JP4324967B2 - Exhaust gas recirculation control device - Google Patents

Exhaust gas recirculation control device Download PDF

Info

Publication number
JP4324967B2
JP4324967B2 JP2004215714A JP2004215714A JP4324967B2 JP 4324967 B2 JP4324967 B2 JP 4324967B2 JP 2004215714 A JP2004215714 A JP 2004215714A JP 2004215714 A JP2004215714 A JP 2004215714A JP 4324967 B2 JP4324967 B2 JP 4324967B2
Authority
JP
Japan
Prior art keywords
exhaust gas
swing
passage
valve
bypass passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004215714A
Other languages
Japanese (ja)
Other versions
JP2006037765A (en
Inventor
勝洋 黒木
一人 前田
高史 小林
修 島根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004215714A priority Critical patent/JP4324967B2/en
Priority to DE102005034363A priority patent/DE102005034363A1/en
Priority to FR0507849A priority patent/FR2873412B1/en
Publication of JP2006037765A publication Critical patent/JP2006037765A/en
Application granted granted Critical
Publication of JP4324967B2 publication Critical patent/JP4324967B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • F28F27/02Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus for controlling the distribution of heat-exchange media between different channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/25Layout, e.g. schematics with coolers having bypasses
    • F02M26/26Layout, e.g. schematics with coolers having bypasses characterised by details of the bypass valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • F02M26/30Connections of coolers to other devices, e.g. to valves, heaters, compressors or filters; Coolers characterised by their location on the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/46Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition
    • F02M26/47Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition the characteristics being temperatures, pressures or flow rates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/28Layout, e.g. schematics with liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • F02M26/32Liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/06Derivation channels, e.g. bypass

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Analytical Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Description

本発明は、内燃機関(以下、「内燃機関」をエンジンという)の吸気系へ導いて再循環させる排気ガスの温度を制御する排気ガス再循環制御装置(以下、「排気ガス再循環」をEGRという)に関する。   The present invention relates to an exhaust gas recirculation control device (hereinafter referred to as “exhaust gas recirculation”) that controls the temperature of exhaust gas to be recirculated by introducing it into the intake system of an internal combustion engine (hereinafter referred to as “the internal combustion engine”). About).

特許文献1には、排気ガスを冷却しつつ流通させる冷却通路と、冷却通路を迂回して排気ガスを流通させるバイパス通路と、バイパス通路を開閉するバタフライ弁とを備えたEGR制御装置が開示されている。このEGR制御装置では、バタフライ弁によりバイパス通路を開放することで、当該バイパス通路を通過した排気ガスと冷却通路を通過した排気ガスとを混合して吸気系へと導くことができる。したがって、バタフライ弁の開度を調整すれば、各通路からの排気ガスの混合率が変化して、吸気系へ導かれる排気ガスの温度も変化する。   Patent Document 1 discloses an EGR control device that includes a cooling passage that circulates exhaust gas while cooling, a bypass passage that bypasses the cooling passage and circulates exhaust gas, and a butterfly valve that opens and closes the bypass passage. ing. In this EGR control device, by opening the bypass passage by the butterfly valve, the exhaust gas that has passed through the bypass passage and the exhaust gas that has passed through the cooling passage can be mixed and guided to the intake system. Therefore, if the opening degree of the butterfly valve is adjusted, the mixing ratio of the exhaust gas from each passage changes, and the temperature of the exhaust gas guided to the intake system also changes.

欧州特許出願公開第0987427号明細書European Patent Application No. 0987427

しかし、上記特許文献1のEGR制御装置では、バタフライ弁の弁軸がバイパス通路内を延伸しているため、当該弁軸を支持する軸受は、バイパス通路を通過した高温の排気ガスに晒される。そのため、高温の排気ガスの熱が弁軸を通じて軸受へ伝達されると、軸受が温度上昇して溶融してしまい、弁ロック等の作動不良が生じる。また、温度上昇により軸受の熱膨張量が大きくなるため、弁軸と軸受との間のクリアランスを大きく設定しなければならず、それにより耐振性が低下する。
尚、こうした問題を解決する方法として、高温に晒された軸受を冷媒により冷却する方法が考えられるが、この方法では、冷媒の流通装置を追加しなければならないため、EGR制御装置の大型化とコストアップとを招いてしまう。
本発明の目的は、作動不良の防止と耐振性の向上とを達成する小型且つ安価なEGR制御装置を提供することにある。
However, in the EGR control device of Patent Document 1, since the valve shaft of the butterfly valve extends in the bypass passage, the bearing that supports the valve shaft is exposed to high-temperature exhaust gas that has passed through the bypass passage. Therefore, when the heat of the high-temperature exhaust gas is transmitted to the bearing through the valve shaft, the bearing rises in temperature and melts, resulting in malfunction such as valve locking. Moreover, since the amount of thermal expansion of the bearing increases due to the temperature rise, the clearance between the valve shaft and the bearing must be set large, thereby reducing the vibration resistance.
As a method for solving such a problem, a method of cooling a bearing exposed to a high temperature with a refrigerant can be considered. However, in this method, since a refrigerant circulation device has to be added, the EGR control device is increased in size. Incurs an increase in cost.
An object of the present invention is to provide a small and inexpensive EGR control device that achieves prevention of malfunction and improvement of vibration resistance.

請求項1に記載の発明によると、軸受に支持されて冷却通路及びバイパス通路の各出口部を開閉する揺動弁の揺動軸は冷却通路内を延伸しているので、当該揺動軸は、冷却通路により冷却された低温の排気ガスに晒されることとなる。これにより、揺動軸を通じて伝達される排気ガスの熱によって軸受の温度が上昇することを抑制できる。そのため、排気ガスからの受熱によっては軸受が溶融し難くなるので、弁ロック等の作動不良を防止できる。また、排気ガスからの受熱による軸受の熱膨張量が小さくなるので、揺動軸と軸受との間のクリアランスを小さく設定して、耐振性を向上することができる。そして、このような効果は、冷却装置等を用いなくても、冷却通路内を延伸するように揺動軸を配置するだけで得られるので、小型且つ安価なEGR制御装置を実現できる。   According to the first aspect of the present invention, the swing shaft of the swing valve supported by the bearing and opening and closing the outlets of the cooling passage and the bypass passage extends in the cooling passage. Then, it is exposed to the low-temperature exhaust gas cooled by the cooling passage. Thereby, it can suppress that the temperature of a bearing raises with the heat | fever of the exhaust gas transmitted through a rocking | fluctuation shaft. For this reason, the bearing becomes difficult to melt depending on the heat received from the exhaust gas, and malfunction such as valve locking can be prevented. In addition, since the amount of thermal expansion of the bearing due to heat received from the exhaust gas is reduced, the vibration resistance can be improved by setting the clearance between the swing shaft and the bearing small. Since such an effect can be obtained by merely arranging the swing shaft so as to extend in the cooling passage without using a cooling device or the like, a small and inexpensive EGR control device can be realized.

揺動軸と軸受との間をシールするシール部材を備えた請求項2に記載の発明によれば、揺動軸を通じて伝達される排気ガスの熱に起因して軸受並びに当該シール部材が溶融することを防止できる。このようにシール部材の溶融が防止されることによって、揺動軸と軸受との間のシール性が長期に亘って確保され得る。   According to the second aspect of the present invention, the seal member for sealing between the swing shaft and the bearing is melted due to the heat of the exhaust gas transmitted through the swing shaft. Can be prevented. By preventing the sealing member from melting as described above, the sealing performance between the swing shaft and the bearing can be ensured over a long period of time.

請求項3に記載の発明によると、揺動軸は、冷却通路の出口部とバイパス通路の出口部とを仕切る隔壁を挟んでバイパス通路の出口部とは反対側に設けられる。これにより、バイパス通路を流通する高温の排気ガスが隔壁に遮られて揺動軸の周囲に到達し難くなるので、当該高温の排気ガスによって軸受が温度上昇することを抑制できる。
請求項4に記載の発明によると、隔壁において排気ガス流れの下流側端部は揺動軸側へ曲げられているので、バイパス通路を流通する高温の排気ガスが揺動軸の周囲に一層到達し難くなり、軸受の温度上昇の抑制効果が促進される。
According to the invention described in claim 3, the swing shaft is provided on the opposite side of the outlet portion of the bypass passage across the partition wall that partitions the outlet portion of the cooling passage and the outlet portion of the bypass passage. As a result, the high-temperature exhaust gas flowing through the bypass passage is blocked by the partition wall and does not easily reach the periphery of the swing shaft. Therefore, it is possible to suppress the temperature rise of the bearing due to the high-temperature exhaust gas.
According to the fourth aspect of the invention, since the downstream end of the exhaust gas flow in the partition wall is bent toward the swing shaft, the high-temperature exhaust gas flowing through the bypass passage further reaches the periphery of the swing shaft. It becomes difficult to suppress the temperature rise of the bearing.

請求項5に記載の発明によると、揺動弁は、バイパス通路を開くとき揺動軸と隔壁との間の隙間を通じて冷却通路と導出口とを連通させる。これにより、バイパス通路が開かれても、冷却通路により冷却された低温の排気ガスが揺動軸と隔壁との間の隙間を流通するようになるため、バイパス通路から導出口へと流出した高温の排気ガスが揺動軸の周囲に到達し難くなる。したがって、高温の排気ガスにより軸受が温度上昇することを抑制できる。   According to the fifth aspect of the present invention, the swing valve communicates the cooling passage and the outlet through the gap between the swing shaft and the partition when the bypass passage is opened. As a result, even if the bypass passage is opened, the low-temperature exhaust gas cooled by the cooling passage flows through the gap between the swing shaft and the partition wall. This makes it difficult for the exhaust gas to reach the periphery of the swing shaft. Therefore, it is possible to suppress the temperature rise of the bearing due to the high temperature exhaust gas.

請求項に記載の発明によると、揺動弁がバイパス通路を閉じるとき隔壁の下流側端部が揺動弁を係止するので、当該係止機能を発揮する部品を新たに設ける必要がない。したがって、部品点数の減少、ひいてはコストダウンに貢献できる。
請求項に記載の発明によると、揺動弁がバイパス通路を閉じるとき隔壁の下流側端部は、揺動弁において揺動軸から径方向外側へ突出する弁本体を係止する。これにより、バイパス通路を流通する高温の排気ガスが弁本体に遮られて揺動軸の周囲に一層到達し難くなるため、軸受の温度上昇の抑制効果が促進される。
According to the sixth aspect of the present invention, when the swing valve closes the bypass passage, the downstream end of the partition wall locks the swing valve, so there is no need to newly provide a part that exhibits the locking function. . Therefore, it is possible to contribute to a reduction in the number of parts and a cost reduction.
According to the seventh aspect of the present invention, when the swing valve closes the bypass passage, the downstream end of the partition wall locks the valve main body protruding radially outward from the swing shaft in the swing valve. As a result, the high-temperature exhaust gas flowing through the bypass passage is blocked by the valve main body and hardly reaches the periphery of the swing shaft, thereby promoting the effect of suppressing the temperature rise of the bearing.

以下、本発明の複数の実施形態及び参考例を図面に基づいて説明する。
図2は、本発明が適用された第一実施形態によるエンジンシステム10を示している。車両に搭載されて用いられるエンジンシステム10は、エンジン12、吸気系20、排気系30、EGR系40等から構成されている。
Hereinafter, a plurality of embodiments and reference examples of the present invention will be described with reference to the drawings.
FIG. 2 shows an engine system 10 according to a first embodiment to which the present invention is applied. An engine system 10 mounted and used in a vehicle includes an engine 12, an intake system 20, an exhaust system 30, an EGR system 40, and the like.

吸気系20は、吸気管21、吸気マニホールド22、エアクリーナ23及びスロットル装置24を有している。吸気管21及び吸気マニホールド22は、車外から吸入された空気が流通する吸気通路を形成している。吸気管21の中途部には、エアクリーナ23及びスロットル装置24が上流側からこの順で介装されている。エアクリーナ23は、吸気通路を流れる吸入空気中の異物を除去する。スロットル装置24は、吸気通路における吸入空気の流量を調整する。吸気管21とエンジン12との間を接続している吸気マニホールド22は、サージタンク26及び複数の分枝管27を備えている。スロットル装置24により流量調整された吸入空気は、サージタンク26により脈動を吸収された後、各分枝管27によってエンジン12の各シリンダへと分配される。   The intake system 20 includes an intake pipe 21, an intake manifold 22, an air cleaner 23, and a throttle device 24. The intake pipe 21 and the intake manifold 22 form an intake passage through which air sucked from outside the vehicle flows. In the middle of the intake pipe 21, an air cleaner 23 and a throttle device 24 are interposed in this order from the upstream side. The air cleaner 23 removes foreign matter in the intake air flowing through the intake passage. The throttle device 24 adjusts the flow rate of intake air in the intake passage. The intake manifold 22 that connects the intake pipe 21 and the engine 12 includes a surge tank 26 and a plurality of branch pipes 27. The intake air whose flow rate is adjusted by the throttle device 24 is pulsated by the surge tank 26 and then distributed to each cylinder of the engine 12 by each branch pipe 27.

排気系30は、排気マニホールド31及び排気管32を有している。排気マニホールド31及び排気管32は、エンジン12から排出された排気ガスが流通する排気通路を形成している。排気マニホールド31は、複数の分枝管34及び合流部35を備えている。エンジン12の各シリンダから各分枝管34へ排出された排気ガスは合流部35において合流する。排気管32は合流部35に接続されており、合流部35から流れ込む排気ガスを車両のマフラーを通じて車外へ放出する。   The exhaust system 30 has an exhaust manifold 31 and an exhaust pipe 32. The exhaust manifold 31 and the exhaust pipe 32 form an exhaust passage through which exhaust gas discharged from the engine 12 flows. The exhaust manifold 31 includes a plurality of branch pipes 34 and a merging portion 35. Exhaust gases discharged from the cylinders of the engine 12 to the branch pipes 34 merge at the merge portion 35. The exhaust pipe 32 is connected to the junction 35 and discharges exhaust gas flowing from the junction 35 to the outside of the vehicle through the muffler of the vehicle.

EGR系40は、環流管41、温度調整装置42、流量調整装置43、温度センサ44及びコントローラ45を有している。環流管41は排気マニホールド31の合流部35と吸気マニホールド22のサージタンク26との間を接続しており、合流部35から流れ込む排気ガスの一部をサージタンク26へと導いてエンジン12に再循環させるEGR通路を形成している。環流管41の中途部には、温度調整装置42及び流量調整装置43が上流側からこの順で介装されている。即ち環流管41は、合流部35と温度調整装置42との間の第一管部47、温度調整装置42と流量調整装置43との間の第二管部48、並びに流量調整装置43とサージタンク26との間の第三管部49とからなる。温度調整装置42はコントローラ45に電気的に接続されており、コントローラ45の指令に従ってサージタンク26へ導く排気ガスの温度を調整する。流量調整装置43はコントローラ45に電気的に接続されており、コントローラ45の指令に従ってEGR弁の開度を変化させることで、サージタンク26へ導く排気ガスの流量を調整する。温度センサ44は第三管部49に付設されており、サージタンク26へ導く排気ガスの温度を検出する。温度センサ44はコントローラ45に電気的に接続されており、排気ガス温度の検出結果をコントローラ45へ出力する。コントローラ45はマイクロコンピュータを主体に構成されており、温度調整装置42、流量調整装置43等を制御する。   The EGR system 40 includes a reflux pipe 41, a temperature adjustment device 42, a flow rate adjustment device 43, a temperature sensor 44, and a controller 45. The recirculation pipe 41 is connected between the merging portion 35 of the exhaust manifold 31 and the surge tank 26 of the intake manifold 22, and a part of the exhaust gas flowing from the merging portion 35 is led to the surge tank 26 and recirculated to the engine 12. An EGR passage to be circulated is formed. A temperature adjusting device 42 and a flow rate adjusting device 43 are interposed in this order from the upstream side in the middle of the reflux pipe 41. That is, the reflux pipe 41 includes a first pipe part 47 between the merging part 35 and the temperature adjustment apparatus 42, a second pipe part 48 between the temperature adjustment apparatus 42 and the flow rate adjustment apparatus 43, and a flow rate adjustment apparatus 43 and a surge. A third pipe portion 49 between the tank 26 and the tank 26 is provided. The temperature adjusting device 42 is electrically connected to the controller 45, and adjusts the temperature of the exhaust gas led to the surge tank 26 in accordance with a command from the controller 45. The flow rate adjusting device 43 is electrically connected to the controller 45, and adjusts the flow rate of the exhaust gas led to the surge tank 26 by changing the opening of the EGR valve in accordance with a command from the controller 45. The temperature sensor 44 is attached to the third pipe portion 49 and detects the temperature of the exhaust gas led to the surge tank 26. The temperature sensor 44 is electrically connected to the controller 45, and outputs the detection result of the exhaust gas temperature to the controller 45. The controller 45 is mainly composed of a microcomputer and controls the temperature adjusting device 42, the flow rate adjusting device 43, and the like.

次に、温度調整装置42及びコントローラ45について詳細に説明する。図1及び図4に示すように温度調整装置42は、導入部51、冷却部52、バイパス部53、弁支持部54、導出部55、隔壁58、揺動弁56及び弁駆動部57を備えている。
導入部51はSUS等の金属で筒状に形成されている。第一管部47に接続される導入部51は、排気マニホールド31からの排気ガスが導入される導入口60を内側に形成している。
Next, the temperature adjustment device 42 and the controller 45 will be described in detail. As shown in FIGS. 1 and 4, the temperature adjustment device 42 includes an introduction part 51, a cooling part 52, a bypass part 53, a valve support part 54, a lead-out part 55, a partition wall 58, a swing valve 56, and a valve drive part 57. ing.
The introduction part 51 is formed in a cylindrical shape with a metal such as SUS. The introduction part 51 connected to the first pipe part 47 has an introduction port 60 into which exhaust gas from the exhaust manifold 31 is introduced on the inner side.

冷却部52の冷却ケース61はSUS等の金属で筒状に形成されている。冷却ケース61には、エンジン12の冷却水系に冷却水管62、63(図2参照)を介して接続される二つの開口部64、65が形成されており、一方の冷却水管62により冷却ケース61内へ引水し、他方の冷却水管63により冷却水系へ戻水する循環路が形成されている。冷却部52のガス管66はSUS等の金属で直管状に形成され、冷却ケース61内を互いに平行に延伸する形態で複数設けられている。各ガス管66の両端部は、冷却ケース61の両端部を覆うリテーナ67、68を貫通する形態で当該リテーナ67、68に保持されている。これにより、各ガス管66がそれぞれ内側に形成する複数の第一通路69が、冷却ケース61内における冷却水の流通部分との連通を遮断されている。冷却ケース61の一端部を覆うリテーナ67は導入部51に接続されており、当該リテーナ67に保持される各ガス管66内の第一通路69の一端部が導入口60に連通している。各第一通路69は、導入口60から一端部側へ流入する排気ガスを他端部側へ向かって流通させる。このとき各第一通路69を通過する排気ガスは、冷却ケース61内に引き込まれた冷却水によって冷却される。   The cooling case 61 of the cooling unit 52 is formed in a cylindrical shape with a metal such as SUS. The cooling case 61 is formed with two openings 64 and 65 connected to the cooling water system of the engine 12 via cooling water pipes 62 and 63 (see FIG. 2). A circulation path is formed for drawing water inward and returning water to the cooling water system by the other cooling water pipe 63. The gas pipe 66 of the cooling unit 52 is formed in a straight tube shape with a metal such as SUS, and a plurality of gas pipes 66 are provided in a form extending in parallel with each other in the cooling case 61. Both end portions of each gas pipe 66 are held by the retainers 67 and 68 so as to penetrate the retainers 67 and 68 that cover both end portions of the cooling case 61. As a result, the plurality of first passages 69 formed on the inner sides of the gas pipes 66 are blocked from communicating with the circulation portion of the cooling water in the cooling case 61. A retainer 67 that covers one end portion of the cooling case 61 is connected to the introduction portion 51, and one end portion of the first passage 69 in each gas pipe 66 held by the retainer 67 communicates with the introduction port 60. Each first passage 69 circulates the exhaust gas flowing from the inlet 60 to the one end side toward the other end side. At this time, the exhaust gas passing through each first passage 69 is cooled by the cooling water drawn into the cooling case 61.

バイパス部53はSUS等の金属で形成されており、冷却部52の各ガス管66に対して略平行の筒状を呈している。バイパス部53の一端部はリテーナ67を介して導入部51に接続されており、当該バイパス部53が内側に形成する第二通路70の一端部が導入口60に連通している。第二通路70は、導入口60から一端部側へ流入する排気ガスを他端部側へ向かって流通させる。   The bypass part 53 is formed of a metal such as SUS and has a cylindrical shape substantially parallel to each gas pipe 66 of the cooling part 52. One end portion of the bypass portion 53 is connected to the introduction portion 51 via the retainer 67, and one end portion of the second passage 70 formed inside by the bypass portion 53 communicates with the introduction port 60. The second passage 70 allows the exhaust gas flowing from the introduction port 60 to the one end side to flow toward the other end side.

図1、図3及び図4に示すように弁支持部54は、SUS等の金属で筒状に形成されており、隔壁58により内側を二つに仕切られている。弁支持部54は、隔壁58を挟む両側に第三通路72と第四通路73とを形成している。   As shown in FIGS. 1, 3, and 4, the valve support 54 is formed in a cylindrical shape with a metal such as SUS, and the inside is partitioned into two by a partition wall 58. The valve support 54 forms a third passage 72 and a fourth passage 73 on both sides of the partition wall 58.

弁支持部54の一端部の第三通路72側は、冷却ケース61の導入部51とは反対側の端部を覆うリテーナ68に接続されており、当該リテーナ68に保持される各ガス管66内の第一通路69の下流側端部が第三通路72に連通している。これにより、排気ガスを冷却しつつ流通させる冷却通路75が複数の第一通路69と第三通路72とから構成されており、第三通路72が当該冷却通路75の出口部72を形成している。弁支持部54の側壁76、77にそれぞれ埋設された軸受78、79は揺動弁56の揺動軸84の両端部を揺動可能に支持しており、当該揺動軸84の中間部84aが冷却通路75の出口部72内を当該出口部72の幅方向へ延伸している。尚、軸受79と揺動軸84との間には、冷却通路75から弁駆動部57内への排気ガス漏れを防ぐシール部材80が介装されている。   The third passage 72 side of one end portion of the valve support portion 54 is connected to a retainer 68 that covers an end portion of the cooling case 61 opposite to the introduction portion 51, and each gas pipe 66 held by the retainer 68. A downstream end portion of the first passage 69 communicates with the third passage 72. As a result, the cooling passage 75 through which the exhaust gas is circulated is composed of a plurality of first passages 69 and third passages 72, and the third passage 72 forms the outlet portion 72 of the cooling passage 75. Yes. Bearings 78 and 79 embedded in the side walls 76 and 77 of the valve support portion 54 respectively support both end portions of the swing shaft 84 of the swing valve 56 so as to be swingable, and an intermediate portion 84 a of the swing shaft 84. Extends in the width direction of the outlet portion 72 in the outlet portion 72 of the cooling passage 75. A seal member 80 is interposed between the bearing 79 and the swing shaft 84 to prevent exhaust gas leakage from the cooling passage 75 into the valve drive unit 57.

また、弁支持部54の上記一端部の第四通路73側は、バイパス部53の導入部51とは反対側の端部にリテーナ68を介して接続されており、当該バイパス部53内の第二通路70の下流側端部が第四通路73に連通している。これにより、上記冷却通路75を迂回して排気ガスを流通させるバイパス通路81が第二通路70と第四通路73とから構成されており、第四通路73が当該バイパス通路81の出口部73を形成している。   Further, the fourth passage 73 side of the one end portion of the valve support portion 54 is connected to an end portion of the bypass portion 53 opposite to the introduction portion 51 via a retainer 68, and the first end portion in the bypass portion 53 is connected. The downstream end of the second passage 70 communicates with the fourth passage 73. Thus, a bypass passage 81 that bypasses the cooling passage 75 and distributes the exhaust gas is constituted by the second passage 70 and the fourth passage 73, and the fourth passage 73 passes through the outlet 73 of the bypass passage 81. Forming.

導出部55は、SUS等の金属で弁支持部54と一体に形成されている。円筒状の導出部55は、揺動軸84に対して中心軸線が略垂直である導出口83を内側に形成している。一端部が第二管部48に接続される導出部55の他端部は、弁支持部54における冷却部52及びバイパス部53とは反対側の端部に接続されている。導出部55内の導出口83は、冷却通路75及びバイパス通路81のうち出口部72、73が開かれた通路に連通し、連通した通路から流入する排気ガスを第二管部48内のEGR通路へ導出する。   The lead-out part 55 is formed integrally with the valve support part 54 from a metal such as SUS. The cylindrical lead-out portion 55 has a lead-out port 83 having a central axis substantially perpendicular to the swing shaft 84 formed inside. The other end portion of the lead-out portion 55 whose one end portion is connected to the second pipe portion 48 is connected to an end portion of the valve support portion 54 opposite to the cooling portion 52 and the bypass portion 53. The outlet 83 in the outlet 55 communicates with the passage in which the outlets 72 and 73 are opened in the cooling passage 75 and the bypass passage 81, and exhaust gas flowing in from the connected passage passes through the EGR in the second pipe portion 48. Derived to the passage.

隔壁58はSUS等の金属で板状に形成され、弁支持部54の側壁76、77に固定されている。隔壁58において、冷却通路75及びバイパス通路81を通過する排気ガス流れの下流側に位置した端部87は揺動軸84側へ曲げられており、当該下流側端部87を除く部分は導出口83の中心軸線に対して略平行となっている。   The partition wall 58 is formed in a plate shape with a metal such as SUS and is fixed to the side walls 76 and 77 of the valve support portion 54. In the partition wall 58, an end portion 87 located on the downstream side of the exhaust gas flow passing through the cooling passage 75 and the bypass passage 81 is bent toward the swing shaft 84, and a portion excluding the downstream end portion 87 is a lead-out port. It is substantially parallel to the 83 central axis.

揺動弁56はSUS等の金属で形成されている。揺動弁56の揺動軸84は、上述の如く軸受78、79に支持されて冷却通路75内を延伸している。これにより揺動軸84は、隔壁58を挟んでバイパス通路81の出口部73とは反対側に位置している。揺動弁56の弁本体85は、揺動軸84の外周面から径方向外側へ突出する板状に形成されている。揺動弁56の突起部86は、弁本体85とV字をなす形態で揺動軸84の外周面から径方向外側へ突出する板状に形成されている。   The swing valve 56 is made of a metal such as SUS. As described above, the swing shaft 84 of the swing valve 56 is supported by the bearings 78 and 79 and extends in the cooling passage 75. Thus, the swing shaft 84 is located on the opposite side of the outlet portion 73 of the bypass passage 81 with the partition wall 58 interposed therebetween. The valve body 85 of the swing valve 56 is formed in a plate shape that protrudes radially outward from the outer peripheral surface of the swing shaft 84. The protrusion 86 of the swing valve 56 is formed in a plate shape that protrudes radially outward from the outer peripheral surface of the swing shaft 84 in a V-shape with the valve body 85.

揺動弁56は、弁支持部54及び導出部55内において揺動することで、冷却通路75及びバイパス通路81の各出口部72、73を開閉する。
具体的には、いずれの揺動位置においても、弁本体85及び突起部86は弁支持部54の側壁76、77に当接する。
The swing valve 56 swings in the valve support portion 54 and the lead-out portion 55 to open and close the outlet portions 72 and 73 of the cooling passage 75 and the bypass passage 81.
Specifically, the valve main body 85 and the protrusion 86 abut against the side walls 76 and 77 of the valve support 54 at any swing position.

そして、図4に示す第一揺動位置では、弁本体85が弁支持部54の第一係止壁88に係止される。これにより、冷却通路75の出口部72が閉じられると共にバイパス通路81の出口部73が開かれ、当該バイパス通路81を通過した高温の排気ガスが導出口83を介して第二管部48へと導かれる。尚、このとき、突起部86と隔壁58とが僅かに離間するため、揺動軸84と隔壁58の下流側端部87との間の隙間90を通じて冷却通路75と導出口83とが連通し、当該隙間90を冷却通路75の排気ガスが流れる。   4, the valve main body 85 is locked to the first locking wall 88 of the valve support 54. As a result, the outlet portion 72 of the cooling passage 75 is closed and the outlet portion 73 of the bypass passage 81 is opened, and the high-temperature exhaust gas that has passed through the bypass passage 81 passes through the outlet 83 to the second pipe portion 48. Led. At this time, since the protruding portion 86 and the partition wall 58 are slightly separated from each other, the cooling passage 75 and the outlet port 83 communicate with each other through the gap 90 between the swing shaft 84 and the downstream end portion 87 of the partition wall 58. The exhaust gas in the cooling passage 75 flows through the gap 90.

また、図5に示す第二揺動位置では、弁本体85が弁支持部54の第二係止壁89及び隔壁58の下流側端部87に係止される。これにより、バイパス通路81の出口部73が閉じられると共に冷却通路75の出口部72が開かれ、当該冷却通路75により冷却された低温の排気ガスが導出口83を介して第二管部48へと導かれる。   5, the valve main body 85 is locked to the second locking wall 89 of the valve support 54 and the downstream end 87 of the partition wall 58. As a result, the outlet portion 73 of the bypass passage 81 is closed and the outlet portion 72 of the cooling passage 75 is opened, and the low-temperature exhaust gas cooled by the cooling passage 75 passes to the second pipe portion 48 via the outlet port 83. It is guided.

またさらに、図6に示すように第一揺動位置と第二揺動位置の間となる揺動位置では、弁本体85が第一及び第二係止壁88、89並びに隔壁58のいずれにも係止されない。これにより、冷却通路75及びバイパス通路81の双方の出口部72、73が開放され、導出口83では、各通路75、81からの排気ガスが合流して混ざり合い、当該混合ガスが導出口83から第二管部48へと導出される。したがって、第一揺動位置と第二揺動位置の間において揺動弁56の揺動位置が変化することで、各通路75、81からの排気ガスの混合率が変化し、第二管部48への導出ガスの温度が変化する。尚、このとき、突起部86と隔壁58とが離間するため、揺動軸84と隔壁58の下流側端部87との間の隙間90を通じて冷却通路75と導出口83とが連通し、当該隙間90を冷却通路75の排気ガスが流れる。   Furthermore, as shown in FIG. 6, the valve main body 85 is in any of the first and second locking walls 88 and 89 and the partition wall 58 at the swing position between the first swing position and the second swing position. Is not locked. As a result, the outlet portions 72 and 73 of both the cooling passage 75 and the bypass passage 81 are opened, and the exhaust gas from the passages 75 and 81 merges and mixes at the outlet 83, and the mixed gas flows into the outlet 83. To the second pipe 48. Therefore, when the rocking position of the rocking valve 56 changes between the first rocking position and the second rocking position, the mixing ratio of the exhaust gas from the passages 75 and 81 changes, and the second pipe portion The temperature of the derived gas to 48 changes. At this time, since the protruding portion 86 and the partition wall 58 are separated from each other, the cooling passage 75 and the outlet 83 are communicated with each other through the gap 90 between the swing shaft 84 and the downstream end portion 87 of the partition wall 58. Exhaust gas in the cooling passage 75 flows through the gap 90.

図1に示す弁駆動部57は、図2に示すコントローラ45と電気的に接続されており、コントローラ45の指令に従って揺動弁56の揺動位置を調整する。
コントローラ45は、温度センサ44から出力された排気ガス温度の検出結果等に基づいて、所望の排気ガス温度を実現するのに必要な揺動弁56の揺動位置を弁駆動部57に指令する。したがって、エンジンシステム10では、排気ガス温度がフィードバック制御されることとなる。このように、温度調整装置42、温度センサ44及びコントローラ45が共同して、特許請求の範囲に記載の「EGR制御装置」を構成している。
The valve drive unit 57 shown in FIG. 1 is electrically connected to the controller 45 shown in FIG. 2 and adjusts the swing position of the swing valve 56 in accordance with a command from the controller 45.
Based on the detection result of the exhaust gas temperature output from the temperature sensor 44, the controller 45 instructs the valve drive unit 57 about the swing position of the swing valve 56 necessary to achieve the desired exhaust gas temperature. . Therefore, in the engine system 10, the exhaust gas temperature is feedback-controlled. Thus, the temperature adjusting device 42, the temperature sensor 44, and the controller 45 jointly constitute an “EGR control device” described in the claims.

以上説明した温度調整装置42では、揺動弁56の揺動軸84が冷却通路75内を延伸しているので、当該揺動軸84は、冷却通路75により冷却された低温の排気ガスに晒されることとなる。これにより、揺動軸84を通じて伝達される排気ガスの熱によって軸受78、79及びシール部材80の温度が上昇することを抑制できる。   In the temperature adjusting device 42 described above, the swing shaft 84 of the swing valve 56 extends in the cooling passage 75, so that the swing shaft 84 is exposed to the low-temperature exhaust gas cooled by the cooling passage 75. Will be. Thereby, it is possible to suppress the temperature of the bearings 78 and 79 and the seal member 80 from rising due to the heat of the exhaust gas transmitted through the swing shaft 84.

また、温度調整装置42では、冷却通路75の出口部72とバイパス通路81の出口部73とを仕切る隔壁58を挟んでバイパス通路81の出口部73とは反対側に揺動軸84が設けられ、当該揺動軸84側へ隔壁58の下流側端部87が曲げられている。そのため、バイパス通路81を流通する高温の排気ガスが隔壁58に十分に遮られて揺動軸84の周囲に到達し難くなり、軸受78、79及びシール部材80の温度上昇の抑制効果が高められる。   Further, in the temperature adjusting device 42, a swing shaft 84 is provided on the opposite side of the outlet portion 73 of the bypass passage 81 across the partition wall 58 that partitions the outlet portion 72 of the cooling passage 75 and the outlet portion 73 of the bypass passage 81. The downstream end portion 87 of the partition wall 58 is bent toward the swing shaft 84 side. Therefore, the high-temperature exhaust gas flowing through the bypass passage 81 is sufficiently blocked by the partition wall 58 and hardly reaches the periphery of the swing shaft 84, and the effect of suppressing the temperature rise of the bearings 78 and 79 and the seal member 80 is enhanced. .

さらに温度調整装置42では、揺動弁56がバイパス通路81を開くとき、揺動軸84と隔壁58との間の隙間90を通じて冷却通路75と導出口83とが連通する。そのため、バイパス通路81が開かれても、冷却通路75により冷却された低温の排気ガスが隙間90を流れるようになるので、バイパス通路81から導出口83へと流出した高温の排気ガスが揺動軸84の周囲に到達し難くなる。したがって、軸受78、79及びシール部材80の温度上昇の抑制効果が高められる。   Further, in the temperature adjusting device 42, when the swing valve 56 opens the bypass passage 81, the cooling passage 75 and the outlet 83 communicate with each other through the gap 90 between the swing shaft 84 and the partition wall 58. Therefore, even if the bypass passage 81 is opened, the low-temperature exhaust gas cooled by the cooling passage 75 flows through the gap 90, so that the high-temperature exhaust gas flowing out from the bypass passage 81 to the outlet 83 swings. It becomes difficult to reach the periphery of the shaft 84. Therefore, the effect of suppressing the temperature rise of the bearings 78 and 79 and the seal member 80 is enhanced.

またさらに、温度調整装置42では、揺動弁56がバイパス通路81を閉じるとき、揺動軸84の径方向外側へ突出する弁本体85が隔壁58の下流側端部87により係止される。これにより、バイパス通路81を流通する高温の排気ガスは弁本体85に遮られて揺動軸84の周囲に到達し難くなる。したがって、軸受78、79及びシール部材80の温度上昇の抑制効果が高められる。   Furthermore, in the temperature adjusting device 42, when the swing valve 56 closes the bypass passage 81, the valve main body 85 protruding outward in the radial direction of the swing shaft 84 is locked by the downstream end 87 of the partition wall 58. As a result, the high-temperature exhaust gas flowing through the bypass passage 81 is blocked by the valve body 85 and hardly reaches the periphery of the swing shaft 84. Therefore, the effect of suppressing the temperature rise of the bearings 78 and 79 and the seal member 80 is enhanced.

このように軸受78、79及びシール部材80の温度上昇が効果的に抑制され得る温度調整装置42では、それらの要素78、79、80が排気ガスからの受熱によっては溶融し難くなるので、弁ロック等の作動不良並びにシール性の低下を防止できる。また、軸受78、79において排気ガスからの受熱による熱膨張量が小さくなるので、揺動軸84と軸受78、79との間のクリアランスを小さく設定して耐振性を向上することができる。   Thus, in the temperature adjusting device 42 in which the temperature rise of the bearings 78 and 79 and the seal member 80 can be effectively suppressed, the elements 78, 79, and 80 are hardly melted by heat received from the exhaust gas. It is possible to prevent malfunctions such as locking and deterioration of sealing performance. Further, since the amount of thermal expansion due to heat received from the exhaust gas is reduced in the bearings 78 and 79, the clearance between the swing shaft 84 and the bearings 78 and 79 can be set small to improve vibration resistance.

そして、こうした作動不良及びシール性低下の防止効果や耐振性の向上効果は、冷却装置等を用いなくても、冷却通路75内を延伸するように揺動軸84を配置するだけで得られるので、小型化とコストダウンとを図ることができる。
しかも温度調整装置42では、バイパス通路81を閉じるときに隔壁58の下流側端部87が揺動弁56を係止する機能を発揮するので、当該係止機能を発揮する新たな部品を追加する必要がない。したがって、部品点数の減少、ひいてはコストダウンをもたらすことができる。
Such an operation failure and the effect of preventing the deterioration of sealing performance and the effect of improving the vibration resistance can be obtained only by arranging the swing shaft 84 so as to extend in the cooling passage 75 without using a cooling device or the like. Therefore, it is possible to reduce the size and the cost.
In addition, in the temperature adjusting device 42, the downstream end 87 of the partition wall 58 functions to lock the swing valve 56 when the bypass passage 81 is closed, so a new part that exhibits the locking function is added. There is no need. Therefore, it is possible to reduce the number of parts and thus reduce the cost.

第一参考例
図7は、本発明の第一参考例による温度調整装置100の要部を示している。第一実施形態と実質的に同一の構成部分には同一の符号を付すことで、説明を省略する。
温度調整装置100では、第一揺動位置において揺動弁110が冷却通路75を閉じるとき、隔壁120の下流側端部121が揺動弁110の突起部111を係止するように、それら要素121、111が形成されている。
( First reference example )
FIG. 7 shows a main part of the temperature adjusting device 100 according to the first reference example of the present invention. Components that are substantially the same as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
In the temperature adjusting device 100, when the swing valve 110 closes the cooling passage 75 in the first swing position, these elements are arranged such that the downstream end 121 of the partition wall 120 locks the protrusion 111 of the swing valve 110. 121 and 111 are formed.

そして温度調整装置100では、第一揺動位置と第二揺動位置との間の揺動位置において揺動弁110が冷却通路75及びバイパス通路81の双方を開くとき、第一実施形態の場合と同様に冷却通路75と導出口83とが隙間90を通じて連通し、揺動軸84の温度上昇が抑えられる。   In the temperature adjusting device 100, when the swing valve 110 opens both the cooling passage 75 and the bypass passage 81 at the swing position between the first swing position and the second swing position, Similarly, the cooling passage 75 and the outlet 83 communicate with each other through the gap 90, and the temperature rise of the swing shaft 84 is suppressed.

一方、図7に示す第一揺動位置において揺動弁56が冷却通路75を閉じるときには、隔壁120の下流側端部121が揺動弁110の突起部111を係止することにより、隙間90を通じた冷却通路75と導出口83との連通が遮断される。そのため、高温の排気ガスを吸気系20へ導くためにバイパス通路81のみを開くとき、冷却通路75を閉塞して吸気系20へ導く排気ガスの温度低下を防ぐことができる。以上、突起部111が特許請求の範囲に記載の「連通遮断部」に相当する。   On the other hand, when the oscillating valve 56 closes the cooling passage 75 at the first oscillating position shown in FIG. 7, the downstream end 121 of the partition wall 120 engages the protrusion 111 of the oscillating valve 110 so that the gap 90 The communication between the cooling passage 75 and the outlet 83 is cut off. Therefore, when only the bypass passage 81 is opened to guide the hot exhaust gas to the intake system 20, it is possible to prevent the temperature reduction of the exhaust gas that closes the cooling passage 75 and leads to the intake system 20. As described above, the protrusion 111 corresponds to a “communication blocking unit” recited in the claims.

さらに温度調整装置100では、冷却通路75を閉じるときに隔壁58の下流側端部87が揺動弁56を係止する機能を発揮するので、当該係止機能を発揮する新たな部品を追加する必要がない。したがって、部品点数の減少、ひいてはコストダウンをもたらすことができる。   Further, in the temperature adjusting device 100, when the cooling passage 75 is closed, the downstream side end portion 87 of the partition wall 58 exhibits a function of locking the swing valve 56. Therefore, a new part that exhibits the locking function is added. There is no need. Therefore, it is possible to reduce the number of parts and thus reduce the cost.

第二実施形態
図8は、本発明の第二実施形態による温度調整装置150の要部を示している。第一実施形態と実質的に同一の構成部分には同一の符号を付すことで、説明を省略する。
温度調整装置150では、冷却通路75内において隔壁160の下流側端部161より下流側を揺動弁170の揺動軸171が延伸している。そのため、隔壁160を挟んでバイパス通路81の出口部73とは反対側には揺動軸171が位置しておらず、隔壁160の長さが排気流れ方向において短くなっている。したがって、隔壁160の材料費が低減されるので、コストダウン効果が促進される。
( Second embodiment )
FIG. 8 shows a main part of the temperature adjustment device 150 according to the second embodiment of the present invention. Components that are substantially the same as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
In the temperature adjustment device 150, the swing shaft 171 of the swing valve 170 extends downstream from the downstream end 161 of the partition wall 160 in the cooling passage 75. Therefore, the swing shaft 171 is not located on the opposite side of the bypass passage 81 from the outlet portion 73 across the partition wall 160, and the length of the partition wall 160 is shortened in the exhaust flow direction. Therefore, since the material cost of the partition 160 is reduced, the cost reduction effect is promoted.

以上、本発明の複数の実施形態及び参考例について説明したが、本発明は、それらの実施形態に限定して解釈されるべきではない。
例えば上記実施形態及び参考例では、軸受と揺動弁の揺動軸との間をシールするシール部材を設けているが、そのようなシール部材を設けないようにしてもよい。
Although a plurality of embodiments and reference examples of the present invention have been described above, the present invention should not be construed as being limited to those embodiments.
For example , in the embodiment and the reference example , the seal member that seals between the bearing and the swing shaft of the swing valve is provided. However, such a seal member may not be provided.

第一実施形態による温度調整装置の要部を示す一部切り欠き側面図である。It is a partially cutaway side view which shows the principal part of the temperature control apparatus by 1st embodiment. 第一実施形態によるエンジンシステムを示す模式図である。It is a mimetic diagram showing an engine system by a first embodiment. 第一実施形態による温度調整装置を示す一部切り欠き正面図である。It is a partially notched front view which shows the temperature control apparatus by 1st embodiment. 第一実施形態による温度調整装置の要部を示す断面図である。It is sectional drawing which shows the principal part of the temperature control apparatus by 1st embodiment. 第一実施形態による温度調整装置の作動を説明するための断面図である。It is sectional drawing for demonstrating the action | operation of the temperature control apparatus by 1st embodiment. 第一実施形態による温度調整装置の作動を説明するための断面図である。It is sectional drawing for demonstrating the action | operation of the temperature control apparatus by 1st embodiment. 第一参考例による温度調整装置の要部を示す断面図である。It is sectional drawing which shows the principal part of the temperature control apparatus by a 1st reference example . 第二実施形態による温度調整装置の要部を示す断面図である。It is sectional drawing which shows the principal part of the temperature control apparatus by 2nd embodiment .

符号の説明Explanation of symbols

10 エンジンシステム、12 エンジン、20 吸気系、30 排気系、40 EGR系、42、100、150 温度調整装置(EGR制御装置)、44 温度センサ(EGR制御装置)、45 コントローラ(EGR制御装置)、51 導入部、52 冷却部、53 バイパス部、54 弁支持部、55 導出部、56、110、170 揺動弁、57 弁駆動部、58、120、160 隔壁、60 導入口、61 冷却ケース、66 ガス管、69 第一通路(冷却通路)、70 第二通路(バイパス通路)、72 第三通路、出口部(冷却通路)、73 第四通路、出口部(バイパス通路)、75 冷却通路、78、79 軸受、80 シール部材、81 バイパス通路、83 導出口、84、171 揺動軸、85 弁本体、86 突起部、87、121、161 下流側端部、90 隙間、111 突起部(連通遮断部)
10 engine system, 12 engine, 20 intake system, 30 exhaust system, 40 EGR system, 42, 100, 150 temperature adjustment device (EGR control device), 44 temperature sensor (EGR control device), 45 controller (EGR control device), 51 Introducing section, 52 Cooling section, 53 Bypass section, 54 Valve support section, 55 Deriving section, 56, 110, 170 Oscillating valve, 57 Valve driving section, 58, 120, 160 Partition, 60 Inlet, 61 Cooling case, 66 gas pipe, 69 first passage (cooling passage), 70 second passage (bypass passage), 72 third passage, outlet portion (cooling passage), 73 fourth passage, outlet portion (bypass passage), 75 cooling passage, 78, 79 Bearing, 80 Seal member, 81 Bypass passage, 83 Outlet, 84, 171 Oscillating shaft, 85 Valve body, 86 Projection, 87, 121, 161 Downstream side Parts, 90 gaps, 111 projections (connection cutoff unit)

Claims (7)

内燃機関の吸気系へ導いて再循環させる排気ガスの温度を制御する排気ガス再循環制御装置であって、
排気ガスを冷却しつつ流通させる冷却通路と、
前記冷却通路を迂回して排気ガスを流通させるバイパス通路と、
前記冷却通路の出口部と前記バイパス通路の出口部とを仕切る隔壁と、
第一揺動位置において前記冷却通路の出口部を閉じると共に前記バイパス通路の出口部を開き、第二揺動位置において前記冷却通路の出口部を開くと共に前記バイパス通路の出口部を閉じ、前記第一揺動位置と前記第二揺動位置との間において前記冷却通路及び前記バイパス通路の双方の出口部を開く揺動弁と、
前記揺動弁の揺動軸を支持する軸受と、
前記冷却通路及び前記バイパス通路のうち出口部が開いた通路に連通し、前記吸気系へ排気ガスを導出する導出口とを備え、
前記揺動軸は、前記冷却通路内を延伸し、前記揺動軸と前記隔壁とが排気ガスの流れに直交する方向で隙間を形成し、前記揺動弁が前記第一揺動位置にあるとき、前記隙間を前記冷却通路の排気ガスが流れることを特徴とする排気ガス再循環制御装置。
An exhaust gas recirculation control device that controls the temperature of exhaust gas that is recirculated by being led to an intake system of an internal combustion engine,
A cooling passage for circulating the exhaust gas while cooling,
A bypass passage that bypasses the cooling passage and distributes exhaust gas;
A partition partitioning the outlet portion of the cooling passage and the outlet portion of the bypass passage;
In the first swing position, the outlet portion of the cooling passage is closed and the outlet portion of the bypass passage is opened. In the second swing position, the outlet portion of the cooling passage is opened and the outlet portion of the bypass passage is closed. A swing valve that opens both outlets of the cooling passage and the bypass passage between a swing position and the second swing position;
A bearing for supporting a swing shaft of the swing valve;
An outlet for communicating exhaust gas to the intake system, communicating with a passage having an outlet portion open among the cooling passage and the bypass passage;
The swing shaft extends in the cooling passage, the swing shaft and the partition wall form a gap in a direction perpendicular to the flow of exhaust gas, and the swing valve is in the first swing position. An exhaust gas recirculation control device, wherein exhaust gas in the cooling passage flows through the gap.
前記揺動軸と前記軸受との間をシールするシール部材をさらに備えることを特徴とする請求項1に記載の排気ガス再循環制御装置。   The exhaust gas recirculation control device according to claim 1, further comprising a seal member that seals between the swing shaft and the bearing. 前記揺動軸は、前記隔壁を挟んで前記バイパス通路の出口部とは反対側に設けられることを特徴とする請求項1又は2に記載の排気ガス再循環制御装置。   3. The exhaust gas recirculation control device according to claim 1, wherein the swing shaft is provided on a side opposite to an outlet portion of the bypass passage with the partition wall interposed therebetween. 前記隔壁において排気ガス流れの下流側端部は前記揺動軸側へ曲げられていることを特徴とする請求項3に記載の排気ガス再循環制御装置。   The exhaust gas recirculation control device according to claim 3, wherein a downstream end portion of the exhaust gas flow in the partition wall is bent toward the swing shaft. 前記揺動弁は、前記バイパス通路を開くとき前記揺動軸と前記隔壁との間の隙間を通じて前記冷却通路と前記導出口とを連通させることを特徴とする請求項3又は4に記載の排気ガス再循環制御装置。   5. The exhaust according to claim 3, wherein the swing valve communicates the cooling passage with the outlet through a gap between the swing shaft and the partition when the bypass passage is opened. Gas recirculation control device. 前記隔壁において排気ガス流れの下流側端部は、前記揺動弁が前記バイパス通路を閉じるとき前記揺動弁を係止することを特徴とする請求項3〜のいずれか一項に記載の排気ガス再循環制御装置。 The downstream end of the exhaust gas flow in said partition wall, according to any one of claims 3-5, characterized in that the swing valve is engaged with the swing valve when closing said bypass passage Exhaust gas recirculation control device. 前記揺動弁は、前記揺動軸から径方向外側へ突出する弁本体を有し、
前記揺動弁が前記バイパス通路を閉じるとき前記隔壁の前記下流側端部は前記弁本体を係止することを特徴とする請求項に記載の排気ガス再循環制御装置。
The swing valve has a valve body that protrudes radially outward from the swing shaft,
The exhaust gas recirculation control device according to claim 6 , wherein when the swing valve closes the bypass passage, the downstream end of the partition wall engages the valve main body.
JP2004215714A 2004-07-23 2004-07-23 Exhaust gas recirculation control device Expired - Fee Related JP4324967B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004215714A JP4324967B2 (en) 2004-07-23 2004-07-23 Exhaust gas recirculation control device
DE102005034363A DE102005034363A1 (en) 2004-07-23 2005-07-22 Gas temperature control device
FR0507849A FR2873412B1 (en) 2004-07-23 2005-07-22 DEVICE FOR CONTROLLING GAS TEMPERATURE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004215714A JP4324967B2 (en) 2004-07-23 2004-07-23 Exhaust gas recirculation control device

Publications (2)

Publication Number Publication Date
JP2006037765A JP2006037765A (en) 2006-02-09
JP4324967B2 true JP4324967B2 (en) 2009-09-02

Family

ID=35520162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004215714A Expired - Fee Related JP4324967B2 (en) 2004-07-23 2004-07-23 Exhaust gas recirculation control device

Country Status (3)

Country Link
JP (1) JP4324967B2 (en)
DE (1) DE102005034363A1 (en)
FR (1) FR2873412B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4840282B2 (en) * 2007-08-01 2011-12-21 株式会社デンソー Exhaust gas switching valve
DE102007048824B4 (en) * 2007-10-10 2018-02-22 Mahle International Gmbh Heat exchanger, in particular for exhaust gas cooling
US8132407B2 (en) * 2008-04-03 2012-03-13 GM Global Technology Operations LLC Modular exhaust gas recirculation cooling for internal combustion engines
JP5163517B2 (en) * 2009-01-26 2013-03-13 日産自動車株式会社 EGR device control device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2776015B1 (en) * 1998-03-11 2000-08-11 Ecia Equip Composants Ind Auto HEAT EXCHANGER EXHAUST MEMBER
US6330910B1 (en) * 1999-03-03 2001-12-18 Easton Bennett Heat exchanger for a motor vehicle exhaust
JP3906783B2 (en) * 2002-11-20 2007-04-18 株式会社デンソー Exhaust gas recirculation control device
JP2004190693A (en) * 2002-12-06 2004-07-08 Aisan Ind Co Ltd Flow passage switching valve

Also Published As

Publication number Publication date
FR2873412A1 (en) 2006-01-27
FR2873412B1 (en) 2009-09-25
DE102005034363A1 (en) 2006-02-16
JP2006037765A (en) 2006-02-09

Similar Documents

Publication Publication Date Title
JP5891813B2 (en) Freezing prevention structure of PCV passage and intake manifold
US8733327B2 (en) Charge air duct for an internal combustion engine
US6604506B2 (en) Intake manifold of engine
JP5001752B2 (en) EGR cooler bypass switching system
KR102458753B1 (en) Exhaust gas recirculation valve for vehicle
KR20060069485A (en) Air-intake duct system for a combustion engine
US20090044525A1 (en) Exhaust-gas cooling device for an internal combustion engine
JP4324967B2 (en) Exhaust gas recirculation control device
JP2006037773A (en) Exhaust gas recirculation control device
JP2007046599A (en) Exhaust manifold assembly body for internal combustion engine and exhaust gas controller and control method for internal combustion engine equipped with assembly body
KR101758212B1 (en) Exhaust gas heat exchanger capable of controlling cooling performance
JP4631718B2 (en) Exhaust gas recirculation device for internal combustion engine
JP2009250174A (en) Exhaust gas reflux device in internal combustion engine
JP4363176B2 (en) Engine exhaust gas recirculation system
JP2016503138A (en) Coolant supply flange for parts to be cooled and parts provided with such flanges
JP5637964B2 (en) Internal combustion engine cooling structure
JP2007303436A (en) Engine exhaust gas recirculation device
EP3832120B1 (en) Vehicle with engine and air intake device
KR101420326B1 (en) Bypass valve assembly and its assembling method
JP4291646B2 (en) Engine exhaust gas purification device
US20200116064A1 (en) Exhaust heat recovery and acoustic valve with exhaust gas recirculation features
JP2016180413A (en) Multi-cylinder engine cooling structure
JP2016217244A (en) Internal combustion engine
JP2008025346A (en) Intake system of internal combustion engine
JP6176144B2 (en) Intake manifold for internal combustion engines

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060426

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090730

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20091215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140619

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees