JP2006037196A - Method for operating blast furnace - Google Patents

Method for operating blast furnace Download PDF

Info

Publication number
JP2006037196A
JP2006037196A JP2004221934A JP2004221934A JP2006037196A JP 2006037196 A JP2006037196 A JP 2006037196A JP 2004221934 A JP2004221934 A JP 2004221934A JP 2004221934 A JP2004221934 A JP 2004221934A JP 2006037196 A JP2006037196 A JP 2006037196A
Authority
JP
Japan
Prior art keywords
blast furnace
sewage sludge
sludge
reducing agent
coal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004221934A
Other languages
Japanese (ja)
Inventor
Kaoru Soyama
薫 祖山
Shin Murase
伸 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004221934A priority Critical patent/JP2006037196A/en
Publication of JP2006037196A publication Critical patent/JP2006037196A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Sludge (AREA)
  • Manufacture Of Iron (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for operating a blast furnace by which the blast furnace can efficiently be operated by effectively using sewage sludge as a biomass resource. <P>SOLUTION: The sewage sludge is added into the blast furnace as reducing agent and the reduction-treatment of iron ore is performed with carbon and hydrogen in the sewage sludge. As an additional method for the sewage sludge, a method for adding by blowing a material which finely pulverizes by further performing pulverize-treatment, from a tuyere in the blast furnace after dehydrate/dry-treating or carburize-treating the sewage sludge, or a method for adding a material which is granulate-hardened after dehydrate/dry-treating or carburize-treating the sewage sludge, from the furnace top or the tuyere in the blast furnace, is applied. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、下水汚泥を有効に活用した高炉の操業方法に関するものである。   The present invention relates to a method for operating a blast furnace that effectively utilizes sewage sludge.

従来から、製鉄工場では高炉の操業に際して鉄鉱石(酸化鉄)の還元剤として化石燃料を主体とした石炭系還元剤を使用するのが普通であり、具体的にはコークスを還元剤として使用している。しかしながら、コークスの製造には比較的高品位の石炭を使用しなければならず、またその製造には多量のエネルギー消費を伴う等の問題点があった。   Conventionally, steel factories usually use coal-based reducing agents mainly composed of fossil fuels as reducing agents for iron ore (iron oxide) when operating blast furnaces. Specifically, coke is used as a reducing agent. ing. However, relatively high grade coal has to be used for the production of coke, and the production involves a large amount of energy consumption.

一方、鉄鋼業界においても地球温暖化の防止、COガス排出の抑制、化石燃料使用量の削減等、地球環境問題の観点から製鉄インフラ技術を活用した代替資源の有効利用について種々検討されるようになってきた。例えば、特許文献1に示されるように、廃棄物たるプラスチック等の合成樹脂類を高炉の吹き込み燃料として供給する試み等がなされている。
また、鉄鋼産業は国の基盤産業である点から高い安定性を求められているとともに、高度な製鉄インフラ技術の活用も求められており、従って、様々な生産工程部署における代替資源の有効利用等を期待され、そのひとつとして地球環境への負荷が少ないと言われているバイオマス資源についても着目し、更なる研究を進めているのが現状である。
特開平9−137926号公報
On the other hand, in the steel industry, various studies will be made on the effective use of alternative resources using steelmaking infrastructure technology from the viewpoint of global environmental issues, such as prevention of global warming, suppression of CO 2 gas emissions, and reduction of fossil fuel consumption. It has become. For example, as shown in Patent Document 1, attempts have been made to supply synthetic resins such as plastic as waste as injecting fuel for a blast furnace.
In addition, the steel industry is required to have high stability because it is a basic industry in the country, and it is also required to use advanced steelmaking infrastructure technology. Therefore, effective use of alternative resources in various production process departments, etc. As one of them, we are focusing on biomass resources, which are said to have a low impact on the global environment.
JP-A-9-137926

本発明は上記のような問題点を解決して、バイオマス資源である下水汚泥を有効に活用して高炉を効率良く操業することができる高炉の操業方法を提供することを目的として完成されたものである。   The present invention has been completed for the purpose of solving the above problems and providing a method of operating a blast furnace capable of operating the blast furnace efficiently by effectively utilizing sewage sludge as a biomass resource. It is.

上記課題を解決するためになされた本発明の高炉の操業方法は、高炉中に還元剤として下水汚泥を添加し、下水汚泥中の炭素および水素により鉄鉱石の還元処理を行うことを特徴とするものである。   The blast furnace operating method of the present invention made to solve the above problems is characterized in that sewage sludge is added as a reducing agent in the blast furnace, and iron ore is reduced with carbon and hydrogen in the sewage sludge. Is.

本発明では、高炉中に還元剤として下水汚泥を添加し、下水汚泥中の炭素および水素により鉄鉱石の還元処理を行うことで、従来の石炭系還元剤と同程度に鉄鉱石の還元処理を行うことが可能となり、更にはバイオマス資源の有効利用も促進可能となる。   In the present invention, sewage sludge is added as a reducing agent in the blast furnace, and iron ore is reduced with carbon and hydrogen in the sewage sludge, thereby reducing iron ore to the same extent as conventional coal-based reducing agents. It becomes possible to carry out, and further, effective utilization of biomass resources can be promoted.

以下に、図面を参照しつつ本発明の好ましい形態を示す。
本発明では、高炉中に還元剤として下水汚泥を添加し、下水汚泥中の炭素および水素により鉄鉱石の還元処理を行う点に特徴を有する高炉の操業方法である。
即ち、従来は鉄鉱石の還元剤として石炭系還元剤(具体的にはコークス、微粉化した石炭類)を用いるのが普通であったが、本発明者はバイオマス資源の有効利用について鋭意研究した結果、うまく処理すれば下水汚泥によっても鉄鉱石の還元処理を的確に行えることを見出し、その実用化に成功したのである。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
The present invention is a blast furnace operating method characterized in that sewage sludge is added as a reducing agent in the blast furnace, and iron ore is reduced with carbon and hydrogen in the sewage sludge.
That is, in the past, it was usual to use a coal-based reducing agent (specifically, coke, pulverized coal) as a reducing agent for iron ore, but the present inventor has intensively studied on the effective use of biomass resources. As a result, it was found that the iron ore can be accurately reduced by sewage sludge if it is successfully treated, and it was successfully put to practical use.

本発明でいう下水汚泥とは、例えば、下水汚泥を脱水処理して脱水汚泥とした後、更に乾燥処理あるいは炭化処理し、これらを粉砕して得られる微粉化汚泥や、同様に造粒固化したものをいう。
また、下水汚泥を高炉内へ添加する方法としては、図1に示されるように、前記微粉化汚泥を高炉の羽口より吹き込み添加する方法や、造粒固化したものを貯留し、定量ずつ切り出して高炉の炉頂あるいは羽口より添加する方法を用いることができる。
The sewage sludge as referred to in the present invention is, for example, after dewatering the sewage sludge to obtain a dewatered sludge, further drying or carbonizing, and pulverizing these, and similarly granulating and solidifying Say things.
Moreover, as a method of adding sewage sludge into the blast furnace, as shown in FIG. 1, a method of adding the pulverized sludge by blowing from the tuyere of the blast furnace or storing the granulated solidified is stored and cut out quantitatively. A method of adding from the top or tuyere of the blast furnace can be used.

下水汚泥としては一般的な下水汚泥を使用することができるが、特に高分子凝集剤で処理した汚泥の場合は固形分中の有機物量が多く、このため炭素および水素も多量に存在しており、これらを還元剤として用いることができるので好ましい。また、脱水汚泥とは常法に従い水分含有量が約75〜85%程度まで脱水処理して得た汚泥をいい、乾燥処理した汚泥とはこの脱水汚泥を、更に乾燥処理を施し水分含有量を低減させた汚泥をいう。この乾燥処理した汚泥は、一般的には、水分含有量が約30%以下、好ましくは10%以下となるまで乾燥処理して得た汚泥をいう。また、脱水汚泥をより高温で炭化処理して得られたものを炭化汚泥という。また、造粒固化したものとは、例えば3mmφ×10mm程度の棒状体、あるいは1〜5mmφ程度の粒状体をいう。
なお、下水汚泥中の約80%は有機物であり、この内の炭素および水素が還元剤として使用に供される。また約20%の残部はシリカやアルミナ等の無機物であり、スラグとして回収利用される。
General sewage sludge can be used as sewage sludge, but especially sludge treated with a polymer flocculant has a large amount of organic matter in the solids, and therefore a large amount of carbon and hydrogen are also present. These are preferable because they can be used as a reducing agent. In addition, dehydrated sludge refers to sludge obtained by dewatering to a moisture content of about 75 to 85% in accordance with a conventional method. This means reduced sludge. This dried sludge generally refers to sludge obtained by drying until the water content is about 30% or less, preferably 10% or less. Moreover, what was obtained by carbonizing dehydrated sludge at a higher temperature is called carbonized sludge. In addition, the granulated solidified means, for example, a rod-shaped body of about 3 mmφ × 10 mm, or a granular body of about 1-5 mmφ.
In addition, about 80% in sewage sludge is an organic substance, and carbon and hydrogen in this are used as a reducing agent. The remainder of about 20% is an inorganic substance such as silica or alumina, and is recovered and used as slag.

また、微粉化汚泥とは下水汚泥を粉砕機により粉砕処理して得た微粒子状の汚泥をいう。一例として、図2に示されるような、既存のPCI(Pulverzed Coal Injection)設備を利用して微粉化汚泥を高炉の羽口より吹き込み添加する場合について説明する。
このPCI設備は、従来の還元剤である石炭を微粉化して高炉の羽口より吹き込み添加する装置であり、受入ホッパーより石炭バンカーへ供給された乾燥汚泥は、粉砕機により熱風炉燃焼排ガスとともに乾燥・粉砕されて微粉化汚泥とされる。この微粉化汚泥はバグフィルターを介してリザーバタンクへ供給され、次いでフィードタンクに分配された後、レシーバタンクより圧縮窒素および空気とともに高炉の羽口へ導かれ、吹込み配管により微粉化汚泥が高炉内へ添加される。
なお後述するように、微粉化汚泥だけでなく、従来の還元剤である石炭もこのPCI設備により同時に微粉化処理されて、所定の配合率で混合した還元剤として供給することもできる。
The pulverized sludge is fine particle sludge obtained by pulverizing sewage sludge with a pulverizer. As an example, a case where fine pulverized sludge is blown and added from a tuyere of a blast furnace using an existing PCI (Pulverzed Coal Injection) facility as shown in FIG. 2 will be described.
This PCI equipment is a device that pulverizes coal, which is a conventional reducing agent, and adds it by blowing it from the tuyeres of the blast furnace.・ Crushed into finely divided sludge. This finely divided sludge is supplied to the reservoir tank through the bag filter, then distributed to the feed tank, and then introduced from the receiver tank to the tuyere of the blast furnace together with the compressed nitrogen and air. Added in.
As will be described later, not only pulverized sludge but also coal as a conventional reducing agent can be simultaneously pulverized by this PCI equipment and supplied as a reducing agent mixed at a predetermined blending rate.

本発明では、高炉の羽口より吹き込み添加する場合において、還元剤として従来の還元剤である石炭系還元剤に替え、全てを下水汚泥とすることもできるが、下水汚泥と石炭系還元剤を所定の配合率で調整した混合物を用いることもできる。
この場合、還元剤中における下水汚泥の配合量は、下記の式で算出される下水汚泥の石炭発熱量に対する発熱量比と、設備の許容補填率を基準に算出することができる。
発熱量比=下水汚泥発熱量/石炭系還元剤発熱量
許容補填率=(上限吹込み量−石炭系還元剤基準吹込み量)/石炭系還元剤基準
吹込み量
これは下水汚泥の添加による高炉の熱低下を生じない範囲で操業する必要があるので、そのような操業条件につき研究した結果、本発明者は上記の発熱量比と許容補填率に応じて最適配合率を設定できることを見出したことに基くものである。
In the present invention, when adding by blowing from the tuyere of the blast furnace, it can be replaced with a coal-based reducing agent, which is a conventional reducing agent, as a reducing agent, all can be sewage sludge, but sewage sludge and coal-based reducing agent are A mixture adjusted at a predetermined blending ratio can also be used.
In this case, the amount of sewage sludge blended in the reducing agent can be calculated based on the calorific value ratio of the sewage sludge to the coal calorific value calculated by the following formula and the allowable coverage of the equipment.
Calorific value ratio = calorific value of sewage sludge / calorific value of coal-based reducing agent Allowable filling rate = (upper limit blowing amount-coal-based reducing agent reference blowing amount) / coal-based reducing agent standard
This is because it is necessary to operate within the range that does not cause the heat reduction of the blast furnace due to the addition of sewage sludge, and as a result of studying such operating conditions, the present inventor has found that the above calorific value ratio and allowable compensation rate are This is based on the finding that the optimum blending ratio can be set accordingly.

許容補填率が5%、10%、15%、20%の場合における発熱量比と汚泥配合率の関係を理論上算出した結果は[表1]に示すとおりであった。このうち、許容補填率10%の場合の汚泥配合率と発熱量比の関係を図3のグラフに示した。
このグラフより、例えば、許容補填率が10%の場合、発熱量比が0.25未満では下水汚泥の配合率0〜12%未満、発熱量比が0.25〜0・75未満では下水汚泥の配合率12〜36%未満、発熱量比が0.75以上では下水汚泥の配合率36〜100%を上限として調整すれば適正な操業ができることとなる。
図3中に乾燥汚泥ならびに炭化汚泥での調整範囲例を示した。乾燥汚泥に比べて炭化汚泥では発熱量が高いことから配合率の上限が高くでき、より石炭系還元剤の使用量の低減が図れる。
The results of theoretical calculation of the relationship between the calorific value ratio and the sludge blending rate when the allowable filling rate is 5%, 10%, 15%, and 20% are as shown in [Table 1]. Among these, the relationship between the sludge blending ratio and the calorific value ratio when the allowable filling rate is 10% is shown in the graph of FIG.
From this graph, for example, when the allowable filling rate is 10%, if the calorific value ratio is less than 0.25, the blending rate of sewage sludge is less than 0-12%, and if the calorific value ratio is less than 0.25-0.75, sewage sludge. If the blending ratio of 12 to less than 36% and the calorific value ratio is 0.75 or more, if the blending ratio of 36 to 100% of sewage sludge is adjusted as the upper limit, proper operation can be performed.
FIG. 3 shows examples of adjustment ranges for dry sludge and carbonized sludge. Since the calorific value of carbonized sludge is higher than that of dry sludge, the upper limit of the mixing ratio can be increased, and the amount of coal-based reducing agent used can be further reduced.

Figure 2006037196
Figure 2006037196

微粉化した石炭のみを、PCI設備から高炉に平均50t/hで吹き込んでいる操業条件下(許容補填率:約3%)で、下水乾燥汚泥を石炭に混合後、高炉への吹き込みを実施した。石炭(約10mmφ)とペレットチップ状乾燥汚泥(3mmφ×10mm、対石炭発熱量比約0.4)を重量比95:5でPCI石炭貯留・切出し設備に別々に搬送投入し、PCI粉砕設備を利用して、約210℃で乾燥させながら混合粉砕し微粉化した(粒径約100μm)。その後、混合微粉化物を貯留し、吹込み設備から約0.75MPaの圧力で搬送用空気約3300Nm/hとともに高炉羽口部へ約52t/hのペースで24時間吹き込んだところ、汚泥混合による設備的・操業的問題は生じず、石炭のみを吹き込む場合と比較して石炭使用量を約1t/h低減できた。 Only pulverized coal was blown into the blast furnace after mixing sewage-dried sludge with the coal under the operating conditions (allowable coverage: about 3%) where the PCI equipment was blown into the blast furnace at an average rate of 50 t / h. . Coal (about 10mmφ) and pellet chip-shaped dry sludge (3mmφ × 10mm, ratio of calorific value to coal: about 0.4) are separately transported to PCI coal storage and cutting equipment at a weight ratio of 95: 5, and the PCI crushing equipment The mixture was pulverized by mixing and pulverizing while drying at about 210 ° C. (particle size: about 100 μm). Thereafter, the mixed pulverized material was stored and blown into the blast furnace tuyere at a rate of about 52 t / h together with about 3300 Nm 3 / h of carrier air at a pressure of about 0.75 MPa from the blowing equipment for 24 hours. Equipment and operational problems did not occur, and the amount of coal used could be reduced by about 1 t / h compared to the case where only coal was blown.

微粉化した石炭のみを、PCI設備から高炉に平均50t/hで吹き込んでいる操業条件下(許容補填率:約6%)で、下水炭化汚泥を石炭に混合後、高炉への吹き込みを実施した。石炭(約10mmφ)と炭化汚泥(1〜5mmφ、対石炭発熱量比約0.5)を重量比90:10でPCI石炭貯留・切出し設備に別々に搬送投入し、PCI粉砕設備を利用して、約200℃で乾燥させながら混合粉砕し微粉化した(粒径約110μm)。その後、混合微粉化物を貯留し、吹込み設備から約0.78MPaの圧力で搬送用空気約3300Nm/hとともに高炉羽口部へ約53t/hのペースで24時間吹き込んだところ、汚泥混合による設備的・操業的問題は生じず、石炭のみを吹き込む場合と比較して石炭使用量を約3t/h低減できた。 Only pulverized coal was blown into the blast furnace after mixing sewage carbonized sludge with the coal under the operating conditions (allowable coverage: about 6%) where the PCI equipment was blown into the blast furnace at an average of 50 t / h. . Coal (approx. 10mmφ) and carbonized sludge (1-5mmφ, ratio of calorific value to coal: approx. 0.5) are separately transported to PCI coal storage and cutting equipment at a weight ratio of 90:10, using the PCI crushing equipment The mixture was pulverized by mixing and pulverizing while drying at about 200 ° C. (particle size: about 110 μm). Thereafter, the mixed pulverized material was stored and blown into the blast furnace tuyere at a rate of about 53 t / h for 24 hours with about 3300 Nm 3 / h of conveying air at a pressure of about 0.78 MPa from the blowing equipment. Equipment and operational problems did not occur, and the amount of coal used could be reduced by about 3 t / h compared to the case of blowing only coal.

以上の説明からも明らかなように、本発明は高炉中に還元剤として下水乾燥汚泥を添加し、下水乾燥汚泥中の炭素および水素により鉄鉱石の還元処理を行うことにより、従来の石炭系還元剤の使用を低減するとともに、バイオマス資源の有効利用も大いに促進することができることとなる。   As is clear from the above description, the present invention adds conventional sewage sludge as a reducing agent in the blast furnace, and reduces iron ore with carbon and hydrogen in the sewage dried sludge. In addition to reducing the use of chemicals, the effective use of biomass resources can be greatly promoted.

本発明の実施の形態を示す概略正面図である。It is a schematic front view which shows embodiment of this invention. 本発明の実施の形態を示す正面図である。It is a front view which shows embodiment of this invention. 汚泥配合率と発熱量比の関係を示すグラフである。It is a graph which shows the relationship between a sludge mixture rate and calorific value ratio.

Claims (5)

高炉中に還元剤として下水汚泥を添加し、下水汚泥中の炭素および水素により鉄鉱石の還元処理を行うことを特徴とする高炉の操業方法。   A method of operating a blast furnace, characterized in that sewage sludge is added as a reducing agent in a blast furnace, and iron ore is reduced with carbon and hydrogen in the sewage sludge. 下水汚泥が、下水汚泥を脱水・乾燥処理あるいは炭化処理後、更に粉砕処理して微粉化したものであり、これを高炉の羽口より吹き込み添加する請求項1に記載の高炉の操業方法。   The method for operating a blast furnace according to claim 1, wherein the sewage sludge is pulverized by pulverization after sewage sludge is dehydrated, dried or carbonized, and blown from the blast furnace tuyere. 下水汚泥が、下水汚泥を脱水・乾燥処理あるいは炭化処理して造粒固化したものであり、これを高炉の炉頂あるいは羽口より添加する請求項1に記載の高炉の操業方法。   The method for operating a blast furnace according to claim 1, wherein the sewage sludge is granulated and solidified by dewatering / drying or carbonizing the sewage sludge, and this is added from the top or tuyere of the blast furnace. 還元剤として、下水汚泥と石炭系還元剤の混合物を用いる請求項1〜3のいずれかに記載の高炉の操業方法。   The blast furnace operating method according to any one of claims 1 to 3, wherein a mixture of sewage sludge and a coal-based reducing agent is used as the reducing agent. 下水汚泥を、石炭系還元剤に対する発熱量比と設備の許容補填率を基準に算出した配合率で含有させた混合物を用いる請求項4に記載の高炉の操業方法。
The operating method of the blast furnace of Claim 4 using the mixture which contained the sewage sludge with the compounding rate computed on the basis of the calorific value ratio with respect to a coal-type reducing agent, and the allowable filling rate of an installation.
JP2004221934A 2004-07-29 2004-07-29 Method for operating blast furnace Pending JP2006037196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004221934A JP2006037196A (en) 2004-07-29 2004-07-29 Method for operating blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004221934A JP2006037196A (en) 2004-07-29 2004-07-29 Method for operating blast furnace

Publications (1)

Publication Number Publication Date
JP2006037196A true JP2006037196A (en) 2006-02-09

Family

ID=35902503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004221934A Pending JP2006037196A (en) 2004-07-29 2004-07-29 Method for operating blast furnace

Country Status (1)

Country Link
JP (1) JP2006037196A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012173241A (en) * 2011-02-24 2012-09-10 Jfe Steel Corp Pulverized coal particle size distribution measuring apparatus
CN113881822A (en) * 2021-08-23 2022-01-04 浙江省工业设计研究院有限公司 Novel process method for blast furnace co-processing hazardous waste hw17

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012173241A (en) * 2011-02-24 2012-09-10 Jfe Steel Corp Pulverized coal particle size distribution measuring apparatus
CN113881822A (en) * 2021-08-23 2022-01-04 浙江省工业设计研究院有限公司 Novel process method for blast furnace co-processing hazardous waste hw17

Similar Documents

Publication Publication Date Title
US7198658B2 (en) Method for producing feed material for molten metal production and method for producing molten metal
JP5941183B1 (en) Method for producing combustion aid for co-firing and combustion method for combustion coal using this combustion aid
KR20140092699A (en) Sludge solidified agent and menufacturing method of artificial soil usign the same
CN104694706A (en) Application process of calcium oxide carbon balls to LF steel-making
KR101954372B1 (en) Manufacturing Method of Fuel Solid Comprising Organic Waste
CN111254277A (en) Method for recycling ore blending of pellet waste desulfurization ash through back sintering
JP2006037196A (en) Method for operating blast furnace
KR100718581B1 (en) Substituting for pig iron and manufacturing method thereof
JP2009235215A (en) Solid fuel and method for manufacturing solid fuel
CN111074067B (en) Preparation method of carbonized sludge particles for iron ore powder sintering additive
JP2002020771A (en) Method for disposing waste wood
JP2006290925A (en) Granular fuel for sintering and method for producing the same
KR101597716B1 (en) Method for preparation of mixing powdered coal
JP3234195B2 (en) Method and apparatus for solidifying and stabilizing molten fly ash
CN111453960B (en) Sludge conditioner for water treatment of steel plant and use method thereof
Borowski et al. Using Agglomeration Techniques for Coal and Ash Waste Management in the Circular Economy
JP4413087B2 (en) Method for producing slag crushed stone
JP2005187940A (en) Method for treating waste wood
JPH1199372A (en) Molten fly ash solidifying/stabilizing treatment and device therefor
JP2009148713A (en) Granule, sintered body, and methods for producing them
JP3511720B2 (en) Apparatus and method for supplying combustibles to combustion furnace
KR101917465B1 (en) Coal water slurry comprising sludge containg calcium and method for preparing the same
JP2004263279A (en) Method for operating blast furnace by blowing waste wood
KR101761232B1 (en) Coal briquettes and method for manufacturing the same
KR101634071B1 (en) Coal briquettes and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060905

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080919

A521 Written amendment

Effective date: 20081117

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090213