JP2006038266A - Heat storage device - Google Patents

Heat storage device Download PDF

Info

Publication number
JP2006038266A
JP2006038266A JP2004214981A JP2004214981A JP2006038266A JP 2006038266 A JP2006038266 A JP 2006038266A JP 2004214981 A JP2004214981 A JP 2004214981A JP 2004214981 A JP2004214981 A JP 2004214981A JP 2006038266 A JP2006038266 A JP 2006038266A
Authority
JP
Japan
Prior art keywords
heat
change material
phase change
heat transfer
transfer liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004214981A
Other languages
Japanese (ja)
Inventor
Taketsugu Kusano
剛嗣 草野
Masayuki Takeuchi
正之 竹内
Masakazu Uehara
正和 上原
Toshio Sugiyama
利男 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IP KK
MEWTECH CO Ltd
University of Tokushima NUC
Toenec Corp
Original Assignee
IP KK
MEWTECH CO Ltd
University of Tokushima NUC
Toenec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IP KK, MEWTECH CO Ltd, University of Tokushima NUC, Toenec Corp filed Critical IP KK
Priority to JP2004214981A priority Critical patent/JP2006038266A/en
Publication of JP2006038266A publication Critical patent/JP2006038266A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To increase heat storage quantity by efficiently coagulating and melting a phase-change material while reducing an equipment cost. <P>SOLUTION: This heat storage device stores the heat by utilizing the latent heat obtained by coagulating and melting the phase-change material 1. In the heat storage device, the phase-change material 1 and heat transfer liquid 3 having a specific gravity larger than that of the phase-change material 1 are filled in a heat storage tank 2, and the phase-change material 1 is stacked on the heat transfer liquid 3. Further a heat conduction member 7 extended in the vertical direction is mounted in the heat storage tank 2, a lower part of the heat conduction member 7 is thermally connected with the heat transfer liquid 3, and its upper part is thermally connected with the phase-change material 1. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、相変化材を凝固、融解してその潜熱を利用して蓄熱する装置に関する。本明細書において「蓄熱」は、とくに広義に解釈するものであって、熱エネルギーを蓄える状態のみでなく、熱エネルギーを吸収できる状態をも含むものとする。たとえば、相変化材を冷却して凝固し、これを融解して熱エネルギーを吸収できる状態も蓄熱とする。すなわち、熱エネルギーを蓄える状態と、熱エネルギーを吸収できる状態の両方を「蓄熱」と定義する。   The present invention relates to an apparatus for solidifying and melting a phase change material and storing heat using the latent heat. In this specification, “heat storage” is to be interpreted in a broad sense, and includes not only a state where heat energy is stored, but also a state where heat energy can be absorbed. For example, the state in which the phase change material is cooled and solidified and melted to absorb heat energy is also regarded as heat storage. That is, both a state in which heat energy is stored and a state in which heat energy can be absorbed are defined as “heat storage”.

水は0℃で融解される相変化材である。0℃以上の温度で凝固、融解する相変化材としてパラフィン系の相変化材が開発されている。相変化材を凝固、融解させて潜熱を利用して蓄熱する装置は、コンパクトで蓄熱量を大きくできる特長がある。相変化材は、たとえば深夜電力で蓄熱して冷房や暖房に使用できる。冷房は、相変化材を深夜電力で凝固させる。相変化材が融解するときに周囲から奪う融解熱で室内を冷房する。冷房には、融解温度の低い相変化材を使用する。暖房は、相変化材を深夜電力で融解させる。相変化材が凝固するときに発生する凝固熱で室内を暖房する。暖房には、融解温度の高い相変化材を使用する。   Water is a phase change material that is melted at 0 ° C. Paraffin-based phase change materials have been developed as phase change materials that solidify and melt at a temperature of 0 ° C. or higher. The device that solidifies and melts the phase change material and uses latent heat to store heat has the advantage of being compact and capable of increasing the amount of heat storage. The phase change material can be stored in, for example, midnight power and used for cooling or heating. Cooling solidifies the phase change material with midnight power. When the phase change material melts, the room is cooled by the heat of fusion taken from the surroundings. For cooling, a phase change material having a low melting temperature is used. Heating melts the phase change material with midnight power. The room is heated by the solidification heat generated when the phase change material solidifies. Use a phase change material with a high melting temperature for heating.

相変化材としてパラフィン系相変化材を使用する蓄熱装置は開発されている(特許文献1参照)。パラフィン系相変化材等の相変化材の融解熱は顕熱に比べて比較的大きく、これを凝固、融解して蓄熱する装置は、蓄熱量を大きくできる。しかしながら、相変化材は、速やかに全体を凝固させるのが難しい欠点がある。それは、凝固状態における熱伝導が悪いからである。たとえば、相変化材に熱交換パイプを挿入し、この熱交換パイプに低温液体を流して相変化材を冷却して凝固させる場合、熱交換パイプの周囲は凝固するが、凝固部分が速やかに拡大されない。それは、凝固した相変化材の熱伝導が悪いからである。   A heat storage device using a paraffinic phase change material as a phase change material has been developed (see Patent Document 1). The heat of fusion of a phase change material such as a paraffinic phase change material is relatively large compared to sensible heat, and a device that solidifies and melts the heat to store heat can increase the amount of heat stored. However, the phase change material has a drawback that it is difficult to quickly solidify the whole. This is because the heat conduction in the solidified state is poor. For example, when a heat exchange pipe is inserted into the phase change material and a low-temperature liquid is allowed to flow through the heat exchange pipe to cool and solidify the phase change material, the area around the heat exchange pipe is solidified, but the solidified portion expands quickly. Not. This is because the heat conduction of the solidified phase change material is poor.

相変化材にガラスビーズやアルミナビーズを互いに接触するように充填して、実質的な熱伝導を向上できる。互いに接触するガラスビーズやアルミナビーズが、熱を伝導させるからである。ただ、相変化材にこれ等のガラスビーズやアルミナビーズを充填すると、相変化材の充填量が少なくなり、容積に対する蓄熱量が少なくなる欠点がある。また、蓄熱量が減少するにもかかわらず、ガラスビーズやアルミナビーズを充填するので、部品コストが極めて高くなる欠点もある。   Substantially heat conduction can be improved by filling the phase change material with glass beads or alumina beads so as to contact each other. This is because glass beads and alumina beads that are in contact with each other conduct heat. However, when these glass beads or alumina beads are filled in the phase change material, there is a drawback that the amount of the phase change material is reduced and the heat storage amount with respect to the volume is reduced. In addition, since the glass beads and alumina beads are filled even though the heat storage amount is reduced, there is a disadvantage that the cost of parts becomes extremely high.

本発明者は、この欠点を解消するために、相変化材を充填しているケーシングに複数の金属パイプを入れ、金属パイプを互いに接触させて金属パイプの熱伝導で相変化材を凝固、融解させる装置を開発した(特許文献2参照)。
特開2000−320988号公報 特開2004−156793号公報
In order to eliminate this drawback, the present inventor puts a plurality of metal pipes in a casing filled with a phase change material, contacts the metal pipes with each other, and solidifies and melts the phase change material by heat conduction of the metal pipe. An apparatus to be developed was developed (see Patent Document 2).
JP 2000-320988 A JP 2004-156793 A

この構造の冷却装置は、多数の金属パイプを使用するので設備コストが高くなる。また、蓄熱槽に金属パイプを入れるのでパラフィン系相変化材を充填できる量が減少して、蓄熱量も少なくなる欠点がある。とくに、パラフィン系相変化材をより均一に凝固させるには多数の金属パイプを使用する必要があって、ますます設備コストが高くなり、またパラフィン系相変化材量が少なくなって蓄熱量が減少する欠点がある。さらにまた、金属パイプを介してパラフィン系相変化材を均一に凝固させるので、パラフィン系相変化材を直接に凝固させる構造に比較すると効率よく凝固させるのが難しくなる欠点もある。   Since the cooling device having this structure uses a large number of metal pipes, the equipment cost increases. Moreover, since a metal pipe is put in the heat storage tank, there is a disadvantage that the amount of the paraffinic phase change material that can be filled is reduced and the amount of heat storage is reduced. In particular, in order to solidify the paraffinic phase change material more uniformly, it is necessary to use a large number of metal pipes, which increases the equipment cost, and reduces the amount of paraffinic phase change material to reduce heat storage. There are drawbacks. Furthermore, since the paraffinic phase change material is uniformly solidified through the metal pipe, there is a drawback that it is difficult to solidify efficiently compared to a structure in which the paraffinic phase change material is directly solidified.

本発明は、さらにこの欠点を解決することを目的に開発されたものである。本発明の重要な目的は、設備コストを低減しながら相変化材を効率よく凝固、融解して、蓄熱量を多くできる蓄熱装置を提供することにある。   The present invention has been developed for the purpose of solving this drawback. An important object of the present invention is to provide a heat storage device capable of increasing the amount of heat storage by efficiently solidifying and melting the phase change material while reducing the equipment cost.

本発明の蓄熱装置は、相変化材1を凝固、融解させてその潜熱を利用して蓄熱する。蓄熱装置は、蓄熱槽2に、相変化材1と、この相変化材1よりも比重の大きい熱伝達液3を充填して、熱伝達液3の上に相変化材1を積層する状態としている。さらに、蓄熱槽2には上下方向に延長される熱伝導体7を配設して、熱伝導体7の下部を熱伝達液3に、上部を相変化材1に熱結合している。   The heat storage device of the present invention solidifies and melts the phase change material 1 and stores heat using the latent heat. The heat storage device fills the heat storage tank 2 with the phase change material 1 and the heat transfer liquid 3 having a larger specific gravity than the phase change material 1, and the phase change material 1 is stacked on the heat transfer liquid 3. Yes. Further, a heat conductor 7 extending in the vertical direction is disposed in the heat storage tank 2, and the lower part of the heat conductor 7 is thermally coupled to the heat transfer liquid 3 and the upper part is thermally coupled to the phase change material 1.

本発明の蓄熱装置は、熱伝達液3として、相変化材1の熱伝導率よりも大きい熱伝導率のものを使用して、効率よく相変化材に蓄熱できる。相変化材1は、パラフィン系の相変化材とすることができる。本発明の蓄熱装置は、相変化材1の凝固点を0℃よりも高くし、熱伝達液3を水とすることができる。本発明の蓄熱装置は、熱伝導体7を金属とすることができる。金属に代わって、炭素繊維やセラミック等も使用できる。この熱伝導体7は、金属パイプ、金属板のいずれかとすることができる。さらに、本発明の蓄熱装置は、熱伝達液3に伝熱管4を配設して、伝熱管4で熱伝達液3を冷却し、または熱伝達液3で伝熱管4を冷却することができる。   The heat storage device of the present invention can efficiently store heat in the phase change material by using the heat transfer liquid 3 having a thermal conductivity larger than that of the phase change material 1. The phase change material 1 can be a paraffin phase change material. In the heat storage device of the present invention, the freezing point of the phase change material 1 can be higher than 0 ° C., and the heat transfer liquid 3 can be water. In the heat storage device of the present invention, the heat conductor 7 can be made of metal. Instead of metal, carbon fiber or ceramic can be used. The heat conductor 7 can be either a metal pipe or a metal plate. Furthermore, the heat storage device of the present invention can dispose the heat transfer tube 4 in the heat transfer liquid 3, cool the heat transfer liquid 3 with the heat transfer tube 4, or cool the heat transfer tube 4 with the heat transfer liquid 3. .

本発明の蓄熱装置は、設備コストを低減しながら相変化材を効率よく凝固、融解して、蓄熱量を多くできる特長がある。それは、本発明の蓄熱装置が、蓄熱槽に、相変化材よりも比重の大きい熱伝達液の上に相変化材を積層する状態で充填すると共に、上下方向に延長される熱伝導体を蓄熱槽に配設して、熱伝導体の下部を熱伝達液に、上部を相変化材に熱結合しているからである。   The heat storage device of the present invention has an advantage that the amount of heat storage can be increased by efficiently solidifying and melting the phase change material while reducing the equipment cost. That is, the heat storage device of the present invention fills the heat storage tank in a state where the phase change material is laminated on the heat transfer liquid having a larger specific gravity than the phase change material, and stores the heat conductor extended in the vertical direction This is because it is disposed in the tank and the lower part of the heat conductor is thermally coupled to the heat transfer liquid and the upper part is thermally coupled to the phase change material.

以下、本発明の実施例を図面に基づいて説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための蓄熱装置を例示するものであって、本発明は蓄熱装置を以下のものに特定しない。   Embodiments of the present invention will be described below with reference to the drawings. However, the Example shown below illustrates the thermal storage apparatus for materializing the technical idea of this invention, Comprising: This invention does not specify a thermal storage apparatus as the following.

さらに、この明細書は、特許請求の範囲を理解しやすいように、実施例に示される部材に対応する番号を、「特許請求の範囲」および「課題を解決するための手段の欄」に示される部材に付記している。ただ、特許請求の範囲に示される部材を、実施例の部材に特定するものでは決してない。   Further, in this specification, in order to facilitate understanding of the scope of claims, numbers corresponding to the members shown in the examples are indicated in the “claims” and “means for solving problems” sections. It is added to the members. However, the members shown in the claims are not limited to the members in the embodiments.

図1と図2に示す蓄熱装置は、相変化材1を凝固、融解させてその潜熱を利用して蓄熱する。この装置は、深夜電力で相変化材1を凝固又は融解させて、熱エネルギーを蓄熱できる。とくに、本発明の蓄熱装置は、冷房や冷却に適している。この蓄熱装置は、深夜電力で相変化材1を凝固させる。凝固した相変化材1は融解するときに周囲から熱を奪う、すなわち冷却するので、昼間の冷房や冷却に利用できる。冷却は、たとえば深夜電力で相変化材1を凝固させて、昼間に冷却する冷蔵庫等にも使用できる。蓄熱装置を使用して深夜電力を利用して、昼間に冷房し、あるいは冷却すると、深夜電力を有効に利用でき、また昼間のピーク電力を低くできる効果がある。ただし、本発明の蓄熱装置は、暖房や加熱にも利用できる。   The heat storage device shown in FIGS. 1 and 2 solidifies and melts the phase change material 1 and stores heat using the latent heat. This apparatus can store heat energy by solidifying or melting the phase change material 1 with midnight power. In particular, the heat storage device of the present invention is suitable for cooling and cooling. This heat storage device solidifies the phase change material 1 with midnight power. Since the solidified phase change material 1 takes heat from the surroundings when it melts, that is, cools, it can be used for daytime cooling or cooling. The cooling can be used for a refrigerator or the like that solidifies the phase change material 1 with midnight power and cools it during the daytime. If the heat storage device is used to cool or cool in the daytime using the late-night power, the late-night power can be used effectively and the peak power in the daytime can be lowered. However, the heat storage device of the present invention can also be used for heating and heating.

図1と図2に示す蓄熱装置は、蓄熱槽2に、相変化材1と、この相変化材1よりも比重の大きい熱伝達液3を充填している。相変化材1は熱伝達液3よりも軽いので、熱伝達液3の上に相変化材1が積層される状態、いいかえると、熱伝達液3の上に相変化材1が浮く状態となる。   In the heat storage device shown in FIGS. 1 and 2, a heat storage tank 2 is filled with a phase change material 1 and a heat transfer liquid 3 having a larger specific gravity than the phase change material 1. Since the phase change material 1 is lighter than the heat transfer liquid 3, the phase change material 1 is laminated on the heat transfer liquid 3, in other words, the phase change material 1 floats on the heat transfer liquid 3. .

蓄熱槽2は、水密構造として熱伝達液3と相変化材1が漏れない構造としている。相変化材1は、融解状態から凝固すると体積が減少し、反対に凝固する状態から融解して体積が増加する。したがって、蓄熱槽2は、相変化材1の凝固、融解の体積変化を吸収できる構造としている。この構造は、たとえば、蓄熱槽を密閉構造として、上部に排出管を連結して、排出管を上方に延長する。排出管は、相変化材に連結される。また、蓄熱槽は、内部に空気を入れて、空気層に排出管を連結することもできる。さらに、空気を入れている蓄熱槽は、密閉構造として、空気を体積変化させて、いいかえると、内圧を変化させて、相変化材の体積変化を吸収することができる。また、空気を入れている蓄熱槽は、上部の空気層に連結するように一部を開口して、相変化材の体積変化を吸収できる。   The heat storage tank 2 has a watertight structure in which the heat transfer liquid 3 and the phase change material 1 do not leak. The phase change material 1 decreases in volume when solidified from the molten state, and conversely melts from the solidified state and increases in volume. Therefore, the heat storage tank 2 has a structure capable of absorbing the volume change of solidification and melting of the phase change material 1. In this structure, for example, a heat storage tank is used as a sealed structure, a discharge pipe is connected to the upper part, and the discharge pipe is extended upward. The discharge pipe is connected to the phase change material. In addition, the heat storage tank can be filled with air and the exhaust pipe can be connected to the air layer. Furthermore, the heat storage tank in which the air is placed has a hermetic structure and can change the volume of the air, in other words, change the internal pressure and absorb the volume change of the phase change material. Moreover, the heat storage tank in which air is put can open a part so that it may connect with an upper air layer, and can absorb the volume change of a phase change material.

蓄熱槽2は、熱の無駄な放熱や吸熱を防止するために断熱している。断熱は、蓄熱槽2の外側あるいは内側に断熱材(図示せず)を張設して、熱伝達を少なくしている。蓄熱槽2は、所定量の熱伝達液3と相変化材1を充填できる形状とすることができる。蓄熱槽2は、金属製、コンクリート製、あるいはプラスチック製である。   The heat storage tank 2 is thermally insulated to prevent wasteful heat dissipation and heat absorption. For heat insulation, a heat insulating material (not shown) is stretched outside or inside the heat storage tank 2 to reduce heat transfer. The heat storage tank 2 can have a shape that can be filled with a predetermined amount of the heat transfer liquid 3 and the phase change material 1. The heat storage tank 2 is made of metal, concrete, or plastic.

相変化材1は、凝固、融解する潜熱及び顕熱でエネルギーを蓄熱する。相変化材1は、凝固、融解する温度、すなわち融解温度を用途に最適な温度となるものが選択される。たとえば、冷房用の蓄熱装置は、融解温度を1〜12℃とする相変化材が使用される。この融解温度の相変化材として、パラフィン系のものがある。暖房用の蓄熱装置には、融解温度を20〜120℃とする相変化材が使用される。パラフィン系の相変化材は、結合しているカーボン数で融解温度を調整できる。カーボン数が多くなって分子量が多くなると融解温度が高くなる。相変化材は、融解温度よりも高い温度で熱融解される。さらに、融解温度よりも低い温度で凝固される。相変化材は、凝固状態から融解されて周囲から熱を吸収する。すなわち、この状態で周囲を冷却する。融解された状態から凝固すると熱を放出する。この状態で周囲を加熱する。相変化材1は、凝固と融解を繰り返して、潜熱に相当する熱エネルギーを吸収あるいは放出する。   The phase change material 1 stores energy by latent heat and sensible heat that solidify and melt. The phase change material 1 is selected so that the temperature at which it solidifies and melts, that is, the melting temperature is the optimum temperature for the application. For example, a phase change material having a melting temperature of 1 to 12 ° C. is used for a cooling heat storage device. As a phase change material having this melting temperature, there is a paraffin type material. A phase change material having a melting temperature of 20 to 120 ° C. is used for a heat storage device for heating. The paraffinic phase change material can adjust the melting temperature by the number of carbons bonded. As the number of carbons increases and the molecular weight increases, the melting temperature increases. The phase change material is thermally melted at a temperature higher than the melting temperature. Furthermore, it is solidified at a temperature lower than the melting temperature. The phase change material is melted from the solidified state and absorbs heat from the surroundings. That is, the surroundings are cooled in this state. When it solidifies from a molten state, it releases heat. The surroundings are heated in this state. The phase change material 1 repeats solidification and melting, and absorbs or releases thermal energy corresponding to latent heat.

熱伝達液3は、熱伝導率を相変化材(1)の熱伝導率よりも大きいものが適している。熱伝達液が、伝熱管4と相変化材1の間に効率よく熱伝導できるからである。熱伝達液3は、水、又は水に塩化ナトリウム等の融点を低下させる無機材を溶解しているブライン液のいずれかである。相変化材にパラフィン系の相変化材を使用する場合、パラフィン系の相変化材の熱伝導率は液体の状態で約0.18W/mk、固体状態で0.17W/mkである。これに対して水の熱伝導率は液体の状態で0.59W/mkと相変化材よりも大きいので、水は、伝熱管から相変化材に、また相変化材から伝熱管に効率よく熱を伝達する。熱伝達液3は、相変化材1を凝固させる温度で凝固しない液体である。熱伝達液3は、常に液体の状態で相変化材1に接触して、相変化材1との間で熱交換する。図1に示す蓄熱装置は、熱伝達液3に浸漬する状態で配管している伝熱管4を介して、熱伝達液3を冷却又は加熱している。したがって、熱伝達液3は、伝熱管4で冷却され、又は加熱される状態においても液体の状態にあるものが使用される。   A heat transfer liquid 3 having a thermal conductivity larger than that of the phase change material (1) is suitable. This is because the heat transfer liquid can efficiently conduct heat between the heat transfer tube 4 and the phase change material 1. The heat transfer liquid 3 is either water or a brine liquid in which an inorganic material that lowers the melting point such as sodium chloride is dissolved in water. When a paraffin phase change material is used as the phase change material, the thermal conductivity of the paraffin phase change material is about 0.18 W / mk in a liquid state and 0.17 W / mk in a solid state. On the other hand, since the thermal conductivity of water is 0.59 W / mk in the liquid state, which is larger than that of the phase change material, water efficiently heats from the heat transfer tube to the phase change material and from the phase change material to the heat transfer tube. To communicate. The heat transfer liquid 3 is a liquid that does not solidify at a temperature at which the phase change material 1 is solidified. The heat transfer liquid 3 always contacts the phase change material 1 in a liquid state and exchanges heat with the phase change material 1. The heat storage device shown in FIG. 1 cools or heats the heat transfer liquid 3 via a heat transfer pipe 4 piped in a state of being immersed in the heat transfer liquid 3. Therefore, the heat transfer liquid 3 that is in the liquid state even when cooled or heated by the heat transfer tube 4 is used.

相変化材1の凝固点が0℃よりも高い装置は、熱伝達液3に水を使用できる。相変化材1の凝固点が0℃よりも低い場合、熱伝達液3には0℃で凝固しないブライン液を使用する。ただし、相変化材1に凝固点が0℃以上のものを使用する装置においても、熱伝達液3にはブライン液を使用できる。熱伝達液3に水を使用する装置は、熱伝達液3を安価にできる。とくに、凝固点が5℃以上である相変化材1を使用する蓄熱装置は、熱伝達液3として水が適している。安価で取り扱いの簡単な水を使用して、ランニングコストを低減できるからである。相変化材1の凝固点が0℃に近付くと、これを冷却して凝固させる熱伝達液3の温度も0℃に近く、あるいは0℃以下にする必要がある。したがって、相変化材1の温度が5℃以下になると、熱伝達液3には好ましくは凝固点が0℃よりも低いブライン液を使用する。すなわち、相変化材1を凝固させる状態で熱伝達液3が凝固しないように、熱伝達液3の凝固点を、相変化材1の凝固点よりも3℃以上、好ましくは5℃以上低くするのがよい。   An apparatus in which the freezing point of the phase change material 1 is higher than 0 ° C. can use water as the heat transfer liquid 3. When the freezing point of the phase change material 1 is lower than 0 ° C., a brine solution that does not solidify at 0 ° C. is used as the heat transfer liquid 3. However, even in an apparatus using a phase change material 1 having a freezing point of 0 ° C. or higher, a brine solution can be used as the heat transfer liquid 3. An apparatus that uses water for the heat transfer liquid 3 can make the heat transfer liquid 3 inexpensive. In particular, water is suitable as the heat transfer liquid 3 in a heat storage device that uses the phase change material 1 having a freezing point of 5 ° C. or higher. This is because the running cost can be reduced by using water that is inexpensive and easy to handle. When the freezing point of the phase change material 1 approaches 0 ° C., the temperature of the heat transfer liquid 3 for cooling and solidifying it needs to be close to 0 ° C. or 0 ° C. or less. Therefore, when the temperature of the phase change material 1 becomes 5 ° C. or lower, a brine solution having a freezing point lower than 0 ° C. is preferably used as the heat transfer liquid 3. That is, the solidification point of the heat transfer liquid 3 is set to be 3 ° C. or more, preferably 5 ° C. or more lower than the solidification point of the phase change material 1 so that the heat transfer liquid 3 does not solidify in the state where the phase change material 1 is solidified. Good.

図1に示すように、熱伝達液3を伝熱管4で冷却し、あるいは加熱する蓄熱装置は、伝熱管4を熱伝達液3に完全に浸漬できる状態、いいかえると、伝熱管4の全周を熱伝達液3の内部に配管できる量の熱伝達液3を蓄熱槽2に充填する。図1の蓄熱装置は、熱伝達液3に1本の伝熱管4を配管しているが、熱伝達液に複数の伝熱管を配管し、あるいは表面にフィンを固定している伝熱管を配管することができる。この蓄熱装置は、全ての伝熱管を熱伝達液に浸漬できる量の熱伝達液を蓄熱槽に充填する。伝熱管4を完全に熱伝達液3の液中に配管し、あるいは、フィンと伝熱管を液中に配設している蓄熱装置は、伝熱管4でもって効率よく熱伝達液3を冷却し、あるいは加熱できる。   As shown in FIG. 1, the heat storage device that cools or heats the heat transfer liquid 3 with the heat transfer tube 4 is in a state where the heat transfer tube 4 can be completely immersed in the heat transfer liquid 3, in other words, the entire circumference of the heat transfer tube 4. The heat transfer tank 3 is filled with an amount of heat transfer liquid 3 that can be piped into the heat transfer liquid 3. The heat storage device of FIG. 1 has one heat transfer tube 4 piped to the heat transfer liquid 3, but a plurality of heat transfer pipes are piped to the heat transfer liquid, or a heat transfer pipe having fins fixed to the surface is piped. can do. This heat storage device fills the heat storage tank with an amount of heat transfer liquid that can immerse all the heat transfer tubes in the heat transfer liquid. The heat storage device in which the heat transfer tube 4 is completely piped in the liquid of the heat transfer liquid 3 or the fins and the heat transfer pipe are arranged in the liquid cools the heat transfer liquid 3 efficiently with the heat transfer tube 4. Or it can be heated.

図1に示す蓄熱装置は、熱伝達液3に伝熱管4を配管し、この伝熱管4に循環液を循環させる。この装置は、伝熱管4の内部に通過させる循環液を、冷却器又は加熱器であるチラー5と外部熱交換器6とに循環させる。チラー5と外部熱交換器6は直列に連結されて、伝熱管4に通過される循環液を循環させる。チラー5は、循環液を冷却して相変化材1を凝固し、あるいは循環液を加熱して凝固した相変化材1を融解させる。この図の装置は、伝熱管4に循環液を循環させて、熱伝達液3を冷却又は加温するので、熱伝達液3をチラー5や外部熱交換器6に循環させる必要がない。このため、熱伝達液3を常に一定のレベルにできる。また、熱伝達液3と循環液とが混合しないので、熱伝達液3と循環液に、水とブライン等のように異なる液体を使用することができる。   In the heat storage device shown in FIG. 1, a heat transfer pipe 4 is piped to the heat transfer liquid 3, and the circulating liquid is circulated through the heat transfer pipe 4. This apparatus circulates the circulating liquid that is passed through the heat transfer tube 4 through the chiller 5 and the external heat exchanger 6 that are a cooler or a heater. The chiller 5 and the external heat exchanger 6 are connected in series to circulate the circulating fluid that is passed through the heat transfer tube 4. The chiller 5 cools the circulating liquid to solidify the phase change material 1 or heats the circulating liquid to melt the solidified phase change material 1. The apparatus shown in this figure circulates the circulating fluid through the heat transfer tube 4 to cool or heat the heat transfer fluid 3, so that it is not necessary to circulate the heat transfer fluid 3 to the chiller 5 or the external heat exchanger 6. For this reason, the heat transfer liquid 3 can always be at a constant level. Further, since the heat transfer liquid 3 and the circulating liquid are not mixed, different liquids such as water and brine can be used for the heat transfer liquid 3 and the circulating liquid.

図2に示す蓄熱装置は、熱伝達液3を循環液として、チラー5と外部熱交換器6とに循環させる。チラー5と外部熱交換器6には、熱伝達液3が循環される。チラー5は、熱伝達液3を直接に冷却して相変化材1を凝固し、あるいは加熱して凝固した相変化材1を融解させる。この図の装置は、熱伝達液3をチラー5で直接に冷却又は加温するので、チラー5で効率よく熱伝達液3を冷却又は加熱できる。この装置は、熱伝達液3に水を使用する装置に適している。水を蓄熱槽2とチラー5と外部熱交換器6とに循環できるからである。   The heat storage device shown in FIG. 2 circulates the heat transfer liquid 3 through the chiller 5 and the external heat exchanger 6 as a circulating liquid. The heat transfer liquid 3 is circulated through the chiller 5 and the external heat exchanger 6. The chiller 5 directly cools the heat transfer liquid 3 to solidify the phase change material 1 or heats it to melt the solidified phase change material 1. In the apparatus of this figure, the heat transfer liquid 3 is directly cooled or heated by the chiller 5, so that the heat transfer liquid 3 can be efficiently cooled or heated by the chiller 5. This apparatus is suitable for an apparatus that uses water for the heat transfer liquid 3. This is because water can be circulated to the heat storage tank 2, the chiller 5, and the external heat exchanger 6.

以上の装置は、チラー5を深夜電力で運転して、相変化材1を凝固または融解させて蓄熱する。外部熱交換器6は、空調用の熱交換器、あるいは冷蔵庫や冷却器等の熱交換器である。空調用の熱交換器は、室内空気を通過させて、室内を冷房又は暖房する。また、冷蔵庫や冷却器の熱交換器は、冷蔵庫や冷却器を冷却する。   The above apparatus operates the chiller 5 with midnight power to solidify or melt the phase change material 1 to store heat. The external heat exchanger 6 is a heat exchanger for air conditioning or a heat exchanger such as a refrigerator or a cooler. The heat exchanger for air conditioning cools or heats the room by passing room air. Moreover, the heat exchanger of a refrigerator or a cooler cools the refrigerator or the cooler.

さらに、蓄熱装置は、上下方向に延長される熱伝導体7を蓄熱槽2に配設している。熱伝導体7は、下部を熱伝達液3に、上部を相変化材1に熱結合している。熱伝導体7は、銅やアルミニウム等の金属である。金属は優れた熱伝導特性を有するので、熱伝達液3の熱を効率よく相変化材1に伝導し、また相変化材1の熱を熱伝達液3に伝導する。熱伝導体7は、金属パイプが最適である。金属パイプは、丸パイプ又は角パイプである。パイプは、貫通孔を設けて、内部に相変化材1や熱伝達液3を充填することができる。ただし、熱伝導体には、金属ロッドや金属板も使用できる。熱伝導体7は、相変化材1と熱伝達液3とに熱を伝導させるので、下端を熱伝達液3に浸漬させて熱結合状態とし、上部を相変化材1に挿通して熱結合状態としている。   Further, in the heat storage device, a heat conductor 7 extended in the vertical direction is disposed in the heat storage tank 2. The heat conductor 7 has a lower portion thermally coupled to the heat transfer liquid 3 and an upper portion thermally coupled to the phase change material 1. The heat conductor 7 is a metal such as copper or aluminum. Since the metal has excellent heat conduction characteristics, the heat of the heat transfer liquid 3 is efficiently conducted to the phase change material 1, and the heat of the phase change material 1 is conducted to the heat transfer liquid 3. The heat conductor 7 is optimally a metal pipe. The metal pipe is a round pipe or a square pipe. The pipe can be provided with through holes and filled with the phase change material 1 or the heat transfer liquid 3 therein. However, a metal rod or a metal plate can also be used for the heat conductor. Since the heat conductor 7 conducts heat to the phase change material 1 and the heat transfer liquid 3, the lower end is immersed in the heat transfer liquid 3 to be in a heat-bonded state, and the upper part is inserted into the phase change material 1 to be heat-bonded. State.

熱伝導体7は、相変化材1や熱伝達液3に熱結合する面積、いいかえると相変化材1や熱伝達液3に接触する面積を変更して、相変化材1や熱伝達液3から熱伝導体7に伝導する熱量をコントロールできる。熱伝導体7が相変化材1や熱伝達液3に熱結合する面積が小さくなると、相変化材1や熱伝達液3から熱伝導体7に伝導する熱量が少なくなる。反対に、熱伝導体7が相変化材1や熱伝達液3に熱結合する面積、すなわち接触面積が大きくなると、相変化材1や熱伝達液3から熱伝導体7に伝導する熱量が多くなる。この特性を利用して、相変化材1に蓄熱される熱エネルギーの取り出し量をコントロールできる。たとえば、蓄熱装置を深夜電力で相変化材1を凝固させる冷房装置に利用する場合、熱伝導体7が相変化材1又は熱伝達液3に熱結合する面積を変更して、相変化材1から取り出す熱エネルギー、いいかえると凝固した相変化材1が融解して熱伝達液3を冷却する熱量をコントロールできる。外気温度が高くて、冷房熱量を大きくする場合、熱伝導体7が相変化材1や熱伝達液3に熱結合する面積を大きくして、相変化材1が熱伝達液3を冷却する熱量を多くできる。また、冷房負荷が小さく、冷房熱量を小さくする場合、熱伝導体7が相変化材1や熱伝達液3に熱結合する面積を小さくして、相変化材1が熱伝達液3を冷却する熱量を小さくできる。熱伝導体7が相変化材1や熱伝達液3に熱結合する面積を変更するための機構として以下のメカニズムが採用できる。   The heat conductor 7 changes the area that is thermally coupled to the phase change material 1 and the heat transfer liquid 3, in other words, the area that contacts the phase change material 1 and the heat transfer liquid 3, so that the phase change material 1 and the heat transfer liquid 3 are changed. The amount of heat conducted to the heat conductor 7 can be controlled. When the area where the heat conductor 7 is thermally coupled to the phase change material 1 or the heat transfer liquid 3 is reduced, the amount of heat conducted from the phase change material 1 or the heat transfer liquid 3 to the heat conductor 7 is reduced. Conversely, when the area where the heat conductor 7 is thermally coupled to the phase change material 1 or the heat transfer liquid 3, that is, the contact area increases, the amount of heat conducted from the phase change material 1 or the heat transfer liquid 3 to the heat conductor 7 increases. Become. Utilizing this characteristic, the amount of heat energy extracted from the phase change material 1 can be controlled. For example, when the heat storage device is used for a cooling device that solidifies the phase change material 1 with midnight power, the area where the heat conductor 7 is thermally coupled to the phase change material 1 or the heat transfer liquid 3 is changed to change the phase change material 1. In other words, the amount of heat for cooling the heat transfer liquid 3 by melting the solidified phase change material 1 can be controlled. When the outside air temperature is high and the amount of cooling heat is increased, the area where the heat conductor 7 is thermally coupled to the phase change material 1 and the heat transfer liquid 3 is increased, and the amount of heat that the phase change material 1 cools the heat transfer liquid 3. Can do more. When the cooling load is small and the cooling heat quantity is small, the area where the heat conductor 7 is thermally coupled to the phase change material 1 and the heat transfer liquid 3 is reduced, and the phase change material 1 cools the heat transfer liquid 3. The amount of heat can be reduced. The following mechanism can be adopted as a mechanism for changing the area where the heat conductor 7 is thermally coupled to the phase change material 1 and the heat transfer liquid 3.

[熱伝導体が相変化材や熱伝達液に熱結合する面積を小さくして、相変化材と熱伝達液との伝導熱量を小さくする機構]
(1) 熱伝導体7を相変化材1の方向に移動させて、熱伝導体7が熱伝達液3に熱結合する面積を、相変化材1に熱結合する面積よりも小さくする。このメカニズムは、熱伝導体7を相変化材1に熱結合する面積を大きくするが、熱伝達液3に熱結合する面積を小さくするので、熱伝達液3と熱伝導体7との伝導熱量を小さくして、熱伝導体7による相変化材1と熱伝達液3との伝導熱量を小さくする。
(2) 熱伝導体7を熱伝達液3の方向に移動させて、熱伝導体7が相変化材1に熱結合する面積を、熱伝達液3に熱結合する面積よりも小さくする。このメカニズムは、熱伝導体7を熱伝達液3に熱結合する面積を大きくするが、相変化材1に熱結合する面積を小さくするので、相変化材1と熱伝導体7との伝導熱量を小さくして、熱伝導体7による相変化材1と熱伝達液3との伝導熱量を小さくする。
(3) 熱伝導体7を相変化材1と熱伝達液3の境界面に対して傾斜させる。このメカニズムでは、熱伝導体7が相変化材1と熱伝達液3の両方に熱結合する面積は変化しないが、熱伝導体7が相変化材1と熱伝達液3の両方に熱結合する領域が、相変化材1と熱伝達液3との境界部分の近傍に制限される状態となる。このため、相変化材1と熱伝達液3の全体的な熱交換の効率が低下して伝導熱量が小さくなる。
[Mechanism for reducing the amount of heat conduction between the phase change material and the heat transfer liquid by reducing the area where the heat conductor is thermally coupled to the phase change material or the heat transfer liquid]
(1) The heat conductor 7 is moved in the direction of the phase change material 1 so that the area where the heat conductor 7 is thermally coupled to the heat transfer liquid 3 is smaller than the area where the heat conductor 7 is thermally coupled to the phase change material 1. This mechanism increases the area where the heat conductor 7 is thermally coupled to the phase change material 1, but reduces the area where the heat conductor 7 is thermally coupled to the heat transfer liquid 3, so the amount of heat conducted between the heat transfer liquid 3 and the heat conductor 7. To reduce the amount of heat conducted by the heat conductor 7 between the phase change material 1 and the heat transfer liquid 3.
(2) The heat conductor 7 is moved in the direction of the heat transfer liquid 3 so that the area where the heat conductor 7 is thermally coupled to the phase change material 1 is made smaller than the area thermally coupled to the heat transfer liquid 3. This mechanism increases the area where the thermal conductor 7 is thermally coupled to the heat transfer liquid 3, but reduces the area where the thermal conductor 7 is thermally coupled to the phase change material 1, and thus the amount of heat conducted between the phase change material 1 and the thermal conductor 7. To reduce the amount of heat conducted by the heat conductor 7 between the phase change material 1 and the heat transfer liquid 3.
(3) The heat conductor 7 is inclined with respect to the interface between the phase change material 1 and the heat transfer liquid 3. In this mechanism, the area where the heat conductor 7 is thermally coupled to both the phase change material 1 and the heat transfer liquid 3 does not change, but the heat conductor 7 is thermally coupled to both the phase change material 1 and the heat transfer liquid 3. The region is limited to the vicinity of the boundary portion between the phase change material 1 and the heat transfer liquid 3. For this reason, the efficiency of the overall heat exchange between the phase change material 1 and the heat transfer liquid 3 is reduced, and the amount of conduction heat is reduced.

図3は、熱伝導体7が、熱伝達液3の熱を効率よく相変化材1に伝導し、また、相変化材1の熱を効率よく熱伝達液3に伝導する状態を示す。図の矢印は、熱伝達液3が相変化材1を冷却する方向を示している。したがって、冷却は熱を奪うので、熱エネルギーは矢印と反対の方向に伝導される。熱伝導体7は、熱伝達液3と相変化材1の両方に熱結合されて、熱伝達液3と相変化材1との間の熱伝導を効率よくする。パラフィン系の相変化材1は、凝固すると比重が大きくなって底に沈降する。凝固して底に沈降したパラフィン系の相変化材1は、熱伝導が非常に悪い性質がある。このため、凝固した相変化材1Aが熱伝達液3との境界面に沈降すると、これが熱伝達液3と相変化材1との熱伝導を悪くする。このため、凝固した相変化材1Aの上にある液状の相変化材1Bは、熱伝達液3に冷却されなくなって凝固しなくなる。熱伝導体7は、下部を熱伝達液3に、上部を相変化材1に熱結合しているので、凝固した相変化材1Aの層を貫通して、熱伝達液3と液状の相変化材1Bとの熱伝導を効率よくする。このため、相変化材1が凝固して底に沈降しても、熱伝導体7を介して熱伝達液3は相変化材1を効率よく冷却して凝固させる。さらに、凝固しない液状の相変化材1Bは、熱伝導体7に冷却されて対流する。したがって、熱伝導体7は相変化材1を均一に冷却する。熱伝達液3が相変化材1を冷却して凝固させる状態において、熱エネルギーは、熱伝導体7を介して相変化材1から熱伝達液3に伝導される。以上の状態は、相変化材1を凝固して冷却のエネルギーを蓄熱する状態と、融解した相変化材1を凝固させて蓄熱した熱エネルギーで外部熱交換器6を加温する状態に発生する。すなわち、チラー5で熱伝達液3を冷却し、冷却された熱伝達液3が相変化材1を冷却して、冷却のエネルギーを凝固する相変化材1に蓄熱する状態と、融解した相変化材1を凝固させて、相変化材1が熱伝導体7を介して熱伝達液3を加温して蓄熱した熱エネルギーで外部熱交換器6を加温する状態に発生する。   FIG. 3 shows a state in which the heat conductor 7 efficiently conducts the heat of the heat transfer liquid 3 to the phase change material 1 and efficiently conducts the heat of the phase change material 1 to the heat transfer liquid 3. The arrows in the figure indicate the direction in which the heat transfer liquid 3 cools the phase change material 1. Thus, cooling takes heat away and heat energy is conducted in the opposite direction of the arrow. The heat conductor 7 is thermally coupled to both the heat transfer liquid 3 and the phase change material 1 to efficiently conduct heat conduction between the heat transfer liquid 3 and the phase change material 1. When the paraffin phase change material 1 is solidified, the specific gravity increases and settles to the bottom. The paraffinic phase change material 1 that has solidified and settled to the bottom has a very poor thermal conductivity. For this reason, when the solidified phase change material 1 </ b> A settles on the boundary surface with the heat transfer liquid 3, this deteriorates the heat conduction between the heat transfer liquid 3 and the phase change material 1. For this reason, the liquid phase change material 1B on the solidified phase change material 1A is not cooled by the heat transfer liquid 3 and does not solidify. Since the heat conductor 7 is thermally coupled to the heat transfer liquid 3 at the lower part and the phase change material 1 at the upper part, the heat conductor 7 penetrates through the layer of the solidified phase change material 1A, and the liquid phase change with the heat transfer liquid 3 The heat conduction with the material 1B is made efficient. For this reason, even if the phase change material 1 solidifies and settles to the bottom, the heat transfer liquid 3 efficiently cools and solidifies the phase change material 1 through the heat conductor 7. Further, the liquid phase change material 1B which does not solidify is cooled by the heat conductor 7 and convects. Therefore, the heat conductor 7 cools the phase change material 1 uniformly. In the state where the heat transfer liquid 3 cools and solidifies the phase change material 1, the heat energy is conducted from the phase change material 1 to the heat transfer liquid 3 via the heat conductor 7. The above states occur in a state in which the phase change material 1 is solidified to store the cooling energy, and a state in which the external heat exchanger 6 is heated with the heat energy that has been solidified from the melted phase change material 1 and stored. . That is, the heat transfer liquid 3 is cooled by the chiller 5, the cooled heat transfer liquid 3 cools the phase change material 1, and heat is stored in the phase change material 1 that solidifies the cooling energy, and the melted phase change. The material 1 is solidified, and the phase change material 1 is heated to heat the heat transfer liquid 3 through the heat conductor 7 and the external heat exchanger 6 is heated with the stored heat energy.

反対に、熱エネルギーを熱伝達液3から相変化材1に伝導する状態においては、凝固している相変化材1が融解される。この状態は、凝固した相変化材1を融解して蓄熱する状態と、凝固した相変化材1を融解させて蓄熱した冷却のエネルギーで外部熱交換器6を冷却する状態に発生する。すなわち、チラー5で熱伝達液3を加温し、加温された熱伝達液3が相変化材1を加温して、熱エネルギーを融解する相変化材1に蓄熱する状態と、凝固した相変化材1が融解されて、相変化材1が熱伝導体7を介して熱伝達液3を冷却して蓄熱した冷却のエネルギーで外部熱交換器6を冷却する状態に発生する。   On the contrary, in the state where heat energy is conducted from the heat transfer liquid 3 to the phase change material 1, the solidified phase change material 1 is melted. This state occurs in a state in which the solidified phase change material 1 is melted and stored, and a state in which the external heat exchanger 6 is cooled by the cooling energy stored by melting the solidified phase change material 1. That is, the heat transfer liquid 3 is heated by the chiller 5, the heated heat transfer liquid 3 heats the phase change material 1, and heat is accumulated in the phase change material 1 that melts thermal energy, and solidifies. The phase change material 1 is melted, and the phase change material 1 cools the heat transfer liquid 3 through the heat conductor 7 to cool the external heat exchanger 6 with the stored cooling energy.

熱伝導体7が、極めて優れた作用効果を実現することを図4のグラフに示す。この図は、熱伝導体のない装置に対する、熱伝導体を設けた装置の蓄熱量の比率を示している。この図は、相変化材が凝固して蓄える蓄熱量(潜熱)を鎖線Aで、相変化材が冷却されて蓄える蓄熱量(顕熱)を一点鎖線Bで、相変化材の凝固と冷却で蓄えるトータルの蓄熱量を実線Cで示している。実線Cで示すように、熱伝導体7を設けた本発明の装置は、時間が経過するにしたがって、蓄熱する熱エネルギーが増加する。たとえば、2時間経過後には、蓄熱する熱エネルギーが熱伝導体のない装置に比べて2倍以上となり、ピーク時には約2.2倍となる。   The graph of FIG. 4 shows that the heat conductor 7 achieves an extremely excellent effect. This figure has shown the ratio of the thermal storage amount of the apparatus which provided the heat conductor with respect to the apparatus without a heat conductor. This figure shows the amount of heat storage (latent heat) stored and solidified by the phase change material by a chain line A, and the amount of heat storage (sensible heat) stored and stored by the phase change material by a one-dot chain line B. The total heat storage amount to be stored is indicated by a solid line C. As shown by the solid line C, the thermal energy stored in the apparatus of the present invention provided with the heat conductor 7 increases as time passes. For example, after 2 hours, the heat energy stored is more than twice that of a device without a heat conductor, and about 2.2 times at the peak.

ただし、図4のグラフは、以下の条件で測定したものである。
(1) 蓄熱槽2の内容積は、縦×横×高さを、76mm×65mm×206mmとする。
(2) 伝熱管4は、外径を6mm、内径を4mmとする1本の銅パイプとする。
(3) 熱伝導体7は、蓄熱槽2の底から天井まで伸びる1本の銅パイプとする。
(4) 熱伝導体7の銅パイプは、外径を6mm、内径を4mmとする。
(5) 相変化材1は、凝固点の温度を12℃とするパラフィン系の相変化材を使用する。
(6) 熱伝達液3は水を使用し、底からの深さが16mmとなる充填量とする。
(7) 相変化材1は、熱伝達液3の上に充填されて、蓄熱槽2を満たす量とする。
(8) 伝熱管4に通過させる循環液の温度を2℃とする。
(9) 実験を開始する最初の熱伝達液3と相変化材1の温度は27℃とする。
However, the graph of FIG. 4 is measured under the following conditions.
(1) The internal volume of the heat storage tank 2 is 76 mm × 65 mm × 206 mm in length × width × height.
(2) The heat transfer tube 4 is a single copper pipe having an outer diameter of 6 mm and an inner diameter of 4 mm.
(3) The heat conductor 7 is a single copper pipe extending from the bottom of the heat storage tank 2 to the ceiling.
(4) The copper pipe of the heat conductor 7 has an outer diameter of 6 mm and an inner diameter of 4 mm.
(5) As the phase change material 1, a paraffin phase change material having a freezing point of 12 ° C. is used.
(6) Water is used as the heat transfer liquid 3 and the filling amount is 16 mm from the bottom.
(7) The phase change material 1 is filled on the heat transfer liquid 3 to fill the heat storage tank 2.
(8) The temperature of the circulating fluid passed through the heat transfer tube 4 is set to 2 ° C.
(9) The temperature of the first heat transfer liquid 3 and the phase change material 1 for starting the experiment is 27 ° C.

図1の蓄熱装置は、以下のようにして夏期の冷房に使用される。この図において、チラー5は、蓄熱槽2の伝熱管4から排出される循環液を吸入して冷却し、冷却した循環液を伝熱管4に循環させる。伝熱管4は、熱伝達液3と熱伝導体7を介して相変化材1を冷却して凝固させる。この図において、チラー5は、深夜電力で運転されて、たとえば12℃の循環液を吸入し7℃に冷却して伝熱管4に循環させる。チラー5が循環液を冷却する深夜において、循環液は外部熱交換器6を通過することなく蓄熱槽2に循環されるように、外部熱交換器6の両端に連結している切換弁8が切り換えられる。蓄熱槽2の伝熱管4に循環される7℃の循環液は、熱伝達液3を冷却し、熱伝達液3が相変化材1を凝固させる。蓄熱槽2の内部において、熱伝達液3は相変化材1に直接に接触して、また熱伝導体7を介して相変化材1を凝固させる。相変化材1を凝固させる熱伝達液3は温度が上昇し、これで加温される循環液は、温度が上昇してチラー5に循環される。この運転で蓄熱槽2の相変化材1が凝固されて、凝固された相変化材1は液相に変換するときに潜熱を奪う状態として熱エネルギーを蓄える。冷房するときは、伝熱管4の循環液を外部熱交換器6に循環させる。外部熱交換器6を通過する循環液は、室内空気を冷却して、7℃から15℃に加温される。加温された循環液は伝熱管4に循環され、蓄熱槽2の内部で熱伝達液3に冷却される。熱伝達液3は相変化材1の潜熱で冷却される。外部熱交換器6に伝熱管4の循環液を循環させるとき、チラー5を運転し、相変化材1の潜熱とチラー5の両方で循環液を冷却することもできる。   The heat storage device of FIG. 1 is used for cooling in summer as follows. In this figure, the chiller 5 sucks and cools the circulating fluid discharged from the heat transfer tube 4 of the heat storage tank 2, and circulates the cooled circulating fluid through the heat transfer tube 4. The heat transfer tube 4 cools and solidifies the phase change material 1 via the heat transfer liquid 3 and the heat conductor 7. In this figure, the chiller 5 is operated at midnight power, for example, sucks a circulating fluid at 12 ° C., cools it to 7 ° C., and circulates it through the heat transfer tube 4. At midnight when the chiller 5 cools the circulating fluid, the switching valve 8 connected to both ends of the external heat exchanger 6 is connected so that the circulating fluid is circulated to the heat storage tank 2 without passing through the external heat exchanger 6. Can be switched. The 7 ° C. circulating liquid circulated through the heat transfer tube 4 of the heat storage tank 2 cools the heat transfer liquid 3, and the heat transfer liquid 3 solidifies the phase change material 1. Inside the heat storage tank 2, the heat transfer liquid 3 directly contacts the phase change material 1 and solidifies the phase change material 1 via the heat conductor 7. The temperature of the heat transfer liquid 3 that solidifies the phase change material 1 rises, and the circulating fluid that is heated thereby rises in temperature and is circulated to the chiller 5. In this operation, the phase change material 1 of the heat storage tank 2 is solidified, and the solidified phase change material 1 stores thermal energy as a state that takes away latent heat when converted into a liquid phase. When cooling, the circulating fluid in the heat transfer tube 4 is circulated to the external heat exchanger 6. The circulating fluid passing through the external heat exchanger 6 cools the room air and is heated from 7 ° C to 15 ° C. The heated circulating liquid is circulated through the heat transfer pipe 4 and cooled to the heat transfer liquid 3 inside the heat storage tank 2. The heat transfer liquid 3 is cooled by the latent heat of the phase change material 1. When circulating the circulating fluid in the heat transfer tube 4 through the external heat exchanger 6, the chiller 5 can be operated to cool the circulating fluid with both the latent heat of the phase change material 1 and the chiller 5.

暖房時には、以下のように運転される。この状態において、チラー5は伝熱管4に循環される循環液を加温する。伝熱管4は、熱伝達液3を介して相変化材1を加温して、相変化材1を融解する状態として熱エネルギーを蓄熱する。この状態において、チラー5は、深夜電力で運転されて循環液を加温して伝熱管4に循環させる。循環液4の加温は、チラー5に変わってヒータも使用できる。また、ヒータは、熱伝達液3の内部に内蔵して、熱伝達液3を直接に加温することもできる。加温される循環液は、外部熱交換器6を通過することなく蓄熱槽2内の伝熱管4に循環される。伝熱管4に循環される循環液は、熱伝達液3を加温し、熱伝達液3が相変化材1を直接に加温し、また熱伝導体7を介して相変化材1を加温して融解させる。相変化材1を融解する熱伝達液3は冷却され、冷却された熱伝達液3は伝熱管4で加温される。この運転で蓄熱槽2の相変化材1が融解されて、融解された相変化材1は固相に変換するときに潜熱を奪う状態として熱エネルギーを蓄熱する。暖房するときは、伝熱管4の循環液を外部熱交換器6に循環させる。外部熱交換器6を通過する循環液は、室内空気を加温して、冷却される。冷却された循環液は伝熱管4に循環され、伝熱管4は熱伝導体7と熱伝達液3を介して相変化材1で加温される。外部熱交換器6に循環液を循環させるとき、チラー5を運転し、あるいはヒータに通電して相変化材1の潜熱と両方で循環液を加温することもできる。   During heating, it operates as follows. In this state, the chiller 5 heats the circulating fluid circulated through the heat transfer tube 4. Heat transfer tube 4 heats phase change material 1 via heat transfer liquid 3 and stores thermal energy as a state in which phase change material 1 is melted. In this state, the chiller 5 is operated with midnight power to heat the circulating fluid and circulate it through the heat transfer tube 4. The circulating fluid 4 can be heated by using a heater instead of the chiller 5. Further, the heater can be built in the heat transfer liquid 3 to heat the heat transfer liquid 3 directly. The circulating fluid to be heated is circulated to the heat transfer tube 4 in the heat storage tank 2 without passing through the external heat exchanger 6. The circulating fluid circulated through the heat transfer tube 4 heats the heat transfer liquid 3, the heat transfer liquid 3 directly heats the phase change material 1, and heats the phase change material 1 via the heat conductor 7. Allow to melt by heating. The heat transfer liquid 3 that melts the phase change material 1 is cooled, and the cooled heat transfer liquid 3 is heated by the heat transfer tube 4. In this operation, the phase change material 1 in the heat storage tank 2 is melted, and the melted phase change material 1 stores thermal energy as a state that takes away latent heat when converted into a solid phase. When heating, the circulating fluid of the heat transfer tube 4 is circulated to the external heat exchanger 6. The circulating fluid passing through the external heat exchanger 6 is cooled by heating indoor air. The cooled circulating liquid is circulated through the heat transfer tube 4, and the heat transfer tube 4 is heated by the phase change material 1 through the heat conductor 7 and the heat transfer liquid 3. When circulating the circulating fluid through the external heat exchanger 6, the chiller 5 can be operated, or the heater can be energized to heat the circulating fluid both with the latent heat of the phase change material 1.

本発明の一実施例にかかる蓄熱装置の概略構成図であって、夏期に冷房する状態を示す図である。It is a schematic block diagram of the thermal storage apparatus concerning one Example of this invention, Comprising: It is a figure which shows the state which cools in summer. 本発明の他の実施例にかかる蓄熱装置の概略構成図である。It is a schematic block diagram of the heat storage apparatus concerning the other Example of this invention. 蓄熱槽の熱伝導体が熱伝達液の熱を相変化材に伝導する状態を示す概略図である。It is the schematic which shows the state in which the heat conductor of a thermal storage tank conducts the heat | fever of a heat transfer liquid to a phase change material. 本発明の蓄熱装置の従来の蓄熱装置に対する蓄熱量の比率を示すグラフである。It is a graph which shows the ratio of the heat storage amount with respect to the conventional heat storage apparatus of the heat storage apparatus of this invention.

符号の説明Explanation of symbols

1…相変化材 1A…凝固した相変化材 1B…液状の相変化材
2…蓄熱槽
3…熱伝達液
4…伝熱管
5…チラー
6…外部熱交換器
7…熱伝導体
8…切換弁
DESCRIPTION OF SYMBOLS 1 ... Phase change material 1A ... Solidified phase change material 1B ... Liquid phase change material 2 ... Heat storage tank 3 ... Heat transfer liquid 4 ... Heat transfer pipe 5 ... Chiller 6 ... External heat exchanger 7 ... Heat conductor 8 ... Switching valve

Claims (7)

相変化材(1)を凝固、融解させてその潜熱を利用して蓄熱する蓄熱装置であって、
蓄熱槽(2)に、相変化材(1)と、この相変化材(1)よりも比重の大きい熱伝達液(3)を充填して、熱伝達液(3)の上に相変化材(1)を積層する状態としており、さらに、蓄熱槽(2)には上下方向に延長される熱伝導体(7)を配設して、熱伝導体(7)の下部を熱伝達液(3)に、上部を相変化材(1)に熱結合してなる蓄熱装置。
A heat storage device that solidifies and melts the phase change material (1) and stores heat using the latent heat,
The heat storage tank (2) is filled with the phase change material (1) and the heat transfer liquid (3) having a higher specific gravity than the phase change material (1), and the phase change material is placed on the heat transfer liquid (3). In addition, the heat storage tank (2) is provided with a heat conductor (7) extending in the vertical direction, and the lower part of the heat conductor (7) is placed in the heat transfer liquid ( 3), a heat storage device formed by thermally coupling the upper part to the phase change material (1).
熱伝達液(3)の熱伝導率が相変化材(1)の熱伝導率よりも大きい請求項1に記載される蓄熱装置。   The heat storage device according to claim 1, wherein the thermal conductivity of the heat transfer liquid (3) is larger than the thermal conductivity of the phase change material (1). 相変化材(1)がパラフィン系の相変化材である請求項1に記載される蓄熱装置。   The heat storage device according to claim 1, wherein the phase change material (1) is a paraffin phase change material. 相変化材(1)の凝固点が0℃よりも高く、熱伝達液(3)が水である請求項1に記載される蓄熱装置。   The heat storage device according to claim 1, wherein the freezing point of the phase change material (1) is higher than 0 ° C, and the heat transfer liquid (3) is water. 熱伝導体(7)が金属、炭素繊維、セラミックのいずれかである請求項1に記載される蓄熱装置。   The heat storage device according to claim 1, wherein the heat conductor (7) is one of metal, carbon fiber, and ceramic. 熱伝導体(7)が金属パイプ、金属板のいずれかである請求項5に記載される蓄熱装置。   The heat storage device according to claim 5, wherein the heat conductor (7) is one of a metal pipe and a metal plate. 熱伝達液(3)に伝熱管(4)を配設しており、伝熱管(4)で熱伝達液(3)を冷却し、または熱伝達液(3)が伝熱管(4)を冷却する請求項1に記載される蓄熱装置。
The heat transfer pipe (4) is arranged in the heat transfer liquid (3), the heat transfer liquid (3) is cooled by the heat transfer pipe (4), or the heat transfer liquid (3) cools the heat transfer pipe (4). The heat storage device according to claim 1.
JP2004214981A 2004-07-22 2004-07-22 Heat storage device Pending JP2006038266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004214981A JP2006038266A (en) 2004-07-22 2004-07-22 Heat storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004214981A JP2006038266A (en) 2004-07-22 2004-07-22 Heat storage device

Publications (1)

Publication Number Publication Date
JP2006038266A true JP2006038266A (en) 2006-02-09

Family

ID=35903443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004214981A Pending JP2006038266A (en) 2004-07-22 2004-07-22 Heat storage device

Country Status (1)

Country Link
JP (1) JP2006038266A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009198134A (en) * 2008-02-25 2009-09-03 Kurimoto Ltd Heat storage device
CN109210975A (en) * 2018-10-16 2019-01-15 华南理工大学 A kind of heat accumulation heat dissipation microchannel aluminothermy pipe based on solid-liquid double-work medium
WO2020217800A1 (en) * 2019-04-23 2020-10-29 Ckd株式会社 Heat exchange system
WO2020218216A1 (en) * 2019-04-23 2020-10-29 株式会社巴川製紙所 Heat storage unit

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009198134A (en) * 2008-02-25 2009-09-03 Kurimoto Ltd Heat storage device
CN109210975A (en) * 2018-10-16 2019-01-15 华南理工大学 A kind of heat accumulation heat dissipation microchannel aluminothermy pipe based on solid-liquid double-work medium
WO2020217800A1 (en) * 2019-04-23 2020-10-29 Ckd株式会社 Heat exchange system
WO2020218216A1 (en) * 2019-04-23 2020-10-29 株式会社巴川製紙所 Heat storage unit
TWI742579B (en) * 2019-04-23 2021-10-11 日商Ckd股份有限公司 Heat exchange system
CN113710983A (en) * 2019-04-23 2021-11-26 株式会社巴川制纸所 Heat storage unit
KR20210143834A (en) * 2019-04-23 2021-11-29 씨케이디 가부시키 가이샤 heat exchange system
CN113811833A (en) * 2019-04-23 2021-12-17 Ckd株式会社 Heat exchange system
KR102547057B1 (en) 2019-04-23 2023-06-26 씨케이디 가부시키 가이샤 heat exchange system
JP7404354B2 (en) 2019-04-23 2023-12-25 Ckd株式会社 heat exchange system

Similar Documents

Publication Publication Date Title
CN201252709Y (en) Heat pipe and phase-change material combined thermal control device
JP3883965B2 (en) Heat exchanger
US20100051227A1 (en) Thermal energy storage
CN101226035A (en) Solar heat-storing device using gas as heat transfer medium
CN107634164A (en) A kind of battery thermal management system combined based on microchannel thermotube and phase-change material
CN101510533A (en) Novel microelectronic device radiator
JP2005241148A (en) Heat pump system utilizing solar light and its operation controlling method
KR101990592B1 (en) Phase change cooling module and battery pack using the same
JP2008241174A (en) Heat storage device
CN117537642B (en) Heat pipe, radiator and electronic equipment
CN107509362A (en) A kind of Phase cooling type electronic cabinet
JP2006038266A (en) Heat storage device
JP2008261584A (en) Heat accumulator
CN110926249A (en) Heat dissipation device capable of keeping heating element at constant temperature and manufacturing method
JP2005009837A (en) Heat storage device
CN108592672A (en) A kind of Latent Heat Storage Exchanger
CN1291530C (en) Phase-change energy-storage laser head cooler
JPH0245114B2 (en)
CN102692055A (en) Phase change energy storage equipment and solar air conditioning system integrated device
CN203572287U (en) Plate-fin type phase change heat exchanger
CN213248443U (en) Liquid treatment device
CN111446220A (en) Radiator for short-time junction temperature protection of thyristor and protection time obtaining method thereof
JP2004156793A (en) Heat storage device
JP3838194B2 (en) Heating system
JP2010071633A (en) Heat storage body, heat storage unit and heat storage system