JP2006037773A - Exhaust gas recirculation control device - Google Patents

Exhaust gas recirculation control device Download PDF

Info

Publication number
JP2006037773A
JP2006037773A JP2004215797A JP2004215797A JP2006037773A JP 2006037773 A JP2006037773 A JP 2006037773A JP 2004215797 A JP2004215797 A JP 2004215797A JP 2004215797 A JP2004215797 A JP 2004215797A JP 2006037773 A JP2006037773 A JP 2006037773A
Authority
JP
Japan
Prior art keywords
passage
exhaust gas
outlet portion
bypass passage
cooling passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004215797A
Other languages
Japanese (ja)
Inventor
Katsuhiro Kuroki
勝洋 黒木
Kazuto Maeda
一人 前田
Takashi Kobayashi
高史 小林
Osamu Shimane
修 島根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004215797A priority Critical patent/JP2006037773A/en
Priority to FR0507850A priority patent/FR2873413A1/en
Priority to DE102005034362A priority patent/DE102005034362A1/en
Publication of JP2006037773A publication Critical patent/JP2006037773A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • F28F27/02Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus for controlling the distribution of heat-exchange media between different channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/25Layout, e.g. schematics with coolers having bypasses
    • F02M26/26Layout, e.g. schematics with coolers having bypasses characterised by details of the bypass valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • F02M26/30Connections of coolers to other devices, e.g. to valves, heaters, compressors or filters; Coolers characterised by their location on the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/33Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage controlling the temperature of the recirculated gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/46Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition
    • F02M26/47Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition the characteristics being temperatures, pressures or flow rates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/28Layout, e.g. schematics with liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • F02M26/32Liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/06Derivation channels, e.g. bypass

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust gas recirculation control device which appropriately controls temperature of exhaust gas led to an exhaust system of an engine. <P>SOLUTION: The device is provided with a cooling passage 75 for circulating exhaust gas being cooled, a bypass passage 81 for circulating exhaust gas by bypassing the cooling passage 75, a partition wall 58 for partitioning an outlet 72 of the cooling passage 75 and an outlet 73 of the bypass passage 81, a swing valve 56 for opening/closing respective outlets 72, 73 of the cooling passage 75 and the bypass passage 81, a lead-out port 83 for leading out exhaust gas to an intake system of an engine by communicating to one of the cooling passage 75 and the bypass passage 81 in which one of the outlets 72, 73 is opened. The partition wall 58 is offset to the bypass passage 81 side with respect to the center axial line O of the lead-out port 83. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、内燃機関(以下、「内燃機関」をエンジンという)の吸気系へ導いて再循環させる排気ガスの温度を制御する排気ガス再循環制御装置(以下、「排気ガス再循環」をEGRという)に関する。   The present invention relates to an exhaust gas recirculation control device (hereinafter referred to as “exhaust gas recirculation”) that controls the temperature of exhaust gas to be recirculated by introducing it into the intake system of an internal combustion engine (hereinafter referred to as “the internal combustion engine”). About).

特許文献1には、排気ガスを冷却しつつ流通させる冷却通路と、冷却通路を迂回して排気ガスを流通させるバイパス通路と、それら通路を開閉する揺動弁とを備えたEGR制御装置が開示されている。このEGR制御装置では、冷却通路を開きバイパス通路を閉じることにより、冷却通路を通過した低温の排気ガスを吸気系へ導くことができ、また一方、冷却通路を閉じバイパス通路を開くことにより、バイパス通路を通過した高温の排気ガスを吸気系へ導くことができる。   Patent Document 1 discloses an EGR control device that includes a cooling passage that circulates exhaust gas while cooling, a bypass passage that circulates the exhaust gas around the cooling passage, and a swing valve that opens and closes the passage. Has been. In this EGR control device, by opening the cooling passage and closing the bypass passage, the low-temperature exhaust gas that has passed through the cooling passage can be guided to the intake system, and on the other hand, by closing the cooling passage and opening the bypass passage, The hot exhaust gas that has passed through the passage can be guided to the intake system.

国際公開第03/062625号パンフレットInternational Publication No. 03/062625 Pamphlet

上記特許文献1のEGR制御装置において、冷却通路及びバイパス通路を共に開くようにすると、中間温度の排気ガスを吸気系へ導くことが可能となる。しかし、各通路の入口部を揺動弁により開閉している特許文献1のEGR制御装置では、各通路の出口部から排気ガスが流出して合流しても混ざり難い。そのため、かかる合流後に吸気系へと導かれる排気ガスの温度を適正に制御することができなくなる。例えば吸気系へ導く排気ガスの温度をフィードバック制御するような場合、合流後の排気ガスの温度を正確に検出することが困難となり、実際に吸気系へ導かれる排気ガスの温度が最適温度から外れてしまう。このように最適温度の排気ガスを吸気系へ導くことができない場合、エンジンのエミッション不良や、EGR制御装置の搭載車両におけるドライバビリティの低下等といった不具合が生じる。
本発明の目的は、エンジンの吸気系へ導く排気ガスの温度を適正に制御するEGR制御装置を提供することにある。
In the EGR control device disclosed in Patent Document 1, if both the cooling passage and the bypass passage are opened, it is possible to guide the exhaust gas at an intermediate temperature to the intake system. However, in the EGR control device of Patent Document 1 in which the inlet portion of each passage is opened and closed by a swing valve, even if exhaust gas flows out from the outlet portion of each passage and merges, it is difficult to mix. For this reason, the temperature of the exhaust gas guided to the intake system after such merging cannot be properly controlled. For example, when feedback control is performed on the exhaust gas temperature leading to the intake system, it becomes difficult to accurately detect the exhaust gas temperature after merging, and the exhaust gas temperature actually guided to the intake system deviates from the optimum temperature. End up. When exhaust gas having the optimum temperature cannot be led to the intake system as described above, problems such as engine emission failure and drivability deterioration in a vehicle equipped with an EGR control device occur.
An object of the present invention is to provide an EGR control device that appropriately controls the temperature of exhaust gas led to an intake system of an engine.

請求項1に記載の発明によると、揺動弁により開閉される冷却通路の出口部とバイパス通路の出口部とを仕切る隔壁が導出口の中心軸線に対して冷却通路側又はバイパス通路側へオフセットしている。そのため、揺動弁により冷却通路及びバイパス通路の双方の出口部が開かれるとき、それら出口部に連通する導出口では、各通路からの排気ガスが導出口の中心軸線に関して非対称に合流し、乱流となる。この乱流の発生により導出口では、各通路からの排気ガスが合流と共に混ざり易くなる。しかも請求項1に記載の発明では、冷却通路の出口部を閉じる第一揺動位置とバイパス通路の出口部を閉じる第二揺動位置との間で揺動弁を揺動させることにより、各通路からの排気ガスの混合率を自由に変化させることができる。以上より、請求項1に記載の発明によれば、導出口において合流しエンジンの吸気系へと導かれる排気ガスの温度を適正に制御することが可能となる。   According to the first aspect of the present invention, the partition partitioning the outlet portion of the cooling passage opened and closed by the swing valve and the outlet portion of the bypass passage is offset to the cooling passage side or the bypass passage side with respect to the central axis of the outlet port. is doing. Therefore, when the outlet portions of both the cooling passage and the bypass passage are opened by the swing valve, the exhaust gas from each passage joins asymmetrically with respect to the central axis of the outlet port at the outlet ports communicating with the outlet portions. It becomes a flow. Due to the occurrence of this turbulent flow, the exhaust gas from each passage easily mixes with the merging at the outlet. Moreover, in the first aspect of the present invention, by swinging the swing valve between the first swing position for closing the outlet portion of the cooling passage and the second swing position for closing the outlet portion of the bypass passage, The mixing ratio of the exhaust gas from the passage can be freely changed. As described above, according to the first aspect of the present invention, it is possible to appropriately control the temperature of the exhaust gas that joins at the outlet and is led to the intake system of the engine.

請求項2に記載の発明によると、揺動弁により開閉される冷却通路の出口部とバイパスの出口部とが隔壁により仕切られ、両通路の幅方向へ延伸する揺動弁の揺動軸が導出口の中心軸線に対して冷却通路側又はバイパス通路側へオフセットしている。そのため、揺動弁により冷却通路及びバイパス通路の双方の出口部が開かれるとき、それら出口部に連通する導出口では、各通路からの排気ガスが揺動弁に沿いながら導出口の中心軸線に関して非対称に合流し、乱流となる。この乱流の発生により導出口では、各通路からの排気ガスが合流と共に混ざり易くなる。しかも請求項2に記載の発明では、冷却通路の出口部を閉じる第一揺動位置とバイパス通路の出口部を閉じる第二揺動位置との間で揺動弁を揺動させることにより、各通路からの排気ガスの混合率を自由に変化させることができる。以上より、請求項2に記載の発明によれば、導出口において合流しエンジンの吸気系へと導かれる排気ガスの温度を適正に制御することが可能となる。   According to the second aspect of the present invention, the outlet portion of the cooling passage opened and closed by the swing valve and the outlet portion of the bypass are partitioned by the partition wall, and the swing shaft of the swing valve extending in the width direction of both passages is provided. It is offset to the cooling passage side or the bypass passage side with respect to the center axis of the outlet. Therefore, when the outlet portions of both the cooling passage and the bypass passage are opened by the oscillating valve, the exhaust gas from each passage is along the oscillating valve with respect to the central axis of the outlet port at the outlet ports communicating with the outlet portions. It merges asymmetrically and becomes turbulent. Due to the occurrence of this turbulent flow, the exhaust gas from each passage easily mixes with the merging at the outlet. In addition, in the invention described in claim 2, by swinging the swing valve between the first swing position for closing the outlet portion of the cooling passage and the second swing position for closing the outlet portion of the bypass passage, The mixing ratio of the exhaust gas from the passage can be freely changed. As described above, according to the second aspect of the present invention, it is possible to appropriately control the temperature of the exhaust gas that joins at the outlet and is led to the intake system of the engine.

請求項3、4に記載の発明によると、隔壁により仕切られた冷却通路及びバイパスの各出口部を開閉する揺動弁は、弁本体と突部とを有する。ここで突部は、冷却通路の出口部を閉じる第一揺動位置とバイパス通路の出口部を閉じる第二揺動位置との少なくとも一方側へ板状の弁本体から突出している。そのため、揺動弁により冷却通路及びバイパス通路の双方の出口部が開かれて、それら出口部に連通する導出口へ各通路からの排気ガスが流れ込むときには、揺動弁の突部に衝突した排気ガスの流れが乱流となる。この乱流の発生により導出口では、各通路からの排気ガスが合流と共に混ざり易くなる。しかも請求項3、4に記載の発明では、第一揺動位置と第二揺動位置との間で揺動弁を揺動させることにより、各通路からの排気ガスの混合率を自由に変化させることができる。以上より、請求項3、4に記載の発明によれば、導出口において合流しエンジンの吸気系へと導かれる排気ガスの温度を適正に制御することが可能となる。   According to the third and fourth aspects of the present invention, the swing valve that opens and closes each outlet of the cooling passage and the bypass partitioned by the partition has a valve body and a protrusion. Here, the protrusion protrudes from the plate-shaped valve body to at least one side of the first swing position for closing the outlet portion of the cooling passage and the second swing position for closing the outlet portion of the bypass passage. Therefore, when the outlet of both the cooling passage and the bypass passage is opened by the swing valve, and the exhaust gas from each passage flows into the outlet port communicating with the outlet, the exhaust that has collided with the protrusion of the swing valve The gas flow becomes turbulent. Due to the occurrence of this turbulent flow, the exhaust gas from each passage easily mixes with the merging at the outlet. In addition, according to the third and fourth aspects of the present invention, the mixing ratio of the exhaust gas from each passage is freely changed by swinging the swing valve between the first swing position and the second swing position. Can be made. As described above, according to the third and fourth aspects of the present invention, it is possible to appropriately control the temperature of the exhaust gas that merges at the outlet and is led to the intake system of the engine.

請求項5に記載の発明によると、揺動弁により開閉される冷却通路の出口部とバイパスの出口部とが隔壁により仕切られており、それら各出口部をそれぞれ挟んで隔壁とは反対側に設けられる第一傾斜壁と第二傾斜壁とが導出口の中心軸線に対して傾斜している。ここで、導出口の中心軸線に対する第一及び第二傾斜壁の傾斜角度は相違している。そのため、揺動弁により冷却通路及びバイパス通路の双方の出口部が開かれるとき、それら出口部に連通する導出口では、冷却通路及びバイパス通路からの各排気ガスがそれぞれ第一傾斜壁と第二傾斜壁とに沿いながら導出口の中心軸線に関して非対称に合流し、乱流となる。この乱流の発生により導出口では、各通路からの排気ガスが合流と共に混ざり易くなる。しかも請求項5に記載の発明では、冷却通路の出口部を閉じる第一揺動位置とバイパス通路の出口部を閉じる第二揺動位置との間で揺動弁を揺動させることにより、各通路からの排気ガスの混合率を自由に変化させることができる。以上より、請求項5に記載の発明によれば、導出口において合流しエンジンの吸気系へと導かれる排気ガスの温度を適正に制御することが可能となる。   According to the fifth aspect of the present invention, the outlet portion of the cooling passage opened and closed by the swing valve and the outlet portion of the bypass are partitioned by the partition walls, and the outlet portions are respectively sandwiched between the outlet portions on the opposite side of the partition walls. The provided first inclined wall and second inclined wall are inclined with respect to the central axis of the outlet. Here, the inclination angles of the first and second inclined walls with respect to the central axis of the outlet are different. Therefore, when the outlet portions of both the cooling passage and the bypass passage are opened by the swing valve, the exhaust gases from the cooling passage and the bypass passage are respectively connected to the first inclined wall and the second outlet at the outlet port communicating with the outlet portions. Along the inclined wall, it merges asymmetrically with respect to the central axis of the outlet, resulting in turbulent flow. Due to the occurrence of this turbulent flow, the exhaust gas from each passage easily mixes with the merging at the outlet. In addition, in the invention described in claim 5, each of the swing valves is swung between a first swing position for closing the outlet portion of the cooling passage and a second swing position for closing the outlet portion of the bypass passage. The mixing ratio of the exhaust gas from the passage can be freely changed. As described above, according to the fifth aspect of the present invention, it is possible to appropriately control the temperature of the exhaust gas that joins at the outlet and is led to the intake system of the engine.

請求項6に記載の発明によると、揺動弁により開閉される冷却通路の出口部とバイパスの出口部とが隔壁により仕切られ、冷却通路及びバイパス通路の少なくとも一方のオフセット部が導出口の中心軸線に対して冷却通路及びバイパス通路の幅方向へオフセットしている。そのため、揺動弁により冷却通路及びバイパス通路の双方の出口部が開かれるとき、それら出口部に連通する導出口では、各通路からの排気ガスが導出口の中心軸線に関して非対称に合流し、乱流となる。この乱流の発生により導出口では、各通路からの排気ガスが合流と共に混ざり易くなる。しかも請求項6に記載の発明では、冷却通路の出口部を閉じる第一揺動位置とバイパス通路の出口部を閉じる第二揺動位置との間で揺動弁を揺動させることにより、各通路からの排気ガスの混合率を自由に変化させることができる。以上より、請求項6に記載の発明によれば、導出口において合流しエンジンの吸気系へと導かれる排気ガスの温度を適正に制御することが可能となる。   According to the invention described in claim 6, the outlet portion of the cooling passage opened and closed by the swing valve and the outlet portion of the bypass are partitioned by the partition wall, and at least one offset portion of the cooling passage and the bypass passage is the center of the outlet The cooling passage and the bypass passage are offset in the width direction with respect to the axis. Therefore, when the outlet portions of both the cooling passage and the bypass passage are opened by the swing valve, the exhaust gas from each passage joins asymmetrically with respect to the central axis of the outlet port at the outlet ports communicating with the outlet portions. It becomes a flow. Due to the occurrence of this turbulent flow, the exhaust gas from each passage easily mixes with the merging at the outlet. In addition, in the invention described in claim 6, by swinging the swing valve between the first swing position for closing the outlet portion of the cooling passage and the second swing position for closing the outlet portion of the bypass passage, The mixing ratio of the exhaust gas from the passage can be freely changed. As described above, according to the sixth aspect of the present invention, it is possible to appropriately control the temperature of the exhaust gas that joins at the outlet and is led to the intake system of the engine.

請求項7に記載の発明によると、冷却通路の出口部内及びバイパス通路の出口部内の少なくとも一方に設けられた遮流部材が排気ガスの流れを遮る。そのため、遮流部材が出口部内に設けられた通路では、排気ガスの流れが遮流部材に衝突して乱流となる。この乱流の発生により導出口では、冷却通路及びバイパス通路の双方の出口部が開かれるときに、各通路からの排気ガスがより一層混ざり易くなる。   According to the invention described in claim 7, the flow blocking member provided in at least one of the outlet portion of the cooling passage and the outlet portion of the bypass passage blocks the flow of the exhaust gas. Therefore, in the passage where the current blocking member is provided in the outlet portion, the flow of the exhaust gas collides with the current blocking member and becomes a turbulent flow. Occurrence of this turbulent flow makes it easier for the exhaust gas from each passage to be mixed at the outlet port when the outlet portions of both the cooling passage and the bypass passage are opened.

請求項8に記載の発明によると、導出口内に設けられた遮流部材が排気ガスの流れを遮る。そのため、冷却通路及びバイパス通路の双方の出口部が開かれるときに導出口では、各通路からの排気ガスの流れが遮流部材に衝突して乱流となるため、排気ガスがより一層混ざり易くなる。   According to the eighth aspect of the present invention, the flow blocking member provided in the outlet port blocks the flow of the exhaust gas. Therefore, when the outlet portions of both the cooling passage and the bypass passage are opened, the exhaust gas flows from each passage into the turbulent flow by colliding with the current shielding member at the outlet, so that the exhaust gas is more easily mixed. Become.

尚、請求項1に記載の発明と、請求項2に記載の発明と、請求項3又は4に記載の発明と、請求項5に記載の発明と、請求項6に記載の発明とのうち少なくとも二つを組み合わせるようにしてもよい。また、当該組み合わせた発明と、請求項7又は8に記載の発明とをさらに組み合わせるようにしてもよい。   Of the invention according to claim 1, the invention according to claim 2, the invention according to claim 3 or 4, the invention according to claim 5, and the invention according to claim 6. You may make it combine at least two. Further, the combined invention and the invention described in claim 7 or 8 may be further combined.

以下、本発明の複数の実施形態を図面に基づいて説明する。
図2は、本発明が適用された第一実施形態によるエンジンシステム10を示している。車両に搭載されて用いられるエンジンシステム10は、エンジン12、吸気系20、排気系30、EGR系40等から構成されている。
Hereinafter, a plurality of embodiments of the present invention will be described with reference to the drawings.
FIG. 2 shows an engine system 10 according to a first embodiment to which the present invention is applied. An engine system 10 mounted and used in a vehicle includes an engine 12, an intake system 20, an exhaust system 30, an EGR system 40, and the like.

吸気系20は、吸気管21、吸気マニホールド22、エアクリーナ23及びスロットル装置24を有している。吸気管21及び吸気マニホールド22は、車外から吸入された空気が流通する吸気通路を形成している。吸気管21の中途部には、エアクリーナ23及びスロットル装置24が上流側からこの順で介装されている。エアクリーナ23は、吸気通路を流れる吸入空気中の異物を除去する。スロットル装置24は、吸気通路における吸入空気の流量を調整する。吸気管21とエンジン12との間を接続している吸気マニホールド22は、サージタンク26及び複数の分枝管27を備えている。スロットル装置24により流量調整された吸入空気は、サージタンク26により脈動を吸収された後、各分枝管27によってエンジン12の各シリンダへと分配される。   The intake system 20 includes an intake pipe 21, an intake manifold 22, an air cleaner 23, and a throttle device 24. The intake pipe 21 and the intake manifold 22 form an intake passage through which air sucked from outside the vehicle flows. In the middle of the intake pipe 21, an air cleaner 23 and a throttle device 24 are interposed in this order from the upstream side. The air cleaner 23 removes foreign matter in the intake air flowing through the intake passage. The throttle device 24 adjusts the flow rate of intake air in the intake passage. The intake manifold 22 that connects the intake pipe 21 and the engine 12 includes a surge tank 26 and a plurality of branch pipes 27. The intake air whose flow rate is adjusted by the throttle device 24 is pulsated by the surge tank 26 and then distributed to each cylinder of the engine 12 by each branch pipe 27.

排気系30は、排気マニホールド31及び排気管32を有している。排気マニホールド31及び排気管32は、エンジン12から排出された排気ガスが流通する排気通路を形成している。排気マニホールド31は、複数の分枝管34及び合流部35を備えている。エンジン12の各シリンダから各分枝管34へ排出された排気ガスは合流部35において合流する。排気管32は合流部35に接続されており、合流部35から流れ込む排気ガスを車両のマフラーを通じて車外へ放出する。   The exhaust system 30 has an exhaust manifold 31 and an exhaust pipe 32. The exhaust manifold 31 and the exhaust pipe 32 form an exhaust passage through which exhaust gas discharged from the engine 12 flows. The exhaust manifold 31 includes a plurality of branch pipes 34 and a merging portion 35. Exhaust gases discharged from the cylinders of the engine 12 to the branch pipes 34 merge at the merge portion 35. The exhaust pipe 32 is connected to the junction 35 and discharges exhaust gas flowing from the junction 35 to the outside of the vehicle through the muffler of the vehicle.

EGR系40は、環流管41、温度調整装置42、流量調整装置43、温度センサ44及びコントローラ45を有している。環流管41は排気マニホールド31の合流部35と吸気マニホールド22のサージタンク26との間を接続しており、合流部35から流れ込む排気ガスの一部をサージタンク26へと導いてエンジン12に再循環させるEGR通路を形成している。環流管41の中途部には、温度調整装置42及び流量調整装置43が上流側からこの順で介装されている。即ち環流管41は、合流部35と温度調整装置42との間の第一管部47、温度調整装置42と流量調整装置43との間の第二管部48、並びに流量調整装置43とサージタンク26との間の第三管部49とからなる。温度調整装置42はコントローラ45に電気的に接続されており、コントローラ45の指令に従ってサージタンク26へ導く排気ガスの温度を調整する。流量調整装置43はコントローラ45に電気的に接続されており、コントローラ45の指令に従ってEGR弁の開度を変化させることで、サージタンク26へ導く排気ガスの流量を調整する。温度センサ44は第三管部49に付設されており、サージタンク26へ導く排気ガスの温度を検出する。温度センサ44はコントローラ45に電気的に接続されており、排気ガス温度の検出結果をコントローラ45へ出力する。コントローラ45はマイクロコンピュータを主体に構成されており、温度調整装置42、流量調整装置43等を制御する。   The EGR system 40 includes a reflux pipe 41, a temperature adjustment device 42, a flow rate adjustment device 43, a temperature sensor 44, and a controller 45. The recirculation pipe 41 is connected between the merging portion 35 of the exhaust manifold 31 and the surge tank 26 of the intake manifold 22, and a part of the exhaust gas flowing from the merging portion 35 is led to the surge tank 26 and recirculated to the engine 12. An EGR passage to be circulated is formed. A temperature adjusting device 42 and a flow rate adjusting device 43 are interposed in this order from the upstream side in the middle of the reflux pipe 41. That is, the reflux pipe 41 includes a first pipe part 47 between the merging part 35 and the temperature adjustment apparatus 42, a second pipe part 48 between the temperature adjustment apparatus 42 and the flow rate adjustment apparatus 43, and a flow rate adjustment apparatus 43 and a surge. A third pipe portion 49 between the tank 26 and the tank 26 is provided. The temperature adjusting device 42 is electrically connected to the controller 45, and adjusts the temperature of the exhaust gas led to the surge tank 26 in accordance with a command from the controller 45. The flow rate adjusting device 43 is electrically connected to the controller 45, and adjusts the flow rate of the exhaust gas led to the surge tank 26 by changing the opening of the EGR valve in accordance with a command from the controller 45. The temperature sensor 44 is attached to the third pipe portion 49 and detects the temperature of the exhaust gas led to the surge tank 26. The temperature sensor 44 is electrically connected to the controller 45, and outputs the detection result of the exhaust gas temperature to the controller 45. The controller 45 is mainly composed of a microcomputer and controls the temperature adjusting device 42, the flow rate adjusting device 43, and the like.

次に、温度調整装置42及びコントローラ45について詳細に説明する。図3及び図4に示すように温度調整装置42は、導入部51、冷却部52、バイパス部53、隔壁58、弁支持部54、導出部55、揺動弁56及び弁駆動部57を備えている。
導入部51はSUS等の金属で筒状に形成されている。第一管部47に接続される導入部51は、排気マニホールド31からの排気ガスが導入される導入口60を内側に形成している。
Next, the temperature adjustment device 42 and the controller 45 will be described in detail. As shown in FIGS. 3 and 4, the temperature adjustment device 42 includes an introduction part 51, a cooling part 52, a bypass part 53, a partition wall 58, a valve support part 54, a lead-out part 55, a swing valve 56, and a valve drive part 57. ing.
The introduction part 51 is formed in a cylindrical shape with a metal such as SUS. The introduction part 51 connected to the first pipe part 47 has an introduction port 60 into which exhaust gas from the exhaust manifold 31 is introduced on the inner side.

冷却部52の冷却ケース61はSUS等の金属で筒状に形成されている。冷却ケース61には、エンジン12の冷却水系に冷却水管62、63(図2参照)を介して接続される二つの開口部64、65が形成されており、一方の冷却水管62により冷却ケース61内へ引水し、他方の冷却水管63により冷却水系へ戻水する循環路が形成されている。冷却部52のガス管66はSUS等の金属で直管状に形成され、冷却ケース61内を互いに平行に延伸する形態で複数設けられている。各ガス管66の両端部は、冷却ケース61の両端部を覆うリテーナ67、68を貫通する形態で当該リテーナ67、68に保持されている。これにより、各ガス管66がそれぞれ内側に形成する複数の第一通路69が、冷却ケース61内における冷却水の流通部分との連通を遮断されている。冷却ケース61の一端部を覆うリテーナ67は導入部51に接続されており、当該リテーナ67に保持される各ガス管66内の第一通路69の一端部が導入口60に連通している。各第一通路69は、導入口60から一端部側へ流入する排気ガスを他端部側へ向かって流通させる。このとき各第一通路69を通過する排気ガスは、冷却ケース61内に引き込まれた冷却水によって冷却される。   The cooling case 61 of the cooling unit 52 is formed in a cylindrical shape with a metal such as SUS. The cooling case 61 is formed with two openings 64 and 65 connected to the cooling water system of the engine 12 via cooling water pipes 62 and 63 (see FIG. 2). A circulation path is formed for drawing water inward and returning water to the cooling water system by the other cooling water pipe 63. The gas pipe 66 of the cooling unit 52 is formed in a straight tube shape with a metal such as SUS, and a plurality of gas pipes 66 are provided in a form extending in parallel with each other in the cooling case 61. Both end portions of each gas pipe 66 are held by the retainers 67 and 68 so as to penetrate the retainers 67 and 68 that cover both end portions of the cooling case 61. As a result, the plurality of first passages 69 formed on the inner sides of the gas pipes 66 are blocked from communicating with the circulation portion of the cooling water in the cooling case 61. A retainer 67 that covers one end portion of the cooling case 61 is connected to the introduction portion 51, and one end portion of the first passage 69 in each gas pipe 66 held by the retainer 67 communicates with the introduction port 60. Each first passage 69 circulates the exhaust gas flowing from the inlet 60 to the one end side toward the other end side. At this time, the exhaust gas passing through each first passage 69 is cooled by the cooling water drawn into the cooling case 61.

バイパス部53はSUS等の金属で形成されており、冷却部52の各ガス管66に対して略平行の筒状を呈している。バイパス部53の一端部はリテーナ67を介して導入部51に接続されており、当該バイパス部53が内側に形成する第二通路70の一端部が導入口60に連通している。第二通路70は、導入口60から一端部側へ流入する排気ガスを他端部側へ向かって流通させる。   The bypass part 53 is formed of a metal such as SUS and has a cylindrical shape substantially parallel to each gas pipe 66 of the cooling part 52. One end portion of the bypass portion 53 is connected to the introduction portion 51 via the retainer 67, and one end portion of the second passage 70 formed inside by the bypass portion 53 communicates with the introduction port 60. The second passage 70 allows the exhaust gas flowing from the introduction port 60 to the one end side to flow toward the other end side.

図1、図3及び図4に示すように隔壁58はSUS等の金属で板状に形成され、弁支持部54に固定されている。
弁支持部54はSUS等の金属で筒状に形成されており、隔壁58により内側を二つに仕切られている。弁支持部54は、隔壁58を挟む両側に第三通路72と第四通路73とを形成している。
As shown in FIGS. 1, 3, and 4, the partition wall 58 is formed in a plate shape with a metal such as SUS and is fixed to the valve support portion 54.
The valve support 54 is formed of a metal such as SUS in a cylindrical shape, and is divided into two inside by a partition wall 58. The valve support 54 forms a third passage 72 and a fourth passage 73 on both sides of the partition wall 58.

弁支持部54の一端部の第三通路72側は、冷却ケース61の導入部51とは反対側の端部を覆うリテーナ68に接続されており、当該リテーナ68に保持される各ガス管66内の第一通路69の下流側端部が第三通路72に連通している。これにより、排気ガスを冷却しつつ流通させる冷却通路75が複数の第一通路69と第三通路72とから構成されており、第三通路72が当該冷却通路75の出口部72を形成している。弁支持部54の側壁76、77は、図示しない軸受を介して揺動弁56の揺動軸84の両端部を揺動可能に支持しており、かかる揺動軸84の中間部は冷却通路75の出口部72を幅方向に横切っている。弁支持部54において、冷却通路75の出口部72を挟んで隔壁58とは反対側に位置する第一傾斜壁80は側壁76、77間を接続している。   The third passage 72 side of one end portion of the valve support portion 54 is connected to a retainer 68 that covers an end portion of the cooling case 61 opposite to the introduction portion 51, and each gas pipe 66 held by the retainer 68. A downstream end portion of the first passage 69 communicates with the third passage 72. As a result, the cooling passage 75 through which the exhaust gas is circulated is composed of a plurality of first passages 69 and third passages 72, and the third passage 72 forms the outlet portion 72 of the cooling passage 75. Yes. The side walls 76 and 77 of the valve support portion 54 support both ends of the swing shaft 84 of the swing valve 56 through a bearing (not shown) so as to be swingable, and an intermediate portion of the swing shaft 84 is a cooling passage. 75 outlet portions 72 are crossed in the width direction. In the valve support portion 54, a first inclined wall 80 located on the opposite side of the partition wall 58 across the outlet portion 72 of the cooling passage 75 connects the side walls 76 and 77.

また、弁支持部54の上記一端部の第四通路73側は、バイパス部53の導入部51とは反対側の端部にリテーナ68を介して接続されており、当該バイパス部53内の第二通路70の下流側端部が第四通路73に連通している。これにより、上記冷却通路75を迂回して排気ガスを流通させるバイパス通路81が第二通路70と第四通路73とから構成されており、第四通路73が当該バイパス通路81の出口部73を形成している。弁支持部54において、バイパス通路81の出口部73を挟んで隔壁58とは反対側に位置する第二傾斜壁82は側壁76、77間を接続している。   Further, the fourth passage 73 side of the one end portion of the valve support portion 54 is connected to an end portion of the bypass portion 53 opposite to the introduction portion 51 via a retainer 68, and the first end portion in the bypass portion 53 is connected. The downstream end of the second passage 70 communicates with the fourth passage 73. Thus, a bypass passage 81 that bypasses the cooling passage 75 and distributes the exhaust gas is constituted by the second passage 70 and the fourth passage 73, and the fourth passage 73 passes through the outlet 73 of the bypass passage 81. Forming. In the valve support portion 54, a second inclined wall 82 located on the opposite side of the partition wall 58 across the outlet portion 73 of the bypass passage 81 connects the side walls 76 and 77.

導出部55は、SUS等の金属で弁支持部54と一体に形成されている。円筒状の導出部55は、揺動軸84に対して中心軸線Oが略垂直である導出口83を内側に形成している。一端部が第二管部48に接続される導出部55の他端部は、弁支持部54の冷却部52及びバイパス部53とは反対側の端部に接続されている。導出部55内の導出口83は、冷却通路75及びバイパス通路81のうち出口部72、73が開かれた通路に連通し、当該連通した通路から流入する排気ガスを第二管部48内のEGR通路へ導出する。   The lead-out part 55 is formed integrally with the valve support part 54 from a metal such as SUS. The cylindrical lead-out portion 55 has a lead-out port 83 on the inner side whose central axis O is substantially perpendicular to the swing shaft 84. The other end portion of the lead-out portion 55 whose one end portion is connected to the second pipe portion 48 is connected to the end portion on the opposite side of the cooling portion 52 and the bypass portion 53 of the valve support portion 54. A lead-out port 83 in the lead-out portion 55 communicates with the passage where the outlet portions 72 and 73 are opened in the cooling passage 75 and the bypass passage 81, and exhaust gas flowing in from the communicated passage in the second pipe portion 48. Derived to the EGR passage.

本実施形態の隔壁58において、冷却通路75及びバイパス通路81を通過する排気ガス流れの下流側に位置した端部87は冷却通路75側へ僅かに曲げられており、当該下流側端部87を除く部分は導出口83の中心軸線Oに対して略平行である。このような本実施形態の隔壁58は、導出口83の中心軸線Oに対してバイパス通路81側へオフセットしている。また、本実施形態において、導出部55の一端部に接続される第一及び第二傾斜壁80、82は、導出口83の中心軸線Oに対して略同一角度θ、傾斜している。さらに本実施形態において、冷却通路75及びバイパス通路81の幅方向の中心線M、N(図4参照)は、導出口83の中心軸線Oに対して略垂直である。   In the partition wall 58 of the present embodiment, the end portion 87 located on the downstream side of the exhaust gas flow passing through the cooling passage 75 and the bypass passage 81 is slightly bent toward the cooling passage 75 side. The part to be removed is substantially parallel to the central axis O of the outlet 83. Such a partition wall 58 of this embodiment is offset to the bypass passage 81 side with respect to the central axis O of the outlet 83. In the present embodiment, the first and second inclined walls 80 and 82 connected to one end of the outlet 55 are inclined at substantially the same angle θ with respect to the central axis O of the outlet 83. Further, in the present embodiment, the center lines M and N (see FIG. 4) in the width direction of the cooling passage 75 and the bypass passage 81 are substantially perpendicular to the center axis O of the outlet 83.

揺動弁56はSUS等の金属で形成されている。揺動弁56の揺動軸84は、冷却通路75及びバイパス通路81の各出口部72、73の幅方向へ延伸しており、特に本実施形態では、導出口83の中心軸線Oに対して略垂直である。揺動弁56の弁本体85は、揺動軸84の外周面から径方向外側へ突出する板状に形成されている。揺動弁56の突起部86は、弁本体85とV字をなす形態で揺動軸84の外周面から径方向外側へ突出する板状に形成されている。   The swing valve 56 is made of a metal such as SUS. The swing shaft 84 of the swing valve 56 extends in the width direction of the outlet portions 72 and 73 of the cooling passage 75 and the bypass passage 81, and particularly in this embodiment, with respect to the central axis O of the outlet 83. It is almost vertical. The valve body 85 of the swing valve 56 is formed in a plate shape that protrudes radially outward from the outer peripheral surface of the swing shaft 84. The protrusion 86 of the swing valve 56 is formed in a plate shape that protrudes radially outward from the outer peripheral surface of the swing shaft 84 in a V-shape with the valve body 85.

揺動弁56は、弁支持部54及び導出部55内において揺動することで、冷却通路75及びバイパス通路81の各出口部72、73を開閉する。
具体的には、いずれの揺動位置においても、弁本体85及び突起部86は弁支持部54の側壁76、77に当接する。
The swing valve 56 swings in the valve support portion 54 and the lead-out portion 55 to open and close the outlet portions 72 and 73 of the cooling passage 75 and the bypass passage 81.
Specifically, the valve main body 85 and the protrusion 86 abut against the side walls 76 and 77 of the valve support 54 at any swing position.

そして、図5に示す第一揺動位置では、弁本体85が第一傾斜壁80に係止される。これにより、冷却通路75の出口部72が閉じられると共にバイパス通路81の出口部73が開かれ、当該バイパス通路81を通過した高温の排気ガスが導出口83を介して第二管部48へと導かれる。このとき、突起部86と隔壁58との間において微量の排気ガスの通過が許容される。   Then, at the first swing position shown in FIG. 5, the valve body 85 is locked to the first inclined wall 80. As a result, the outlet portion 72 of the cooling passage 75 is closed and the outlet portion 73 of the bypass passage 81 is opened, and the high-temperature exhaust gas that has passed through the bypass passage 81 passes through the outlet 83 to the second pipe portion 48. Led. At this time, a slight amount of exhaust gas is allowed to pass between the protrusion 86 and the partition wall 58.

また、図1に示す第二揺動位置では、弁本体85が第二傾斜壁82及び隔壁58の下流側端部87に係止される。これにより、バイパス通路81の出口部73が閉じられると共に冷却通路75の出口部72が開かれ、当該冷却通路75により冷却された低温の排気ガスが導出口83を介して第二管部48へと導かれる。   In the second swing position shown in FIG. 1, the valve main body 85 is locked to the second inclined wall 82 and the downstream end portion 87 of the partition wall 58. As a result, the outlet portion 73 of the bypass passage 81 is closed and the outlet portion 72 of the cooling passage 75 is opened, and the low-temperature exhaust gas cooled by the cooling passage 75 passes to the second pipe portion 48 via the outlet port 83. It is guided.

またさらに、図6に示すように第一揺動位置と第二揺動位置の間となる揺動位置では、弁本体85が第一及び第二傾斜壁80、82並びに隔壁58のいずれにも係止されない。これにより、冷却通路75及びバイパス通路81の双方の出口部72、73が開放され、導出口83では、各通路75、81からの排気ガスが合流して混ざり合い、当該混合ガスが導出口83から第二管部48へと導出される。したがって、第一揺動位置と第二揺動位置の間において揺動弁56の揺動位置が変化することで、各通路75、81からの排気ガスの混合率が変化し、第二管部48への導出ガスの温度が変化する。   Furthermore, as shown in FIG. 6, the valve main body 85 is in any of the first and second inclined walls 80 and 82 and the partition wall 58 at the swing position between the first swing position and the second swing position. Not locked. As a result, the outlet portions 72 and 73 of both the cooling passage 75 and the bypass passage 81 are opened, and the exhaust gas from the passages 75 and 81 merges and mixes at the outlet 83, and the mixed gas flows into the outlet 83. To the second pipe 48. Therefore, when the rocking position of the rocking valve 56 changes between the first rocking position and the second rocking position, the mixing ratio of the exhaust gas from the passages 75 and 81 changes, and the second pipe portion The temperature of the derived gas to 48 changes.

図4に示す弁駆動部57は、図2に示すコントローラ45と電気的に接続されており、コントローラ45の指令に従って揺動弁56の揺動位置を調整する。
コントローラ45は、温度センサ44から出力された排気ガス温度の検出結果等に基づいて、所望の排気ガス温度を実現するのに必要な揺動弁56の揺動位置を弁駆動部57に指令する。したがって、エンジンシステム10では、排気ガス温度がフィードバック制御されることとなる。このように、温度調整装置42、温度センサ44及びコントローラ45が共同して、特許請求の範囲に記載の「EGR制御装置」を構成している。
The valve drive unit 57 shown in FIG. 4 is electrically connected to the controller 45 shown in FIG. 2 and adjusts the swing position of the swing valve 56 in accordance with a command from the controller 45.
Based on the detection result of the exhaust gas temperature output from the temperature sensor 44, the controller 45 instructs the valve drive unit 57 about the swing position of the swing valve 56 necessary to achieve the desired exhaust gas temperature. . Therefore, in the engine system 10, the exhaust gas temperature is feedback-controlled. Thus, the temperature adjusting device 42, the temperature sensor 44, and the controller 45 jointly constitute an “EGR control device” described in the claims.

以上説明した第一実施形態の温度調整装置42では、冷却通路75の出口部72とバイパス通路81の出口部73とを仕切る隔壁58が、導出口83の中心軸線Oに対してバイパス通路81側へオフセットしている。そのため、揺動弁56により冷却通路75及びバイパス通路81の双方が開かれるとき、導出口83では、それら各通路75、81からの排気ガスが中心軸線Oに関して非対称に合流し、乱流となる。この乱流の発生により導出口83では、各通路75、81からの排気ガスが合流と共に混ざり易くなるので、温度センサ44によって排気ガス温度を正確に検出することができる。しかも第一実施形態では、コントローラ45の制御によって温度調整装置42の揺動弁56を第一揺動位置と第二揺動位置との間で揺動させることで、各通路75、81からの排気ガスの混合率を自由に変化させることができる。   In the temperature adjusting device 42 of the first embodiment described above, the partition wall 58 that partitions the outlet portion 72 of the cooling passage 75 and the outlet portion 73 of the bypass passage 81 is on the bypass passage 81 side with respect to the central axis O of the outlet port 83. Is offset. Therefore, when both the cooling passage 75 and the bypass passage 81 are opened by the swing valve 56, the exhaust gas from each of the passages 75 and 81 merges asymmetrically with respect to the central axis O at the outlet 83, resulting in turbulent flow. . Due to the occurrence of this turbulent flow, the exhaust gas from each of the passages 75 and 81 is likely to be mixed together at the outlet 83 at the outlet 83, so that the exhaust gas temperature can be accurately detected by the temperature sensor 44. Moreover, in the first embodiment, the swing valve 56 of the temperature adjusting device 42 is swung between the first swing position and the second swing position under the control of the controller 45, so The mixing ratio of the exhaust gas can be freely changed.

このような第一実施形態によれば、導出口83で合流させてエンジン12の吸気系20へと導く排気ガスの温度を適正にフィードバック制御することができるので、エンジン12のエミッション不良や車両におけるドライバビリティの低下が防止される。
尚、第一実施形態では、図7に示す如く、中心軸線Oに対して隔壁58が冷却通路75側へオフセットすると共に、揺動軸84の中間部がバイパス通路81の出口部73を幅方向に横切るように変形してもよい。
According to such a first embodiment, the temperature of the exhaust gas that is merged at the outlet 83 and led to the intake system 20 of the engine 12 can be appropriately feedback controlled. A drop in drivability is prevented.
In the first embodiment, as shown in FIG. 7, the partition wall 58 is offset toward the cooling passage 75 with respect to the central axis O, and the intermediate portion of the swing shaft 84 extends the outlet portion 73 of the bypass passage 81 in the width direction. It may be transformed so as to cross.

(第二実施形態)
図8は、本発明の第二実施形態による温度調整装置100の要部を示している。第一実施形態と実質的に同一の構成部分には同一の符号を付すことで、説明を省略する。
温度調整装置100では、隔壁110が導出口83の中心軸線O上に設けられている。また、温度調整装置100では、冷却通路75及びバイパス通路81の各出口部72、73の幅方向へ延伸する揺動弁120の揺動軸121が、導出口83の中心軸線Oに対して冷却通路75側へオフセットしている。即ち本実施形態では、揺動軸121の中心軸線Pと導出口83の中心軸線Oとがねじれの位置関係にある。
(Second embodiment)
FIG. 8 shows a main part of the temperature adjusting device 100 according to the second embodiment of the present invention. Components that are substantially the same as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
In the temperature adjustment device 100, the partition wall 110 is provided on the central axis O of the outlet 83. Further, in the temperature adjusting device 100, the swing shaft 121 of the swing valve 120 extending in the width direction of the outlet portions 72 and 73 of the cooling passage 75 and the bypass passage 81 cools the central axis O of the outlet 83. Offset to the passage 75 side. That is, in the present embodiment, the center axis P of the swing shaft 121 and the center axis O of the outlet 83 are in a torsional positional relationship.

このように第二実施形態の温度調整装置100では、揺動軸121が、導出口83の中心軸線Oに対して冷却通路75側へオフセットしている。そのため、揺動弁120により冷却通路75及びバイパス通路81の双方が開かれるとき、導出口83では、それら各通路75、81からの排気ガスが揺動弁120の弁本体85に沿いつつ中心軸線Oに関して非対称に合流し、乱流となる。したがって、各通路75、81からの排気ガスが合流と共に混ざり易くなるので、第二実施形態によっても、エンジン12の吸気系20へと導く排気ガスの温度を適正にフィードバック制御することができる。
尚、第二実施形態では、中心軸線Oに対して揺動軸121がバイパス通路81側へオフセットすると共に、揺動軸121の中間部がバイパス通路81の出口部73を幅方向に横切るように変形してもよい。
As described above, in the temperature adjustment device 100 of the second embodiment, the swing shaft 121 is offset toward the cooling passage 75 side with respect to the central axis O of the outlet 83. Therefore, when both the cooling passage 75 and the bypass passage 81 are opened by the swing valve 120, the exhaust gas from each of the passages 75 and 81 passes along the valve body 85 of the swing valve 120 at the outlet 83. O is merged asymmetrically and becomes turbulent. Therefore, the exhaust gases from the passages 75 and 81 are likely to be mixed together with the merge, so that the temperature of the exhaust gas guided to the intake system 20 of the engine 12 can be appropriately feedback-controlled also by the second embodiment.
In the second embodiment, the swing shaft 121 is offset toward the bypass passage 81 with respect to the central axis O, and the intermediate portion of the swing shaft 121 crosses the outlet portion 73 of the bypass passage 81 in the width direction. It may be deformed.

(第三実施形態)
図9は、本発明の第三実施形態による温度調整装置150の要部を示している。第一実施形態と実質的に同一の構成部分には同一の符号を付すことで、説明を省略する。
温度調整装置150では、冷却通路75及びバイパス通路81の各出口部72、73の幅方向へ延伸する揺動弁160の揺動軸161が、導出口83の中心軸線Oに対してバイパス通路81側へオフセットしている。即ち本実施形態では、揺動軸161の中心軸線Pと導出口83の中心軸線Oとがねじれの位置の関係にある。尚、隔壁58については、第一実施形態と同様に、中心軸線Oに対してバイパス通路81側へオフセットしている。
(Third embodiment)
FIG. 9 shows a main part of the temperature adjusting device 150 according to the third embodiment of the present invention. Components that are substantially the same as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
In the temperature adjustment device 150, the swinging shaft 161 of the swinging valve 160 extending in the width direction of the outlet portions 72 and 73 of the cooling passage 75 and the bypass passage 81 is connected to the bypass passage 81 with respect to the central axis O of the outlet 83. Offset to the side. In other words, in the present embodiment, the central axis P of the swing shaft 161 and the central axis O of the outlet 83 are in a torsional position relationship. The partition wall 58 is offset toward the bypass passage 81 with respect to the central axis O as in the first embodiment.

このように第三実施形態の温度調整装置150では、隔壁58に加えて揺動軸161が、導出口83の中心軸線Oに対してバイパス通路81側へオフセットしている。そのため、揺動弁160により冷却通路75及びバイパス通路81の双方が開かれるとき、導出口83では、それら各通路75、81からの排気ガスが揺動弁160の弁本体85に沿いながら中心軸線Oに関して非対称に合流し、乱流効果が高まる。したがって、各通路75、81からの排気ガスが合流と共に混ざり易くなるので、第三実施形態によっても、エンジン12の吸気系20へと導く排気ガスの温度を適正にフィードバック制御することができる。   As described above, in the temperature adjustment device 150 of the third embodiment, the swing shaft 161 in addition to the partition wall 58 is offset toward the bypass passage 81 with respect to the central axis O of the outlet 83. Therefore, when both the cooling passage 75 and the bypass passage 81 are opened by the rocking valve 160, the exhaust gas from each of the passages 75 and 81 passes along the valve body 85 of the rocking valve 160 at the outlet 83. O is merged asymmetrically and the turbulence effect is enhanced. Therefore, the exhaust gases from the passages 75 and 81 are easily mixed together with the merge, so that the temperature of the exhaust gas guided to the intake system 20 of the engine 12 can be appropriately feedback-controlled also by the third embodiment.

尚、第三実施形態では、中心軸線Oに対して揺動軸161が冷却通路75側へ、また隔壁58がバイパス通路81側へそれぞれオフセットするように変形してもよい。あるいは、中心軸線Oに対して揺動軸161がバイパス通路81側へ、また隔壁58が冷却通路75側へそれぞれオフセットすると共に、揺動軸161の中間部がバイパス通路81の出口部73を幅方向に横切るように変形してもよい。あるいは、中心軸線Oに対して揺動軸161及び隔壁58の双方が冷却通路75側へオフセットすると共に、揺動軸161の中間部がバイパス通路81の出口部73を幅方向に横切るように変形してもよい。   In the third embodiment, the swing shaft 161 may be modified to be offset from the central axis O toward the cooling passage 75 and the partition wall 58 may be offset toward the bypass passage 81. Alternatively, the swing shaft 161 is offset to the bypass passage 81 side and the partition wall 58 is offset to the cooling passage 75 side with respect to the central axis O, and the intermediate portion of the swing shaft 161 widens the outlet portion 73 of the bypass passage 81. You may deform | transform so that it may cross in a direction. Alternatively, both the swing shaft 161 and the partition wall 58 are offset toward the cooling passage 75 with respect to the central axis O, and the intermediate portion of the swing shaft 161 is deformed so as to cross the outlet portion 73 of the bypass passage 81 in the width direction. May be.

(第四実施形態)
図10は、本発明の第四実施形態による温度調整装置200の要部を示している。第一実施形態と実質的に同一の構成部分には同一の符号を付すことで、説明を省略する。
温度調整装置200において揺動弁210は、弁本体211の外周縁部212から第一揺動位置側へ突出する第一突部213と、弁本体211の一方の板面214から第二揺動位置側へ突出する第二突部215とを有している。第一突部213は、弁本体211の外周縁部212に沿って周方向へ連続的に延びる鍔状であり、第二突部215とは反対側の弁本体211の板面216に対して略垂直の突端部を形成している。各第二突部215は、揺動軸84に対して略平行且つ弁本体211の板面214に対して略垂直の板状に形成されている。
(Fourth embodiment)
FIG. 10 shows a main part of the temperature adjustment device 200 according to the fourth embodiment of the present invention. Components that are substantially the same as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
In the temperature adjusting device 200, the rocking valve 210 is swung from the outer peripheral edge 212 of the valve main body 211 to the first rocking position side and from the one plate surface 214 of the valve main body 211 to the second rocking. It has the 2nd protrusion part 215 which protrudes to a position side. The first protrusion 213 has a bowl shape that continuously extends in the circumferential direction along the outer peripheral edge 212 of the valve body 211, and the plate surface 216 of the valve body 211 on the side opposite to the second protrusion 215. A substantially vertical protruding end is formed. Each second protrusion 215 is formed in a plate shape substantially parallel to the swing shaft 84 and substantially perpendicular to the plate surface 214 of the valve body 211.

このような第四実施形態の温度調整装置200では、揺動弁210により開かれた冷却通路75から導出口83へ排気ガスが流れ込むとき、弁本体211から第一揺動位置側へ突出する第一突部213に排気ガスが衝突して、乱流が生じる。また、温度調整装置200では、揺動弁210により開かれたバイパス通路81から導出口83へ排気ガスが流れ込むとき、弁本体211から第二揺動位置側へ突出する第二突部215に排気ガスが衝突して、乱流が生じる。以上より、冷却通路75及びバイパス通路81の双方が開かれるとき、導出口83では、第一及び第二突部213、215の作用により乱流となった各通路75、81からの排気ガスが合流と共に混ざり易くなる。したがって、第四実施形態によっても、エンジン12の吸気系20へと導く排気ガスの温度を適正にフィードバック制御することができる。   In such a temperature control device 200 of the fourth embodiment, when the exhaust gas flows from the cooling passage 75 opened by the swing valve 210 to the outlet 83, the first temperature is projected from the valve body 211 to the first swing position side. The exhaust gas collides with the one protrusion 213, and a turbulent flow is generated. Further, in the temperature adjusting device 200, when the exhaust gas flows from the bypass passage 81 opened by the swing valve 210 to the outlet 83, the exhaust gas is exhausted from the valve body 211 to the second protrusion 215 that protrudes toward the second swing position. Turbulence occurs when the gas collides. As described above, when both the cooling passage 75 and the bypass passage 81 are opened, the exhaust gas from the passages 75 and 81 that has become turbulent due to the action of the first and second protrusions 213 and 215 at the outlet 83. It becomes easy to mix with the merge. Therefore, according to the fourth embodiment, the temperature of the exhaust gas led to the intake system 20 of the engine 12 can be appropriately feedback controlled.

尚、第四実施形態では、図11に示す如く、第一突部213が弁本体211から第二揺動位置側へ突出すると共に、第二突部215が弁本体211から第一揺動位置側へ突出するように変形してもよい。あるいは、図12に示す如く、第一及び第二揺動位置のうち互いに同じ揺動位置側(図12は、第一揺動位置側の例)へ第一及び第二突部213、215が突出するように変形してもよい。あるいは、図13に示す如く、弁本体211から第一揺動位置側へ突出する第一及び第二突部213、215と、弁本体211から第二揺動位置側へ突出する第一及び第二突部213、215とを設けるように変形してもよい。   In the fourth embodiment, as shown in FIG. 11, the first protrusion 213 protrudes from the valve body 211 toward the second swing position, and the second protrusion 215 extends from the valve body 211 to the first swing position. You may deform | transform so that it may protrude to the side. Alternatively, as shown in FIG. 12, the first and second protrusions 213 and 215 are moved to the same swing position side of the first and second swing positions (FIG. 12 is an example of the first swing position side). You may deform | transform so that it may protrude. Alternatively, as shown in FIG. 13, first and second protrusions 213 and 215 projecting from the valve body 211 to the first swing position side, and first and second protrusions projecting from the valve body 211 to the second swing position side. You may deform | transform so that the two protrusions 213 and 215 may be provided.

また、第一突部213については、弁本体211の周方向で複数に分割された形状に変形してもよいし、第二突部215の数については、適宜変更することができる。
加えて、以上説明した第四実施形態又はその変形例について、第二、第三実施形態又はそれらの変形例の特徴的構成を少なくとも一つ有するように変形してもよい。
Moreover, about the 1st protrusion 213, you may deform | transform into the shape divided | segmented into plurality in the circumferential direction of the valve main body 211, and about the number of the 2nd protrusions 215, it can change suitably.
In addition, the fourth embodiment described above or the modification thereof may be modified so as to have at least one characteristic configuration of the second or third embodiment or the modification thereof.

(第五実施形態)
図14は、本発明の第五実施形態による温度調整装置250の要部を示している。第三実施形態と実質的に同一の構成部分には同一の符号を付すことで、説明を省略する。
温度調整装置250では、弁支持部260の第一及び第二傾斜壁261、262が導出口83の中心軸線Oに対して互いに異なる角度θ1、θ2傾斜している。尚、本実施形態では、第三実施形態と同様、揺動弁160の揺動軸161及び隔壁58が中心軸線Oに対してバイパス通路81側へオフセットしており、流路面積が小さくされたバイパス通路81側の第二傾斜壁262の傾斜角度θ2が第一傾斜壁261の傾斜角度θ1より大きくされている。
(Fifth embodiment)
FIG. 14 shows a main part of a temperature adjustment device 250 according to the fifth embodiment of the present invention. Components that are substantially the same as those of the third embodiment are denoted by the same reference numerals, and description thereof is omitted.
In the temperature adjustment device 250, the first and second inclined walls 261 and 262 of the valve support portion 260 are inclined at different angles θ 1 and θ 2 with respect to the central axis O of the outlet 83. In this embodiment, as in the third embodiment, the swing shaft 161 and the partition wall 58 of the swing valve 160 are offset toward the bypass passage 81 with respect to the central axis O, and the flow passage area is reduced. The inclination angle θ 2 of the second inclined wall 262 on the bypass passage 81 side is larger than the inclination angle θ 1 of the first inclined wall 261.

このように第五実施形態の温度調整装置250では、導出口83の中心軸線Oに対する第一及び第二傾斜壁261、262の傾斜角度θ1、θ2が相違している。そのため、揺動弁160により冷却通路75及びバイパス通路81の双方が開かれるとき、導出口83では、冷却通路75及びバイパス通路81からの各排気ガスがそれぞれ第一傾斜壁261と第二傾斜壁262とに沿いつつ中心軸線Oに関して非対称に合流し、乱流となる。したがって、各通路75、81からの排気ガスが合流と共に混ざり易くなるので、第五実施形態によっても、エンジン12の吸気系20へと導く排気ガスの温度を適正にフィードバック制御することができる。 As described above, in the temperature adjustment device 250 of the fifth embodiment, the inclination angles θ 1 and θ 2 of the first and second inclined walls 261 and 262 with respect to the central axis O of the outlet 83 are different. For this reason, when both the cooling passage 75 and the bypass passage 81 are opened by the swing valve 160, the exhaust gas from the cooling passage 75 and the bypass passage 81 passes through the first inclined wall 261 and the second inclined wall at the outlet 83. 262 and asymmetrical merging with respect to the central axis O, resulting in turbulent flow. Therefore, the exhaust gases from the passages 75 and 81 are easily mixed together with the merge, so that the temperature of the exhaust gas guided to the intake system 20 of the engine 12 can be appropriately feedback-controlled also by the fifth embodiment.

尚、第五実施形態では、第一傾斜壁261の傾斜角度θ1が第二傾斜壁262の傾斜角度θ2より大きくなるように変形してもよい。
また、以上説明した第五実施形態又はその変形例について、第一、第二、第四実施形態又はそれらの変形例の特徴的構成を少なくとも一つ有するように変形してもよい。
In the fifth embodiment, the first inclined wall 261 may be modified such that the inclination angle θ 1 is larger than the inclination angle θ 2 of the second inclined wall 262.
Moreover, you may deform | transform about 5th embodiment demonstrated above or its modification so that it may have at least one characteristic structure of 1st, 2nd, 4th embodiment or those modifications.

(第六実施形態)
図15は、本発明の第六実施形態による温度調整装置300の要部を示している。第一実施形態と実質的に同一の構成部分には同一の符号を付すことで、説明を省略する。
温度調整装置300の弁支持部310では、揺動軸84を支持する側壁311、312においてリテーナ68との接続部分311a、312aが他の部分に比べて、それら側壁311、312の対向方向にずれている。これにより、導出口83の中心軸線Oに対して、冷却通路75の出口部72である第三通路72のうち第一通路69との連通側がその幅方向へオフセットして、オフセット部320を形成している。尚、図15において、一点鎖線Qはオフセット部320の幅方向の中心線を表し、一点鎖線Mは、第三通路72のうちオフセット部320を除く部分の幅方向の中心線を表している。
(Sixth embodiment)
FIG. 15 shows a main part of a temperature adjustment device 300 according to the sixth embodiment of the present invention. Components that are substantially the same as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
In the valve support portion 310 of the temperature adjusting device 300, the connecting portions 311a and 312a with the retainer 68 on the side walls 311 and 312 supporting the swing shaft 84 are displaced in the opposite direction of the side walls 311 and 312 compared to other portions. ing. As a result, the communication side with the first passage 69 of the third passage 72 that is the outlet portion 72 of the cooling passage 75 is offset in the width direction with respect to the central axis O of the outlet 83, thereby forming the offset portion 320. is doing. In FIG. 15, the alternate long and short dash line Q represents the center line in the width direction of the offset portion 320, and the alternate long and short dash line M represents the center line in the width direction of the portion of the third passage 72 excluding the offset portion 320.

このような第六実施形態の温度調整装置300では、冷却通路75及びバイパス通路81の双方が揺動弁56により開かれたときの導出口83において、各通路75、81からの排気ガスが導出口83の中心軸線Oに関して非対称に合流し、乱流となる。したがって、各通路75、81からの排気ガスが合流と共に混ざり易くなるので、第六実施形態によっても、エンジン12の吸気系20へと導く排気ガスの温度を適正にフィードバック制御することができる。   In such a temperature control device 300 of the sixth embodiment, the exhaust gas from each of the passages 75 and 81 is introduced into the outlet 83 when both the cooling passage 75 and the bypass passage 81 are opened by the swing valve 56. Asymmetrical merging with respect to the central axis O of the outlet 83 results in turbulent flow. Therefore, the exhaust gases from the passages 75 and 81 are likely to be mixed together with the merging, so that the temperature of the exhaust gas guided to the intake system 20 of the engine 12 can be appropriately feedback controlled also by the sixth embodiment.

尚、第六実施形態では、図16に示す如く、バイパス通路81の出口部73である第四通路73のうち第二通路70との連通側が中心軸線Oに対して幅方向へオフセットして、オフセット部322を形成するように変形してもよい。あるいは、上述の第六実施形態の如き冷却通路75のオフセット部320と、図16の変形例の如きバイパス通路81のオフセット部322とを共に形成するように変形してもよい。但し、この場合、中心軸線Oに対するオフセット方向は、オフセット部320とオフセット部322とで互いに同一であってもよいし、互いに異なっていてもよい。
また、以上説明した第六実施形態又はその変形例について、第二〜第五実施形態又はそれらの変形例の特徴的構成を少なくとも一つ有するように変形してもよい。
In the sixth embodiment, as shown in FIG. 16, the communication side with the second passage 70 of the fourth passage 73 that is the outlet portion 73 of the bypass passage 81 is offset in the width direction with respect to the central axis O. You may deform | transform so that the offset part 322 may be formed. Or you may deform | transform so that the offset part 320 of the cooling passage 75 like the above-mentioned 6th embodiment and the offset part 322 of the bypass passage 81 like the modification of FIG. 16 may be formed together. However, in this case, the offset direction with respect to the central axis O may be the same in the offset part 320 and the offset part 322, or may be different from each other.
Moreover, you may deform | transform about 6th embodiment described above or its modification so that it may have at least one characteristic structure of 2nd-5th embodiment or those modifications.

(第七実施形態)
図17は、本発明の第七実施形態による温度調整装置350の要部を示している。第一実施形態と実質的に同一の構成部分には同一の符号を付すことで、説明を省略する。
温度調整装置350は、弁支持部360の内壁面361よりも冷却通路75及びバイパス通路81の出口部72、73内へそれぞれ突出する第一遮流部材370及び第二遮流部材371を備えている。第一遮流部材370と第二遮流部材371とは、弁支持部360の隔壁362を挟んで向き合う形態で設けられている。第一遮流部材370は、揺動軸84に対して略平行の板状に形成されており、内壁面361に対しては冷却通路75における排気ガス流れの下流側へ傾斜している。同様に、第二遮流部材371は、揺動軸84に対して略平行の板状に形成されており、内壁面361に対してはバイパス通路81における排気ガス流れの下流側へ傾斜している。
(Seventh embodiment)
FIG. 17 shows a main part of a temperature adjustment device 350 according to the seventh embodiment of the present invention. Components that are substantially the same as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
The temperature adjustment device 350 includes a first flow blocking member 370 and a second flow blocking member 371 that protrude from the inner wall surface 361 of the valve support portion 360 into the cooling passage 75 and the outlet portions 72 and 73 of the bypass passage 81, respectively. Yes. The first current blocking member 370 and the second current blocking member 371 are provided so as to face each other with the partition wall 362 of the valve support portion 360 interposed therebetween. The first current blocking member 370 is formed in a plate shape substantially parallel to the swing shaft 84, and is inclined toward the downstream side of the exhaust gas flow in the cooling passage 75 with respect to the inner wall surface 361. Similarly, the second current blocking member 371 is formed in a plate shape substantially parallel to the swing shaft 84 and is inclined toward the downstream side of the exhaust gas flow in the bypass passage 81 with respect to the inner wall surface 361. Yes.

温度調整装置350はさらに、隔壁362の両板面363、364よりも冷却通路75及びバイパス通路81の出口部72、73内へそれぞれ突出する第三遮流部材372及び第四遮流部材373を備えている。第三遮流部材372と第四遮流部材373とは、隔壁362を挟む形態で設けられている。第三遮流部材372は、揺動軸84に対して略平行の板状に形成されており、板面363に対しては冷却通路75における排気ガス流れの下流側へ傾斜している。同様に、第四遮流部材373は、揺動軸84に対して略平行の板状に形成されており、板面364に対してはバイパス通路81における排気ガス流れの下流側へ傾斜している。   The temperature adjusting device 350 further includes a third current blocking member 372 and a fourth current blocking member 373 that protrude from the both plate surfaces 363 and 364 of the partition wall 362 into the outlet portions 72 and 73 of the cooling passage 75 and the bypass passage 81, respectively. I have. The third current blocking member 372 and the fourth current blocking member 373 are provided so as to sandwich the partition 362. The third current blocking member 372 is formed in a plate shape substantially parallel to the swing shaft 84, and is inclined toward the downstream side of the exhaust gas flow in the cooling passage 75 with respect to the plate surface 363. Similarly, the fourth current blocking member 373 is formed in a plate shape substantially parallel to the swing shaft 84, and is inclined toward the downstream side of the exhaust gas flow in the bypass passage 81 with respect to the plate surface 364. Yes.

このように第七実施形態の温度調整装置350では、冷却通路75における排気ガス流れを遮るように第一及び第三遮流部材370、372が当該通路75の出口部72内に設けられている。そのため、冷却通路75の出口部72では、排気ガスの流れが第一及び第三遮流部材370、372に衝突し、乱流となる。また、温度調整装置350では、バイパス通路81における排気ガスの流れを遮るように第二及び第四遮流部材371、373が当該通路81の出口部73内に設けられている。そのため、バイパス通路81の出口部73では、排気ガスの流れが第二及び第四遮流部材371、373に衝突し、乱流となる。以上より、冷却通路75及びバイパス通路81の双方が揺動弁56により開かれたときの導出口83では、遮流部材370〜373の作用により乱流となった各通路75、81からの排気ガスが合流と共に混ざり易くなる。したがって、第七実施形態によっても、エンジン12の吸気系20へと導く排気ガスの温度を適正にフィードバック制御することができる。   As described above, in the temperature adjustment device 350 of the seventh embodiment, the first and third flow shielding members 370 and 372 are provided in the outlet portion 72 of the passage 75 so as to block the exhaust gas flow in the cooling passage 75. . Therefore, at the outlet 72 of the cooling passage 75, the exhaust gas flow collides with the first and third current blocking members 370 and 372 and becomes turbulent. Further, in the temperature adjustment device 350, second and fourth flow blocking members 371 and 373 are provided in the outlet portion 73 of the passage 81 so as to block the flow of exhaust gas in the bypass passage 81. Therefore, at the outlet 73 of the bypass passage 81, the flow of the exhaust gas collides with the second and fourth current blocking members 371 and 373 and becomes a turbulent flow. As described above, in the outlet 83 when both the cooling passage 75 and the bypass passage 81 are opened by the swing valve 56, the exhaust from the passages 75 and 81 turbulent due to the action of the current blocking members 370 to 373. It becomes easy for gas to mix with merging. Therefore, according to the seventh embodiment as well, the temperature of the exhaust gas led to the intake system 20 of the engine 12 can be appropriately feedback controlled.

尚、第七実施形態では、第一及び第二遮流部材370、371の少なくとも一方について、弁支持部360の内壁面361に対して略垂直となる形状に変形してもよいし、あるいは内壁面361に対して排気ガス流れの上流側へ傾斜する形状に変形してもよい。また、第三及び第四遮流部材372、373については、隔壁362の対応する板面363又は364に対して略垂直となる形状に変形してもよいし、あるいは当該板面363又は364に対して排気ガス流れの上流側へ傾斜する形状に変形してもよい。さらに、遮流部材370〜373のうちいずれか一種類〜三種類を設けるように変形してもよい。またさらに、各種遮流部材370〜373の対応する通路75又は81内における配設数及び配設位置については、適宜変更することができる。
加えて、以上説明した第七実施形態又はその変形例について、第二〜第六実施形態又はそれらの変形例の特徴的構成を少なくとも一つ有するように変形してもよい。
In the seventh embodiment, at least one of the first and second current blocking members 370 and 371 may be deformed into a shape that is substantially perpendicular to the inner wall surface 361 of the valve support portion 360, or the inner You may deform | transform into the shape which inclines to the upstream of an exhaust gas flow with respect to the wall surface 361. FIG. In addition, the third and fourth current shielding members 372 and 373 may be deformed into a shape substantially perpendicular to the corresponding plate surface 363 or 364 of the partition wall 362, or the plate surface 363 or 364 may be changed to the plate surface 363 or 364. On the other hand, you may deform | transform into the shape which inclines to the upstream of an exhaust gas flow. Furthermore, you may deform | transform so that any one type-three types may be provided among the current blocking members 370-373. Furthermore, the number and position of the various flow blocking members 370 to 373 in the corresponding passage 75 or 81 can be changed as appropriate.
In addition, the seventh embodiment described above or a modification thereof may be modified so as to have at least one characteristic configuration of the second to sixth embodiments or a modification thereof.

(第八実施形態)
図18は、本発明の第八実施形態による温度調整装置400の要部を示している。第一実施形態と実質的に同一の構成部分には同一の符号を付すことで、説明を省略する。
温度調整装置400は、導出部410の内壁面411よりも導出口83内へ突出する遮流部材420を備えている。遮流部材420は、第一傾斜壁80と第二傾斜壁82とが導出口83の中心軸線Oを挟む方向において向き合う形態で二つ設けられている。各遮流部材420は、揺動軸84に対して略平行の板状に形成されており、内壁面411に対しては導出口83における排気ガス流れの下流側へ傾斜している。
(Eighth embodiment)
FIG. 18 shows a main part of the temperature adjustment device 400 according to the eighth embodiment of the present invention. Components that are substantially the same as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
The temperature adjusting device 400 includes a current blocking member 420 that protrudes into the outlet 83 from the inner wall surface 411 of the outlet 410. The two current blocking members 420 are provided in a form in which the first inclined wall 80 and the second inclined wall 82 face each other in the direction sandwiching the central axis O of the outlet 83. Each of the current blocking members 420 is formed in a plate shape substantially parallel to the swing shaft 84, and is inclined toward the downstream side of the exhaust gas flow at the outlet 83 with respect to the inner wall surface 411.

このように第八実施形態の温度調整装置400では、導出口83における排気ガス流れを遮るように遮流部材420が導出口83内に配設されている。そのため、冷却通路75及びバイパス通路81の双方が揺動弁56により開かれるとき、導出口83では、それら各通路75、81からの排気ガスの流れが遮流部材420に衝突し、乱流となりつつ合流する。したがって、各通路75、81からの排気ガスが合流と共に混ざり易くなるので、第八実施形態によっても、エンジン12の吸気系20へと導く排気ガスの温度を適正にフィードバック制御することができる。   As described above, in the temperature adjustment device 400 of the eighth embodiment, the flow blocking member 420 is disposed in the outlet 83 so as to block the exhaust gas flow in the outlet 83. Therefore, when both the cooling passage 75 and the bypass passage 81 are opened by the swing valve 56, the exhaust gas flow from the passages 75, 81 collides with the flow blocking member 420 at the outlet 83 and becomes turbulent flow. Join together. Therefore, the exhaust gases from the passages 75 and 81 are likely to be mixed together with the merging, so that the temperature of the exhaust gas guided to the intake system 20 of the engine 12 can be appropriately feedback controlled also by the eighth embodiment.

尚、第八実施形態では、遮流部材420について、内壁面411に対し略垂直となる板状に変形してもよいし、あるいは内壁面411に対して排気ガス流れの上流側へ傾斜するように変形してもよい。また、導出口83内における遮流部材420の配設数及び配設位置については、適宜変更することができる。
加えて、以上説明した第八実施形態又はその変形例について、第二〜第七実施形態又はそれらの変形例の特徴的構成を少なくとも一つ有するように変形してもよい。
In the eighth embodiment, the current blocking member 420 may be deformed into a plate shape that is substantially perpendicular to the inner wall surface 411, or may be inclined toward the upstream side of the exhaust gas flow with respect to the inner wall surface 411. You may deform | transform into. In addition, the number and position of the current blocking members 420 in the outlet 83 can be changed as appropriate.
In addition, the eighth embodiment described above or its modification may be modified so as to have at least one characteristic configuration of the second to seventh embodiments or their modifications.

第一実施形態による温度調整装置の要部を示す断面図である。It is sectional drawing which shows the principal part of the temperature control apparatus by 1st embodiment. 第一実施形態によるエンジンシステムを示す模式図である。It is a mimetic diagram showing an engine system by a first embodiment. 第一実施形態による温度調整装置を示す一部切り欠き正面図である。It is a partially notched front view which shows the temperature control apparatus by 1st embodiment. 第一実施形態による温度調整装置の要部を示す側面図である。It is a side view which shows the principal part of the temperature control apparatus by 1st embodiment. 第一実施形態による温度調整装置の作動を説明するための断面図である。It is sectional drawing for demonstrating the action | operation of the temperature control apparatus by 1st embodiment. 第一実施形態による温度調整装置の作動を説明するための断面図である。It is sectional drawing for demonstrating the action | operation of the temperature control apparatus by 1st embodiment. 第一実施形態の変形例による温度調整装置の要部を示す断面図である。It is sectional drawing which shows the principal part of the temperature control apparatus by the modification of 1st embodiment. 第二実施形態による温度調整装置の要部を示す断面図である。It is sectional drawing which shows the principal part of the temperature control apparatus by 2nd embodiment. 第三実施形態による温度調整装置の要部を示す断面図である。It is sectional drawing which shows the principal part of the temperature control apparatus by 3rd embodiment. 第四実施形態による温度調整装置の要部を示す断面図(A)、並びに第四実施形態による揺動弁を示す平面図(B)である。It is sectional drawing (A) which shows the principal part of the temperature control apparatus by 4th embodiment, and the top view (B) which shows the rocking | fluctuation valve by 4th embodiment. 第四実施形態の変形例による温度調整装置の要部を示す断面図である。It is sectional drawing which shows the principal part of the temperature control apparatus by the modification of 4th embodiment. 第四実施形態の変形例による温度調整装置の要部を示す断面図、並びに第四実施形態の同じ変形例による揺動弁を示す平面図(B)である。It is sectional drawing which shows the principal part of the temperature control apparatus by the modification of 4th embodiment, and the top view (B) which shows the swing valve by the same modification of 4th embodiment. 第四実施形態の変形例による温度調整装置の要部を示す断面図である。It is sectional drawing which shows the principal part of the temperature control apparatus by the modification of 4th embodiment. 第五実施形態による温度調整装置の要部を示す断面図である。It is sectional drawing which shows the principal part of the temperature control apparatus by 5th embodiment. 第六実施形態による温度調整装置の要部を示す側面図(A)及び断面図(B)である。It is the side view (A) and sectional drawing (B) which show the principal part of the temperature control apparatus by 6th embodiment. 第六実施形態の変形例による温度調整装置の要部を示す側面図(A)及び断面図(B)である。It is the side view (A) and sectional drawing (B) which show the principal part of the temperature control apparatus by the modification of 6th embodiment. 第七実施形態による温度調整装置の要部を示す断面図である。It is sectional drawing which shows the principal part of the temperature control apparatus by 7th embodiment. 第八実施形態による温度調整装置の要部を示す断面図である。It is sectional drawing which shows the principal part of the temperature control apparatus by 8th embodiment.

符号の説明Explanation of symbols

10 エンジンシステム、12 エンジン、20 吸気系、30 排気系、40 EGR系、42、100、150、200、250、300、350、400 温度調整装置(EGR制御装置)、44 温度センサ(EGR制御装置)、45 コントローラ(EGR制御装置)、51 導入部、52 冷却部、53 バイパス部、54、260、310、360 弁支持部、55、410 導出部、56、120、160、210 揺動弁、57 弁駆動部、58、110、362 隔壁、60 導入口、61 冷却ケース、66 ガス管、69 第一通路(冷却通路)、70 第二通路(バイパス通路)、72 第三通路、出口部(冷却通路)、73 第四通路、出口部(バイパス通路)、75 冷却通路、80、261 第一傾斜壁、81 バイパス通路、82、262 第二傾斜壁、83 導出口、84、121、161 揺動軸、85、211 弁本体、86 突起部、212 外周縁部、213 第一突部、215 第二突部、320、322 オフセット部、370 第一遮流部材、371 第二遮流部材、372 第三遮流部材、373 第四遮流部材、420 遮流部材、O 中心軸線、θ、θ1、θ2 傾斜角度
10 engine system, 12 engine, 20 intake system, 30 exhaust system, 40 EGR system, 42, 100, 150, 200, 250, 300, 350, 400 Temperature adjusting device (EGR control device), 44 Temperature sensor (EGR control device) ), 45 controller (EGR control device), 51 introduction part, 52 cooling part, 53 bypass part, 54, 260, 310, 360 valve support part, 55, 410 lead-out part, 56, 120, 160, 210 swing valve, 57 valve drive unit, 58, 110, 362 partition wall, 60 inlet, 61 cooling case, 66 gas pipe, 69 first passage (cooling passage), 70 second passage (bypass passage), 72 third passage, outlet portion ( Cooling passage), 73 fourth passage, outlet (bypass passage), 75 cooling passage, 80, 261 first inclined wall, 81 bypass passage, 82, 262 first Inclined wall, 83 Outlet, 84, 121, 161 Oscillating shaft, 85, 211 Valve body, 86 Protruding part, 212 Outer peripheral edge part, 213 First projecting part, 215 Second projecting part, 320, 322 Offset part, 370 First current blocking member, 371 Second current blocking member, 372 Third current blocking member, 373 Fourth current blocking member, 420 Current blocking member, O center axis, θ, θ 1 , θ 2 inclination angle

Claims (8)

内燃機関の吸気系へ導いて再循環させる排気ガスの温度を制御する排気ガス再循環制御装置であって、
排気ガスを冷却しつつ流通させる冷却通路と、
前記冷却通路を迂回して排気ガスを流通させるバイパス通路と、
前記冷却通路の出口部と前記バイパス通路の出口部とを仕切る隔壁と、
第一揺動位置において前記冷却通路の出口部を閉じると共に前記バイパス通路の出口部を開き、第二揺動位置において前記冷却通路の出口部を開くと共に前記バイパス通路の出口部を閉じ、前記第一揺動位置と前記第二揺動位置との間において前記冷却通路及び前記バイパス通路の双方の出口部を開く揺動弁と、
前記冷却通路及び前記バイパス通路のうち出口部が開いた通路に連通し、前記吸気系へ排気ガスを導出する導出口とを備え、
前記隔壁は、前記導出口の中心軸線に対して前記冷却通路側又は前記バイパス通路側へオフセットしていることを特徴とする排気ガス再循環制御装置。
An exhaust gas recirculation control device that controls the temperature of exhaust gas that is recirculated by being led to an intake system of an internal combustion engine,
A cooling passage for circulating the exhaust gas while cooling,
A bypass passage that bypasses the cooling passage and distributes exhaust gas;
A partition partitioning the outlet portion of the cooling passage and the outlet portion of the bypass passage;
In the first swing position, the outlet portion of the cooling passage is closed and the outlet portion of the bypass passage is opened. In the second swing position, the outlet portion of the cooling passage is opened and the outlet portion of the bypass passage is closed. A swing valve that opens both outlets of the cooling passage and the bypass passage between a swing position and the second swing position;
An outlet for communicating exhaust gas to the intake system, communicating with a passage having an outlet portion open among the cooling passage and the bypass passage;
The exhaust gas recirculation control device according to claim 1, wherein the partition wall is offset toward the cooling passage side or the bypass passage side with respect to a central axis of the outlet port.
内燃機関の吸気系へ導いて再循環させる排気ガスの温度を制御する排気ガス再循環制御装置であって、
排気ガスを冷却しつつ流通させる冷却通路と、
前記冷却通路を迂回して排気ガスを流通させるバイパス通路と、
前記冷却通路の出口部と前記バイパス通路の出口部とを仕切る隔壁と、
第一揺動位置において前記冷却通路の出口部を閉じると共に前記バイパス通路の出口部を開き、第二揺動位置において前記冷却通路の出口部を開くと共に前記バイパス通路の出口部を閉じ、前記第一揺動位置と前記第二揺動位置との間において前記冷却通路及び前記バイパス通路の双方の出口部を開く揺動弁と、
前記冷却通路及び前記バイパス通路のうち出口部が開いた通路に連通し、前記吸気系へ排気ガスを導出する導出口とを備え、
前記揺動弁は、前記冷却通路及び前記バイパス通路の幅方向へ延伸する揺動軸を有し、
前記揺動軸は、前記導出口の中心軸線に対して前記冷却通路側又は前記バイパス通路側へオフセットしていることを特徴とする排気ガス再循環制御装置。
An exhaust gas recirculation control device that controls the temperature of exhaust gas that is recirculated by being led to an intake system of an internal combustion engine,
A cooling passage for circulating the exhaust gas while cooling,
A bypass passage that bypasses the cooling passage and distributes exhaust gas;
A partition partitioning the outlet portion of the cooling passage and the outlet portion of the bypass passage;
In the first swing position, the outlet portion of the cooling passage is closed and the outlet portion of the bypass passage is opened. In the second swing position, the outlet portion of the cooling passage is opened and the outlet portion of the bypass passage is closed. A swing valve that opens both outlets of the cooling passage and the bypass passage between a swing position and the second swing position;
An outlet for communicating exhaust gas to the intake system, communicating with a passage having an outlet portion open among the cooling passage and the bypass passage;
The swing valve has a swing shaft extending in a width direction of the cooling passage and the bypass passage,
The exhaust gas recirculation control device according to claim 1, wherein the swing shaft is offset toward the cooling passage or the bypass passage with respect to a central axis of the outlet.
内燃機関の吸気系へ導いて再循環させる排気ガスの温度を制御する排気ガス再循環制御装置であって、
排気ガスを冷却しつつ流通させる冷却通路と、
前記冷却通路を迂回して排気ガスを流通させるバイパス通路と、
前記冷却通路の出口部と前記バイパス通路の出口部とを仕切る隔壁と、
第一揺動位置において前記冷却通路の出口部を閉じると共に前記バイパス通路の出口部を開き、第二揺動位置において前記冷却通路の出口部を開くと共に前記バイパス通路の出口部を閉じ、前記第一揺動位置と前記第二揺動位置との間において前記冷却通路及び前記バイパス通路の双方の出口部を開く揺動弁と、
前記冷却通路及び前記バイパス通路のうち出口部が開いた通路に連通し、前記吸気系へ排気ガスを導出する導出口とを備え、
前記揺動弁は、板状の弁本体と、前記弁本体から前記第一揺動位置及び前記第二揺動位置の少なくとも一方側へ突出する突部とを有することを特徴とする排気ガス再循環制御装置。
An exhaust gas recirculation control device that controls the temperature of exhaust gas that is recirculated by being led to an intake system of an internal combustion engine,
A cooling passage for circulating the exhaust gas while cooling,
A bypass passage that bypasses the cooling passage and distributes exhaust gas;
A partition partitioning the outlet portion of the cooling passage and the outlet portion of the bypass passage;
In the first swing position, the outlet portion of the cooling passage is closed and the outlet portion of the bypass passage is opened. In the second swing position, the outlet portion of the cooling passage is opened and the outlet portion of the bypass passage is closed. A swing valve that opens both outlets of the cooling passage and the bypass passage between a swing position and the second swing position;
An outlet for communicating exhaust gas to the intake system, communicating with a passage having an outlet portion open among the cooling passage and the bypass passage;
The oscillating valve has a plate-like valve main body and a protrusion protruding from the valve main body to at least one side of the first oscillating position and the second oscillating position. Circulation control device.
前記揺動弁は、前記弁本体の外周縁部に沿って形成された鍔状の前記突部を有することを特徴とする請求項3に記載の排気ガス再循環制御装置。   The exhaust gas recirculation control device according to claim 3, wherein the swing valve has the flange-shaped protrusion formed along the outer peripheral edge of the valve body. 内燃機関の吸気系へ導いて再循環させる排気ガスの温度を制御する排気ガス再循環制御装置であって、
排気ガスを冷却しつつ流通させる冷却通路と、
前記冷却通路を迂回して排気ガスを流通させるバイパス通路と、
前記冷却通路の出口部と前記バイパス通路の出口部とを仕切る隔壁と、
第一揺動位置において前記冷却通路の出口部を閉じると共に前記バイパス通路の出口部を開き、第二揺動位置において前記冷却通路の出口部を開くと共に前記バイパス通路の出口部を閉じ、前記第一揺動位置と前記第二揺動位置との間において前記冷却通路及び前記バイパス通路の双方の出口部を開く揺動弁と、
前記冷却通路及び前記バイパス通路のうち出口部が開いた通路に連通し、前記吸気系へ排気ガスを導出する導出口と、
前記冷却通路の出口部を挟んで前記隔壁とは反対側に設けられ、前記導出口の中心軸線に対して傾斜する第一傾斜壁と、
前記バイパス通路の出口部を挟んで前記隔壁とは反対側に設けられ、前記中心軸線に対して傾斜する第二傾斜壁とを備え、
前記中心軸線に対する前記第一傾斜壁の傾斜角度と前記中心軸線に対する前記第二傾斜壁の傾斜角度とは相違することを特徴とする排気ガス再循環制御装置。
An exhaust gas recirculation control device that controls the temperature of exhaust gas that is recirculated by being led to an intake system of an internal combustion engine,
A cooling passage for circulating the exhaust gas while cooling,
A bypass passage that bypasses the cooling passage and distributes exhaust gas;
A partition partitioning the outlet portion of the cooling passage and the outlet portion of the bypass passage;
In the first swing position, the outlet portion of the cooling passage is closed and the outlet portion of the bypass passage is opened. In the second swing position, the outlet portion of the cooling passage is opened and the outlet portion of the bypass passage is closed. A swing valve that opens both outlets of the cooling passage and the bypass passage between a swing position and the second swing position;
A lead-out port that communicates with a passage in which an outlet portion is opened among the cooling passage and the bypass passage, and leads exhaust gas to the intake system;
A first inclined wall provided on the opposite side of the partition across the outlet portion of the cooling passage, and inclined with respect to the central axis of the outlet port;
A second inclined wall provided on the opposite side of the partition across the outlet portion of the bypass passage, and inclined with respect to the central axis,
The exhaust gas recirculation control device according to claim 1, wherein an inclination angle of the first inclined wall with respect to the central axis is different from an inclination angle of the second inclined wall with respect to the central axis.
内燃機関の吸気系へ導いて再循環させる排気ガスの温度を制御する排気ガス再循環制御装置であって、
排気ガスを冷却しつつ流通させる冷却通路と、
前記冷却通路を迂回して排気ガスを流通させるバイパス通路と、
前記冷却通路の出口部と前記バイパス通路の出口部とを仕切る隔壁と、
第一揺動位置において前記冷却通路の出口部を閉じると共に前記バイパス通路の出口部を開き、第二揺動位置において前記冷却通路の出口部を開くと共に前記バイパス通路の出口部を閉じ、前記第一揺動位置と前記第二揺動位置との間において前記冷却通路及び前記バイパス通路の双方の出口部を開く揺動弁と、
前記冷却通路及び前記バイパス通路のうち出口部が開いた通路に連通し、前記吸気系へ排気ガスを導出する導出口とを備え、
前記冷却通路及び前記バイパス通路の少なくとも一方は、前記導出口の中心軸線に対して前記冷却通路及び前記バイパス通路の幅方向へオフセットするオフセット部を有することを特徴とする排気ガス再循環制御装置。
An exhaust gas recirculation control device that controls the temperature of exhaust gas that is recirculated by being led to an intake system of an internal combustion engine,
A cooling passage for circulating the exhaust gas while cooling,
A bypass passage that bypasses the cooling passage and distributes exhaust gas;
A partition partitioning the outlet portion of the cooling passage and the outlet portion of the bypass passage;
In the first swing position, the outlet portion of the cooling passage is closed and the outlet portion of the bypass passage is opened. In the second swing position, the outlet portion of the cooling passage is opened and the outlet portion of the bypass passage is closed. A swing valve that opens both outlets of the cooling passage and the bypass passage between a swing position and the second swing position;
An outlet for communicating exhaust gas to the intake system, communicating with a passage having an outlet portion open among the cooling passage and the bypass passage;
At least one of the cooling passage and the bypass passage has an offset portion that is offset in the width direction of the cooling passage and the bypass passage with respect to the center axis of the outlet port.
前記冷却通路の出口部内及び前記バイパス通路の出口部内の少なくとも一方に設けられ、排気ガスの流れを遮る遮流部材をさらに備えることを特徴とする請求項1〜6のいずれか一項に記載の排気ガス再循環制御装置。   7. The apparatus according to claim 1, further comprising a flow blocking member that is provided in at least one of the outlet portion of the cooling passage and the outlet portion of the bypass passage and blocks the flow of exhaust gas. Exhaust gas recirculation control device. 前記導出口内に設けられ、排気ガスの流れを遮る遮流部材をさらに備えることを特徴とする請求項1〜7のいずれか一項に記載の排気ガス再循環制御装置。
The exhaust gas recirculation control device according to any one of claims 1 to 7, further comprising a flow blocking member provided in the outlet and configured to block a flow of exhaust gas.
JP2004215797A 2004-07-23 2004-07-23 Exhaust gas recirculation control device Pending JP2006037773A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004215797A JP2006037773A (en) 2004-07-23 2004-07-23 Exhaust gas recirculation control device
FR0507850A FR2873413A1 (en) 2004-07-23 2005-07-22 Exhaust gas temperature controlling device for exhaust gas re-circulating system for engine system, has valve to open and close cooling and/or bypass channels to mix gas for producing gas mixture that is made homogenous by partition
DE102005034362A DE102005034362A1 (en) 2004-07-23 2005-07-22 Gas temperature control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004215797A JP2006037773A (en) 2004-07-23 2004-07-23 Exhaust gas recirculation control device

Publications (1)

Publication Number Publication Date
JP2006037773A true JP2006037773A (en) 2006-02-09

Family

ID=35520163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004215797A Pending JP2006037773A (en) 2004-07-23 2004-07-23 Exhaust gas recirculation control device

Country Status (3)

Country Link
JP (1) JP2006037773A (en)
DE (1) DE102005034362A1 (en)
FR (1) FR2873413A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011129485A1 (en) * 2010-04-12 2011-10-20 Unick Corporation Bypass valve for vehicle
US8132407B2 (en) * 2008-04-03 2012-03-13 GM Global Technology Operations LLC Modular exhaust gas recirculation cooling for internal combustion engines
US8230681B2 (en) 2008-03-21 2012-07-31 Denso Corporation Exhaust gas switching valve
JP2012184678A (en) * 2011-03-03 2012-09-27 Yutaka Giken Co Ltd Exhaust heat recovery device
JP2012184681A (en) * 2011-03-03 2012-09-27 Yutaka Giken Co Ltd Exhaust heat recovery device
JP2012184680A (en) * 2011-03-03 2012-09-27 Yutaka Giken Co Ltd Exhaust heat recovery device
US9080495B2 (en) 2011-03-03 2015-07-14 Yutaka Giken Co., Ltd. Exhaust heat recovery device
US20170306897A1 (en) * 2016-04-22 2017-10-26 Hyundai Motor Company Exhaust system for vehicles and control method thereof
WO2020250589A1 (en) * 2019-06-13 2020-12-17 株式会社豊田自動織機 Internal combustion engine

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2905735B1 (en) * 2006-09-12 2011-02-25 Renault Sas DEVICE FOR IMPROVING THE OPERATION OF A SUPERIOR ENGINE WITH AN EXHAUST GAS RECIRCULATION CIRCUIT
US7610949B2 (en) * 2006-11-13 2009-11-03 Dana Canada Corporation Heat exchanger with bypass
DE102011109264A1 (en) * 2011-08-03 2013-02-07 Man Truck & Bus Ag Exhaust gas recirculation device for an internal combustion engine of a vehicle and method for operating an exhaust gas recirculation device
FR3053079B1 (en) * 2016-06-27 2018-06-22 Renault S.A.S COOLING AIR COOLER FOR INTERNAL COMBUSTION ENGINE AND BOILER ASSOCIATED BOOSTER CIRCUIT.

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6330910B1 (en) * 1999-03-03 2001-12-18 Easton Bennett Heat exchanger for a motor vehicle exhaust

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6330910B1 (en) * 1999-03-03 2001-12-18 Easton Bennett Heat exchanger for a motor vehicle exhaust

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8230681B2 (en) 2008-03-21 2012-07-31 Denso Corporation Exhaust gas switching valve
US8132407B2 (en) * 2008-04-03 2012-03-13 GM Global Technology Operations LLC Modular exhaust gas recirculation cooling for internal combustion engines
WO2011129485A1 (en) * 2010-04-12 2011-10-20 Unick Corporation Bypass valve for vehicle
JP2012184678A (en) * 2011-03-03 2012-09-27 Yutaka Giken Co Ltd Exhaust heat recovery device
JP2012184681A (en) * 2011-03-03 2012-09-27 Yutaka Giken Co Ltd Exhaust heat recovery device
JP2012184680A (en) * 2011-03-03 2012-09-27 Yutaka Giken Co Ltd Exhaust heat recovery device
US9080495B2 (en) 2011-03-03 2015-07-14 Yutaka Giken Co., Ltd. Exhaust heat recovery device
US20170306897A1 (en) * 2016-04-22 2017-10-26 Hyundai Motor Company Exhaust system for vehicles and control method thereof
WO2020250589A1 (en) * 2019-06-13 2020-12-17 株式会社豊田自動織機 Internal combustion engine
JP2020200814A (en) * 2019-06-13 2020-12-17 株式会社豊田自動織機 Internal combustion engine
TWI729797B (en) * 2019-06-13 2021-06-01 日商豐田自動織機股份有限公司 internal combustion engine
JP7140055B2 (en) 2019-06-13 2022-09-21 株式会社豊田自動織機 internal combustion engine

Also Published As

Publication number Publication date
FR2873413A1 (en) 2006-01-27
DE102005034362A1 (en) 2006-02-09

Similar Documents

Publication Publication Date Title
KR102458753B1 (en) Exhaust gas recirculation valve for vehicle
JP2006037773A (en) Exhaust gas recirculation control device
JP4497206B2 (en) Intake mixed gas introduction structure
JP6313800B2 (en) Exhaust gas recirculation system
US8261814B2 (en) Exhaust-gas cooler
JP2011522989A (en) Exhaust gas mixing system
US8267070B2 (en) Intake mixture introducing apparatus
JP2021120571A (en) Intake structure of multi-cylinder engine
KR101758212B1 (en) Exhaust gas heat exchanger capable of controlling cooling performance
US10247143B2 (en) Exhaust gas recirculation apparatus
JP4974835B2 (en) Exhaust gas recirculation device
JP6133771B2 (en) Gas mixing equipment
KR101420326B1 (en) Bypass valve assembly and its assembling method
JP4324967B2 (en) Exhaust gas recirculation control device
JP4349156B2 (en) Intake device for internal combustion engine
JP2008014256A (en) Intake device for internal combustion engine
JP6459496B2 (en) EGR gas supply structure
JP2004225670A (en) Intake device of engine
KR20140111291A (en) Exhaust gas recirculation system with a poppet valve
KR101977900B1 (en) Exhaust gas heat exchanger capable of controlling cooling performance and differential pressure
JP4457815B2 (en) EGR device
JP3557314B2 (en) Intake device for internal combustion engine
JP2015124755A (en) Gas mixing device
JP6133770B2 (en) Gas mixing equipment
JP4282068B2 (en) Exhaust system structure of internal combustion engine

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060426

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090327