JP2006038657A - Microchemical chip and its manufacturing method - Google Patents

Microchemical chip and its manufacturing method Download PDF

Info

Publication number
JP2006038657A
JP2006038657A JP2004219525A JP2004219525A JP2006038657A JP 2006038657 A JP2006038657 A JP 2006038657A JP 2004219525 A JP2004219525 A JP 2004219525A JP 2004219525 A JP2004219525 A JP 2004219525A JP 2006038657 A JP2006038657 A JP 2006038657A
Authority
JP
Japan
Prior art keywords
main surface
substrate
flow path
chip
microchemical chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004219525A
Other languages
Japanese (ja)
Other versions
JP4683872B2 (en
Inventor
Itaru Ishii
格 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004219525A priority Critical patent/JP4683872B2/en
Publication of JP2006038657A publication Critical patent/JP2006038657A/en
Application granted granted Critical
Publication of JP4683872B2 publication Critical patent/JP4683872B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microchemical chip that can be manufactured at low costs, reduces the mixture of impurities, can achieve a variety of packaging forms, and has stable performance. <P>SOLUTION: The microchemical chip comprises: an insulating substrate 1 having a wiring conductor 3; a frame-like conductive layer 2 formed at the outer periphery section on one main surface of the insulating substrate 1; a connection pad 4 that is electrically connected to the wiring conductor 3 and is formed outside the conductive layer 2 on one main surface; a channel 5 that is formed inside the insulating substrate 1, has one opening end at a part inside the conductive layer 2 on one main surface, and has the other opening end on a surface exposed to the outside of the insulating substrate 1; a semiconductor substrate 8 in which a part that is inner than an electrode 7 at the outer-periphery section on one main surface is joined by a joining material 11 over the entire periphery of the conductive layer 2 while a minute electromechanical mechanism 6 is formed at the center of one main surface and the electrode 7 connected to the minute electrochemical mechanism 6 is formed at the outer-periphery section; and a conductive connection material 9 that electrically connects the connection pad 4 and the electrode 7 and has the same melting temperature as the joining material 11. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体基板に形成された微小電子機械機構とこれに被処理流体を流す流路とを備えて成るマイクロ化学チップ、およびその製造方法に関するものである。   The present invention relates to a microchemical chip including a microelectromechanical mechanism formed on a semiconductor substrate and a flow path for flowing a fluid to be processed, and a method for manufacturing the microchemical chip.

近年、化学分析の高精度化、高効率化の背景から、従来の実験室で行なっていた電位の測定、流量の測定、クロマトグラフや電気泳動に必要な試料の注入、排出、評定などを微小なサイズで実行可能にする、いわゆるマイクロ化学チップが提案されている。   In recent years, with the background of higher precision and higher efficiency in chemical analysis, the measurement of potential, flow rate, injection, discharge, and evaluation required for chromatographs and electrophoresis, which have been performed in conventional laboratories, are very small. So-called microchemical chips have been proposed that can be implemented in various sizes.

マイクロ化学チップとして従来一般的なものは、流路が形成された半導体やガラス等から成る基板と、流路に被処理流体を流すためのマイクロポンプ等の動力源と、被処理流体に対して各種測定,分析を行なう機能部分とを備えた構成のものである。   Conventionally, as a microchemical chip, there are generally used a substrate made of a semiconductor, glass or the like in which a flow path is formed, a power source such as a micropump for flowing a processed fluid through the flow path, and a processed fluid. And a functional part for performing various measurements and analyses.

マイクロ化学チップのうち、電位等の測定や、試料の移送等の機械的な動き等の機能を1つの半導体基板で実施可能にするものとして、いわゆるMEMS(Micro Electro Mechanical System:微小電子機械機構)が提案されている。   Among micro chemical chips, what is called MEMS (Micro Electro Mechanical System) is a device that can perform functions such as measurement of potential and mechanical movement such as sample transfer on a single semiconductor substrate. Has been proposed.

マイクロ化学チップ用のMEMSとは、例えば、一つの半導体基板の主面に、化学変化に応じて発生する気体や液体の圧力変化などを検出するための加速度計,圧力センサ,アクチュエータ等のセンサ、化学変化に応じて生じる変化を光学的に検出する際、高精度での検出等を目的とする光軸の変更のために使用される微細な鏡面体を可動式に形成したマイクロミラーデバイス、光デバイス等の機能部分にマイクロポンプ等を合わせて組み込んだ構造を有するもの等であり、非常に多岐にわたる構造を有するものである。   For example, MEMS for microchemical chips are sensors such as accelerometers, pressure sensors, actuators, etc. for detecting changes in pressure of gases and liquids generated in response to chemical changes on the main surface of one semiconductor substrate. A micromirror device, which is a movable micro mirror that is used to change the optical axis for high-precision detection when optically detecting changes that occur in response to chemical changes, light It has a structure in which a micropump or the like is incorporated in a functional part of a device or the like, and has a very wide variety of structures.

このMEMSが形成された半導体基板に、流路が形成されている流路基板等を接続し、流路とMEMSや機能部分が形成された部分とを連通させた構造とすることにより、MEMSが備えるマイクロポンプ等の動力で流路中を被処理流体を流すことが可能で、流路を流れて供給された被処理流体をMEMSが備える機能部分で分析、測定することが可能なマイクロ化学チップが形成されることになる。   By connecting the flow path substrate in which the flow path is formed to the semiconductor substrate in which the MEMS is formed, and the structure in which the flow path and the part in which the MEMS or the functional part is formed are communicated, the MEMS A microchemical chip that can cause a fluid to be treated to flow through the flow path by the power of a micropump provided, and that can analyze and measure the fluid to be treated that has been supplied through the flow path at a functional part provided in the MEMS. Will be formed.

上記MEMSは、例えば、電極用やDNA吸着用等の微細な突起、微小反応槽,マイクロミラー,マイクロポンプ等の微細な構造体や可動体等を備えたものである。   The MEMS includes, for example, fine protrusions for electrodes and DNA adsorption, fine structures such as a micro reaction tank, a micro mirror, and a micro pump, a movable body, and the like.

流路基板は、シリコン等の半導体やPDMS(ポリジメチルシロキサン)、ガラス等から成る基板の一主面に溝状の流路を形成したり、一主面から他主面にかけて貫通する流路を形成した構造である。   The flow path substrate is formed with a groove-shaped flow path on one main surface of a substrate made of a semiconductor such as silicon, PDMS (polydimethylsiloxane), glass, or the like, or a flow path penetrating from one main surface to another main surface. It is a formed structure.

なお、MEMSおよび流路は、外気からの異物の進入を防いで分析、測定等の化学的な処理を高精度に行なわせるために、ガラス板等から成る蓋体で覆われる。蓋体で覆われた後、外部に露出している流路の開口部分が被処理流体の供給口や排出口となり、供給口から被処理流体が供給される。   Note that the MEMS and the flow path are covered with a lid made of a glass plate or the like in order to prevent foreign substances from entering from outside air and perform chemical processing such as analysis and measurement with high accuracy. After being covered with the lid, the opening portion of the flow channel exposed to the outside serves as a supply port and a discharge port for the fluid to be processed, and the fluid to be processed is supplied from the supply port.

シリコン,PDMS等から成る基板に開口した供給口に対する被処理流体(試料)の供給は、外部から液体ノズルや液体吐出装置等の送液装置を用いて加圧送液し、流路を介してMEMSに被処理流体を流して化学反応、検出等を行わせる。   Supply of a fluid to be processed (sample) to a supply port opened in a substrate made of silicon, PDMS or the like is carried out under pressure using a liquid delivery device such as a liquid nozzle or a liquid ejection device from the outside, and MEMS is performed via a flow path. A fluid to be treated is caused to flow to cause chemical reaction, detection, and the like.

また、マイクロ化学チップは、一般に、外部接続用の接続パッドが半導体基板の主面等に、MEMSに電気的に接続されて形成されており、この接続パッドをプリント回路基板等の外部電気回路基板の電気回路に電気的に接続しておくことにより、分析、測定等の化学処理の結果に応じてMEMSから発信される電気信号が接続パッドから外部の電気回路に送信される。   In addition, a microchemical chip is generally formed by connecting a connection pad for external connection to the MEMS on the main surface of a semiconductor substrate, and the connection pad is connected to an external electric circuit substrate such as a printed circuit board. By electrically connecting to the electrical circuit, an electrical signal transmitted from the MEMS according to the result of chemical processing such as analysis and measurement is transmitted from the connection pad to an external electrical circuit.

このMEMSを用いたマイクロ化学チップは、化学反応、分析のシステムを小型化し、シリコン基板やPDMS基板上に形成した流路基板を用いたもので、マイクロ流路,マイクロポンプ,マイクロリアクタ等からなる。基板の化学反応部をマイクロ化し単位体積あたりの表面積を増大させることで反応時間の大幅な削減を可能にしている。また、流量の精密な制御が可能なため高精度検出を行うことができる。   This microchemical chip using MEMS is a device that uses a channel substrate formed on a silicon substrate or PDMS substrate by miniaturizing a chemical reaction and analysis system, and includes a microchannel, a micropump, a microreactor, and the like. The reaction time of the substrate can be greatly reduced by making the chemical reaction part of the substrate micro and increasing the surface area per unit volume. In addition, since the flow rate can be precisely controlled, highly accurate detection can be performed.

なお、これら従来のマイクロ化学チップのうち、MEMSは、例えば、シリコン等の半導体基板の主面に、焼付け、エッチング等のいわゆる半導体マイクロマシニング技術を用いて電極用やDNA吸着用等の微細な突起、微小反応槽,マイクロミラー,マイクロポンプ等の微細な構造体や可動体を形成することにより製作される。   Of these conventional microchemical chips, MEMS, for example, is formed on a main surface of a semiconductor substrate such as silicon using a so-called semiconductor micromachining technique such as baking or etching for fine projections for electrodes or DNA adsorption. It is manufactured by forming a fine structure such as a micro reaction tank, a micro mirror, a micro pump, or a movable body.

また、流路部分は、シリコンやPDMS,ガラス等から成る流路基板の主面に、フォトリソグラフィーを応用した、いわゆる鋳型加工やスタンプ加工等の加工を施して溝状、孔状等の構造を形成することにより製作される。
特開2001−214241号公報(第4−5頁、第1図) 特開2001−108619号公報(第4−5頁、第1図)
In addition, the flow path part has a groove-like or hole-like structure by applying so-called mold processing or stamping processing that applies photolithography to the main surface of the flow path substrate made of silicon, PDMS, glass or the like. Produced by forming.
Japanese Patent Laid-Open No. 2001-214241 (page 4-5, FIG. 1) JP 2001-108619 A (page 4-5, FIG. 1)

しかしながら、上記従来のマイクロ化学チップにおいては、検出などに用いられる被処理流体は外部の液体ノズルや液体吐出装置などの装置でマイクロ化学システムに供給されており、液体である被処理流体は一度外気に曝されることが一般的であった。   However, in the above conventional microchemical chip, a fluid to be processed used for detection or the like is supplied to the microchemical system by an external liquid nozzle or a liquid discharge device, and the fluid to be processed is once outside air. It was common to be exposed to

このため、マイクロ化学チップの外部から被処理流体を流路に供給する際に、外部からの被処理流体中への雑菌やゴミなどの異物の混入(所謂コンタミネーション)の問題があった。   For this reason, when the fluid to be treated is supplied to the flow path from the outside of the microchemical chip, there is a problem of contamination of foreign matters such as germs and dust (so-called contamination) into the fluid to be treated from the outside.

また、大型の液体供給装置を使用するため、被処理流体の流量の微小量化に制限があり、被処理流体の流量を小さく抑えることによる効率的な処理、処理速度の向上等に制約を受けるという問題があった。   In addition, since a large liquid supply device is used, there is a limit to minimizing the flow rate of the fluid to be processed, and there are restrictions on efficient processing by reducing the flow rate of the fluid to be processed, improvement in processing speed, etc. There was a problem.

また、大型の液体供給装置を別途用意する必要があるので、マイクロ化学システム装置を低コストで作製しても液体供給装置に多額のコストがかかるという問題があった。   In addition, since it is necessary to prepare a large liquid supply apparatus separately, there is a problem that even if the microchemical system apparatus is manufactured at a low cost, the liquid supply apparatus is expensive.

また、シリコンやPDMSは一般的に取り扱いが難しく、例えば外部のプリント板やその他の基板や装置内部への実装を行うときに電気接続と流体接続を行う際に簡便な方法が少ないなどの問題があった。この場合、例えば、流路の開口部分が流路基板の主面に位置し、外部接続用の接続パッドが半導体基板の側面等に位置しているような構造、つまり流路の外部接続用の部分と電気的な接続を行なう部分とが異なる平面に位置するような構造等も多く、例えばチップコンデンサー等の電子部品をマイクロ化学チップに搭載する場合、一般的な表面実装の形態での接続が非常に難しい。   In addition, silicon and PDMS are generally difficult to handle, and there are problems such as few simple methods for electrical connection and fluid connection when mounting inside an external printed board or other substrate or device, for example. there were. In this case, for example, a structure in which the opening portion of the flow path is located on the main surface of the flow path substrate and the connection pad for external connection is located on the side surface of the semiconductor substrate, that is, for external connection of the flow path There are many structures where parts and electrical connection parts are located on different planes. For example, when electronic parts such as chip capacitors are mounted on a microchemical chip, connection in the form of general surface mounting is possible. very difficult.

また、流路封止を行う際に、半導体等のMEMSが形成されている基板と流路基板とを一つずつ、流路とMEMSの機能部分等とを位置合わせしながら接続しなければならず、生産性が悪い、コストが高くなるなどの問題があった。   In addition, when performing flow path sealing, the substrate on which a MEMS such as a semiconductor is formed and the flow path substrate must be connected one by one while aligning the flow path and the functional part of the MEMS. There were problems such as poor productivity and high cost.

本発明は、上記従来の問題点に鑑みて完成されたものであり、その目的は、低コストで製造でき、不純物の混入が少なく、多種の実装形態を実現できる安定した性能のマイクロ化学チップおよびその製造方法を提供することである。   The present invention has been completed in view of the above-described conventional problems, and its purpose is to produce a microchemical chip with stable performance that can be manufactured at low cost, has few impurities, and can realize various mounting forms. The manufacturing method is provided.

本発明のマイクロ化学チップは、一方主面から他方主面にかけて配線導体が形成されている絶縁基板と、該絶縁基板の前記一方主面の外周部に形成された枠状の導体層と、前記配線導体に電気的に接続されて前記一方主面の前記導体層よりも外側に形成された接続パッドと、前記絶縁基板の内部に形成された、前記一方主面の前記導体層の内側の部位に一つの開口端を有するとともに前記絶縁基板の外部に露出する表面に他の開口端を有する被処理流体を流通させるための流路と、一主面の中央部に微小電子機械機構および前記一主面の外周部に前記微小電子機械機構に電気的に接続された電極がそれぞれ形成されるとともに、前記一主面の外周部で前記電極よりも内側の部位が前記導体層に全周にわたって接合材を介して接合された半導体基板と、前記接続パッドと前記電極とを電気的に接続するとともに前記接合材と溶融温度が同じである導電性接続材とを具備していることを特徴とする。   The microchemical chip of the present invention includes an insulating substrate in which a wiring conductor is formed from one main surface to the other main surface, a frame-shaped conductor layer formed on the outer peripheral portion of the one main surface of the insulating substrate, A connection pad electrically connected to the wiring conductor and formed outside the conductor layer on the one main surface; and a portion inside the conductor layer on the one main surface formed inside the insulating substrate. A flow path for circulating a fluid to be processed having one open end and another open end on the surface exposed to the outside of the insulating substrate, and a microelectromechanical mechanism and the one at the center of one main surface. Electrodes electrically connected to the microelectromechanical mechanism are respectively formed on the outer peripheral portion of the main surface, and the inner portion of the one main surface is joined to the conductor layer over the entire periphery. Semiconductors joined via materials A plate, characterized in that the connection pads and the melting temperature and the bonding material while electrically connecting the electrodes are provided with a conductive connecting member is the same.

本発明のマイクロ化学チップは好ましくは、前記流路は、流通方向に垂直な断面における幅が0.05乃至0.5mmであることを特徴とする。   The microchemical chip of the present invention is preferably characterized in that the channel has a width in a cross section perpendicular to the flow direction of 0.05 to 0.5 mm.

また、本発明のマイクロ化学チップは好ましくは、前記流路は、平面視で枠状の前記導体層よりも内側に位置していることを特徴とする。   The microchemical chip of the present invention is preferably characterized in that the flow path is positioned inside the frame-shaped conductor layer in a plan view.

また、本発明のマイクロ化学チップは好ましくは、前記微小電子機械機構は、前記流路の前記一つの開口端から前記絶縁基板および前記半導体基板に挟まれた内部空間に湧出した前記被処理流体を化学的に分析するためのものであることを特徴とする。   In the microchemical chip of the present invention, preferably, the microelectromechanical mechanism is configured so that the fluid to be processed that has flowed out from the one opening end of the flow path to an internal space sandwiched between the insulating substrate and the semiconductor substrate. It is intended for chemical analysis.

また、本発明のマイクロ化学チップは好ましくは、前記絶縁基板は、他方主面または側面に前記流路の前記他の開口端が位置しており、前記他の開口端に前記流路と連通する外部接続用のパイプが取着されていることを特徴とする。   In the microchemical chip of the present invention, preferably, the insulating substrate has the other open end of the flow path located on the other main surface or side surface, and communicates with the flow path at the other open end. A pipe for external connection is attached.

本発明のマイクロ化学チップの製造方法は、
半導体母基板の一主面に、微小電子機械機構およびそれに電気的に接続された電極が形成されて成る微小電子機械機構領域を多数個縦横に配列形成した多数個取り微小電子機械機構基板を準備する工程と、
絶縁母基板に、その一方主面から他方主面にかけて形成された配線導体、前記一方主面の外周部に形成されて表面に接合材が被着されている枠状の導体層、前記一方主面の前記導体層の外側に形成されて表面に導電性接続材が被着されている接続パッド、および前記一方主面の前記導体層の内側の部位に一つの開口端を有するように形成された被処理流体を流通させるための流路を一組としたマイクロ化学チップ基板領域を多数個縦横に配列形成した多数個取りマイクロ化学チップ基板を準備する工程と、
前記多数個取り微小電子機械機構基板の前記微小電子機械機構領域の前記各電極を、前記多数個取りマイクロ化学チップ基板の前記マイクロ化学チップ基板領域の前記各接続パッドに前記導電性接続材を介してそれぞれ接続するとともに、前記半導体母基板の前記一主面と前記絶縁母基板の前記導体層とを前記接合材を介して接合する工程と、
互いに接合された前記多数個取り微小電子機械機構基板および前記多数個取りマイクロ化学チップ基板を前記微小電子機械機構領域および前記マイクロ化学チップ基板領域毎に分割して個々のマイクロ化学チップを得る工程とを具備していることを特徴とする。
The method for producing the microchemical chip of the present invention comprises:
Prepared a multi-electron micromechanical mechanism board in which microelectromechanical mechanisms and microelectromechanical mechanism areas formed by electrodes connected to the microelectromechanical mechanism are formed on one main surface of the semiconductor mother board. And a process of
A wiring conductor formed from one main surface to the other main surface of the insulating mother board, a frame-shaped conductor layer formed on the outer peripheral portion of the one main surface and having a bonding material deposited on the surface, the one main surface A connection pad formed on the outer surface of the conductor layer and having a conductive connection material attached to the surface, and one open end at a portion of the one main surface inside the conductor layer. Preparing a multi-chip microchemical chip substrate in which a plurality of micro-chemical chip substrate regions having a set of flow paths for circulating the processed fluid are arranged vertically and horizontally; and
The electrodes of the micro electro mechanical mechanism region of the multi-chip micro electro mechanical mechanism substrate are connected to the connection pads of the micro chemical chip substrate region of the multi-chip micro chemical chip substrate via the conductive connection material. And connecting the one main surface of the semiconductor mother board and the conductor layer of the insulating mother board via the bonding material,
Dividing the multi-cavity microelectromechanical mechanism substrate and the multi-cavity microchemical chip substrate bonded together to each microelectromechanical mechanism region and the microchemical chip substrate region to obtain individual microchemical chips; It is characterized by comprising.

本発明のマイクロ化学チップによれば、一方主面から他方主面にかけて配線導体が形成されている絶縁基板と、絶縁基板の一方主面の外周部に形成された枠状の導体層と、配線導体に電気的に接続されて一方主面の導体層よりも外側に形成された接続パッドと、絶縁基板の内部に形成された、一方主面の導体層の内側の部位に一つの開口端を有するとともに絶縁基板の外部に露出する表面に他の開口端を有する被処理流体を流通させるための流路と、一主面の中央部に微小電子機械機構および一主面の外周部に微小電子機械機構に電気的に接続された電極がそれぞれ形成されるとともに、一主面の外周部で電極よりも内側の部位が導体層に全周にわたって接合材を介して接合された半導体基板と、接続パッドと電極とを電気的に接続するとともに接合材と溶融温度が同じである導電性接続材とを具備していることから、絶縁基板の一方主面の流路の開口端部分に外部の被処理流体の供給口をロウ材等の手段で密着させて接合させることにより、絶縁基板と外部との被処理流体のやりとりが容易となる。その結果、被処理流体の供給から化学反応まで一貫して密閉状態を保つことができるので、外部から異物が混入することを防ぎ、所謂コンタミネーション等の問題の発生を効果的に防止することができる。   According to the microchemical chip of the present invention, an insulating substrate in which a wiring conductor is formed from one main surface to the other main surface, a frame-like conductor layer formed on the outer peripheral portion of the one main surface of the insulating substrate, and wiring A connection pad that is electrically connected to the conductor and formed on the outer side of the conductor layer on the one main surface, and one open end formed on the inner side of the conductor layer on the one main surface formed inside the insulating substrate. A flow path for circulating a fluid to be treated having another open end on the surface exposed to the outside of the insulating substrate, a microelectromechanical mechanism at the center of one main surface, and a microelectron at the outer periphery of one main surface Each of the electrodes electrically connected to the mechanical mechanism is formed, and connected to the semiconductor substrate in which the portion inside the electrode on the outer peripheral portion of one main surface is bonded to the conductor layer over the entire circumference through the bonding material When the pad and electrode are electrically connected Since the bonding material and the conductive connecting material having the same melting temperature are provided, the supply port of the external fluid to be treated is connected to the opening end portion of the flow path on the one main surface of the insulating substrate. By closely bonding with the means, the fluid to be processed can be easily exchanged between the insulating substrate and the outside. As a result, since the sealed state can be maintained consistently from the supply of the fluid to be treated to the chemical reaction, it is possible to prevent foreign matters from entering from outside and effectively prevent the occurrence of so-called contamination. it can.

また、マイクロ化学チップが具備するMEMSへの送液機能により、別途大型の液体供給装置を使用することなく、流路に被処理流体を流すことができ、微細な流路に見合った微量の被処理流体を準備すればよく、所望の化学処理に要するコストを低く抑えることもできる。   In addition, the liquid feeding function to the MEMS included in the microchemical chip allows the fluid to be treated to flow through the flow path without using a separate large-sized liquid supply device, so that a small amount of liquid can be accommodated in the fine flow path. What is necessary is just to prepare a process fluid and can also suppress the cost required for a desired chemical process low.

また、本発明のマイクロ化学チップは、被処理流体を流すための流路の開口端および電気的な接続のための接続パッドは、ともに機械的強度等の特性が良好で、取り扱いが容易な絶縁基板に形成されているため、取り扱いが容易である。   In the microchemical chip of the present invention, both the opening end of the flow path for flowing the fluid to be processed and the connection pad for electrical connection have good characteristics such as mechanical strength and are easy to handle. Since it is formed on the substrate, it is easy to handle.

また、流路の開口端や接続パッドがともに絶縁基板の一方主面に形成されているため、プリント配線基板等の外部電気回路基板に対する電気的な接続、特に表面実装の形態での接続が容易である。   In addition, since both the open end of the flow path and the connection pad are formed on one main surface of the insulating substrate, electrical connection to an external electric circuit board such as a printed wiring board, particularly connection in the form of surface mounting is easy. It is.

また、外部から被処理流体を供給するに際して液体供給用装置を別途用いて流路に被処理流体を供給する場合、外部環境をクリーンにする必要が無く、供給される被処理流体の量をより微小量化でき、一般的に高価な化学検出用の被処理流体を少量で効率よく使用することができる。   In addition, when supplying the fluid to be processed to the flow path by using a liquid supply device separately when supplying the fluid to be processed from the outside, it is not necessary to clean the external environment, and the amount of the fluid to be processed to be supplied can be increased. A small amount of the fluid for chemical detection that is generally expensive can be efficiently used in a small amount.

本発明において好ましくは、流路は、流通方向に垂直な断面における幅が0.05乃至0.5mmであることから、化学反応を効率的に行なわせることのできる大きさでかつ加工性を保てる小ささなので、絶縁基板への流路の形成がより簡便になり、被処理流体の流通量の制御に有効である。   Preferably, in the present invention, the flow path has a width in a cross section perpendicular to the flow direction of 0.05 to 0.5 mm, so that it is large enough to allow a chemical reaction to be performed efficiently and can maintain processability. Since it is small, it is easier to form a flow path on the insulating substrate, which is effective for controlling the flow rate of the fluid to be processed.

また、本発明において好ましくは、流路は、平面視で枠状の導体層よりも内側に位置していることから、被処理流体が接続パットに触れないようにして被処理流体を効率よくMEMSに供給できるため、腐食性の強い被処理流体をMEMSに供給したとしても、電気的接続の信頼性が保たれ、導電性の被処理流体をMEMS部に供給することも可能となる。また、流路が導体層の内側に位置しているため、マイクロ化学チップの小型化をより効果的にかつ確実に行なうことができる。   Further, in the present invention, preferably, the flow path is located inside the frame-shaped conductor layer in a plan view, so that the fluid to be processed can be efficiently transferred to the MEMS without touching the connection pad. Therefore, even if a highly corrosive process fluid is supplied to the MEMS, the reliability of the electrical connection is maintained, and the conductive process fluid can be supplied to the MEMS portion. Moreover, since the flow path is located inside the conductor layer, the microchemical chip can be more effectively and reliably reduced in size.

また、配線導体および流路を、絶縁基体の内部で交錯しないようにして形成することができるため、製造が容易でコストをさらに低くすることもできる。   Further, since the wiring conductor and the flow path can be formed so as not to cross each other inside the insulating base, the manufacturing is easy and the cost can be further reduced.

また、本発明において好ましくは、微小電子機械機構は、流路の一つの開口端から絶縁基板および半導体基板に挟まれた内部空間に湧出した被処理流体を化学的に分析するためのものであることから、絶縁基板と半導体基板とで挟まれた狭い空間内の少量の被処理流体を効率よく化学分析することができるので、化学分析を効率的に少量の被処理流体で行うことができる。   Preferably, in the present invention, the microelectromechanical mechanism is for chemically analyzing the fluid to be processed that has flowed out from one opening end of the flow path into the internal space sandwiched between the insulating substrate and the semiconductor substrate. Therefore, since a small amount of fluid to be processed in a narrow space sandwiched between the insulating substrate and the semiconductor substrate can be efficiently analyzed chemically, chemical analysis can be efficiently performed with a small amount of fluid to be processed.

また、本発明において好ましくは、絶縁基板は、他方主面または側面に流路の他の開口端が位置しており、他の開口端に流路と連通する外部接続用のパイプが取着されていることから、外部接続用のパイプを絶縁基板に直接接続することができるので、接続の作業がより容易なものとなるとともに、被処理流体が供給されるところから化学反応を行うところまで一貫して密閉状態を保つことができる。その結果、マイクロ化学チップと外部の被処理流体供給装置との接続がより一層容易かつ確実になり、被処理流体の供給を簡易で高信頼性なものとすることができる。   In the present invention, preferably, the insulating substrate has another open end of the flow path located on the other main surface or side face, and an external connection pipe communicating with the flow path is attached to the other open end. Therefore, since the pipe for external connection can be directly connected to the insulating substrate, the connection work becomes easier and it is consistent from the point where the fluid to be processed is supplied to the place where the chemical reaction is performed. Can be kept sealed. As a result, the connection between the microchemical chip and the external fluid supply apparatus to be processed can be made easier and more reliable, and the supply of the fluid to be processed can be made simple and highly reliable.

本発明のマイクロ化学チップの製造方法によれば、上記各工程を具備することから、縦横に配列形成された多数個のマイクロ化学チップについて、それぞれの電極の外部接続のための接続と微小電子機械機構の封止とを同時に行なうことができるため、互いに接合された微小電子機械機構基板および多数個取り用マイクロ化学チップ基板から成る多数個取りのマイクロ化学チップを、容易かつ確実に製造することができる。   According to the method of manufacturing a microchemical chip of the present invention, since each of the above steps is provided, the connection for external connection of each electrode and the microelectromechanical machine for a large number of microchemical chips arranged in rows and columns. Since the sealing of the mechanism can be performed at the same time, it is possible to easily and reliably manufacture a multi-chip microchemical chip composed of a microelectromechanical mechanism substrate and a multi-chip microchemical chip substrate bonded together. it can.

また、互いに接合された多数個取り用マイクロ化学チップ基板および多数個取り用微小電子機械機構基板を、微小電子機械機構領域およびマイクロ化学チップ基板領域毎に分割することにより、絶縁基板と半導体基板との間の微小空間内に微小電子機械機構を封止するとともに微小空間内に被処理流体を供給、排出するための流路を備えて成る個々のマイクロ化学チップを多数個同時に製造することができる。この分割の際、電子機械機構領域の各微小電子機械機構は多数個取り用マイクロ化学チップ基板によりそれぞれ封止されているので、ダイシング加工等による分割で発生するシリコン等の半導体基板の切削粉が微小電子機械機構に付着するようなことはなく、分割後のマイクロ化学チップにおいて微小電子機械機構を確実に作動させることができる。   In addition, by dividing the multi-chip microchemical chip substrate and the multi-chip microelectromechanical substrate bonded together into the microelectromechanical mechanism region and the microchemical chip substrate region, the insulating substrate and the semiconductor substrate A large number of individual microchemical chips comprising a microelectromechanical mechanism sealed in a microspace between them and a flow path for supplying and discharging a fluid to be processed in the microspace can be manufactured simultaneously. . At the time of this division, each microelectromechanical mechanism in the electromechanical mechanism area is sealed with a multi-chip microchemical chip substrate, so that the cutting powder of the semiconductor substrate such as silicon generated by the division by dicing or the like is generated. There is no adhesion to the microelectromechanical mechanism, and the microelectromechanical mechanism can be reliably operated in the divided microchemical chip.

また、分割して得られたマイクロ化学チップは、絶縁基板の他方主面や側面に配線導体が導出されているので、この導出された端部に金属バンプ等の端子を取着するだけで、表面実装等により外部電子回路基板に実装することができるものとなり、実装の工程を非常に短くかつ容易なものとすることができるマイクロ化学チップとなる。   In addition, since the microchemical chip obtained by dividing the wiring conductor is led out to the other main surface or side surface of the insulating substrate, simply attaching a terminal such as a metal bump to the derived end part, The microchemical chip can be mounted on an external electronic circuit board by surface mounting or the like, and the mounting process can be made extremely short and easy.

本発明のマイクロ化学チップおよびその製造方法について以下に詳細に説明する。図1は本発明のマイクロ化学チップの実施の形態の一例を示す断面図である。図1において、1は絶縁基板、2は枠状の導体層、3は配線導体、4は接続パット、5は流路、6は微小電子機械機構(MEMS)、7は電極、8は半導体基板、9は導電性接続材、10はマイクロ化学チップである。   The microchemical chip and the manufacturing method thereof of the present invention will be described in detail below. FIG. 1 is a cross-sectional view showing an example of an embodiment of a microchemical chip of the present invention. In FIG. 1, 1 is an insulating substrate, 2 is a frame-like conductor layer, 3 is a wiring conductor, 4 is a connection pad, 5 is a flow path, 6 is a micro electromechanical mechanism (MEMS), 7 is an electrode, and 8 is a semiconductor substrate. , 9 is a conductive connecting material, and 10 is a microchemical chip.

絶縁基板1と半導体基板8とは枠状の導体層2に接合されている接合材11を介して接合され、両者の間に形成される内部空間内に微小電子機械機構6が流路5の部分を除いて外部と遮断されて収納されている。流路5を通って内部空間内に供給される被処理流体が微小電子機械機構6で処理され、処理に応じて生じる電気信号が電極7から導電性接続材9を介して接続パッド4に伝わり、接続パッド4と電気的に接続されている配線導体3から外部に伝送され、処理の結果がわかるような仕組みになっている。   The insulating substrate 1 and the semiconductor substrate 8 are bonded to each other through a bonding material 11 bonded to the frame-like conductor layer 2, and the micro electro mechanical mechanism 6 is formed in the internal space formed between the two. Except for the part, it is cut off from the outside and stored. The fluid to be processed that is supplied into the internal space through the flow path 5 is processed by the microelectromechanical mechanism 6, and an electrical signal generated in accordance with the processing is transmitted from the electrode 7 to the connection pad 4 through the conductive connection material 9. The signal is transmitted from the wiring conductor 3 electrically connected to the connection pad 4 to the outside, and the processing result is known.

本発明における微小電子機械機構6は、例えばバイオセンサー,DNAチップ,マイクロリアクタ,プリントヘッドなどの流体MEMSデバイス、化学センサ,ガスセンサ等の各種センサなどの機能を有するものであり、半導体微細加工技術を基本とした、所謂マイクロマシニングで作る部品であり、1素子あたり10μm〜数100μm程度の寸法を有する。   The microelectromechanical mechanism 6 in the present invention has functions of various sensors such as a fluid MEMS device such as a biosensor, a DNA chip, a microreactor, and a print head, a chemical sensor, and a gas sensor. This is a part made by so-called micromachining, and has a size of about 10 μm to several hundreds of μm per element.

絶縁基板1は、微小電子機械機構6を封止するための蓋体や封止体として機能するとともに、枠状の導体層2、配線導体3、接続パッド4および流路5を形成するための基体としても機能する。   The insulating substrate 1 functions as a lid or a sealing body for sealing the micro electro mechanical mechanism 6 and forms the frame-shaped conductor layer 2, the wiring conductor 3, the connection pad 4, and the flow path 5. It also functions as a substrate.

この絶縁基板1は、酸化アルミニウム質焼結体や窒化アルミニウム質焼結体,ムライト質焼結体,炭化珪素質焼結体,窒化珪素質焼結体,ガラスセラミックス焼結体等のセラミックス材料、ポリイミド,ガラスエポキシ樹脂等の樹脂材料、セラミックスやガラス等の無機材料粉末をエポキシ樹脂等の樹脂で結合して成る複合材等により形成される。   This insulating substrate 1 includes ceramic materials such as an aluminum oxide sintered body, an aluminum nitride sintered body, a mullite sintered body, a silicon carbide sintered body, a silicon nitride sintered body, a glass ceramic sintered body, It is formed of a resin material such as polyimide or glass epoxy resin, or a composite material formed by bonding inorganic material powder such as ceramic or glass with a resin such as epoxy resin.

絶縁基板1は、例えば、酸化アルミニウム質焼結体から成る場合、酸化アルミニウム,ガラス粉末等の原料粉末,樹脂バインダー,溶剤等を混合して成るガラスセラミックスラリーをシート状に成形して成るガラスセラミックグリーンシート(以下、グリーンシートともいう)を作製するとともにその複数枚を積層し、焼成することにより形成される。なお、絶縁基板1は、酸化アルミニウム質焼結体で形成するものに限らず、用途や気密封止するマイクロ化学チップ10の特性等に応じて適したものを選択することが好ましい。   When the insulating substrate 1 is made of, for example, an aluminum oxide sintered body, a glass ceramic formed by forming a glass ceramic slurry formed by mixing a raw material powder such as aluminum oxide and glass powder, a resin binder, a solvent, and the like into a sheet shape. It is formed by producing a green sheet (hereinafter also referred to as a green sheet) and laminating and firing a plurality of the sheets. The insulating substrate 1 is not limited to the one formed of an aluminum oxide sintered body, and it is preferable to select a substrate that is suitable for the application and the characteristics of the microchemical chip 10 to be hermetically sealed.

例えば、絶縁基板1は、枠状の導体層2を介して半導体基板8と機械的に接合されるので、半導体基板8との接合の信頼性、つまり絶縁基板1と半導体基板8との間に形成される内部空間の外部に対する遮蔽性や、マイクロ化学チップとして長期間の使用に耐える長期信頼性を高くするためには、ムライト質焼結体、または例えばガラス成分の種類や添加量を調整することにより熱膨張係数を半導体基板8に近似させるようにした酸化アルミニウム−ホウ珪酸ガラス系等のガラスセラミックス焼結体等のような半導体基板8との熱膨張係数の差が小さい材料で形成することが好ましい。   For example, since the insulating substrate 1 is mechanically bonded to the semiconductor substrate 8 via the frame-shaped conductor layer 2, the reliability of the bonding with the semiconductor substrate 8, that is, between the insulating substrate 1 and the semiconductor substrate 8. In order to increase the shielding property against the outside of the formed internal space and the long-term reliability to withstand long-term use as a microchemical chip, the type and amount of mullite sintered body or glass components are adjusted. By using a material having a small difference in thermal expansion coefficient from the semiconductor substrate 8 such as a glass ceramic sintered body such as an aluminum oxide-borosilicate glass system whose thermal expansion coefficient is approximated to that of the semiconductor substrate 8. Is preferred.

また、絶縁基板1は、配線導体3により伝送される電気信号の遅延を防止するような場合、ポリイミド,ガラスエポキシ樹脂等の有機樹脂材料、セラミックスやガラス等の無機粉末をエポキシ樹脂等の有機樹脂で結合して成る複合材、または酸化アルミニウム−ホウ珪酸ガラス系や酸化リチウム系等のガラスセラミックス焼結体等のような比誘電率の小さい材料で形成することが好ましい。   The insulating substrate 1 is made of an organic resin material such as polyimide or glass epoxy resin, or an inorganic resin such as ceramic or glass with an organic resin such as epoxy resin, in order to prevent delay of the electrical signal transmitted by the wiring conductor 3. It is preferable to form a composite material formed by bonding or a material having a low relative dielectric constant such as an aluminum oxide-borosilicate glass-based or lithium oxide-based glass ceramic sintered body.

また、絶縁基板1は、被処理流体に対する保温性を高めて、微小電子機械機構6で施される処理、例えば化学反応等の処理の安定性を高める上では、エポキシ樹脂やポリイミド樹脂等の熱伝導率の低い材料で形成することが好ましい
また、絶縁基板1は、微小電子機械機構6で行なわれる処理を目視で確認したり処理のために光を照射する場合、枠状のセラミック材料の中央部の開口にガラス材等の透光性材料を取着したもの等の、少なくとも一部に透光性を有するものであることが好ましい。
In addition, the insulating substrate 1 increases the heat retention property of the fluid to be processed and enhances the stability of the processing performed by the microelectromechanical mechanism 6, for example, the processing of a chemical reaction or the like, such as an epoxy resin or a polyimide resin. Preferably, the insulating substrate 1 is formed of a material having a low conductivity. When the processing performed by the microelectromechanical mechanism 6 is visually confirmed or irradiated with light for processing, the insulating substrate 1 is formed at the center of the frame-shaped ceramic material. It is preferable that at least a part has translucency, such as a translucent material such as a glass material attached to the opening of the part.

上記のように、本発明のマイクロ化学チップは、用途等に応じて種々の材料を選択することが可能で、機械的強度等の特性が良好であるとともに取り扱いが容易な絶縁基板1を用いることができ、この絶縁基板1に、被処理流体を流すための流路5の開口端および電気的な接続のための接続パッド4がともに形成されているため、取り扱いが容易である。   As described above, for the microchemical chip of the present invention, various materials can be selected according to the use, etc., and the insulating substrate 1 that has good mechanical strength and other characteristics and is easy to handle is used. Since the opening end of the flow path 5 for flowing the fluid to be processed and the connection pad 4 for electrical connection are formed on the insulating substrate 1, the handling is easy.

絶縁基板1の一方主面(微小電子機械機構6を封止する側の主面)から他方主面にかけて配線導体3が導出されている。この配線導体3は、一部が絶縁基板1の側面に導出されていてもよい。また、絶縁基板1の一方主面の外周部には枠状の導体層2が形成され、枠状の導体層2は、絶縁基板1を半導体基板8に接合するための下地金属層として機能する。枠状の導体層2に接合材11を接合し、この接合材11を半導体基板8に接合することにより、絶縁基板1と半導体基板8とが接合され、両者の間に接合材11を側壁とした内部空間が形成される。この内部空間内に、半導体基板8の一主面の中央部に形成されている微小電子機械機構6が収納される。   A wiring conductor 3 is led out from one main surface of the insulating substrate 1 (main surface on the side sealing the micro electro mechanical mechanism 6) to the other main surface. A part of the wiring conductor 3 may be led out to the side surface of the insulating substrate 1. A frame-shaped conductor layer 2 is formed on the outer peripheral portion of one main surface of the insulating substrate 1, and the frame-shaped conductor layer 2 functions as a base metal layer for bonding the insulating substrate 1 to the semiconductor substrate 8. . The bonding material 11 is bonded to the frame-like conductor layer 2, and the bonding material 11 is bonded to the semiconductor substrate 8, whereby the insulating substrate 1 and the semiconductor substrate 8 are bonded to each other. An internal space is formed. In this internal space, the micro electromechanical mechanism 6 formed in the central portion of one main surface of the semiconductor substrate 8 is accommodated.

半導体基板8は、シリコン,ポリシリコン等の半導体材料を板状に加工して成り、一主面の中央部に微小電子機械機構6が形成されている。微小電子機械機構6は、シリコン,ポリシリコン等から成る半導体基板8の一主面に対してフォトリソグラフィー技術やレーザー加工などのいわゆるマスクレスエッチング技術、フッ酸エッチング,ドライエッチングなどのエッチング技術を用いて所望の構造を形成することにより作製される。   The semiconductor substrate 8 is formed by processing a semiconductor material such as silicon or polysilicon into a plate shape, and the microelectromechanical mechanism 6 is formed at the center of one main surface. The micro electro mechanical mechanism 6 uses a so-called maskless etching technique such as photolithography technique or laser processing, etching technique such as hydrofluoric acid etching, dry etching, etc. on one main surface of a semiconductor substrate 8 made of silicon, polysilicon or the like. To form a desired structure.

微小電子機械機構6は、例えば、化学処理用のものであれば、その用途に応じてエッチング加工で所定の構造に成形した後、スピンコートやディップコートなどのコーティング技術を用いて表面状態を変化させ薬品の濡れ性や化学反応性などを制御して用いられ、化学分析やDNAの同定、クロマトグラフィーなどの各種分析などを行う。   For example, if the microelectromechanical mechanism 6 is for chemical processing, the surface state is changed using a coating technique such as spin coating or dip coating after being formed into a predetermined structure by etching according to the application. It is used by controlling the wettability and chemical reactivity of chemicals, and performs various analyzes such as chemical analysis, DNA identification, and chromatography.

また、半導体基板8の一主面の外周部には、微小電子機械機構6と電気的に接続された電極7が形成されている。この電極7は、微小電子機械機構6で行なわれた化学処理等の処理の結果に応じて発信される電気信号を半導体基板8の外部に接続し伝える機能をなし、アルミニウムや金等の金属材料等の導電性材料で形成されている
絶縁基板1と半導体基板8との接合は、半導体基板8の一主面の外周部のうち電極7よりも内側の部位を、接合材11を介して絶縁基板1の枠状の導体層2に接合することにより行われる。また、絶縁基板1の一方主面側の枠状の導体層2の外側の部位には、配線導体3と電気的に接続された接続パッド4が形成されている。
Further, an electrode 7 electrically connected to the micro electro mechanical mechanism 6 is formed on the outer peripheral portion of one main surface of the semiconductor substrate 8. The electrode 7 has a function of connecting and transmitting an electrical signal transmitted in accordance with the result of processing such as chemical processing performed by the micro-electromechanical mechanism 6 to the outside of the semiconductor substrate 8, and is made of a metal material such as aluminum or gold. Insulating the insulating substrate 1 and the semiconductor substrate 8 formed of a conductive material or the like insulates the outer peripheral portion of one main surface of the semiconductor substrate 8 from the inside of the electrode 7 through the bonding material 11. This is performed by bonding to the frame-like conductor layer 2 of the substrate 1. In addition, a connection pad 4 electrically connected to the wiring conductor 3 is formed in a portion outside the frame-like conductor layer 2 on the one main surface side of the insulating substrate 1.

配線導体3および接続パッド4は、半導体基板8の電極7から送られてくる電気信号を、マイクロ化学チップ10の外部に伝送する導電路として機能する。これらの配線導体3,接続パッド4および導体層2は、銅,銀,金,パラジウム,タングステン,モリブデン,マンガン等の金属材料から成る。これらの配線導体3,接続パッド4および導体層2の形成の手段としては、メタライズ層として形成する手段、めっき層として形成する手段、蒸着等の金属を薄膜層として被着させる手段等を用いることができる。例えば、配線導体3,接続パッド4および導体層2がタングステンのメタライズ層から成る場合、タングステンの導体ペーストを絶縁基板1となるグリーンシートに印刷し、この導体ペーストをグリーンシートとともに焼成することにより形成される。   The wiring conductor 3 and the connection pad 4 function as a conductive path for transmitting an electrical signal sent from the electrode 7 of the semiconductor substrate 8 to the outside of the microchemical chip 10. These wiring conductor 3, connection pad 4 and conductor layer 2 are made of a metal material such as copper, silver, gold, palladium, tungsten, molybdenum and manganese. As a means for forming these wiring conductor 3, connection pad 4 and conductor layer 2, a means for forming as a metallized layer, a means for forming as a plating layer, a means for depositing metal such as vapor deposition as a thin film layer, etc. are used. Can do. For example, when the wiring conductor 3, the connection pad 4 and the conductor layer 2 are made of a tungsten metallized layer, the tungsten conductor paste is printed on a green sheet to be the insulating substrate 1, and the conductor paste is fired together with the green sheet. Is done.

そして、絶縁基板1と半導体基板8との接合の際、半導体基板8の一主面の電極7が、接続パッド4に導電性接続材9を介して電気的に接続され、これにより微小電子機械機構6、電極7、接続パッド4および配線導体3の間が電気的に接続される。   When the insulating substrate 1 and the semiconductor substrate 8 are joined, the electrode 7 on one main surface of the semiconductor substrate 8 is electrically connected to the connection pad 4 via the conductive connection material 9, thereby enabling the microelectronic machine. The mechanism 6, the electrode 7, the connection pad 4, and the wiring conductor 3 are electrically connected.

導電性接続材9および接合材11は、錫−銀系半田,錫−銀−銅系半田等の半田、金−錫ろう材等の低融点ろう材、銀−ゲルマニウム系等の高融点ろう材、銀,銅等の導電性粉末を樹脂で結合して成る導電性樹脂接着剤等により形成されている。この場合、接合材11を介した絶縁基板1と半導体基板8との間の機械的な接合と、導電性接続材7を介した接続パッド4と電極8との間の電気的な接続の両方を容易かつ強固とするため、接合材11および導電性接続材7は、溶融温度が同じものとする必要がある。両者の溶融温度は厳密に同じ温度とする必要はなく、接合、接続の作業(実際には周知のトンネル炉やバッチ式の炉等を用いた加熱溶融)を同時に行なえる程度の温度差があってもよい。   The conductive connecting material 9 and the bonding material 11 are solders such as tin-silver solder, tin-silver-copper solder, low melting point solder such as gold-tin solder, and high melting point solder such as silver-germanium. It is formed by a conductive resin adhesive or the like formed by bonding conductive powders such as silver and copper with a resin. In this case, both the mechanical bonding between the insulating substrate 1 and the semiconductor substrate 8 via the bonding material 11 and the electrical connection between the connection pad 4 and the electrode 8 via the conductive connection material 7. In order to make the bonding easy and strong, it is necessary that the bonding material 11 and the conductive connecting material 7 have the same melting temperature. The melting temperatures of the two do not need to be exactly the same, and there is a temperature difference that allows joint and connection work (actually, heat melting using a well-known tunnel furnace, batch-type furnace, etc.) at the same time. May be.

そして、配線導体3のうち絶縁基板1の他方主面に露出している部分を外部の電気回路に錫−鉛半田等を介して接合することにより、マイクロ化学チップ10の電極7が導電性接続材9、接続パッド4および配線導体3を介して外部の電気回路に電気的に接続される。これにより、微小電子機械機構6と外部の電気回路とが電気的に接続される。   Then, the portion of the wiring conductor 3 exposed on the other main surface of the insulating substrate 1 is joined to an external electric circuit via tin-lead solder or the like, so that the electrode 7 of the microchemical chip 10 is electrically connected. It is electrically connected to an external electric circuit through the material 9, the connection pad 4 and the wiring conductor 3. Thereby, the micro electro mechanical mechanism 6 and an external electric circuit are electrically connected.

また、絶縁基板1の内部には、一方主面の導体層2の内側の部位に一つの開口端を有するとともに絶縁基板1の外部に露出する表面に他の開口端を有する被処理流体を流通させるための流路5が形成されている。この流路5を通って被処理流体が、絶縁基板1と半導体基板8と接合材11とで形成されて内部に微小電子機械機構6が収納されている内部空間に供給される。これにより、化学分析を行なう試料等の被処理流体を流し、電位測定、DNAの検出,同定、クロマトグフィー、光化学反応等の化学処理等の処理の機能を有するマイクロ化学チップ10が形成されることになる。   In addition, a fluid to be processed having one open end at a portion inside the conductor layer 2 on one main surface and having another open end on the surface exposed to the outside of the insulating substrate 1 is circulated inside the insulating substrate 1. A flow path 5 is formed. A fluid to be processed is supplied to an internal space formed by the insulating substrate 1, the semiconductor substrate 8, and the bonding material 11 through which the micro electromechanical mechanism 6 is accommodated. As a result, a microchemical chip 10 having a processing function such as chemical processing such as potential measurement, DNA detection, identification, chromatography, and photochemical reaction is formed by flowing a fluid to be processed such as a sample for chemical analysis. become.

本発明のマイクロ化学チップ10によれば、上記の構成としたことから、主として処理等の機能を有する半導体基板8側と、被処理流体や電気信号の通り道および外部接続の機能を有する絶縁基板1側との電気的、機械的な接続、接合を容易に行なうことができ、マイクロ化学チップ10の生産性を優れたものとすることができる。この場合、例えば、半導体基板8側および絶縁基板1側をそれぞれ予め多数個縦横に配列しておき、これらを互いに一括して接続、接合し、マイクロ化学チップ10を多数個同時に気密封止することができ、生産性を極めて優れたものとすることができる。   According to the microchemical chip 10 of the present invention, since it has the above-described configuration, the semiconductor substrate 8 side mainly having a function such as processing, and the insulating substrate 1 having a function of a fluid to be processed and an electrical signal path and an external connection function. Electrical and mechanical connection and joining to the side can be easily performed, and the productivity of the microchemical chip 10 can be improved. In this case, for example, the semiconductor substrate 8 side and the insulating substrate 1 side are respectively arranged in advance vertically and horizontally, and these are collectively connected and joined together to simultaneously hermetically seal a large number of microchemical chips 10. And the productivity can be made extremely excellent.

流路5は、グリーンシート上にプレス金型,NCパンチングやレーザ加工を用いて窪みを作製し、その後グリーンシートを積層することによって作製される。また、流路5はグリーンシートの状態での断面をSEMや金属顕微鏡を用いて観察するとき、断面が矩形状に安定して作製できることを評価条件とすると、流通方向に垂直な断面における幅が0.05乃至0.5mmであることが好ましい。0.05mmよりも小さくなると加工することが困難になり、生産性の低下やコストの上昇等を招くおそれがある。また、0.5mmよりも大きくなると、流路5の断面積が大きくなり流路5が微小化されることによる化学反応の効率化に支障をきたす。そのため、微量の被処理流体で高精度の化学分析を行なうマイクロ化学チップ10としての機能が低下するおそれがある。   The flow path 5 is produced by producing a depression on the green sheet using a press die, NC punching or laser processing, and then laminating the green sheets. Moreover, when the cross section in the state of a green sheet observes the cross section in the state of a green sheet using SEM or a metal microscope, if the cross section can be produced stably in a rectangular shape, the width in the cross section perpendicular to the distribution direction is It is preferably 0.05 to 0.5 mm. When it is smaller than 0.05 mm, it becomes difficult to process, and there is a risk of causing a decrease in productivity and an increase in cost. Moreover, when larger than 0.5 mm, the cross-sectional area of the flow path 5 will become large and it will interfere with the efficiency improvement of the chemical reaction by the flow path 5 being miniaturized. Therefore, there is a possibility that the function as the microchemical chip 10 that performs high-precision chemical analysis with a small amount of fluid to be processed may be deteriorated.

ここで、流路5について、絶縁基板1を厚さが0.5mmの板状の酸化アルミニウム質焼結体で形成し、一方主面から他方主面にかけて断面が円形状の流路5を形成したときの、加工性や化学反応性を試験した具体例を以下に示す。   Here, for the flow path 5, the insulating substrate 1 is formed of a plate-like aluminum oxide sintered body having a thickness of 0.5 mm, and the flow path 5 having a circular cross section is formed from one main surface to the other main surface. Specific examples of testing the workability and chemical reactivity are shown below.

グリーンシートは酸化アルミニウムと酸化ケイ素を主成分とする原料粉末を有機溶剤、樹脂バインダーとともにシート状に成形して作製し、流路5はNCパンチング加工により形成した。加工性の判断基準は、グリーンシートに断面が円形状の貫通穴が作製できるかの外観検査で判断しており、マイクロスコープを用いた。貫通穴がグリーンシートの上下面間にわたり貫通しているか否か検査するとともに、貫通穴の内面の軸方向からの傾斜角度(テーパー角)が、貫通穴の縦断面において、内面がグリーンシートの上下面に対して完全に垂直である場合(テーパー角=0°)の仮想線と、実際の内面の線との間に形成される三角形状の部分の幅(三角形の底辺の長さ)と深さ(仮想線の長さ)との比率(幅:深さ)が1:3以下を○とした。   The green sheet was prepared by forming a raw material powder mainly composed of aluminum oxide and silicon oxide into a sheet shape together with an organic solvent and a resin binder, and the flow path 5 was formed by NC punching. The criteria for determining workability were determined by an appearance inspection to determine whether a through-hole having a circular cross section could be produced in the green sheet, and a microscope was used. Inspect whether or not the through hole penetrates between the upper and lower surfaces of the green sheet, and the inclination angle (taper angle) of the inner surface of the through hole from the axial direction is the vertical cross section of the through hole. The width (the length of the base of the triangle) and the depth of the triangular part formed between the virtual line when it is completely perpendicular to the lower surface (taper angle = 0 °) and the actual inner surface line The ratio (width: depth) to the height (the length of the virtual line) was 1: 3 or less.

また、化学反応性は、Siの半導体基板8に作製されたMEMS6において化学反応を行う際に、必要最小な送液量に対し実際にMEMS6に供給される被処理流体量が倍以下になる場合を○、実際にMEMS6に供給される被処理流体量が倍以上になる場合を△とした。表1に上記の加工性、化学反応性の結果を示す。

Figure 2006038657
The chemical reactivity is determined when the amount of fluid to be processed actually supplied to the MEMS 6 is doubled or less with respect to the minimum required liquid feeding amount when a chemical reaction is performed in the MEMS 6 manufactured on the Si semiconductor substrate 8. ◯, and the case where the amount of the fluid to be processed actually supplied to the MEMS 6 is more than doubled is indicated by Δ. Table 1 shows the results of the above processability and chemical reactivity.
Figure 2006038657

表1より、流路5の流通方向に垂直な断面における幅が0.05mm未満では、加工性に不具合を生じやすくなる傾向があり、0.5mmを超えると、化学反応性に不具合が生じる傾向が見られた。   From Table 1, if the width in the cross section perpendicular to the flow direction of the flow path 5 is less than 0.05 mm, there is a tendency that defects are likely to occur in workability, and if it exceeds 0.5 mm, defects in chemical reactivity tend to occur. It was observed.

また、本発明において、流路5は、平面視で枠状の導体層2よりも内側に位置していることが好ましい。これにより、被処理流体が接続パット4に触れずに効率よく微小電子機械機構6に供給されるため、腐食性の強い被処理流体を微小電子機械機構6に供給したとしても、電気的な接続の信頼性が保たれ、導電性の被処理流体を微小電子機械機構6に供給することも可能となる。また、流路5が導体層2の内側に位置しているため、マイクロ化学チップ10の小型化をより効果的にかつ確実に行なうことができる。また、配線導体3および流路5を、絶縁基体1の内部で交錯しないようにして形成することができるため、製造が容易でコストをさらに低くすることもできる。   In the present invention, the flow path 5 is preferably located inside the frame-shaped conductor layer 2 in plan view. As a result, since the fluid to be processed is efficiently supplied to the micro electro mechanical mechanism 6 without touching the connection pad 4, the electrical connection can be made even if a highly corrosive fluid to be processed is supplied to the micro electro mechanical mechanism 6. Therefore, it is possible to supply the fluid to be processed to the micro electro mechanical mechanism 6. Moreover, since the flow path 5 is located inside the conductor layer 2, the microchemical chip 10 can be more effectively and reliably reduced in size. Further, since the wiring conductor 3 and the flow path 5 can be formed so as not to cross each other inside the insulating base 1, the manufacturing is easy and the cost can be further reduced.

また、本発明において、微小電子機械機構6は、流路5の一つの開口端から絶縁基板1および半導体基板8に挟まれた内部空間に湧出した被処理流体を化学的に分析するためのものであることが好ましい。これにより、絶縁基板1と半導体基板8とで挟まれた狭い内部空間内の少量の被処理流体を効率よく化学分析することができる。化学的分析をする微小電子機械機構6としては、例えば、多数のピン状の突起体の露出表面に予めそれぞれ異なるDNAの標準試料を固定しておき、突起体により被処理流体中のDNAを吸着させることにより、被処理流体中のDNAの同定を行なう、所謂DNAチップの機能をなすもの、分子を捕捉する突起状の吸着体を被処理流体の流れる方向に沿って多数個配列しておき、被処理流体中の分子を吸着体に順次吸着させるクロマトグラフィ分析の機能を有するものなどが挙げられる。   In the present invention, the microelectromechanical mechanism 6 is for chemically analyzing the fluid to be treated that has flowed from one open end of the flow path 5 into the internal space sandwiched between the insulating substrate 1 and the semiconductor substrate 8. It is preferable that Thereby, a small amount of fluid to be processed in a narrow internal space sandwiched between the insulating substrate 1 and the semiconductor substrate 8 can be efficiently chemically analyzed. As the microelectromechanical mechanism 6 for chemical analysis, for example, different standard samples of DNA are fixed in advance on the exposed surfaces of a large number of pin-shaped protrusions, and the DNA in the fluid to be treated is adsorbed by the protrusions. By identifying the DNA in the fluid to be treated, what constitutes a so-called DNA chip, a large number of protruding adsorbents that trap molecules are arranged in the direction of flow of the fluid to be treated, Examples thereof include one having a function of chromatographic analysis in which molecules in a fluid to be treated are sequentially adsorbed on an adsorbent.

また、本発明において、絶縁基板1は、他方主面または側面に流路の他の開口端が位置しており、他の開口端に流路と連通する外部接続用のパイプ(図示せず)が取着されていることが好ましい。これにより、外部接続用のパイプを絶縁基板1に直接接続することができるので、マイクロ化学チップ10の外部電気回路基板等への接続の作業がより容易になるとともに、被処理流体が供給されるところから化学反応を行うところまで一貫して密閉状態を保つことができ、マイクロ化学チップ10と外部の被処理流体供給装置との接続がより一層容易かつ確実になり、被処理流体の供給を簡易で高信頼性なものとすることができる。   In the present invention, the insulating substrate 1 has the other open end of the flow path on the other main surface or side surface, and the external connection pipe (not shown) communicates with the flow path at the other open end. Is preferably attached. Thereby, since the pipe for external connection can be directly connected to the insulating substrate 1, the work of connecting the microchemical chip 10 to the external electric circuit board or the like becomes easier and the fluid to be processed is supplied. From the place to the place where the chemical reaction is performed, the sealed state can be maintained consistently, and the connection between the microchemical chip 10 and the external fluid supply device to be processed becomes easier and more reliable, and the supply of the fluid to be processed is simplified. And can be highly reliable.

パイプは、Fe−Ni−Co合金,Fe−Ni合金等の金属材料、またはそれらに金メッキを施した耐薬品性を増したもの、SiO等を主成分とするガラス、アルミナ,窒化アルミニウム等のセラミック材料等により形成される。また、パイプの絶縁基板1に対する取着は、ろう材,樹脂接着剤,低融点ガラス(封止用ガラス)等の接合材を介して接合する方法、表面をプラズマ装置やブラスト装置などを用いて活性化させた後に圧着やアニールすることにより接合を行う表面活性化接合等により行なうことができる。 Pipes, Fe-Ni-Co alloy, which increased the Fe-Ni metal material such as an alloy or chemical resistance subjected them with gold, glass whose main component is SiO 2 or the like, alumina, aluminum nitride, It is formed of a ceramic material or the like. In addition, the pipe is attached to the insulating substrate 1 by using a brazing material, a resin adhesive, a low-melting glass (sealing glass) or another bonding material, and a surface using a plasma device or a blast device. After activation, it can be performed by surface activated bonding or the like in which bonding is performed by pressure bonding or annealing.

次に、本発明のマイクロ化学チップの製造方法について図2(a)〜(d)に基づいて説明する。図2は本発明のマイクロ化学チップの製造方法の実施の形態の一例をそれぞれ工程順に示した断面図であり、図2において図1と同じ部位には同じ符号を付してある。   Next, the manufacturing method of the microchemical chip of this invention is demonstrated based on Fig.2 (a)-(d). FIG. 2 is a cross-sectional view showing an example of an embodiment of a method for producing a microchemical chip according to the present invention in the order of steps. In FIG. 2, the same parts as those in FIG.

まず、図2(a)に示すように、半導体母基板28の一主面に、微小電子機械機構6およびそれに電気的に接続された電極7が形成されて成る微小電子機械機構領域29を多数個縦横に配列形成した多数個取り微小電子機械機構基板30を準備する。   First, as shown in FIG. 2A, a large number of micro electro mechanical mechanism regions 29 each having a micro electro mechanical mechanism 6 and electrodes 7 electrically connected thereto are formed on one main surface of a semiconductor mother substrate 28. A plurality of micro-electromechanical mechanism substrates 30 that are arranged vertically and horizontally are prepared.

半導体母基板28は、例えば単結晶や多結晶等のシリコン基板から成る。このシリコン基板の表面に酸化シリコン層を形成する。その中に微小な振動体等の微小電子機械機構6を形成し、円形状パターン等の導体から成る電極7が形成された微小電子機械機構領域29を主面に多数個配列形成することにより、多数個取り微小電子機械機構基板30が形成される。この例では、微小電子機械機構6と電極7とは、それぞれ半導体母基板28の主面に形成された微細配線(図示せず)を介して電気的に接続されている。   The semiconductor mother substrate 28 is made of, for example, a silicon substrate such as single crystal or polycrystal. A silicon oxide layer is formed on the surface of the silicon substrate. By forming the microelectromechanical mechanism 6 such as a minute vibrating body in the microelectromechanical mechanism region 29 and forming a plurality of microelectromechanical mechanism regions 29 in which electrodes 7 made of a conductor such as a circular pattern are formed on the main surface, A multi-chip micro electromechanical mechanism substrate 30 is formed. In this example, the microelectromechanical mechanism 6 and the electrode 7 are electrically connected to each other through fine wiring (not shown) formed on the main surface of the semiconductor mother substrate 28.

次に、図2(b)に示すように、絶縁母基板21に、その一方主面から他方主面にかけて形成された配線導体3、一方主面の外周部に形成されて表面に接合材11が被着されている枠状の導体層2、一方主面の導体層2の外側に形成されて表面に導電性接続材9が被着されている接続パッド4、および一方主面の導体層2の内側の部位に一つの開口端を有するように形成された被処理流体を流通させるための流路5を一組としたマイクロ化学チップ領域22を、主面に多数個縦横に配列形成した多数個取りマイクロ化学チップ基板23を準備する。   Next, as shown in FIG. 2 (b), a wiring conductor 3 is formed on the insulating mother board 21 from one main surface to the other main surface, and the bonding material 11 is formed on the outer peripheral portion of the one main surface. A frame-like conductor layer 2 to which is attached, a connection pad 4 formed on the outer surface of the conductor layer 2 on one main surface and having a conductive connecting material 9 applied to the surface, and a conductor layer on one main surface A plurality of microchemical chip regions 22 each having a set of flow paths 5 for circulating a fluid to be processed formed so as to have one open end at an inner portion of 2 are arranged in the main surface vertically and horizontally. A multi-chip microchemical chip substrate 23 is prepared.

絶縁母基板21は、例えば、それが酸化アルミニウム質焼結体から成り、配線導体3がタングステンのメタライズ層から成る場合、酸化アルミニウム、酸化珪素、酸化カルシウム等の原料粉末を、樹脂バインダ、有機溶剤とともに混練してスラリーを作製し、このスラリーをドクターブレード法やリップコータ法等によりシート状に成形して複数のグリーンシートを形成し、このグリーンシートの表面および必要に応じてグリーンシートに予め形成しておいた貫通孔に、タングステンの導体ペーストを印刷塗布して充填し、その後これらのグリーンシートを積層して焼成することにより形成することができる。   For example, when the insulating mother board 21 is made of an aluminum oxide sintered body and the wiring conductor 3 is made of a metallized layer of tungsten, a raw material powder such as aluminum oxide, silicon oxide, calcium oxide, etc., resin binder, organic solvent A slurry is prepared by kneading together, and the slurry is formed into a sheet shape by a doctor blade method, a lip coater method or the like to form a plurality of green sheets, which are formed in advance on the surface of the green sheet and, if necessary, a green sheet. It can be formed by printing, filling and filling the through-holes with tungsten conductor paste, and then laminating and firing these green sheets.

枠状の導体層2は、例えば、配線導体3と同様のメタライズ層等の導体層から成り、絶縁母基板21が酸化アルミニウミ質焼結体等のセラミックスから成る場合の絶縁母基板21に対する接合強度、生産性、コスト等を考慮すれば、配線導体3と同様の組成のメタライズ層からなるものが好ましい。   The frame-like conductor layer 2 is made of, for example, a conductor layer such as a metallized layer similar to the wiring conductor 3, and the bonding strength to the insulation mother substrate 21 when the insulation mother substrate 21 is made of ceramics such as an aluminum oxide sintered body. In view of productivity, cost, etc., a metallized layer having the same composition as the wiring conductor 3 is preferable.

接続パッド4は、例えば、配線導体3や導体層2と同様の材料から成り、タングステンの導体ペーストを絶縁母基板21となるグリーンシートのうち最表面側のものに、配線導体3となる印刷された導体ペーストと接続されるようにして、かつ多数個が縦横に配列形成されるようにして、スクリーン印刷法等により印刷しておくことにより形成される。   The connection pad 4 is made of, for example, the same material as the wiring conductor 3 and the conductor layer 2, and a tungsten conductor paste is printed on the outermost surface side of the green sheet to be the insulating mother substrate 21 to be the wiring conductor 3. It is formed by printing by a screen printing method or the like so that it is connected to the conductive paste and a large number are arranged in rows and columns.

流路5は、例えば、絶縁母基板21が酸化アルミニウム質焼結体から成る場合、絶縁母基板21となるグリーンシートにプレス金型やNCパンチング、レーザ加工等の穴あけ加工、打抜き加工、切削加工等の機械的加工を施して、グリーンシートに開口部や貫通孔、溝等を形成しておくことにより形成される。例えば、流路5が、図2(b)に示すように絶縁母基板21の一方主面から他方主面にかけて貫通するような貫通孔から成る場合、各グリーンシートにNCパンチング加工で貫通孔を形成しておき、この貫通孔が最上層から最下層にかけて連通するようにしてグリーンシートを積層することにより形成される。   For example, when the insulating base substrate 21 is made of an aluminum oxide sintered body, the flow path 5 is formed by punching, punching, cutting, etc., such as a press die, NC punching, and laser processing, on the green sheet to be the insulating base substrate 21. It is formed by forming an opening, a through hole, a groove or the like in the green sheet by performing mechanical processing such as. For example, when the flow path 5 is formed of a through hole that penetrates from one main surface to the other main surface of the insulating mother substrate 21 as shown in FIG. 2B, the through holes are formed in each green sheet by NC punching. It is formed by laminating green sheets so that the through holes communicate from the uppermost layer to the lowermost layer.

なお、流路5は、全長にわたって貫通孔状のものである必要はなく、絶縁母基板21を分割した後の状態で、絶縁母基板21の厚み方向の中央部等から各マイクロ化学チップ10の側面にかけて横溝状に形成された形態等の他の形態でもよい。この場合、グリーンシートの所定部位に、レーザ加工等で細長い溝状の開口部を形成しておき、この開口部の上下に他のグリーンシートを積層することにより、絶縁母基板21の内部に溝状の流路5を形成することができる。   In addition, the flow path 5 does not need to be a through-hole shape over the entire length, and in a state after dividing the insulating mother substrate 21, each microchemical chip 10 has a central portion in the thickness direction of the insulating mother substrate 21. Other forms such as a form formed in a lateral groove shape on the side surface may be used. In this case, an elongated groove-like opening is formed in a predetermined portion of the green sheet by laser processing or the like, and another green sheet is laminated on the upper and lower sides of the opening so that the groove is formed inside the insulating mother substrate 21. A shaped flow path 5 can be formed.

導電性接続材9および接合材11は、錫−銀半田,錫−銀−ビスマス半田,錫−銅−ビスマス半田,錫−鉛半田等の半田、銀,銅,金,白金,パラジウム等の金属、このような金属を樹脂等の粉末コア材の表面にめっき等の手段で被着した導電性フィラー粉末をエポキシ樹脂,アクリル樹脂等の樹脂で結合して成る導電性樹脂接着剤等の材料を用いることができる。また、接合材11は導電性を有するものでなくてもよい。例えば、エポキシ樹脂,アクリル樹脂等の樹脂、または樹脂にガラス,シリカ等の無機粉末を添加したものでもよい。導電性接続材9および接合材11は、例えば、ともに錫−銀半田等の半田から成る場合、この半田を接続パッド4および導体層2上に位置決めして載置し、加熱、溶融、接合させることにより形成される。   The conductive connecting material 9 and the bonding material 11 are made of tin-silver solder, tin-silver-bismuth solder, tin-copper-bismuth solder, tin-lead solder, or other metals such as silver, copper, gold, platinum, and palladium. A material such as a conductive resin adhesive formed by bonding a conductive filler powder obtained by coating such a metal to the surface of a powder core material such as a resin by means of plating or the like with a resin such as an epoxy resin or an acrylic resin. Can be used. Further, the bonding material 11 may not be conductive. For example, a resin such as an epoxy resin or an acrylic resin, or a resin added with an inorganic powder such as glass or silica may be used. For example, when both the conductive connecting material 9 and the bonding material 11 are made of solder such as tin-silver solder, the solder is positioned and placed on the connection pad 4 and the conductor layer 2 to be heated, melted, and bonded. Is formed.

次に、図2(c)に示すように、多数個取り微小電子機械機構基板30の微小電子機械機構基板領域29の各電極7を、多数個取りマイクロ化学チップ基板23のマイクロ化学チップ基板領域22の接続パッド4に導電性接続材9を介してそれぞれ接続するとともに、半導体母基板28の一主面と絶縁母基板21の導体層2とを接合材11を介して接合する。この工程において、多数個取り微小電子機械機構基板30と多数個取りマイクロ化学チップ基板23とが機械的、電気的に接合、接続され、各微小電子機械機構領域29とマイクロ化学チップ基板領域22毎に形成される内部空間内に微小電子機械機構6が収納された多数のマイクロ化学チップが一括して、縦横に配列された状態で形成される。   Next, as shown in FIG. 2 (c), each of the electrodes 7 in the microelectromechanical mechanism substrate region 29 of the multi-chip microelectromechanical substrate 30 is replaced with the microchemical chip substrate region of the multichip microchemical chip substrate 23. 22 are connected to the connection pads 4 via the conductive connecting material 9, and one main surface of the semiconductor mother board 28 and the conductor layer 2 of the insulating mother board 21 are joined via the bonding material 11. In this step, the multi-chip microelectromechanical mechanism substrate 30 and the multi-chip microchemical chip substrate 23 are mechanically and electrically joined and connected to each microelectromechanical mechanism region 29 and each microchemical chip substrate region 22. A large number of microchemical chips in which the microelectromechanical mechanisms 6 are accommodated in the internal space formed in the above are collectively formed in a state of being arranged vertically and horizontally.

このように、電極7と接続パット4とを導電性接続材9を介して接続するとともに、半導体母基板28の一主面と導体層2とを接合材11を介して接合する工程を一つの工程で行うことを可能とし、多数個取りの状態でマイクロ化学チップを形成することを容易なものとするとともに、電極7と接続パッド4との間の電気的接続や、半導体母基板28と導体層2および絶縁母基板21との間の機械的な接合を確実に強固なものとするために、導電性接続材9と接合材11とは、溶融温度が同じものとしておく。   In this way, the process of connecting the electrode 7 and the connecting pad 4 via the conductive connecting material 9 and joining one main surface of the semiconductor mother board 28 and the conductor layer 2 via the bonding material 11 is performed as one step. It is possible to carry out the process, and it is easy to form a microchemical chip in a multi-piece state, and the electrical connection between the electrode 7 and the connection pad 4, the semiconductor mother substrate 28 and the conductor In order to ensure that the mechanical bonding between the layer 2 and the insulating mother substrate 21 is strong, the conductive connecting material 9 and the bonding material 11 have the same melting temperature.

また、導電性接続材9および接合材11は同じ高さであることが好ましい。これにより、導電性接続材9の電極7に対する接続面と、接合材11の半導体母基板28の一主面に対する接合面とが同じ高さになるため、電極7と接続パット4とを導電性接続材9を介して接続するとともに、半導体母基板28の一主面と導体層2とを接合材11を介して接合する工程を一つの工程で行うことが、より一層容易なものとなる。また、電極7と接続パッド4との間の電気的な接続、半導体母基板28と導体層2および絶縁母基板21との間の機械的な接合がより確実に強固なものとなる。   Moreover, it is preferable that the conductive connecting material 9 and the bonding material 11 have the same height. Thereby, since the connection surface with respect to the electrode 7 of the conductive connecting material 9 and the bonding surface with respect to one main surface of the semiconductor mother board 28 of the bonding material 11 become the same height, the electrode 7 and the connection pad 4 are made conductive. It becomes even easier to connect the main surface of the semiconductor mother board 28 and the conductor layer 2 via the bonding material 11 in one step while connecting them via the connecting material 9. In addition, the electrical connection between the electrode 7 and the connection pad 4 and the mechanical bonding between the semiconductor mother board 28 and the conductor layer 2 and the insulating mother board 21 are more surely strong.

接合材11の高さを導電性接続材9の高さと同じとする方法としては、例えば、導電性接続材9となる錫−銀半田を溶融させて接続パッド4上に取着形成する際に、その上面を接合材11と同じ高さとなるようにしてセラミックス製の治具等で押さえておく等の方法を用いることができる。   As a method of making the height of the bonding material 11 the same as the height of the conductive connecting material 9, for example, when the tin-silver solder used as the conductive connecting material 9 is melted and attached on the connection pad 4. A method of holding the upper surface with a ceramic jig or the like so that the upper surface is the same height as the bonding material 11 can be used.

ここで、電極7と接続パット4との接合は、例えば、接続パット4および接合材11が錫−銀半田から成る場合、電極7上に接続パッド4を位置合わせして載せ、これらを約250〜300℃程度の温度のリフロー炉中で熱処理すること等により行なわれる。   Here, for joining the electrode 7 and the connection pad 4, for example, when the connection pad 4 and the bonding material 11 are made of tin-silver solder, the connection pad 4 is aligned and placed on the electrode 7, and about 250 The heat treatment is performed in a reflow furnace at a temperature of about ~ 300 ° C.

また、各微小電子機械機構領域29の外周部分の半導体母基板28の一主面に対する接合材11による接合は、例えば、接合材11を半導体母基板28の一主面に押し当てておき、上述の電極7と接続パット4との導電性接続9を介した接続と同時にリフロー炉中で熱処理することにより行なうことができる。この場合、上述のように、接続パット4の高さを枠状の導体層2の高さと同じとしておくと、電極7と接続パット4との導電性接続材9を介した接続と、接合材11と半導体母基板28の一主面との接合をさらに容易かつ確実に、同時に行なうことができる。   In addition, for example, the bonding material 11 is pressed against one main surface of the semiconductor mother substrate 28 in the outer peripheral portion of each micro electro mechanical mechanism region 29 by pressing the bonding material 11 against one main surface of the semiconductor mother substrate 28. The electrode 7 and the connecting pad 4 can be connected through the conductive connection 9 and simultaneously heat treated in a reflow furnace. In this case, as described above, if the height of the connection pad 4 is the same as the height of the frame-like conductor layer 2, the connection between the electrode 7 and the connection pad 4 via the conductive connection material 9, and the bonding material 11 and one main surface of the semiconductor mother board 28 can be joined simultaneously more easily and reliably.

このように、本発明のマイクロ化学チップ10の製造方法によれば、微小電子機械機構領域29の電極7の外部への導出のための接合と、半導体母基板28(半導体基板8)と絶縁母基板21(絶縁基板1)との接合とを同時に、しかも多数個配列した状態で行なうことができるため、数時間程度を要する半田(ろう)付け等の接合の工程を1回で済ませることができ、また同時に多数個のマイクロ化学チップ10を配列させた状態で作製することができるので、マイクロ化学チップ10の生産性を非常に高めることができる。   As described above, according to the method of manufacturing the microchemical chip 10 of the present invention, the bonding for leading out the electrode 7 of the micro electromechanical mechanism region 29, the semiconductor mother substrate 28 (semiconductor substrate 8), and the insulating mother. Since bonding to the substrate 21 (insulating substrate 1) can be performed simultaneously and in a state where a large number of substrates 21 are arranged, it is possible to perform a bonding process such as soldering that requires several hours in one time. In addition, since the microchemical chip 10 can be manufactured in a state where a large number of microchemical chips 10 are arranged at the same time, the productivity of the microchemical chip 10 can be greatly increased.

そして、図2(d)に示すように、互いに接合された多数個取りマイクロ化学チップ基板23および微小電子機械機構領域基板30を、微小電子機械機構領域29およびマイクロ化学チップ領域22毎に分割して、絶縁基板1に半導体基板8が接合されて成る個々のマイクロ化学チップ10を得る。この場合、互いに接合された絶縁母基板21と半導体母基板28の接合体の切断は、この接合体に対してダイシング加工等の切断加工を施すことにより行なうことができる。   Then, as shown in FIG. 2D, the multi-chip microchemical chip substrate 23 and the microelectromechanical mechanism region substrate 30 bonded to each other are divided into microelectromechanical mechanism regions 29 and microchemical chip regions 22. As a result, individual microchemical chips 10 obtained by bonding the semiconductor substrate 8 to the insulating substrate 1 are obtained. In this case, the joined body of the insulating mother substrate 21 and the semiconductor mother substrate 28 joined to each other can be cut by performing a cutting process such as a dicing process on the joined body.

本発明のマイクロ化学チップ10の製造方法においては、ダイシング加工等の切断加工の際に、各微小電子機械機構6は枠状の導体層2と半導体基板8と絶縁基板1とにより形成される内部空間に収納されているので、半導体基板8や絶縁基板1等の切断に伴って発生するシリコンやセラミックス等の切削粉等が微小電子機械機構6に付着することは効果的に防止され、完成したマイクロ化学チップ10において、微小電子機械機構6を確実に正常に作動させることができる。   In the manufacturing method of the microchemical chip 10 of the present invention, each microelectromechanical mechanism 6 is formed by a frame-shaped conductor layer 2, a semiconductor substrate 8, and an insulating substrate 1 during cutting such as dicing. Since it is housed in the space, it is effectively prevented that cutting powder such as silicon or ceramics generated by cutting the semiconductor substrate 8 or the insulating substrate 1 adheres to the microelectromechanical mechanism 6 and completed. In the microchemical chip 10, the microelectromechanical mechanism 6 can be reliably operated normally.

なお、この場合、流路5を経て微小電子機械機構6が収納されている内部空間に切削粉等が侵入する可能性があるが、流路5の開口面積を0.3mm以下と小さくすることにより、内部空間に切削粉等が侵入する可能性を実用上支障の無い程度に抑制することができる。また、切削時に併用される洗浄用の水の流速を速くしたり、流れる方向を流路5の開口端に対して直角方向にするなどの対応を行なうことで、より確実に微小電子機械機構6を正常に作動させることができる。 In this case, cutting powder or the like may enter the internal space in which the micro electro mechanical mechanism 6 is accommodated via the flow path 5, but the opening area of the flow path 5 is reduced to 0.3 mm 2 or less. Thereby, possibility that cutting powder etc. penetrate | invade into internal space can be suppressed to such an extent that there is no practical trouble. Further, by taking measures such as increasing the flow rate of cleaning water used at the time of cutting or changing the flow direction to a direction perpendicular to the opening end of the flow path 5, the microelectromechanical mechanism 6 can be more reliably provided. Can be operated normally.

このように、本発明のマイクロ化学チップ10の製造方法によれば、微小電子機械機構6が収納される内部空間の形成工程と、微小電子機械機構6に電気的に接続された電極7を、表面実装が可能な形態で外部に導出する導電路に接続する工程と、内部空間内に被処理流体を湧出させる流路5を開口させる工程とを一つの工程で行なうことができるので、マイクロ化学チップ10の生産性を非常に高くすることができる。   Thus, according to the manufacturing method of the microchemical chip 10 of the present invention, the step of forming the internal space in which the micro electro mechanical mechanism 6 is accommodated and the electrode 7 electrically connected to the micro electro mechanical mechanism 6 are Since the step of connecting to a conductive path that leads to the outside in a form that allows surface mounting and the step of opening the flow path 5 that causes the fluid to be treated to flow into the internal space can be performed in one step, microchemistry The productivity of the chip 10 can be made very high.

また、上記のように製造されたマイクロ化学チップ10は、すでに気密封止されているとともに、その電極7が配線導体3を介して外部に導出された状態であるので、これを別途パッケージ内に実装するような工程を追加する必要はなく、配線導体3の導出された部分を外部の電気回路に半田ボール等の外部端子を介して接続するだけで、外部電気回路基板に実装して使用することができる。   Further, since the microchemical chip 10 manufactured as described above is already hermetically sealed and the electrode 7 is led out to the outside through the wiring conductor 3, this is separately put in a package. There is no need to add a process for mounting, and the portion where the wiring conductor 3 is led out is simply connected to an external electric circuit via an external terminal such as a solder ball, and mounted on an external electric circuit board for use. be able to.

また、上記のように製造されたマイクロ化学チップ10は、被処理流体の流出入口である流路5の開口端が絶縁基板1側にあるので、絶縁基板1に金属製のパイプなどを流路5と連通するようにして取着するだけで簡易に外部との接続を行うことができる。この場合、配線導体3および流路5の少なくとも一つの開口端は、絶縁基体1の他方主面または側面に導出されているので、外部電気回路に表面実装の形態で接続することができ、高密度に実装することや、外部電気回路基板を効果的に小型化することができる。   Further, since the microchemical chip 10 manufactured as described above has an opening end of the flow path 5 which is an inflow / outlet of the fluid to be processed on the insulating substrate 1 side, a metal pipe or the like is flowed through the insulating substrate 1. 5 can be easily connected to the outside simply by being attached so as to communicate with the outside. In this case, since at least one open end of the wiring conductor 3 and the flow path 5 is led out to the other main surface or side surface of the insulating base 1, it can be connected to an external electric circuit in the form of surface mounting. It can be mounted at a high density, and the external electric circuit board can be effectively downsized.

なお、本発明は上述の実施の形態の例に限定されるものではなく、本発明の要旨の範囲内であれば、種々の変形は可能である。例えば、上述の実施の形態の例では、一つのマイクロ化学チップ10内に一つの微小電子機械機構6を気密封止したが、一つのマイクロ化学チップ10内に複数の微小電子機械機構6を気密封止してもよい。また、図1に示した例では、配線導体3は絶縁基板1の他方主面側に導出されているが、一部を側面に導出したり、複数の部位に導出したりしてもよい。また、この導出された部分の外部電気回路への電気的な接続は錫−銀半田等の半田を介して行なうものに限らず、リード端子、ピン端子、導電性接着剤や導電性クリップ等を介して行なってもよい。   In addition, this invention is not limited to the example of above-mentioned embodiment, A various deformation | transformation is possible if it is in the range of the summary of this invention. For example, in the example of the above-described embodiment, one microelectromechanical mechanism 6 is hermetically sealed in one microchemical chip 10, but a plurality of microelectromechanical mechanisms 6 are sealed in one microchemical chip 10. You may seal tightly. In the example shown in FIG. 1, the wiring conductor 3 is led out to the other main surface side of the insulating substrate 1, but a part thereof may be led out to the side surface or may be led out to a plurality of portions. In addition, the electrical connection of the derived portion to an external electric circuit is not limited to being performed via a solder such as tin-silver solder, but a lead terminal, a pin terminal, a conductive adhesive, a conductive clip, etc. It may be performed via.

本発明の電子部品封止用基板について実施の形態の一例を示す断面図である。It is sectional drawing which shows an example of embodiment about the board | substrate for electronic component sealing of this invention. (a)〜(d)は、本発明のマイクロ化学チップの製造方法について実施の形態の一例をそれぞれ工程順に示した断面図である。(A)-(d) is sectional drawing which showed an example of embodiment about the manufacturing method of the microchemical chip of this invention, respectively in order of a process.

符号の説明Explanation of symbols

1:絶縁基板
2:枠状の導体層
3:配線導体
4:接続パッド
5:流路
6:微小電子機械機構
7:電極
8:半導体基板
9:導電性接続材
10:マイクロ化学チップ
11:接合材
21:絶縁母基板
22:マイクロ化学チップ領域
23:多数個取りマイクロ化学チップ基板
28:半導体母基板
29:微小電子機械機構領域
30:多数個取り微小電子機械機構基板
1: Insulating substrate 2: Frame-like conductor layer 3: Wiring conductor 4: Connection pad 5: Flow path 6: Microelectromechanical mechanism 7: Electrode 8: Semiconductor substrate 9: Conductive connection material 10: Micro chemical chip 11: Bonding Material 21: Insulating mother substrate 22: Micro chemical chip region 23: Multi-chip micro chemical chip substrate 28: Semiconductor mother substrate 29: Micro electro mechanical mechanism region 30: Multi micro micro mechanical mechanism substrate

Claims (6)

一方主面から他方主面にかけて配線導体が形成されている絶縁基板と、該絶縁基板の前記一方主面の外周部に形成された枠状の導体層と、前記配線導体に電気的に接続されて前記一方主面の前記導体層よりも外側に形成された接続パッドと、前記絶縁基板の内部に形成された、前記一方主面の前記導体層の内側の部位に一つの開口端を有するとともに前記絶縁基板の外部に露出する表面に他の開口端を有する被処理流体を流通させるための流路と、一主面の中央部に微小電子機械機構および前記一主面の外周部に前記微小電子機械機構に電気的に接続された電極がそれぞれ形成されるとともに、前記一主面の外周部で前記電極よりも内側の部位が前記導体層に全周にわたって接合材を介して接合された半導体基板と、前記接続パッドと前記電極とを電気的に接続するとともに前記接合材と溶融温度が同じである導電性接続材とを具備していることを特徴とするマイクロ化学チップ。 An insulating substrate in which a wiring conductor is formed from one main surface to the other main surface, a frame-like conductor layer formed on the outer peripheral portion of the one main surface of the insulating substrate, and electrically connected to the wiring conductor And a connection pad formed on the outer side of the conductor layer on the one main surface, and an opening end formed on the inner side of the conductor layer on the one main surface formed inside the insulating substrate. A flow path for circulating a fluid to be processed having another open end on the surface exposed to the outside of the insulating substrate, a microelectromechanical mechanism at the center of one main surface, and the micro at the outer periphery of the one main surface A semiconductor in which electrodes electrically connected to the electromechanical mechanism are respectively formed, and a portion inside the electrode at the outer peripheral portion of the one main surface is bonded to the conductor layer through a bonding material over the entire circumference A substrate, the connection pad and the power Microchemical chip characterized in that the melting temperature and the bonding material is provided with a conductive connecting member is the same while electrically connected and. 前記流路は、流通方向に垂直な断面における幅が0.05乃至0.5mmであることを特徴とする請求項1記載のマイクロ化学チップ。 The microchemical chip according to claim 1, wherein the flow path has a width in a cross section perpendicular to the flow direction of 0.05 to 0.5 mm. 前記流路は、平面視で枠状の前記導体層よりも内側に位置していることを特徴とする請求項1または請求項2記載のマイクロ化学チップ。 3. The microchemical chip according to claim 1, wherein the flow path is located inside the frame-like conductor layer in a plan view. 前記微小電子機械機構は、前記流路の前記一つの開口端から前記絶縁基板および前記半導体基板に挟まれた内部空間に湧出した前記被処理流体を化学的に分析するためのものであることを特徴とする請求項1乃至請求項3のいずれかに記載のマイクロ化学チップ。 The microelectromechanical mechanism is for chemically analyzing the fluid to be processed that has flowed out from the one open end of the flow path into an internal space sandwiched between the insulating substrate and the semiconductor substrate. The microchemical chip according to any one of claims 1 to 3, wherein the microchemical chip is characterized in that: 前記絶縁基板は、他方主面または側面に前記流路の前記他の開口端が位置しており、前記他の開口端に前記流路と連通する外部接続用のパイプが取着されていることを特徴とする請求項1乃至請求項4のいずれかに記載のマイクロ化学チップ。 In the insulating substrate, the other open end of the flow path is located on the other main surface or side surface, and a pipe for external connection communicating with the flow path is attached to the other open end. The microchemical chip according to any one of claims 1 to 4, wherein: 半導体母基板の一主面に、微小電子機械機構およびそれに電気的に接続された電極が形成されて成る微小電子機械機構領域を多数個縦横に配列形成した多数個取り微小電子機械機構基板を準備する工程と、
絶縁母基板に、その一方主面から他方主面にかけて形成された配線導体、前記一方主面の外周部に形成されて表面に接合材が被着されている枠状の導体層、前記一方主面の前記導体層の外側に形成されて表面に導電性接続材が被着されている接続パッド、および前記一方主面の前記導体層の内側の部位に一つの開口端を有するように形成された被処理流体を流通させるための流路を一組としたマイクロ化学チップ基板領域を多数個縦横に配列形成した多数個取りマイクロ化学チップ基板を準備する工程と、
前記多数個取り微小電子機械機構基板の前記微小電子機械機構領域の前記各電極を、前記多数個取りマイクロ化学チップ基板の前記マイクロ化学チップ基板領域の前記各接続パッドに前記導電性接続材を介してそれぞれ接続するとともに、前記半導体母基板の前記一主面と前記絶縁母基板の前記導体層とを前記接合材を介して接合する工程と、
互いに接合された前記多数個取り微小電子機械機構基板および前記多数個取りマイクロ化学チップ基板を前記微小電子機械機構領域および前記マイクロ化学チップ基板領域毎に分割して個々のマイクロ化学チップを得る工程とを具備していることを特徴とするマイクロ化学チップの製造方法。
Prepared a multi-electron micromechanical mechanism board in which microelectromechanical mechanisms and microelectromechanical mechanism areas formed by electrodes connected to the microelectromechanical mechanism are formed on one main surface of the semiconductor mother board. And a process of
A wiring conductor formed from one main surface to the other main surface of the insulating mother board, a frame-shaped conductor layer formed on the outer peripheral portion of the one main surface and having a bonding material deposited on the surface, the one main surface A connection pad formed on the outer surface of the conductor layer and having a conductive connection material attached to the surface, and one open end at a portion of the one main surface inside the conductor layer. Preparing a multi-chip microchemical chip substrate in which a plurality of micro-chemical chip substrate regions having a set of flow paths for circulating the processed fluid are arranged vertically and horizontally; and
The electrodes of the micro electro mechanical mechanism region of the multi-chip micro electro mechanical mechanism substrate are connected to the connection pads of the micro chemical chip substrate region of the multi-chip micro chemical chip substrate via the conductive connection material. And connecting the one main surface of the semiconductor mother board and the conductor layer of the insulating mother board via the bonding material,
Dividing the multi-cavity microelectromechanical mechanism substrate and the multi-cavity microchemical chip substrate bonded together to each microelectromechanical mechanism region and the microchemical chip substrate region to obtain individual microchemical chips; A method for producing a microchemical chip, comprising:
JP2004219525A 2004-07-28 2004-07-28 Microchemical chip and manufacturing method thereof Expired - Fee Related JP4683872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004219525A JP4683872B2 (en) 2004-07-28 2004-07-28 Microchemical chip and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004219525A JP4683872B2 (en) 2004-07-28 2004-07-28 Microchemical chip and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006038657A true JP2006038657A (en) 2006-02-09
JP4683872B2 JP4683872B2 (en) 2011-05-18

Family

ID=35903806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004219525A Expired - Fee Related JP4683872B2 (en) 2004-07-28 2004-07-28 Microchemical chip and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4683872B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327931A (en) * 2006-05-11 2007-12-20 Seiko Instruments Inc Micro reactor and microreactor system, and liquid transmission method of the same
WO2008023465A1 (en) * 2006-08-25 2008-02-28 Kyocera Corporation Microelectronic machine mechanism device, and its manufacturing method
JP2008083043A (en) * 2006-08-31 2008-04-10 Kyocera Corp Flow channel device
JP2008182014A (en) * 2007-01-24 2008-08-07 Fujikura Ltd Packaging board and its manufacturing method
JP2010219339A (en) * 2009-03-17 2010-09-30 Sony Corp Solid-state imaging device, method of manufacturing solid-state imaging device, method of driving solid-state imaging device, and electronic apparatus
JP2012500626A (en) * 2008-08-22 2012-01-12 ハルク クラー Dielectrophoretic cell chromatography apparatus with spiral microfluidic channels and concentric electrodes fabricated using MEMS technology
JP2012032415A (en) * 2006-05-11 2012-02-16 Seiko Instruments Inc Micro reactor and microreactor system
JP2017191021A (en) * 2016-04-14 2017-10-19 ローム株式会社 Nitroxide based gas sensor, oxygen pump, gas sensor device, manufacturing method of gas sensor device, and sensor network system
JP2018083294A (en) * 2016-11-21 2018-05-31 ウシオ電機株式会社 Method of laminating substrate, microchip and manufacturing method therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002527254A (en) * 1998-10-09 2002-08-27 モトローラ・インコーポレイテッド Integrated multilayer microfluidic device and method of fabricating the same
US6443179B1 (en) * 2001-02-21 2002-09-03 Sandia Corporation Packaging of electro-microfluidic devices
JP2004207673A (en) * 2002-10-30 2004-07-22 Kyocera Corp Electronic component

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002527254A (en) * 1998-10-09 2002-08-27 モトローラ・インコーポレイテッド Integrated multilayer microfluidic device and method of fabricating the same
US6443179B1 (en) * 2001-02-21 2002-09-03 Sandia Corporation Packaging of electro-microfluidic devices
JP2004207673A (en) * 2002-10-30 2004-07-22 Kyocera Corp Electronic component

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012032415A (en) * 2006-05-11 2012-02-16 Seiko Instruments Inc Micro reactor and microreactor system
JP2007327931A (en) * 2006-05-11 2007-12-20 Seiko Instruments Inc Micro reactor and microreactor system, and liquid transmission method of the same
WO2008023465A1 (en) * 2006-08-25 2008-02-28 Kyocera Corporation Microelectronic machine mechanism device, and its manufacturing method
JPWO2008023465A1 (en) * 2006-08-25 2010-01-07 京セラ株式会社 Micro-electromechanical mechanism device and manufacturing method thereof
US8159059B2 (en) 2006-08-25 2012-04-17 Kyocera Corporation Microelectromechanical device and method for manufacturing the same
JP2008083043A (en) * 2006-08-31 2008-04-10 Kyocera Corp Flow channel device
US8282358B2 (en) 2006-08-31 2012-10-09 Kyocera Corporation Fluidic device
JP2008182014A (en) * 2007-01-24 2008-08-07 Fujikura Ltd Packaging board and its manufacturing method
JP2012500626A (en) * 2008-08-22 2012-01-12 ハルク クラー Dielectrophoretic cell chromatography apparatus with spiral microfluidic channels and concentric electrodes fabricated using MEMS technology
JP2010219339A (en) * 2009-03-17 2010-09-30 Sony Corp Solid-state imaging device, method of manufacturing solid-state imaging device, method of driving solid-state imaging device, and electronic apparatus
US8792034B2 (en) 2009-03-17 2014-07-29 Sony Corporation Solid-state imaging device with charge transfer transistor on different substrates
JP2017191021A (en) * 2016-04-14 2017-10-19 ローム株式会社 Nitroxide based gas sensor, oxygen pump, gas sensor device, manufacturing method of gas sensor device, and sensor network system
JP2018083294A (en) * 2016-11-21 2018-05-31 ウシオ電機株式会社 Method of laminating substrate, microchip and manufacturing method therefor

Also Published As

Publication number Publication date
JP4683872B2 (en) 2011-05-18

Similar Documents

Publication Publication Date Title
US6548895B1 (en) Packaging of electro-microfluidic devices
US6443179B1 (en) Packaging of electro-microfluidic devices
JP5500983B2 (en) MICROSTRUCTURE DEVICE AND METHOD FOR MANUFACTURING MICROSTRUCTURE DEVICE
US20050205951A1 (en) Flip chip bonded micro-electromechanical system (MEMS) device
JP4683872B2 (en) Microchemical chip and manufacturing method thereof
JP2004523124A (en) Method of structuring a flat substrate made of glass-based material
WO2007074846A1 (en) Microelectronic machine and method for manufacturing same
US20140216163A1 (en) Pressure sensor and method for producing a pressure sensor
US8282358B2 (en) Fluidic device
CN101875481A (en) Low temperature co-fired ceramic-based micro-electromechanical system (MEMS) packaging method
WO2021004165A1 (en) Flip chip-based pressure sensor core, core manufacturing and packaging method, and pressure sensor
JP2006090910A (en) Microchemical chip and its manufacturing method
JP2006088077A (en) Microchemical chip and its manufacturing method
JP5473235B2 (en) MICROSTRUCTURE DEVICE AND METHOD FOR MANUFACTURING MICROSTRUCTURE DEVICE
JP5186482B2 (en) Method for constructing device having fluid and electrical functions
JP2006061823A (en) Microchemical chip and its manufacturing method
JP4757548B2 (en) Microchip mounting device
KR20090106393A (en) Lid or case for sealing package and method for manufacturing the lid or the case
US11433393B2 (en) Microfluidic flow cell comprising an integrated electrode, and method for manufacturing same
JP6108734B2 (en) Electronic component element storage package
US20140034824A1 (en) Method for producing a converter module and corresponding converter module
JP2009088196A (en) Hermetic seal inspection method for microfabricated device, hermetic seal inspection system for microfabricated device, microfabricated device, and production process therefor
JP2009109349A (en) Flow sensor
JP5419970B2 (en) Manufacturing method for micromachining type component, corresponding component composite, and corresponding micromachining type component
TW202206814A (en) Biochip structure and method for making same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4683872

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees