximized. It becomes. On the other hand, if the principal ray of the incident light beam does not pass through the center of the optical transmission line, the center of the spot light SB does not coincide with the center of the light receiving surface as shown in FIG. Therefore, the lens L2 is driven to bend or translate the principal axis of the incident light beam so that the center of the spot light SB coincides with the center of the light receiving surface.

図8は、受光素子PDの実施例を示す図である。より具体的な制御態様を説明すると、図8(a)に示す状態では、受光部の受光量が低いので、制御回路CNTが駆動装置DRを駆動して、レンズL2をX軸正方向に駆動する。すると、図8(b)に示すように、それに応じてスポット光SBの光線強度ピーク領域LMXが移動して、受光部の受光量が高くなるが、レンズL2をX軸方向に移動しすぎると、図8(c)に示すように、また受光部の受光量が低くなるので、レンズL2のX軸方向に移動しすぎたことがわかる。或いは、レンズL2をX軸正方向に駆動させたとき、受光部の受光量が低くなる場合もある。そのような場合、レンズL2をX軸逆方向に駆動することで、受光量が最大となる位置を検出することができる。なお、レンズL2をY軸方向に駆動することで、同様に受光量が最大となる位置を検出することができる。なお、検出精度を高めるため、受光素子PDが受光量を検出しているときは、レンズL2の駆動を行わないことが望ましい。   FIG. 8 is a diagram showing an embodiment of the light receiving element PD. A more specific control mode will be described. In the state shown in FIG. 8A, since the light receiving amount of the light receiving unit is low, the control circuit CNT drives the driving device DR to drive the lens L2 in the positive direction of the X axis. To do. Then, as shown in FIG. 8B, the light intensity peak region LMX of the spot light SB moves accordingly, and the amount of light received by the light receiving unit increases, but if the lens L2 is moved too much in the X-axis direction. As shown in FIG. 8C, the amount of light received by the light receiving portion is low, and it is understood that the lens L2 has moved too much in the X-axis direction. Alternatively, when the lens L2 is driven in the positive direction of the X axis, the amount of light received by the light receiving unit may be low. In such a case, the position where the amount of received light becomes maximum can be detected by driving the lens L2 in the reverse direction of the X axis. In addition, by driving the lens L2 in the Y-axis direction, the position where the amount of received light is maximized can be similarly detected. In order to improve the detection accuracy, it is desirable not to drive the lens L2 when the light receiving element PD detects the amount of received light.

更に、別な制御方法として、受光素子PDが検出した受光量が所定値を超えている場合、スポット光SBの中心が、受光面の中心とほぼ一致しているとみなして、レンズL2の駆動を行わないこともでき、それにより省エネを図れる。   Further, as another control method, when the amount of received light detected by the light receiving element PD exceeds a predetermined value, the center of the spot light SB is regarded as substantially coincident with the center of the light receiving surface, and the lens L2 is driven. Can also be omitted, which can save energy.

本実施の形態の半導体光源モジュールを組み立てる場合、ベースBSに半導体レーザLDを組み付けて、そこから出射させた光束を、レンズホルダLHに保持されたレンズL1を介して平行光束に変換する。次に、オートコリメータ等を用いて、かかる平行光束が第2高調波発生装置H2の光伝送路を通過するように、これらを一列に並べる。更に、駆動装置DRを介してレンズL2のベースBSに取り付けるが、このとき駆動装置DRは、連結部DHa、PZaを駆動軸XDS、YDSの中央におき、すなわちX軸方向とY軸方向のそれぞれにおいて調整位置の中央に設定した状態で、受光素子PDの受光量が最大となるようにする。なお、微調整は図8を参照して説明したようにレンズL2を駆動すればよい。このように初期設定を行えば、環境変化や経時変化により、第2高調波発生装置H2の光伝送路の中心に対して、いずれの方向に入射光束の主光線にズレが生じた場合でも、これを一致するように最大限の補正を行うことができる。   When assembling the semiconductor light source module of the present embodiment, the semiconductor laser LD is assembled to the base BS, and the light beam emitted therefrom is converted into a parallel light beam via the lens L1 held by the lens holder LH. Next, using an autocollimator or the like, these parallel light beams are arranged in a line so that they pass through the optical transmission path of the second harmonic generator H2. Further, it is attached to the base BS of the lens L2 via the driving device DR. At this time, the driving device DR places the connecting portions DHa and PZa at the center of the driving axes XDS and YDS, that is, the X axis direction and the Y axis direction, respectively. In the state set at the center of the adjustment position in FIG. The fine adjustment may be performed by driving the lens L2 as described with reference to FIG. If the initial setting is performed in this way, even if the principal ray of the incident light beam is displaced in any direction with respect to the center of the optical transmission path of the second harmonic generation device H2 due to environmental changes or changes over time, Maximum correction can be performed so as to match these.

図9は、第2の実施の形態にかかる半導体光源モジュールの概略構成図である。本実施の形態においては、上述した実施の形態に対し、集光光学系を1枚のレンズL2のみとしている点が異なっている。それ以外の構成及び動作については、上述した実施の形態と同様であるので、同じ符号を付して説明を省略する。   FIG. 9 is a schematic configuration diagram of a semiconductor light source module according to the second embodiment. The present embodiment is different from the above-described embodiment in that the condensing optical system is only one lens L2. Since other configurations and operations are the same as those in the above-described embodiment, the same reference numerals are given and description thereof is omitted.

図10は、第3の実施の形態にかかる半導体光源モジュールの概略構成図である。本実施の形態においては、上述した実施の形態に対し、集光光学系を3枚のレンズL1,M、L2のみとしている点が異なっている。ここでは、レンズMのみが駆動装置DRによりX軸方向及びY軸方向に変位するようになっているが、更にレンズL1又はL2を、同様の駆動装置によりX軸方向及びY軸方向に駆動するようにしても良く、レンズMをX軸方向のみ変位させ、レンズL1又はL2をY軸方向に駆動するようにしても良い。それ以外の構成及び動作については、上述した実施の形態と同様であるので、同じ符号を付して説明を省略する。   FIG. 10 is a schematic configuration diagram of a semiconductor light source module according to the third embodiment. The present embodiment is different from the above-described embodiment in that the condensing optical system includes only three lenses L1, M, and L2. Here, only the lens M is displaced in the X-axis direction and the Y-axis direction by the driving device DR, but the lens L1 or L2 is further driven in the X-axis direction and the Y-axis direction by the same driving device. Alternatively, the lens M may be displaced only in the X-axis direction, and the lens L1 or L2 may be driven in the Y-axis direction. Since other configurations and operations are the same as those in the above-described embodiment, the same reference numerals are given and description thereof is omitted.

ここで、スポット位置の変位量をδ、光学素子変位量をΔ、レンズMの焦点距離をF、レンズL2の焦点距離をfとすると、δ/Δ=f/Fとなり、これを1未満とすれば、2枚の光学素子のうちの1枚を変位させる場合に比べて、スポット位置の変位量に対する光学素子の変位量を小さくできるため、より高精度な位置決めが可能となる。   Here, when the displacement amount of the spot position is δ, the optical element displacement amount is Δ, the focal length of the lens M is F, and the focal length of the lens L2 is f, δ / Δ = f / F, which is less than 1. By doing so, the amount of displacement of the optical element relative to the amount of displacement of the spot position can be made smaller than in the case of displacing one of the two optical elements, so that more accurate positioning is possible.

本実施の形態において、レンズL1は、半導体レーザLD側と反対側の光伝送路側にその曲率の大きい方の面を向けており、レンズL2は、曲率の大きい方の面を半導体レーザLD側に向けている。又、レンズ1とレンズ2の中間にレンズ2より屈折力の弱いレンズMを配しており、レンズ1の焦点距離をf1、レンズ2の焦点距離をf2、レンズMの焦点距離をfMとすると以下の条件式を満足する。
0.1≦f1/f2≦0.6 (2)
2≦|fM|/f2≦5 (3)
In the present embodiment, the lens L1 has the surface with the larger curvature facing the optical transmission path side opposite to the semiconductor laser LD side, and the lens L2 has the surface with the larger curvature facing the semiconductor laser LD side. It is aimed. In addition, a lens M having a refractive power lower than that of the lens 2 is arranged between the lens 1 and the lens 2, and the focal length of the lens 1 is f1, the focal length of the lens 2 is f2, and the focal length of the lens M is fM. The following conditional expression is satisfied.
0.1 ≦ f1 / f2 ≦ 0.6 (2)
2 ≦ | fM | / f2 ≦ 5 (3)

以上の実施の形態において、同様な駆動装置により、レンズL2又はその他のレンズを光軸方向(Z軸方向に)変位させても良い。   In the above embodiment, the lens L2 or another lens may be displaced in the optical axis direction (in the Z-axis direction) by a similar driving device.

図11は、光学素子の変形例を示す図である。本変形例においては、レンズL2の代わりにプリズムPSを駆動装置DRで駆動する構成となっている。プリズムPSは、光軸に直交するX軸方向に向かうにつれて厚さが薄くなると共に、光軸及びX軸方向に直交するY軸方向に向かうにつれて厚さが薄くなっている。従って、入射光束ILが入射する位置に応じて、プリズムPS内を通過する光束の光路が変わるので、出射光束OLの位置がずれる(平行移動する)こととなる。即ち、駆動装置DRにより、プリズムPSをX軸方向又はY軸方向に変位させることで、第2高調波発生装置H2の光伝送路の中心を、入射光束の主光線が通過するように調整することができる。なお、入射光束ILと出射光束OLは非平行であるので、半導体レーザLDと、第2高調波発生装置H2の向きをそれに合わせる必要がある。なお、光軸に直交するX軸方向に向かうにつれて厚さが薄くなる一つのプリズムをX軸方向に駆動し、光軸に直交するY軸方向に向かうにつれて厚さが薄くなる別のプリズムとをY軸方向に駆動するようにしても良い。   FIG. 11 is a diagram illustrating a modification of the optical element. In this modification, the prism PS is driven by the driving device DR instead of the lens L2. The prism PS decreases in thickness in the X-axis direction orthogonal to the optical axis, and decreases in thickness in the Y-axis direction orthogonal to the optical axis and X-axis direction. Accordingly, since the optical path of the light beam passing through the prism PS changes according to the position where the incident light beam IL is incident, the position of the outgoing light beam OL is shifted (translated). That is, the driving device DR adjusts the principal ray of the incident luminous flux to pass through the center of the optical transmission path of the second harmonic generation device H2 by displacing the prism PS in the X-axis direction or the Y-axis direction. be able to. Since the incident light beam IL and the outgoing light beam OL are non-parallel, it is necessary to match the directions of the semiconductor laser LD and the second harmonic generator H2. It is to be noted that one prism whose thickness decreases in the X-axis direction perpendicular to the optical axis is driven in the X-axis direction, and another prism whose thickness decreases in the Y-axis direction orthogonal to the optical axis. You may make it drive in a Y-axis direction.

図7は、光学素子の別な変形例を示す図である。本変形例においては、レンズL2の代わりに平行平板PPを用いている。平行平板PPを、半導体レーザLDの光軸に対して直交する軸Iと、光軸及び軸Iに対して直交する軸IIの回りに独立して回動させれば、入射光束が入射する位置に応じて、平行平板PP内を通過する光束の光路が変わるので、出射光束の位置がずれる(平行移動する)こととなる。即ち、不図示の駆動装置により、平行平板PPを軸I及び軸IIの少なくとも一方の回りに回動させることで、第2高調波発生装置H2の光伝送路の中心を、入射光束の主光線が通過するように調整することができる。なお、平行平板PPを2つ配置し、一方を軸I回りに回動させ、他方を軸II回りに回動させても良い。   FIG. 7 is a diagram showing another modification of the optical element. In this modification, a parallel plate PP is used instead of the lens L2. If the parallel plate PP is independently rotated about the axis I orthogonal to the optical axis of the semiconductor laser LD and the axis II orthogonal to the optical axis and the axis I, the position where the incident light beam enters. Accordingly, the optical path of the light beam passing through the parallel plate PP changes, so that the position of the emitted light beam shifts (translates). That is, by rotating the parallel plate PP around at least one of the axis I and the axis II by a driving device (not shown), the center of the optical transmission path of the second harmonic generator H2 is adjusted to the principal ray of the incident light beam. Can be adjusted to pass. Note that two parallel flat plates PP may be arranged, one of which rotates about the axis I and the other of which rotates about the axis II.

以上、本発明を実施の形態を参照して説明してきたが、本発明は上記実施の形態に限定して解釈されるべきではなく、適宜変更・改良が可能であることはもちろんである。例えば、第2高調波発生装置H2の代わりに、光ファイバを用いることもできる。この場合、光ファイバの内部が光伝送路となる。更に、上述した実施の形態では、光学素子を変位させているが、半導体光源、光学素子、光伝送路のいずれか1つ以上を相対的に変位させても良いことはいうまでもない。また、受光素子で検出する光は、SHG素子によって波長変換されずに光導波路から出射した(半導体光源と同じ波長の)光でも、SHG素子によって波長変換された(例えば半導体光源の波長の1/2の)光のいずれでも良い。   The present invention has been described above with reference to the embodiments. However, the present invention should not be construed as being limited to the above-described embodiments, and can be modified or improved as appropriate. For example, an optical fiber can be used instead of the second harmonic generator H2. In this case, the inside of the optical fiber becomes an optical transmission line. Furthermore, although the optical element is displaced in the above-described embodiment, it goes without saying that any one or more of the semiconductor light source, the optical element, and the optical transmission path may be relatively displaced. In addition, the light detected by the light receiving element is the wavelength converted by the SHG element (for example, 1 / of the wavelength of the semiconductor light source) even if the light is emitted from the optical waveguide (having the same wavelength as the semiconductor light source) without being wavelength converted by the SHG element. 2) Light may be used.

本実施の形態にかかる半導体光源モジュールの概略構成図である。It is a schematic block diagram of the semiconductor light source module concerning this Embodiment. 第2高調波発生装置H2の斜視図である。It is a perspective view of 2nd harmonic generator H2. 駆動装置DRの斜視図である。It is a perspective view of drive device DR. 複数の圧電セラミックスPEを積み重ねてその間に電極Cを並列接続した構造の積層型圧電アクチュエータPZを示す斜視図である。FIG. 3 is a perspective view showing a multilayer piezoelectric actuator PZ having a structure in which a plurality of piezoelectric ceramics PE are stacked and electrodes C are connected in parallel therebetween. 圧電アクチュエータPZに印加される電圧パルスの波形を示す図である。It is a figure which shows the waveform of the voltage pulse applied to the piezoelectric actuator PZ. SHG素子の結合効率の例を示すグラフである。It is a graph which shows the example of the coupling efficiency of a SHG element. 光学素子の別な変形例を示す図である。It is a figure which shows another modification of an optical element. 受光素子PDの変形例を示す図である。It is a figure which shows the modification of light receiving element PD. 第2の実施の形態にかかる半導体光源モジュールの概略構成図である。It is a schematic block diagram of the semiconductor light source module concerning 2nd Embodiment. 第3の実施の形態にかかる半導体光源モジュールの概略構成図である。It is a schematic block diagram of the semiconductor light source module concerning 3rd Embodiment. 光学素子の変形例を示す図である。It is a figure which shows the modification of an optical element.

符号の説明Explanation of symbols

BS ベース
C 電極
CNT 制御回路
DH レンズホルダ
DHa 連結部
DHb 角溝
DR 駆動装置
H2 高調波発生装置
HC 熱電冷却装置
HD 支持体
HG 溝
HS 素子
HT 光導波路
HV カバー
IL 入射光束
L1,L2 レンズ
M レンズ
LD 半導体レーザ
LH レンズホルダ
LMX 光線強度ピーク領域
MR ハーフミラー
OL 出射光束
PD 受光素子
PDa 受光部
PDb 受光部
PDc 受光部
PDd 受光部
PE 圧電セラミックス
PP 平行平板
PS プリズム
PZ 圧電アクチュエータ
PZa 連結部
PZb 角溝
S 開口絞り
SB スポット光
XDS X軸駆動軸
XPZ X軸圧電アクチュエータ
YDS Y軸駆動軸
YPZ Y軸圧電アクチュエータ
BS Base C Electrode CNT Control circuit DH Lens holder DHa Connecting portion DHb Square groove DR Drive device H2 Harmonic wave generator HC Thermoelectric cooling device HD Support HG Groove HS Element HT Optical waveguide HV Cover IL Incident light beam L1, L2 Lens M Lens LD Semiconductor laser LH Lens holder LMX Light intensity peak area MR Half mirror OL Emitted light beam PD Light receiving element PDa Light receiving part PDb Light receiving part PDc Light receiving part PDd Light receiving part PE Piezoelectric ceramics PP Parallel plate PS Prism PZ Piezoelectric actuator PZa Connection part PZb Angular groove S Opening Aperture SB Spot light XDS X-axis drive axis XPZ X-axis piezoelectric actuator YDS Y-axis drive axis YPZ Y-axis piezoelectric actuator

Claims (31)

所定波長の光束を出射する半導体光源と、当該半導体光源から出射された発散光束を集光させる集光光学系と、当該集光光学系から出射された収束光束を、異なる波長の光束に変換して出射するSHG素子と、前記集光光学系を構成する光学素子を駆動する駆動手段とを備えることを特徴とする半導体光源モジュール。   A semiconductor light source that emits a light beam of a predetermined wavelength, a condensing optical system that condenses the divergent light beam emitted from the semiconductor light source, and a convergent light beam emitted from the condensing optical system is converted into a light beam of a different wavelength. A semiconductor light source module, comprising: a SHG element that emits light; and a driving unit that drives an optical element that constitutes the condensing optical system. 前記駆動手段は、前記半導体光源から出射された光束の主光線の光軸を曲げるか、あるいは平行移動させるために、前記集光光学系を構成する光学素子を駆動することを特徴とする請求項1記載の半導体光源モジュール。   The drive means drives an optical element constituting the condensing optical system in order to bend or translate an optical axis of a principal ray of a light beam emitted from the semiconductor light source. 1. A semiconductor light source module according to 1. 前記駆動手段は、前記集光光学系によって形成されるビームスポット位置を移動させるために、前記集光光学系を構成する光学素子を駆動することを特徴とする請求項1記載の半導体光源モジュール。   2. The semiconductor light source module according to claim 1, wherein the driving means drives an optical element constituting the condensing optical system in order to move a beam spot position formed by the condensing optical system. 前記集光光学系は複数の光学素子から構成されるとともに、前記駆動手段はそのうちの少なくとも一つを駆動することを特徴とする請求項1ないし3のいずれかに記載の半導体光源モジュール。   4. The semiconductor light source module according to claim 1, wherein the condensing optical system includes a plurality of optical elements, and the driving unit drives at least one of them. 前記複数の光学素子は、正の屈折パワーもしくは屈折パワーがゼロの光学系を有し、正の屈折パワーを持つ光学素子は互いにパワーが異なることを特徴とする請求項4記載の半導体光源モジュール。   5. The semiconductor light source module according to claim 4, wherein the plurality of optical elements have a positive refractive power or an optical system having a refractive power of zero, and optical elements having positive refractive power have different powers. 前記半導体光源に最も近い側の光学素子の屈折パワーは、前記光伝送路に最も近い側の光学素子の屈折パワーよりも大きいことを特徴とする請求項5記載の半導体光源モジュール。   6. The semiconductor light source module according to claim 5, wherein the refractive power of the optical element closest to the semiconductor light source is larger than the refractive power of the optical element closest to the optical transmission path. 前記半導体光源に最も近い側の光学素子により、半導体光源からの光束を略平行光にコリメートすることを特徴とする請求項5記載の半導体光源モジュール。   6. The semiconductor light source module according to claim 5, wherein a light beam from the semiconductor light source is collimated into substantially parallel light by an optical element closest to the semiconductor light source. 前記コリメートされた光束を、1つの集光素子を介して前記光伝送路に集光させることを特徴とする請求項7記載の半導体光源モジュール。   8. The semiconductor light source module according to claim 7, wherein the collimated light beam is condensed on the optical transmission line through a single condensing element. 前記1つの集光素子に、開口制限絞りが一体で設けられていることを特徴とする請求項8記載の半導体光源モジュール。   9. The semiconductor light source module according to claim 8, wherein an aperture limiting diaphragm is provided integrally with the one light collecting element. 前記コリメートされた光束を、2つの集光素子を介して前記光伝送路に集光させることを特徴とする請求項7記載の半導体光源モジュール。   8. The semiconductor light source module according to claim 7, wherein the collimated light beam is condensed on the optical transmission line through two light condensing elements. 前記駆動手段により駆動される前記光学素子の焦点距離をfとし、前記半導体光源の出射端から前記光伝送路の出射端までの距離をLとしたときに、以下の条件式が成立することを特徴とする請求項1ないし10のいずれかに記載の半導体光源モジュール。
0.18 ≦ f/L ≦ 0.45 (1)
When the focal length of the optical element driven by the driving means is f and the distance from the emission end of the semiconductor light source to the emission end of the optical transmission path is L, the following conditional expression holds: The semiconductor light source module according to claim 1, wherein the semiconductor light source module is a semiconductor light source module.
0.18 ≦ f / L ≦ 0.45 (1)
前記光学素子がアナモルフィック素子であることを特徴とする請求項8ないし11のいずれかに記載の半導体光源モジュール。   The semiconductor light source module according to claim 8, wherein the optical element is an anamorphic element. 前記集光光学系において、収束光の光路中に平行平板を配置したことを特徴とする請求項5ないし12のいずれかに記載の半導体光源モジュール。   13. The semiconductor light source module according to claim 5, wherein a parallel plate is arranged in the optical path of the convergent light in the condensing optical system. 前記集光光学系において、収束光の光路中に、入射光の光軸に垂直な方向における異なる2方向に向かうにつれて厚さが変化するプリズムを配置したことを特徴とする請求項5ないし12のいずれかに記載の半導体光源モジュール。   13. The condensing optical system according to claim 5, wherein a prism whose thickness changes toward two different directions in a direction perpendicular to the optical axis of the incident light is disposed in the optical path of the convergent light. The semiconductor light source module in any one. 前記駆動手段は、前記複数の光学素子のうち、一つのみを駆動することを特徴とする請求項4ないし14のいずれかに記載の半導体光源モジュール。   The semiconductor light source module according to claim 4, wherein the driving unit drives only one of the plurality of optical elements. 前記駆動手段は、前記複数の光学素子のうち、2つ以上を駆動することを特徴とする請求項4ないし14のいずれかに記載の半導体光源モジュール。   15. The semiconductor light source module according to claim 4, wherein the driving unit drives two or more of the plurality of optical elements. 前記駆動手段は、前記複数の光学素子であって、互いに異なる正の屈折パワーを有する光学素子のうち、もっともパワーの小さい光学素子を駆動することを特徴とする請求項5ないし12および16のいずれかに記載の半導体光源モジュール。   17. The drive unit according to claim 5, wherein the drive unit drives the optical element having the smallest power among the plurality of optical elements having positive refractive powers different from each other. A semiconductor light source module according to claim 1. 前記駆動手段は、前記1つの集光素子を駆動することを特徴とする請求項8ないし9のいずれかに記載の半導体光源モジュール。   10. The semiconductor light source module according to claim 8, wherein the driving unit drives the one light condensing element. 前記駆動手段は、前記2つの集光素子を駆動することを特徴とする請求項10記載の半導体光源モジュール。   The semiconductor light source module according to claim 10, wherein the driving unit drives the two light collecting elements. 前記駆動手段は、前記集光光学系を構成する光学素子を、前記半導体光源の光軸方向と垂直な方向に駆動させることを特徴とする請求項1ないし19のいずれかに記載の半導体光源モジュール。   The semiconductor light source module according to claim 1, wherein the driving unit drives an optical element constituting the condensing optical system in a direction perpendicular to an optical axis direction of the semiconductor light source. . 前記駆動手段は、前記集光光学系を構成する光学素子を、前記半導体光源の光軸方向と垂直な1方向に駆動させることを特徴とする請求項1ないし19のいずれかに記載の半導体光源モジュール。   The semiconductor light source according to claim 1, wherein the driving unit drives an optical element constituting the condensing optical system in one direction perpendicular to an optical axis direction of the semiconductor light source. module. 前記駆動手段は、前記集光光学系を構成する光学素子を、前記半導体光源の光軸方向と垂直なX軸方向と、光軸方向及びX軸方向に垂直なY軸方向の2方向に各々独立して駆動させることを特徴とする請求項1ないし19のいずれかに記載の半導体光源モジュール。   The driving means moves the optical elements constituting the condensing optical system in two directions: an X-axis direction perpendicular to the optical axis direction of the semiconductor light source, and an Y-axis direction perpendicular to the optical axis direction and the X-axis direction. 20. The semiconductor light source module according to claim 1, wherein the semiconductor light source module is driven independently. 前記駆動手段は、前記集光光学系を構成する光学素子を、前記半導体光源の光軸方向に沿って駆動させることを特徴とする請求項1ないし22のいずれかに記載の半導体光源モジュール。   23. The semiconductor light source module according to claim 1, wherein the driving unit drives an optical element constituting the condensing optical system along an optical axis direction of the semiconductor light source. 前記駆動手段は、前記集光光学系を構成する光学素子を、前記半導体光源の光軸方向に垂直な軸まわりに回動させることを特徴とする請求項1ないし23のいずれかに記載の半導体光源モジュール。   24. The semiconductor according to claim 1, wherein the driving unit rotates an optical element constituting the condensing optical system about an axis perpendicular to an optical axis direction of the semiconductor light source. Light source module. 前記駆動手段は、前記集光光学系を構成する光学素子を、前記半導体光源の光軸方向に垂直な1つの軸まわりのみに回動させることを特徴とする請求項1ないし23のいずれかに記載の半導体光源モジュール。   24. The drive unit according to claim 1, wherein the driving unit rotates the optical element constituting the condensing optical system only around one axis perpendicular to the optical axis direction of the semiconductor light source. The semiconductor light source module described. 前記駆動手段は、前記集光光学系を構成する光学素子を、前記半導体光源の光軸方向に垂直な軸であって、かつ互いに垂直な第1軸及び第2軸まわりに回動させることを特徴とする請求項1ないし23のいずれかに記載の半導体光源モジュール。   The drive means rotates the optical element constituting the condensing optical system about a first axis and a second axis that are perpendicular to the optical axis direction of the semiconductor light source and perpendicular to each other. The semiconductor light source module according to claim 1, wherein the semiconductor light source module is a light source module. 前記駆動手段は、電気機械変換素子と、前記電気機械変換素子の一端に固定された駆動部材と、前記集光光学系を構成する光学素子に連結され且つ前記駆動部材上に移動可能に保持された可動部材と、を有し、前記電気機械変換素子を、伸び方向と縮み方向とで速度を変えて繰り返し伸縮させることで、前記可動部材を移動させるようになっていることを特徴とする請求項1ないし26のいずれかに記載の半導体光源モジュール。   The drive means is connected to an electromechanical conversion element, a drive member fixed to one end of the electromechanical conversion element, and an optical element constituting the condensing optical system, and is movably held on the drive member. The movable member is configured to move the movable member by repeatedly expanding and contracting the electromechanical conversion element at different speeds in an extension direction and a contraction direction. Item 27. The semiconductor light source module according to any one of Items 1 to 26. 前記駆動部材に回転防止機構が設けられていることを特徴とする請求項27記載の半導体光源モジュール。   28. The semiconductor light source module according to claim 27, wherein the drive member is provided with a rotation prevention mechanism. 前記回転防止機構は、前記駆動部材が矩形断面形状であると共に、前記可動部材が当該断面形状に対応した形状とされていることにより構成されることを特徴とする請求項28記載の半導体光源モジュール。   29. The semiconductor light source module according to claim 28, wherein the rotation preventing mechanism is configured by the drive member having a rectangular cross-sectional shape and the movable member having a shape corresponding to the cross-sectional shape. . 前記光伝送路は光ファイバーであることを特徴とする請求項1ないし29のいずれかに記載の半導体光源モジュール。   30. The semiconductor light source module according to claim 1, wherein the optical transmission path is an optical fiber. 前記光伝送路はSHG素子であることを特徴とする請求項1ないし29のいずれかに記載の半導体光源モジュール。


30. The semiconductor light source module according to claim 1, wherein the optical transmission line is an SHG element.


JP2005300810A 2005-10-14 2005-10-14 Semiconductor light source module Pending JP2007109978A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005300810A JP2007109978A (en) 2005-10-14 2005-10-14 Semiconductor light source module
US11/545,470 US7511880B2 (en) 2005-10-14 2006-10-11 Semiconductor light source module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005300810A JP2007109978A (en) 2005-10-14 2005-10-14 Semiconductor light source module

Publications (1)

Publication Number Publication Date
JP2007109978A true JP2007109978A (en) 2007-04-26

Family

ID=38035588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005300810A Pending JP2007109978A (en) 2005-10-14 2005-10-14 Semiconductor light source module

Country Status (1)

Country Link
JP (1) JP2007109978A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010534356A (en) * 2007-07-20 2010-11-04 コーニング インコーポレイテッド Optical configuration for wavelength-converted laser source.
JP2011511318A (en) * 2008-01-30 2011-04-07 コーニング インコーポレイテッド Method and system for aligning optical packages
KR20110116000A (en) * 2008-11-10 2011-10-24 코닝 인코포레이티드 Alignment optimization for optical packages

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5665677U (en) * 1979-10-24 1981-06-01
JPH02213823A (en) * 1989-02-15 1990-08-24 Fuji Photo Film Co Ltd Light wavelength converting device
JPH06175176A (en) * 1992-12-11 1994-06-24 Sanyo Electric Co Ltd Optical device and design method therefor
JPH06289447A (en) * 1993-03-30 1994-10-18 Asahi Glass Co Ltd Higher harmonic generator
JPH08167754A (en) * 1994-10-14 1996-06-25 Mitsubishi Electric Corp Opticaltransmitter, solid-state laser apparatus, and laser machining equipment having these
JPH10309086A (en) * 1997-04-28 1998-11-17 Minolta Co Ltd Actuator
JPH11356071A (en) * 1998-06-09 1999-12-24 Minolta Co Ltd Drive unit using electromechanical transducing element and driving circuit therefor
JP2002270933A (en) * 1993-05-21 2002-09-20 Matsushita Electric Ind Co Ltd Laser light source
JP2004101808A (en) * 2002-09-09 2004-04-02 Noritsu Koki Co Ltd Light source device
JP2004120840A (en) * 2002-09-24 2004-04-15 Minolta Co Ltd Drive circuit and driver
JP2005057907A (en) * 2003-08-05 2005-03-03 Matsushita Electric Ind Co Ltd Driving device
JP2005222049A (en) * 2004-02-02 2005-08-18 Picarro Inc Method and apparatus for adjusting path of optical beam in waveguide
JP2005237145A (en) * 2004-02-20 2005-09-02 Konica Minolta Holdings Inc Drive circuit for piezoelectric element
JP2005274837A (en) * 2004-03-24 2005-10-06 Fujinon Corp Eccentricity adjustment method of zoom lens
JP2006350047A (en) * 2005-06-17 2006-12-28 Matsushita Electric Ind Co Ltd Optical coupling module of waveguide element, and optical axis adjustment method thereof

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5665677U (en) * 1979-10-24 1981-06-01
JPH02213823A (en) * 1989-02-15 1990-08-24 Fuji Photo Film Co Ltd Light wavelength converting device
JPH06175176A (en) * 1992-12-11 1994-06-24 Sanyo Electric Co Ltd Optical device and design method therefor
JPH06289447A (en) * 1993-03-30 1994-10-18 Asahi Glass Co Ltd Higher harmonic generator
JP2002270933A (en) * 1993-05-21 2002-09-20 Matsushita Electric Ind Co Ltd Laser light source
JPH08167754A (en) * 1994-10-14 1996-06-25 Mitsubishi Electric Corp Opticaltransmitter, solid-state laser apparatus, and laser machining equipment having these
JPH10309086A (en) * 1997-04-28 1998-11-17 Minolta Co Ltd Actuator
JPH11356071A (en) * 1998-06-09 1999-12-24 Minolta Co Ltd Drive unit using electromechanical transducing element and driving circuit therefor
JP2004101808A (en) * 2002-09-09 2004-04-02 Noritsu Koki Co Ltd Light source device
JP2004120840A (en) * 2002-09-24 2004-04-15 Minolta Co Ltd Drive circuit and driver
JP2005057907A (en) * 2003-08-05 2005-03-03 Matsushita Electric Ind Co Ltd Driving device
JP2005222049A (en) * 2004-02-02 2005-08-18 Picarro Inc Method and apparatus for adjusting path of optical beam in waveguide
JP2005237145A (en) * 2004-02-20 2005-09-02 Konica Minolta Holdings Inc Drive circuit for piezoelectric element
JP2005274837A (en) * 2004-03-24 2005-10-06 Fujinon Corp Eccentricity adjustment method of zoom lens
JP2006350047A (en) * 2005-06-17 2006-12-28 Matsushita Electric Ind Co Ltd Optical coupling module of waveguide element, and optical axis adjustment method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010534356A (en) * 2007-07-20 2010-11-04 コーニング インコーポレイテッド Optical configuration for wavelength-converted laser source.
JP2011511318A (en) * 2008-01-30 2011-04-07 コーニング インコーポレイテッド Method and system for aligning optical packages
KR20110116000A (en) * 2008-11-10 2011-10-24 코닝 인코포레이티드 Alignment optimization for optical packages
KR101666633B1 (en) 2008-11-10 2016-10-14 코닝 인코포레이티드 Alignment optimization for optical packages

Similar Documents

Publication Publication Date Title
US7511880B2 (en) Semiconductor light source module
JP3422988B2 (en) Multiple parallel source scanning device
US7668421B2 (en) Optical coupling lens and light source
JP2010103323A (en) Semiconductor laser module and method for manufacturing the same
US20060280421A1 (en) Variable light attenuator
JP2008051936A (en) Optical module system
JP3112501B2 (en) Displacement magnification mechanism
JP2007109979A (en) Semiconductor light source module
WO2015145943A1 (en) Optical scanning device
JP4941055B2 (en) Optical element unit
JP2007109978A (en) Semiconductor light source module
JP4952998B2 (en) Optical element unit and lens
US8100561B2 (en) Light source unit
JPH09133887A (en) Light beam deflecting optical device
JP5045187B2 (en) Optical element unit
KR102504328B1 (en) Laser cutting device
JPWO2008126467A1 (en) Second harmonic light generator and method of manufacturing the same
US10101546B2 (en) Optical module and method for manufacturing the optical module
JP2008250114A (en) Lens unit, light source module and assembly method thereof
JP2019117394A (en) Optical communication device and manufacturing method therefor
JP2012022131A (en) Optical element unit, laser module, and small-sized projector
JP5029097B2 (en) Light source module
JP5233845B2 (en) Drive device
Krygowski et al. Development of a compact optical MEMS scanner with integrated VCSEL light source and diffractive optics
JP2003134853A (en) Drive unit using electromechanical transducing element, and apparatus applying the element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091019

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20091019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120806

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121227