JP2006037222A - Ion exchange membrane electrolytic process - Google Patents

Ion exchange membrane electrolytic process Download PDF

Info

Publication number
JP2006037222A
JP2006037222A JP2005108727A JP2005108727A JP2006037222A JP 2006037222 A JP2006037222 A JP 2006037222A JP 2005108727 A JP2005108727 A JP 2005108727A JP 2005108727 A JP2005108727 A JP 2005108727A JP 2006037222 A JP2006037222 A JP 2006037222A
Authority
JP
Japan
Prior art keywords
exchange membrane
ion exchange
anode
electrolysis
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005108727A
Other languages
Japanese (ja)
Other versions
JP4582784B2 (en
Inventor
Terumi Hashimoto
てるみ 橋本
Takemichi Kishi
剛陸 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Nucera Japan Ltd
Original Assignee
Chlorine Engineers Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chlorine Engineers Corp Ltd filed Critical Chlorine Engineers Corp Ltd
Priority to JP2005108727A priority Critical patent/JP4582784B2/en
Publication of JP2006037222A publication Critical patent/JP2006037222A/en
Application granted granted Critical
Publication of JP4582784B2 publication Critical patent/JP4582784B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ion exchange membrane electrolytic process unlikely to undergo any current efficiency drop even when brine having a concentration lower than usual is supplied. <P>SOLUTION: In the ion exchange membrane electrolytic process, electrolysis occurs while the concentration of an aqueous solution of an alkaline metal chloride in an anode chamber partitioned by a cation exchange membrane is set at 2.7 to 3.3 mol/1, and a gap is provided between the cation exchange membrane and the anode. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、食塩水等の塩水のイオン交換膜電気分解方法に関するものであり、特に塩水の濃度を低下させて運転した場合であっても高い効率での電気分解を可能とする電気分解方法に関するものである。   The present invention relates to an ion exchange membrane electrolysis method for salt water such as saline, and more particularly, to an electrolysis method that enables electrolysis with high efficiency even when the salt water is operated at a reduced concentration. Is.

塩水のイオン交換膜電気分解方法においては、電気分解に要する電気エネルギーを小さくして高い電流効率で運転が可能であるようにイオン交換膜電解槽の各部材が設計されており、イオン交換膜電解槽の陽極室に供給する塩水の濃度、温度等にあっても、効率的な電気分解が可能な濃度のものを供給することが行われている。   In the ion exchange membrane electrolysis method of salt water, each member of the ion exchange membrane electrolyzer is designed so that the electric energy required for electrolysis can be reduced and operation with high current efficiency is possible. Even if it is in the density | concentration of salt water supplied to the anode chamber of a tank, temperature, etc., the thing of the density | concentration in which efficient electrolysis is possible is performed.

また、イオン交換膜電解槽は、陰極室の圧力を陽極室の圧力よりも高くし、陽イオン交換膜を陽極に密着して運転することにより、電解槽電圧を低下した効率的な運転が可能であることが提案されており(例えば、特許文献1)、商業的なイオン交換膜電解槽においては、陽イオン交換膜を陽極に密着したり、あるいは陽イオン交換膜と陽極および陰極との距離を実質的になくしたイオン交換膜電解槽が用いられている。   Also, the ion exchange membrane electrolytic cell can be operated efficiently with the electrolytic cell voltage lowered by operating the cathode chamber pressure higher than the pressure in the anode chamber and operating the cation exchange membrane in close contact with the anode. In a commercial ion exchange membrane electrolytic cell, the cation exchange membrane is closely attached to the anode, or the distance between the cation exchange membrane and the anode and the cathode is proposed. An ion exchange membrane electrolytic cell that substantially eliminates the above has been used.

イオン交換膜電解槽を有する電気分解設備においては、イオン交換膜電解槽のみではなく、塩水の供給設備をはじめとする関連の諸設備についても、最適の効率でイオン交換膜電解槽の運転ができるような機能を有するものが備えられている。   Electrolysis equipment with ion-exchange membrane electrolyzers can operate ion-exchange membrane electrolyzers with optimal efficiency not only for ion-exchange membrane electrolyzers but also for related equipment including salt water supply equipment Those having such functions are provided.

また、生産量を増加させる必要が生じた場合には、イオン交換膜電解槽の個数を増加させて対応することが考えられるが、既存の塩水供給設備から各イオン交換膜電解槽に対して、増加前と同様の濃度および流量で塩水を供給することは、一般には塩水供給設備の能力の点から困難となる。
そこで、既存の塩水供給設備を用いて運転を行うために、各イオン交換膜電解槽に供給する塩水の供給量を減少させて運転すると、イオン交換膜電解槽から取り出される淡塩水濃度が低下し、陽極室から陰極室への電気浸透水が増加し電流効率が大きく低下する。
In addition, when it is necessary to increase the production volume, it is possible to respond by increasing the number of ion exchange membrane electrolytic cells, but for each ion exchange membrane electrolytic cell from the existing salt water supply equipment, It is generally difficult to supply salt water at the same concentration and flow rate as before the increase in terms of the capacity of the salt water supply facility.
Therefore, in order to operate using existing salt water supply equipment, if the operation is performed by reducing the amount of salt water supplied to each ion exchange membrane electrolytic cell, the concentration of fresh salt water taken out from the ion exchange membrane electrolytic cell decreases. The electroosmotic water from the anode chamber to the cathode chamber increases and the current efficiency is greatly reduced.

また、イオン交換膜電解方法において、陽極室に供給する塩水の濃度を調整し、陰極室側へ移行する電気浸透水の量を調整することによって陰極室へ実質的に水を加えないで所望の濃度の水酸化ナトリウム水溶液を製造することが提案されている(例えば、特許文献2)。しかしながら、電流効率が41ないし80%であり、実用的なイオン交換膜電解方法においては問題にはされない値であった。   Further, in the ion exchange membrane electrolysis method, the concentration of salt water supplied to the anode chamber is adjusted, and the amount of electroosmotic water transferred to the cathode chamber side is adjusted so that substantially no water is added to the cathode chamber. It has been proposed to produce a sodium hydroxide aqueous solution having a concentration (for example, Patent Document 2). However, the current efficiency is 41 to 80%, which is not a problem in a practical ion exchange membrane electrolysis method.

電気分解方法においては、電流効率の低下は極めて重大な負の要因であるので、塩水の濃度を小さくし、電気浸透水の量を大きくしたイオン交換膜電解槽の運転は不可能と考えれられており、塩水供給設備の能力を増加させないでイオン交換膜電解槽の個数を増加させることは提案されることはなかった。
特開昭50−109899号公報 特開昭49−1497号公報
In the electrolysis method, since the decrease in current efficiency is a very serious negative factor, it is considered impossible to operate an ion exchange membrane electrolytic cell with a small concentration of salt water and a large amount of electroosmotic water. Therefore, it has not been proposed to increase the number of ion exchange membrane electrolyzers without increasing the capacity of the salt water supply facility.
JP 50-109899 A Japanese Patent Laid-Open No. 49-1497

本発明は、塩水供給設備の能力を増加させることなく、既存の電解設備においてイオン交換膜電解槽の個数のみを増加した場合に、イオン交換膜電解槽に供給される塩水の濃度が低下し、それによって電気浸透水の量が増加した場合であっても、電流効率を低下させることなく効率的な電気分解が可能なイオン交換膜電解槽による電気分解方法を提供することを課題とするものである。   The present invention reduces the concentration of salt water supplied to the ion exchange membrane electrolytic cell when increasing the number of ion exchange membrane electrolytic cells in the existing electrolytic facility without increasing the capacity of the salt water supply facility, It is an object of the present invention to provide an electrolysis method using an ion exchange membrane electrolytic cell capable of efficient electrolysis without reducing current efficiency even when the amount of electroosmotic water is increased. is there.

本発明の課題は、イオン交換膜電解方法において、陽イオン交換膜で区画された陽極室内のアルカリ金属塩化物水溶液の濃度を2.7mol/lないし3.3mol/lの値とし、陽イオン交換膜と陽極との間に間隔を設けて電気分解するイオン交換膜電解方法によって解決することができる。
また、陽極室から陰極室へのアルカリ金属イオンに伴う電気浸透水量が5mol/F以上である前記のイオン交換膜電解方法である。
また、陽極と陽イオン交換膜の間隔を、X・A+1.01mm以上、X・B以下の大きさに設定する前記のイオン交換膜電解方法である。
ただし、X:電流密度(kA/m2)、A:0.074mm・m2/kA、B:0.725mm・m2/kA
An object of the present invention is to provide a cation exchange method in which the concentration of the alkali metal chloride aqueous solution in the anode chamber partitioned by the cation exchange membrane is set to a value of 2.7 mol / l to 3.3 mol / l in the ion exchange membrane electrolysis method. This can be solved by an ion exchange membrane electrolysis method in which electrolysis is performed with a gap between the membrane and the anode.
Further, in the above ion exchange membrane electrolysis method, the amount of electroosmotic water accompanying alkali metal ions from the anode chamber to the cathode chamber is 5 mol / F or more.
Further, in the above ion exchange membrane electrolysis method, the distance between the anode and the cation exchange membrane is set to a size of X · A + 1.01 mm or more and X · B or less.
However, X: current density (kA / m 2), A : 0.074mm · m 2 /kA,B:0.725mm · m 2 / kA

本発明のイオン交換膜電解方法によれば、塩水供給設備の能力以上の個数のイオン交換膜電解槽を設置して運転したために各イオン交換膜電解槽の陽極室の塩水の濃度が低下した場合であっても、陽イオン交換膜と陽極とを所定の間隔に配置したことによって、陽極室の塩水の濃度が低下した際にも電流効率を大きく低下させることなく電気分解が可能であり、塩水供給設備の能力を増大させることなくイオン交換膜電解槽の設置個数を増加させるのみで運転が可能である。したがって、塩水供給設備の能力を増大することなく、イオン交換膜電解槽の設置個数の増加のみで塩素、アルカリ金属水酸化物の増産をした場合でも実用的な操業が可能となる。   According to the ion-exchange membrane electrolysis method of the present invention, when the concentration of salt water in the anode chamber of each ion-exchange membrane electrolyzer decreases because the number of ion-exchange membrane electrolyzers installed and operated exceeds the capacity of the salt water supply facility Even so, by arranging the cation exchange membrane and the anode at a predetermined interval, even when the concentration of salt water in the anode chamber is reduced, electrolysis can be performed without greatly reducing current efficiency. Operation is possible only by increasing the number of ion exchange membrane electrolytic cells installed without increasing the capacity of the supply equipment. Therefore, practical operation is possible even when the production of chlorine and alkali metal hydroxide is increased only by increasing the number of installed ion exchange membrane electrolyzers without increasing the capacity of the salt water supply facility.

イオン交換膜電解槽を用いた電気分解においては、陽極とイオン交換膜を密着して電気分解を行うことがイオン交換膜電解槽の開発の当初から必須の条件と考えられていたが、陽極とイオン交換膜との間に間隔を設けた場合に同様の条件で運転すると、電気浸透水量が増加し、電流効率はイオン交換膜を陽極に密着した時に比べて若干低下するものの陽極室の塩水濃度を低下させた場合には、高い電流効率が得られることを見出したものである。
本発明のように、陽極とイオン交換膜との間に間隔を設けた場合には、塩水供給設備の能力を増大せずにイオン交換膜電解槽の個数を増加させるのみで塩素、アルカリ金属水酸化物水溶液等の増産が可能となる。
In electrolysis using an ion exchange membrane electrolytic cell, it was considered that the anode and the ion exchange membrane were in close contact with each other from the beginning of the development of the ion exchange membrane electrolytic cell. When operating under the same conditions with a gap between the ion exchange membrane, the amount of electroosmotic water increases and the current efficiency is slightly lower than when the ion exchange membrane is closely attached to the anode, but the salt water concentration in the anode chamber It has been found that a high current efficiency can be obtained in the case of decreasing the current.
When a gap is provided between the anode and the ion exchange membrane as in the present invention, chlorine and alkali metal water can be obtained only by increasing the number of ion exchange membrane electrolyzers without increasing the capacity of the salt water supply equipment. Production of oxide aqueous solutions and the like can be increased.

図1は、本発明を説明する陽極とイオン交換膜との間隔と電解槽電圧との関係を説明する図である。
図1は、陽極とイオン交換膜との間隔、および電流密度を変化させて電気分解を行った場合の、陽極とイオン交換膜との間隔を横軸に示し、換算電解槽電圧を示す図を縦軸に示した図である。
電気分解条件は、以下のとおりである。
イオン交換膜 旭硝子製フレミオンF8934
陽極 ペルメレック電極製 貴金属酸化物被覆電極
陰極 電極触媒被覆ニッケル電極
陽極室 塩化ナトリウム水溶液濃度 195g/l
陰極室 水酸化ナトリウム水溶液濃度 32質量%
電解温度 90℃
電流密度を、3kA/m2 、4kA/m2 、5kA/m2 、6kA/m2 、7kA/m2 に設定して、陽極とイオン交換膜との間隔を変えて電気分解した場合の電解槽電圧を測定した。
FIG. 1 is a diagram for explaining the relationship between the distance between the anode and the ion exchange membrane and the electrolytic cell voltage for explaining the present invention.
FIG. 1 is a graph showing the distance between the anode and the ion exchange membrane and the distance between the anode and the ion exchange membrane on the horizontal axis when electrolysis is performed while changing the current density, and shows the converted electrolytic cell voltage. It is the figure shown on the vertical axis | shaft.
The electrolysis conditions are as follows.
Ion exchange membrane Asahi Glass Flemion F8934
Anode Permelec electrode precious metal oxide coated electrode Cathode Electrocatalyst coated nickel electrode Anode chamber Sodium chloride aqueous solution concentration 195 g / l
Cathode chamber Sodium hydroxide aqueous solution concentration 32% by mass
Electrolysis temperature 90 ℃
The current density, is set to 3kA / m 2, 4kA / m 2, 5kA / m 2, 6kA / m 2, 7kA / m 2, electrolyte in the case of electrolysis by changing the distance between the anode and the ion-exchange membrane The cell voltage was measured.

この図で示されているように、陽極とイオン交換膜との間隔が大きくなると、電解槽電圧は間隔が存在しない場合に比べて上昇するものの、電解槽電圧の増加は単調増加ではなく、電極間隔の増加に対して最大値を超えた後に最小点に達する曲線である。そして、いずれの電流密度の場合でも、最大値の後に表れる最小点は電極間隔が1mm以上の範囲である。
一般に、工業的な電気分解に用いられる電解槽において、電極とイオン交換膜の間隔を所望の大きさに設定するには工夫を要するが、面積が大きな電極およびイオン交換膜を有するイオン交換膜電解槽において、それぞれの間隔を小さな間隔に設定することに比べて、大きな間隔に設定することが有利であり、陽極とイオン交換膜との間隔を1mm以上とすることによって電解槽電圧に最小値が表れることは工業的なイオン交換膜電解槽においては有用である。
As shown in this figure, when the distance between the anode and the ion exchange membrane increases, the electrolytic cell voltage rises compared to the case where there is no interval, but the increase in electrolytic cell voltage is not monotonically increased, but the electrode It is a curve which reaches the minimum point after exceeding the maximum value with respect to the increase in the interval. In any current density, the minimum point appearing after the maximum value is the range where the electrode interval is 1 mm or more.
Generally, in an electrolytic cell used for industrial electrolysis, it is necessary to devise to set the distance between the electrode and the ion exchange membrane to a desired size, but ion exchange membrane electrolysis having a large area electrode and an ion exchange membrane. In the cell, it is advantageous to set a large interval compared to setting each interval to a small interval. By setting the interval between the anode and the ion exchange membrane to 1 mm or more, the minimum value of the electrolytic cell voltage is obtained. Appearance is useful in an industrial ion exchange membrane electrolytic cell.

図1において、最大値の後に表れる各電流密度における最小値を結ぶ直線は、
X:電流密度(kA/m2
Y:陽極と陽イオン交換膜の間隔(mm)
とすれば、 Y=A・X+1.01 …式1 の関係がある。
ただし、X:電流密度(kA/m2)、係数A:0.074mm・m2/kA
したがって、陽極と陽イオン交換膜との間隔Yは、この式で示される間隔よりも大きくすることが好ましいが、電極間隔が大きくなると電解槽電圧の上昇が大きくなるので、
Y=B・X …式2
ただし、X:電流密度(kA/m2)、係数B:0.725mm・m2/kA
よりも小さくすることが好ましい。
In FIG. 1, a straight line connecting the minimum values at each current density appearing after the maximum value is
X: current density (kA / m 2 )
Y: Distance between anode and cation exchange membrane (mm)
Then, Y = A · X + 1.01 (1)
Where X: current density (kA / m 2 ), coefficient A: 0.074 mm · m 2 / kA
Therefore, the interval Y between the anode and the cation exchange membrane is preferably larger than the interval represented by this formula, but as the electrode interval increases, the increase in electrolytic cell voltage increases.
Y = B · X Equation 2
X: current density (kA / m 2 ), coefficient B: 0.725 mm · m 2 / kA
It is preferable to make it smaller.

また、本発明のイオン交換膜電解方法における電気浸透水量と陽極とイオン交換膜とを密着した場合の電気浸透水量を図2に示す。
本発明のイオン交換膜電解方法における陰極室への電気浸透水と陽極室の出口の淡塩水濃度は、食塩水の電気分解の場合、次の式3で表されることが分かった。この関係を図2に示す。
y=−a・x+b ………………式3
ここに、
a,b :正の値の係数
x :淡塩水濃度(g/l)
y :イオン交換膜の浸透水(mol/F)
FIG. 2 shows the amount of electroosmotic water in the ion exchange membrane electrolysis method of the present invention and the amount of electroosmotic water when the anode and the ion exchange membrane are brought into close contact with each other.
It was found that the electroosmotic water to the cathode chamber and the fresh brine concentration at the outlet of the anode chamber in the ion exchange membrane electrolysis method of the present invention are expressed by the following formula 3 in the case of the electrolysis of saline solution. This relationship is shown in FIG.
y = −a · x + b ……………… Equation 3
here,
a, b: positive coefficient x: fresh salt water concentration (g / l)
y: permeated water of ion exchange membrane (mol / F)

ただし、式3は淡塩水濃度が150g/lから220g/lの範囲で適用される。また同じイオン交換膜種で同じ電流密度で電気分解を行う場合において、式3中のa,bの値を陽極とイオン交換膜が接触する場合の値をa0,b0、接触しない場合の値をan,bnとすると、a0、an、b0、bnには式4、5の関係が成り立つ。
a0≒an ………………式4
b0<bn ………………式5
However, Formula 3 is applied in the range of the fresh salt water concentration from 150 g / l to 220 g / l. In the case where electrolysis is performed with the same ion exchange membrane type and the same current density, the values of a and b in Equation 3 are a0 and b0 when the anode and the ion exchange membrane are in contact, and the values when they are not in contact with each other. Assuming that an and bn, the relations of equations 4 and 5 hold for a0, an, b0, and bn.
a0 ≒ an ……………… Formula 4
b0 <bn ……………… Formula 5

また、式3、4、5で示されたように同じ淡塩水濃度の場合には陽極とイオン交換膜が接触しない方が常に電気浸透水が大きくなることが分かった。また理由は定かではないが、陽極とイオン交換膜が接触しない場合には、さらに淡塩水濃度を下げた状態、さらに電気浸透水が大きくなる状態の方が電流効率が良くなり、塩水使用量を抑えた状態で増産ができる。   It was also found that electroosmotic water always increases when the anode and the ion exchange membrane are not in contact with each other when the concentration of the fresh salt water is the same as shown in equations 3, 4, and 5. The reason is not clear, but when the anode and the ion exchange membrane do not contact each other, the current efficiency is improved when the concentration of fresh salt water is further lowered and the amount of electroosmotic water is further increased. The production can be increased while keeping it down.

また、陽極室の塩水濃度は、2.7mol/l〜3.3mol/lとすることが好ましく、3.3mol/lよりも大きい場合には、電流効率が低下し、2.7mol/lよりも小さい場合には、同様に電流効率が低下する。   Moreover, it is preferable that the salt water density | concentration of an anode chamber shall be 2.7 mol / l-3.3 mol / l, and when larger than 3.3 mol / l, current efficiency will fall and it will become from 2.7 mol / l. If it is smaller, the current efficiency similarly decreases.

また、本発明のイオン交換膜電解方法では、陽極室から陰極室への電気浸透水量を大きくすることができ、電気浸透水量を5.0mol/F以上とすることができる。その結果、生成する単位水酸化ナトリウム量に対して、陽極室へ供給する塩水の量を少なくすることが可能となる。
また、本発明のイオン交換膜電解方法は、陰極として水素発生電極を使用したイオン交換膜電解方法について説明をしたが、陰極として酸素によって水素発生反応が起こらないようにしたガス拡散電極を用いたイオン交換膜電解方法に用いた場合にも高い電気浸透水量と高い電流効率を維持して電気分解を行うことができるので好ましい。
以下に、実施例、比較例を示し本発明を説明する。
In the ion exchange membrane electrolysis method of the present invention, the amount of electroosmotic water from the anode chamber to the cathode chamber can be increased, and the amount of electroosmotic water can be 5.0 mol / F or more. As a result, the amount of salt water supplied to the anode chamber can be reduced with respect to the amount of unit sodium hydroxide produced.
Further, the ion exchange membrane electrolysis method of the present invention has been described with respect to an ion exchange membrane electrolysis method using a hydrogen generating electrode as a cathode, but a gas diffusion electrode in which hydrogen generation reaction is not caused by oxygen is used as a cathode. Even when used in an ion exchange membrane electrolysis method, it is preferable because electrolysis can be performed while maintaining a high amount of electroosmotic water and high current efficiency.
The present invention will be described below with reference to examples and comparative examples.

大きさが100×100mmのチタン製のエキスパンデッドメタル基体上に電極触媒被覆を形成した陽極(ペルメレック電極製 貴金属酸化物被覆電極)と、大きさが100×100mmのニッケル製のエキスパンデッドメタル基体上に電極触媒被覆を形成したニッケル電極とを対向させて、陽極と陰極の間にイオン交換膜(旭硝子製フレミオンF8934)を配置して、陽極室と陰極室とを形成した。
イオン交換膜と陽極との間隔を1.5mmとし、また、イオン交換膜と陰極との間隔を0mm、すなわちイオン交換膜と陰極とを密着して配置した。
また、陽極室の食塩水濃度を2.99mol/l、陰極室の水酸化ナトリウム水溶液濃度32質量%、電流密度4kA/m2 、温度90℃の条件で電気分解したところ、電解槽電圧は、3.01V、陽極室から陰極室への電気浸透水量は5.2mol/Fであり、電流効率は97.5%であった。
An anode (a precious metal oxide-coated electrode made of Permelec electrode) on which an electrode catalyst coating is formed on a titanium expanded metal substrate with a size of 100 × 100 mm, and a nickel expanded metal with a size of 100 × 100 mm An anode chamber and a cathode chamber were formed by disposing an ion exchange membrane (Flemion F8934 manufactured by Asahi Glass Co., Ltd.) between the anode and the cathode so as to face a nickel electrode having an electrode catalyst coating formed on the substrate.
The interval between the ion exchange membrane and the anode was 1.5 mm, and the interval between the ion exchange membrane and the cathode was 0 mm, that is, the ion exchange membrane and the cathode were arranged in close contact with each other.
Further, when electrolysis was performed under the conditions of a saline solution concentration in the anode chamber of 2.99 mol / l, a sodium hydroxide aqueous solution concentration of 32 mass% in the cathode chamber, a current density of 4 kA / m 2 , and a temperature of 90 ° C., the electrolytic cell voltage was The amount of electroosmotic water from the anode chamber to the cathode chamber was 3.01 V, and the current efficiency was 97.5%.

陽極室の食塩水濃度を2.73mol/lとした点を除き、他の条件は実施例1と同様にして電気分解を行ったところ、陽極室から陰極室への電気浸透水量は、5.5mol/Fに増加し、電流効率は97.0%であった。   Except for the point that the saline concentration in the anode chamber was 2.73 mol / l, electrolysis was performed in the same manner as in Example 1 except that the amount of electroosmotic water from the anode chamber to the cathode chamber was 5. It increased to 5 mol / F and the current efficiency was 97.0%.

陽極室の食塩水濃度を3.25mol/lとした点を除き、他の条件は実施例1と同様にして電気分解を行ったところ、陽極室から陰極室への電気浸透水量は、5.0mol/Fに減少し、電流効率は97.5%であった。   When electrolysis was performed in the same manner as in Example 1 except that the saline concentration in the anode chamber was 3.25 mol / l, the amount of electroosmotic water from the anode chamber to the cathode chamber was 5. It decreased to 0 mol / F and the current efficiency was 97.5%.

陽極とイオン交換膜との距離を2.1mmとした点を除き、他の条件は実施例1と同様にして電気分解を行ったところ、電解槽電圧は、3.07Vであった。   Except for the point that the distance between the anode and the ion exchange membrane was 2.1 mm, electrolysis was performed in the same manner as in Example 1 except that the electrolytic cell voltage was 3.07V.

比較例1
陽極とイオン交換膜とを密着させた点を除き、陽極室の食塩濃度を含めた他の条件は実施例1と同様にして電気分解を行ったところ、陽極室から陰極室への電気浸透水量は、4.8mol/Fであり、電流効率は96.5%であった。
Comparative Example 1
Except for the point where the anode and the ion exchange membrane were brought into close contact with each other, electrolysis was carried out under the same conditions as in Example 1 including the salt concentration in the anode chamber. As a result, the amount of electroosmotic water from the anode chamber to the cathode chamber was Was 4.8 mol / F, and the current efficiency was 96.5%.

比較例2
陽極とイオン交換膜とを密着させた点を除き、陽極室の食塩濃度を含めた他の条件は実施例2と同様にして電気分解を行ったところ、陽極室から陰極室への電気浸透水量は、5.0mol/Fであり、電流効率は95.5%であった。
Comparative Example 2
Except for the point where the anode and the ion exchange membrane were brought into close contact with each other, electrolysis was carried out under the same conditions as in Example 2 including the salt concentration in the anode chamber. As a result, the amount of electroosmotic water from the anode chamber to the cathode chamber was Was 5.0 mol / F, and the current efficiency was 95.5%.

比較例3
陽極とイオン交換膜とを密着させた点を除き、陽極室の食塩濃度を含めた他の条件は実施例3と同様にして電気分解を行ったところ、陽極室から陰極室への電気浸透水量は、4.5mol/Fであり、電流効率は97.0%であった。
Comparative Example 3
Except for the point where the anode and the ion exchange membrane were brought into close contact with each other, electrolysis was carried out under the same conditions as in Example 3 including the salt concentration in the anode chamber. As a result, the amount of electroosmotic water from the anode chamber to the cathode chamber was Was 4.5 mol / F, and the current efficiency was 97.0%.

比較例4
陽極とイオン交換膜とを密着させて、陽極室の食塩水濃度を2.56mol/lとした点を除き、他の条件は実施例1と同様にして電気分解を行ったところ、陽極室から陰極室への電気浸透水量は、4.8mol/Fであり、電流効率は95.0%であった。
Comparative Example 4
Electrolysis was performed in the same manner as in Example 1 except that the anode and the ion exchange membrane were brought into close contact with each other, and the saline concentration in the anode chamber was 2.56 mol / l. The amount of electroosmotic water into the cathode chamber was 4.8 mol / F, and the current efficiency was 95.0%.

本発明のイオン交換膜電解方法によれば、陽極とイオン交換膜とを密着せずに間隔を設けた電解槽により電気分解を行うことによって、塩水供給設備濃度の能力以上のイオン交換膜電解槽を配置したことによって各イオン交換膜の電解槽へ供給する塩水濃度が低下した場合であっても、電流効率を低下させずに高い塩水の利用率でイオン交換膜電解槽の運転を行うことが可能となる。   According to the ion exchange membrane electrolysis method of the present invention, an ion exchange membrane electrolytic cell having a capacity higher than the capacity of the salt water supply facility is obtained by performing electrolysis with an electrolytic cell having a gap without adhering the anode and the ion exchange membrane. Even if the concentration of salt water supplied to the electrolytic cell of each ion-exchange membrane is reduced due to the arrangement of the ion-exchange membrane, the ion-exchange membrane electrolytic cell can be operated at a high salt water utilization rate without reducing the current efficiency. It becomes possible.

図1は、本発明を説明するための、陽極とイオン交換膜との間隔と電解槽電圧との関係を説明する図である。FIG. 1 is a diagram for explaining the relationship between the distance between the anode and the ion exchange membrane and the electrolytic cell voltage for explaining the present invention. 図2は、本発明のイオン交換膜電解方法における電気浸透水量と陽極とイオン交換膜とを密着した場合の電気浸透水量を示す図である。FIG. 2 is a graph showing the amount of electroosmotic water in the ion exchange membrane electrolysis method of the present invention and the amount of electroosmotic water when the anode and the ion exchange membrane are brought into close contact with each other.

Claims (3)

イオン交換膜電解方法において、陽イオン交換膜で区画された陽極室内のアルカリ金属塩化物水溶液の濃度を2.7mol/lないし3.3mol/lの値とし、陽イオン交換膜と陽極との間に間隔を設けて電気分解することを特徴とするイオン交換膜電解方法。 In the ion exchange membrane electrolysis method, the concentration of the alkali metal chloride aqueous solution in the anode chamber partitioned by the cation exchange membrane is set to a value of 2.7 mol / l to 3.3 mol / l, and the gap between the cation exchange membrane and the anode is set. An ion exchange membrane electrolysis method characterized in that electrolysis is performed at intervals. 陽極室から陰極室へのアルカリ金属イオンに伴う電気浸透水量が5mol/F以上であることを特徴とする請求項1記載のイオン交換膜電解方法。 2. The ion exchange membrane electrolysis method according to claim 1, wherein the amount of electroosmotic water accompanying alkali metal ions from the anode chamber to the cathode chamber is 5 mol / F or more. 陽極と陽イオン交換膜の間隔を、X・A+1.01mm以上、X・B以下の大きさに設定することを特徴とする請求項1または2記載のイオン交換膜電解方法。
ただし、X:電流密度(kA/m2)、A:0.074mm・m2/kA、B:0.725mm・m2/kA
3. The ion exchange membrane electrolysis method according to claim 1 or 2, wherein the distance between the anode and the cation exchange membrane is set to a size of X · A + 1.01 mm or more and X · B or less.
However, X: current density (kA / m 2), A : 0.074mm · m 2 /kA,B:0.725mm · m 2 / kA
JP2005108727A 2004-06-22 2005-04-05 Ion exchange membrane electrolysis method Expired - Fee Related JP4582784B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005108727A JP4582784B2 (en) 2004-06-22 2005-04-05 Ion exchange membrane electrolysis method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004183934 2004-06-22
JP2005108727A JP4582784B2 (en) 2004-06-22 2005-04-05 Ion exchange membrane electrolysis method

Publications (2)

Publication Number Publication Date
JP2006037222A true JP2006037222A (en) 2006-02-09
JP4582784B2 JP4582784B2 (en) 2010-11-17

Family

ID=35902527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005108727A Expired - Fee Related JP4582784B2 (en) 2004-06-22 2005-04-05 Ion exchange membrane electrolysis method

Country Status (1)

Country Link
JP (1) JP4582784B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52113398A (en) * 1976-02-05 1977-09-22 Goodrich Co B F Method of producing chlorine by low voltage chlorralkali ion exchange method
JPS5477285A (en) * 1977-12-02 1979-06-20 Asahi Glass Co Ltd Ion exchange membrane electrolysis
JP2000001794A (en) * 1998-06-15 2000-01-07 Asahi Glass Co Ltd Method for electrolyzing salt water

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52113398A (en) * 1976-02-05 1977-09-22 Goodrich Co B F Method of producing chlorine by low voltage chlorralkali ion exchange method
JPS5477285A (en) * 1977-12-02 1979-06-20 Asahi Glass Co Ltd Ion exchange membrane electrolysis
JP2000001794A (en) * 1998-06-15 2000-01-07 Asahi Glass Co Ltd Method for electrolyzing salt water

Also Published As

Publication number Publication date
JP4582784B2 (en) 2010-11-17

Similar Documents

Publication Publication Date Title
US4311569A (en) Device for evolution of oxygen with ternary electrocatalysts containing valve metals
US5082543A (en) Filter press electrolysis cell
US4528083A (en) Device for evolution of oxygen with ternary electrocatalysts containing valve metals
WO2017193896A1 (en) Three-electrode system-based two-step chlorine-alkali electrolytic method and device adopting dual electrolytic cells
JPH04500097A (en) Improved method for producing quaternary ammonium hydroxide
JPS5949318B2 (en) Electrolytic production method of alkali metal hypohalite salt
Lima et al. Energy loss in electrochemical diaphragm process of chlorine and alkali industry–A collateral effect of the undesirable generation of chlorate
US20050011753A1 (en) Low energy chlorate electrolytic cell and process
JP3421021B2 (en) Electrolysis method of alkali chloride
EP3095896B1 (en) Anode for ion exchange membrane electrolysis vessel, and ion exchange membrane electrolysis vessel using same
JP3115440B2 (en) Electrolysis method of alkali chloride aqueous solution
CN114402095A (en) Cross-flow water electrolysis
EP3161185B1 (en) Narrow gap, undivided electrolysis cell
JP4582784B2 (en) Ion exchange membrane electrolysis method
JP7236568B2 (en) Electrodes for electrolysis and electrolysis equipment
JP4498740B2 (en) Electrolysis of alkali metal chloride aqueous solution
US4127457A (en) Method of reducing chlorate formation in a chlor-alkali electrolytic cell
JP2003293180A (en) Electrolytic cell and electrolytic method
JPS586789B2 (en) Method for preventing deterioration of palladium oxide anodes
JP4062917B2 (en) Method for producing sodium hydroxide
NO173513B (en) PROCEDURE FOR ELECTROLYTIC PREPARATION OF CHLORO Dioxide
US7776204B2 (en) Ion exchange membrane electrolytic process
JPS622036B2 (en)
JPS6147230B2 (en)
JP3420790B2 (en) Electrolyzer and electrolysis method for alkali chloride electrolysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100827

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100830

R150 Certificate of patent or registration of utility model

Ref document number: 4582784

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees