JP2006037172A - The sputtering method - Google Patents

The sputtering method Download PDF

Info

Publication number
JP2006037172A
JP2006037172A JP2004219727A JP2004219727A JP2006037172A JP 2006037172 A JP2006037172 A JP 2006037172A JP 2004219727 A JP2004219727 A JP 2004219727A JP 2004219727 A JP2004219727 A JP 2004219727A JP 2006037172 A JP2006037172 A JP 2006037172A
Authority
JP
Japan
Prior art keywords
target
substrate
rare gas
sputtering method
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004219727A
Other languages
Japanese (ja)
Other versions
JP4734864B2 (en
Inventor
Seiji Nakajima
誠二 中嶋
Hitoshi Yamanishi
斉 山西
Takafumi Okuma
崇文 大熊
Masahiro Yamamoto
昌裕 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004219727A priority Critical patent/JP4734864B2/en
Publication of JP2006037172A publication Critical patent/JP2006037172A/en
Application granted granted Critical
Publication of JP4734864B2 publication Critical patent/JP4734864B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sputtering method capable of improving productivity without the need for adjusting a distance between target substrates even if an amount of erosion of the targets and the shape of a work change. <P>SOLUTION: In the sputtering method of arranging the target composed of a part or the whole of the components of a thin film desired to be formed inside a vacuum vessel and performing sputtering deposition by introducing at least either of rare gas or reactive gas into the vacuum vessel, a gaseous mixture composed of at least one or more kind of the rare gas is employed for the rare gas and the mixing ratio of the rare gas is changed according to the amount of erosion of the target. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、スパッタリングにより薄膜を形成するためのスパッタリング方法に関するものである。   The present invention relates to a sputtering method for forming a thin film by sputtering.

半導体集積回路(以下IC)の製造工程では誘電体の成膜が種々行われる。その目的は、例えば層間絶縁膜、エッチングや選択的なイオン注入や選択的な電極の形成のためのマスク、パッシベーション、キャパシタの誘電体膜等である。目的により材質やプラズマ処理方法が選ばれる。たとえば、CVD、ドライエッチング、スパッタリング等種々用いられている。近年ICの小型化のためにキャパシタの誘電体膜にチタン酸バリウムストロンチウム(BST)やチタン酸ストロンチウム(STO)等の高誘電体物質のプラズマ処理を行うことが検討されている。さらにセンサやアクチュエータ、不揮発性メモリデバイス用にチタン酸ジルコン酸鉛(PZT)、ストロンチウムビスマスタンタレート(SBT)といった強誘電体物質のプラズマ処理も検討されている。   In the manufacturing process of a semiconductor integrated circuit (hereinafter, IC), various dielectric films are formed. The purpose is, for example, an interlayer insulating film, a mask for etching, selective ion implantation and selective electrode formation, passivation, a dielectric film of a capacitor, and the like. The material and plasma processing method are selected according to the purpose. For example, various methods such as CVD, dry etching, and sputtering are used. In recent years, in order to reduce the size of an IC, it has been studied to perform plasma treatment of a high dielectric material such as barium strontium titanate (BST) or strontium titanate (STO) on a dielectric film of a capacitor. Further, plasma processing of ferroelectric materials such as lead zirconate titanate (PZT) and strontium bismastantalate (SBT) has been studied for sensors, actuators, and nonvolatile memory devices.

従来のプラズマ処理装置を、スパッタリング装置を例に図面を参照して以下に説明する。   A conventional plasma processing apparatus will be described below with reference to the drawings by taking a sputtering apparatus as an example.

図11はそれを概念的に示す縦断面図である。   FIG. 11 is a longitudinal sectional view conceptually showing this.

従来のスパッタリング装置は真空引き可能な真空容器91でスパッタ室を形成し、スパッタ室の下方にはターゲット92が下部電極93に固定保持される。さらにターゲット92の裏面には内側磁石94とそれを取り囲むように内側磁石94とは反対の磁化成分を持つ外側磁石95が配され、両磁石(94および95)はヨーク96で磁気的に結合されている。この磁石(94および95)により、ターゲット92表面には弧状の磁力線97が形成される。下部電極93は真空容器91とは電気的に絶縁されている。そして下部電極93はターゲット92の温度が上昇するのを防ぐために水冷機構を内蔵するが図示を略している。   In a conventional sputtering apparatus, a sputtering chamber is formed by a vacuum chamber 91 that can be evacuated, and a target 92 is fixedly held by a lower electrode 93 below the sputtering chamber. Further, an inner magnet 94 and an outer magnet 95 having a magnetization component opposite to the inner magnet 94 are arranged on the back surface of the target 92 so as to surround the inner magnet 94, and both magnets (94 and 95) are magnetically coupled by a yoke 96. ing. The magnets (94 and 95) form arc-shaped magnetic field lines 97 on the surface of the target 92. The lower electrode 93 is electrically insulated from the vacuum vessel 91. The lower electrode 93 incorporates a water cooling mechanism to prevent the temperature of the target 92 from rising, but is not shown.

そして、スパッタ室の上方には基板保持機構98が下部電極93に対向して平行に配置される。そして、この基板保持機構98は真空容器91と電気的に絶縁されており、浮遊電位である。そして、基板保持機構98上に基板例えば半導体基板99が載置される。そして、基板保持機構98は基板99を所定の温度に維持するための加熱機構を内蔵するが図示していない。   A substrate holding mechanism 98 is disposed in parallel with the lower electrode 93 above the sputtering chamber. The substrate holding mechanism 98 is electrically insulated from the vacuum vessel 91 and has a floating potential. Then, a substrate, for example, a semiconductor substrate 99 is placed on the substrate holding mechanism 98. The substrate holding mechanism 98 incorporates a heating mechanism for maintaining the substrate 99 at a predetermined temperature, which is not shown.

そして、下部電極93と真空容器91(接地)間に高周波電源910により、所定の高周波電力が所定の負のDCバイアスのもとに与えられる。   Then, a predetermined high frequency power is applied between the lower electrode 93 and the vacuum vessel 91 (ground) by a high frequency power source 910 under a predetermined negative DC bias.

このスパッタリング装置で成膜処理を行うには、基板保持機構98上に基板(例えば基板99)を載置し、図示しない排気口につながる真空ポンプ(図示せず)により真空に引き、次に図示しないガス導入口から所定のガス(例えば、Arガス)を所定流量導入しつつ排気口(図示せず)と真空ポンプ(図示せず)との間に介在する可変コンダクタンスバルブ(図示せず)を調節して所定の圧力に調節する。そして、高周波電力を印加してプラズマを発生させる。発生したプラズマ中の電子はターゲット92裏面に配置され磁石(94および95)が発生する弧状の磁力線97にトラップされ更に電離を促進しプラズマ密度を向上させる。   In order to perform the film forming process with this sputtering apparatus, a substrate (for example, the substrate 99) is placed on the substrate holding mechanism 98, and is evacuated by a vacuum pump (not shown) connected to an exhaust port (not shown). A variable conductance valve (not shown) interposed between an exhaust port (not shown) and a vacuum pump (not shown) while introducing a predetermined gas (for example, Ar gas) from a gas inlet through a predetermined flow rate. Adjust to a predetermined pressure. Then, plasma is generated by applying high frequency power. Electrons in the generated plasma are trapped by arc-shaped magnetic lines 97 generated on the back surface of the target 92 and generated by magnets (94 and 95), further promoting ionization and improving the plasma density.

また、特許文献1には、希ガスとしてXeガスを用いることにより、Al合金中に取り込まれる希ガスの量が減少し薄膜の緻密性が向上することが記載されている。   Patent Document 1 describes that the use of Xe gas as a rare gas reduces the amount of rare gas taken into the Al alloy and improves the denseness of the thin film.

更に、特許文献2にはAr、Xe、Krの混合ガスを用いてスパッタリングによりPt/Co多層膜、Pd/Co多層膜を形成することで良好な磁気特性が得られることが記載されている。   Further, Patent Document 2 describes that good magnetic properties can be obtained by forming a Pt / Co multilayer film and a Pd / Co multilayer film by sputtering using a mixed gas of Ar, Xe, and Kr.

また、高い膜厚均一性を必要とする場合、ターゲットが侵食されるにつれ、実効的にターゲット‐基板間距離が離れ、基板上膜厚分布が変化してしまうが、新食糧に応じてターゲット‐基板間距離を離して行き、初期からターゲットエンドまで均一な膜厚分布を得ることも行われている。
特許第2735677号公報 特許第3001631号公報
Also, when high film thickness uniformity is required, as the target is eroded, the target-to-substrate distance is effectively increased and the film thickness distribution on the substrate changes. In order to obtain a uniform film thickness distribution from the initial stage to the target end, the distance between the substrates is increased.
Japanese Patent No. 2735677 Japanese Patent No. 3001631

しかしながら、従来のスパッタリング方法では、前述のようにターゲットが侵食されるに従い、ターゲット‐基板間距離を調整する必要がある。また、ワーク形状が変わった場合もターゲット‐基板間距離を調整する必要がある。このため生産性が悪いという問題があった。   However, in the conventional sputtering method, it is necessary to adjust the target-substrate distance as the target is eroded as described above. Further, it is necessary to adjust the target-substrate distance even when the workpiece shape changes. For this reason, there was a problem that productivity was bad.

本発明は、上記従来の問題点に鑑み、ターゲット侵食量、ワーク形状が変わってもターゲット−基板間距離を調整する必要がなく生産性が向上できるスパッタリング方法を提供するものである。   In view of the above-described conventional problems, the present invention provides a sputtering method capable of improving productivity without the need to adjust the target-substrate distance even if the target erosion amount and the workpiece shape change.

本願第1の発明のスパッタリング方法は、真空容器中に配置された基板に対向して設けられた形成したい薄膜の成分の一部または全部からなるターゲットに電力を印加することで前記基板を成膜するスパッタリング方法であって、前記真空容器内に前記ターゲットを構成する元素の原子量よりも大きな分子量を持つ希ガスと、前記ターゲットを構成する元素の原子量よりも小さな分子量を持つ希ガスとの混合ガスを導入し、前記ターゲットの侵食量に応じて希ガスの混合比を変化させることを特徴とする。   In the sputtering method of the first invention of the present application, the substrate is formed by applying electric power to a target composed of a part or all of the components of the thin film to be formed provided facing the substrate disposed in the vacuum vessel. A mixed gas of a rare gas having a molecular weight larger than the atomic weight of the element constituting the target and a rare gas having a molecular weight smaller than the atomic weight of the element constituting the target in the vacuum vessel. And the mixing ratio of the rare gas is changed according to the amount of erosion of the target.

また、本願第1のスパッタリング方法において、好適には、ターゲットの侵食量が進むに連れ、前記混合ガスの前記ターゲットを構成する元素の原子量よりも小さな分子量を持つ希ガスの混合比を増やすことが望ましい。   In the first sputtering method of the present application, preferably, as the amount of erosion of the target proceeds, the mixing ratio of the rare gas having a molecular weight smaller than the atomic weight of the element constituting the target of the mixed gas may be increased. desirable.

また、本願第2の発明のスパッタリング方法は、真空容器中に配置された基板に対向して設けられた形成したい薄膜の成分の一部または全部からなるターゲットに電力を印加することで前記基板を成膜するスパッタリング方法であって、前記真空容器内に前記ターゲットを構成する元素の原子量よりも大きな分子量を持つ希ガスと、前記ターゲットを構成する元素の原子量よりも小さな分子量を持つ希ガスとの混合ガスを導入し、前記基板の表面形状に応じて希ガスの混合比を変化させることを特徴とする。   In the sputtering method of the second invention of the present application, the substrate is formed by applying electric power to a target composed of a part or all of the components of the thin film to be formed provided facing the substrate disposed in the vacuum vessel. A sputtering method for forming a film, comprising: a rare gas having a molecular weight larger than an atomic weight of an element constituting the target in the vacuum vessel; and a rare gas having a molecular weight smaller than an atomic weight of an element constituting the target. A mixed gas is introduced, and the mixing ratio of the rare gas is changed according to the surface shape of the substrate.

本願第2のスパッタリング方法において、好適には、基板の表面形状が凸になるに連れ、前記混合ガスの前記ターゲットを構成する元素の原子量よりも小さな分子量を持つ希ガスの混合比を増やすことが望ましい。   In the second sputtering method of the present application, preferably, as the surface shape of the substrate becomes convex, the mixing ratio of the rare gas having a molecular weight smaller than the atomic weight of the element constituting the target of the mixed gas is increased. desirable.

更に、本願第2のスパッタリング方法において、好適には、基板の表面形状が凹になるに連れ、混合ガスうちターゲットを構成する元素の原子量よりも大きな分子量を持つ希ガスの混合比を増やすことが望ましい。   Further, in the second sputtering method of the present application, preferably, as the surface shape of the substrate becomes concave, the mixing ratio of the rare gas having a molecular weight larger than the atomic weight of the element constituting the target in the mixed gas may be increased. desirable.

以上の説明から明らかなように、本願第1発明のスパッタリング方法によれば、真空容器中に、形成したい薄膜の成分の一部または全部からなるターゲットを配し、前記真空容器中に希ガスもしくは反応性ガスの少なくともどちらか一方を導入しスパッタリング成膜を行う、スパッタリング方法において、前記希ガスを1種類以上の希ガスの混合ガスとし、前記ターゲットの侵食量に応じて前記希ガスの混合比を変えるために、ターゲット侵食量が変わってもターゲット‐基板間距離を調整する必要がなく生産性が向上できるスパッタリング方法を提供することができる。   As is apparent from the above description, according to the sputtering method of the first invention of the present application, a target consisting of part or all of the components of the thin film to be formed is placed in the vacuum vessel, and a rare gas or In the sputtering method in which at least one of the reactive gases is introduced to perform sputtering film formation, the rare gas is a mixed gas of one or more kinds of rare gases, and the mixing ratio of the rare gases according to the amount of erosion of the target Therefore, even if the amount of target erosion changes, it is not necessary to adjust the distance between the target and the substrate, and a sputtering method that can improve productivity can be provided.

また、本願第2発明のスパッタリング方法によれば、真空容器中に、形成したい薄膜の成分の一部または全部からなるターゲットを配し、前記真空容器中に希ガスもしくは反応性ガスの少なくともどちらか一方を導入しスパッタリング成膜を行う、スパッタリング方法において、前記希ガスを1種類以上の希ガスの混合ガスとし、ワークの形状に応じて前記希ガスの混合比を変えるためにワーク形状が変わってもターゲットと基板との距離を調整する必要がなく生産性が向上できるスパッタリング方法を提供することができる。   Further, according to the sputtering method of the second invention of the present application, a target consisting of part or all of the components of the thin film to be formed is arranged in a vacuum vessel, and at least one of a rare gas and a reactive gas is placed in the vacuum vessel. In the sputtering method in which one is introduced and sputtering film formation is performed, the work shape is changed in order to change the mixing ratio of the rare gas according to the shape of the work by using the rare gas as a mixed gas of one or more kinds of rare gases. In addition, it is possible to provide a sputtering method that can improve productivity without adjusting the distance between the target and the substrate.

(実施の形態1)
図1に本発明の第1の実施の形態を示す。これは真空容器91に基板99(今回はSi基板を用いた)を投入しスパッタリングにより誘電体であるSiO2薄膜を形成するマグネトロンスパッタリング装置の例である。真空容器91の下部に外径200mmのターゲット92(ターゲット92としては所望の絶縁膜を構成する元素でできたもの、若しくは反応性ガスと反応して所望の絶縁物を形成することができる材料が好ましいが、今回はSiO2を用いた)及び下部電極93を配し、真空容器91の上部に基板99を配置可能な基板保持機構98を設け、ターゲット92−基板99間の距離を40mmとした。この真空容器中にArガスを導入し、真空容器内圧力を1.0Pa(グロー放電が維持できる圧力であれば良い)とした。このとき、真空容器内に反応性ガスを導入しても良い。下部電極93−真空容器91間に1kW高周波電力を、整合機を通して印加した(ターゲット92が導電性のものであれば直流電力でもよい)。基板99上に成膜されたSiO2薄膜膜厚分布を図2に示す。
(Embodiment 1)
FIG. 1 shows a first embodiment of the present invention. This is an example of a magnetron sputtering apparatus that puts a substrate 99 (this time using a Si substrate) into a vacuum vessel 91 and forms a SiO 2 thin film as a dielectric by sputtering. Below the vacuum vessel 91 is a target 92 having an outer diameter of 200 mm (the target 92 is made of an element constituting a desired insulating film, or a material capable of forming a desired insulator by reacting with a reactive gas. (This time, SiO 2 was used) and a lower electrode 93 were disposed, and a substrate holding mechanism 98 capable of disposing the substrate 99 was provided on the upper portion of the vacuum vessel 91, and the distance between the target 92 and the substrate 99 was set to 40 mm. . Ar gas was introduced into this vacuum vessel, and the pressure inside the vacuum vessel was set to 1.0 Pa (any pressure capable of maintaining glow discharge). At this time, a reactive gas may be introduced into the vacuum vessel. A 1 kW high frequency power was applied between the lower electrode 93 and the vacuum vessel 91 through a matching machine (DC power may be used if the target 92 is conductive). The thickness distribution of the SiO 2 thin film formed on the substrate 99 is shown in FIG.

次に、6mm侵食されたターゲットを用いて同様にSiO2薄膜を成膜した。このとき基板99上に成膜されたSiO2薄膜膜厚分布を図3に示す。基板99の外周側で膜厚が薄くなっていることが分かる。 Next, a SiO 2 thin film was similarly formed using a target eroded by 6 mm. The SiO 2 thin film thickness distribution formed on the substrate 99 at this time is shown in FIG. It can be seen that the film thickness is thin on the outer peripheral side of the substrate 99.

そこで、新ターゲットを装着してSiO2の成膜を開始し、生産中に図4に示したようにターゲット侵食量に応じてHeガスの比を増やしていった。一例としてターゲットが6mm侵食されて時の膜厚分布を図5に示す。ターゲット侵食前(図2)と同等の膜厚分布が得られた。これによりターゲット侵食による膜厚分布の変化を吸収することができた。このことから、生産中にターゲットが侵食されても、ターゲット‐基板間距離を調整する必要がなくなり、生産性が向上できた。 Therefore, a new target was attached and deposition of SiO 2 was started, and the ratio of He gas was increased according to the target erosion amount as shown in FIG. 4 during production. As an example, FIG. 5 shows the film thickness distribution when the target is eroded by 6 mm. A film thickness distribution equivalent to that before target erosion (FIG. 2) was obtained. As a result, changes in the film thickness distribution due to target erosion could be absorbed. Therefore, even if the target is eroded during production, it is not necessary to adjust the target-substrate distance, and the productivity can be improved.

(実施の形態2)
図6に本発明の第2の実施の形態を示す。
(Embodiment 2)
FIG. 6 shows a second embodiment of the present invention.

これは真空容器91に基板99(今回はSi基板を用いた)を投入しスパッタリングにより誘電体であるSiO2薄膜を形成するマグネトロンスパッタリング装置の例である。 This is an example of a magnetron sputtering apparatus that puts a substrate 99 (this time using a Si substrate) into a vacuum vessel 91 and forms a SiO 2 thin film as a dielectric by sputtering.

真空容器91の下部に外径200mmのターゲット92(ターゲット92としては所望の絶縁膜を構成する元素でできたもの、もしくは反応性ガスと反応して所望の絶縁物を形成することができる材料が好ましいが、今回はSiO2を用いた)および下部電極93を配し、真空容器91の上部に平板基板99を配置可能な基板保持機構98を設け、ターゲット92−基板99間の距離を40mmとした。この真空容器中にArガスを導入し、真空容器内圧力を1.0Pa(グロー放電が維持できる圧力であれば良い)とした。(あるいは反応性ガスを混合しても良い。下部電極93−真空容器91間に1kW高周波電力を、整合機を通して印加した(ターゲット92が導電性のものであれば直流電力でもよい)。平板基板99上に成膜されたSiO2薄膜膜厚分布を図7に示す。 A target 92 having an outer diameter of 200 mm (a target 92 made of an element constituting a desired insulating film, or a material capable of forming a desired insulator by reacting with a reactive gas is formed under the vacuum vessel 91. (This time, SiO 2 was used) and a lower electrode 93, a substrate holding mechanism 98 capable of disposing a flat substrate 99 on the upper part of the vacuum vessel 91 is provided, and the distance between the target 92 and the substrate 99 is 40 mm. did. Ar gas was introduced into this vacuum vessel, and the pressure inside the vacuum vessel was set to 1.0 Pa (any pressure capable of maintaining glow discharge). (Alternatively, reactive gas may be mixed. 1 kW high-frequency power is applied between the lower electrode 93 and the vacuum vessel 91 through a matching machine (DC power may be used if the target 92 is conductive). FIG. 7 shows the SiO 2 thin film thickness distribution formed on 99.

次に、基板直径120mm、基板中心でのターゲット-基板間距離と最外周でのターゲット-基板間距離との差が6mmである、凸形状球面基板上へ同様にSiO2薄膜を成膜した。このとき基板99上に成膜されたSiO2薄膜膜厚分布を図8に示す。基板99の外周側で膜厚が薄くなっていることが分かる。 Next, a SiO 2 thin film was similarly formed on a convex spherical substrate having a substrate diameter of 120 mm and a difference between the target-substrate distance at the center of the substrate and the target-substrate distance at the outermost periphery being 6 mm. The SiO 2 thin film thickness distribution formed on the substrate 99 at this time is shown in FIG. It can be seen that the film thickness is thin on the outer peripheral side of the substrate 99.

そこで、基板直径120mm、基板中心でのターゲット-基板間距離と最外周でのターゲット-基板間距離との差が0〜6mmである、凸形状球面基板に対して、図9に示すような混合比でHeガスを導入し、SiO2薄膜を成膜した。一例として、基板中心でのターゲット-基板間距離と最外周でのターゲット-基板間距離との差が6mmある凸形状球面基板にHeガスのみを導入してSiO2薄膜を成膜して時の膜厚分布を図10に示す。平板基板上の膜厚分布(図7)と同等の膜厚分布が得られた。これによりワーク形状による膜厚分布の変化を吸収することができた。このことから生産中にワークの形状が変化しても、ターゲット‐基板間距離を調整する必要がなくなり、生産性が向上できた。 Therefore, for a convex spherical substrate having a substrate diameter of 120 mm and a difference between the target-substrate distance at the center of the substrate and the target-substrate distance at the outermost periphery being 0 to 6 mm, the mixing as shown in FIG. He gas was introduced at a ratio to form a SiO 2 thin film. As an example, a SiO 2 thin film is formed by introducing only He gas into a convex spherical substrate having a difference between the target-substrate distance at the center of the substrate and the target-substrate distance at the outermost periphery of 6 mm. The film thickness distribution is shown in FIG. A film thickness distribution equivalent to the film thickness distribution on the flat substrate (FIG. 7) was obtained. As a result, changes in the film thickness distribution due to the workpiece shape could be absorbed. Therefore, even if the shape of the workpiece changes during production, it is not necessary to adjust the distance between the target and the substrate, and productivity can be improved.

本発明の第1の実施例で用いたマグネトロンスパッタ装置の構成を示した断面図Sectional drawing which showed the structure of the magnetron sputtering apparatus used in the 1st Example of this invention 本発明の第1の実施例でArガスを導入して成膜したSiO2薄膜の膜厚分布を示す図Shows a first embodiment SiO 2 film thickness distribution of the thin film formed by introducing the Ar gas in the present invention 本発明の第1の実施例で3mm侵食されたターゲットを用いて、Arガスを導入して成膜したSiO2薄膜の膜厚分布を示す図Shows a first with a 3mm eroded target 1 embodiment, the film thickness distribution of the SiO 2 thin film formed by introducing the Ar gas of the present invention 本発明の第1の実施例でターゲット侵食量に応じたHeガスの混合比を示す図The figure which shows the mixing ratio of He gas according to the target erosion amount in 1st Example of this invention. 本発明の第1の実施例でHeガスを導入して成膜したSiO2薄膜の膜厚分布を示す図Shows a first embodiment SiO 2 film thickness distribution of the thin film formed by introducing He gas in the present invention 本発明の第2の実施例で用いたマグネトロンスパッタ装置の構成を示した断面図Sectional drawing which showed the structure of the magnetron sputtering apparatus used in the 2nd Example of this invention 本発明の第2の実施例で平板基板上にArガスを導入して成膜したSiO2薄膜の膜厚分布を示す図Shows the SiO 2 thin film thickness distribution was deposited by introducing Ar gas into a flat substrate in the second embodiment of the present invention 本発明の第2の実施例で凸形状基板上にArガスを導入して成膜したSiO2薄膜の膜厚分布を示す図Shows the SiO 2 film thickness distribution of the thin film formed by introducing the Ar gas in a convex shape on the substrate in a second embodiment of the present invention 本発明の第2の実施例で凸形状基板上にHeガスを導入して成膜したSiO2薄膜の膜厚分布を示す図Shows the SiO 2 film thickness distribution of the thin film formed by introducing He gas into a convex shape on the substrate in a second embodiment of the present invention 本発明の第2の実施例でワーク形状に応じたHeガスの混合比を示す図The figure which shows the mixing ratio of He gas according to a workpiece | work shape in 2nd Example of this invention. 従来例で用いたマグネトロンスパッタ装置の構成を示した断面図Sectional drawing showing the configuration of the magnetron sputtering device used in the conventional example

符号の説明Explanation of symbols

91 真空容器
92 ターゲット
93 下部電極
94 内側磁石
95 外側磁石
96 ヨーク
97 弧状の磁力線
98 基板保持機構
99 基板
910 電源
91 Vacuum vessel 92 Target 93 Lower electrode 94 Inner magnet 95 Outer magnet 96 Yoke 97 Arc-shaped magnetic field line 98 Substrate holding mechanism 99 Substrate 910 Power supply

Claims (5)

真空容器中に配置された基板に対向して設けられた形成したい薄膜の成分の一部または全部からなるターゲットに電力を印加することで前記基板を成膜するスパッタリング方法であって、
前記真空容器内に前記ターゲットを構成する元素の原子量よりも大きな分子量を持つ希ガスと、前記ターゲットを構成する元素の原子量よりも小さな分子量を持つ希ガスとの混合ガスを導入し、前記ターゲットの侵食量に応じて希ガスの混合比を変化させること
を特徴とするスパッタリング方法。
A sputtering method for depositing the substrate by applying electric power to a target consisting of a part or all of the components of a thin film to be formed provided facing a substrate disposed in a vacuum vessel,
A mixed gas of a rare gas having a molecular weight larger than the atomic weight of the element constituting the target and a rare gas having a molecular weight smaller than the atomic weight of the element constituting the target is introduced into the vacuum container, A sputtering method, wherein a mixing ratio of a rare gas is changed in accordance with an erosion amount.
前記ターゲットの侵食量が進むに連れ、前記混合ガスの前記ターゲットを構成する元素の原子量よりも小さな分子量を持つ希ガスの混合比を増やすことを特徴とする請求項1に記載のスパッタリング方法。 2. The sputtering method according to claim 1, wherein a mixing ratio of a rare gas having a molecular weight smaller than an atomic weight of an element constituting the target of the mixed gas is increased as the amount of erosion of the target progresses. 真空容器中に配置された基板に対向して設けられた形成したい薄膜の成分の一部または全部からなるターゲットに電力を印加することで前記基板を成膜するスパッタリング方法であって、
前記真空容器内に前記ターゲットを構成する元素の原子量よりも大きな分子量を持つ希ガスと、前記ターゲットを構成する元素の原子量よりも小さな分子量を持つ希ガスとの混合ガスを導入し、前記基板の表面形状に応じて希ガスの混合比を変化させること
を特徴とするスパッタリング方法。
A sputtering method for depositing the substrate by applying electric power to a target consisting of a part or all of the components of a thin film to be formed provided facing a substrate disposed in a vacuum vessel,
Introducing a mixed gas of a rare gas having a molecular weight larger than the atomic weight of the element constituting the target into the vacuum vessel and a rare gas having a molecular weight smaller than the atomic weight of the element constituting the target, A sputtering method characterized by changing a mixing ratio of a rare gas according to a surface shape.
前記基板の表面形状が凸になるに連れ、前記混合ガスの前記ターゲットを構成する元素の原子量よりも小さな分子量を持つ希ガスの混合比を増やすことを特徴とする請求項3に記載のスパッタリング方法。 The sputtering method according to claim 3, wherein as the surface shape of the substrate becomes convex, a mixing ratio of a rare gas having a molecular weight smaller than an atomic weight of an element constituting the target of the mixed gas is increased. . 前記基板の表面形状が凹になるに連れ、混合ガスうちターゲットを構成する元素の原子量よりも大きな分子量を持つ希ガスの混合比を増やすことを特徴とする請求項3に記載のスパッタリング方法。 The sputtering method according to claim 3, wherein as the surface shape of the substrate becomes concave, the mixing ratio of a rare gas having a molecular weight larger than the atomic weight of an element constituting the target in the mixed gas is increased.
JP2004219727A 2004-07-28 2004-07-28 Sputtering method Expired - Fee Related JP4734864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004219727A JP4734864B2 (en) 2004-07-28 2004-07-28 Sputtering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004219727A JP4734864B2 (en) 2004-07-28 2004-07-28 Sputtering method

Publications (2)

Publication Number Publication Date
JP2006037172A true JP2006037172A (en) 2006-02-09
JP4734864B2 JP4734864B2 (en) 2011-07-27

Family

ID=35902480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004219727A Expired - Fee Related JP4734864B2 (en) 2004-07-28 2004-07-28 Sputtering method

Country Status (1)

Country Link
JP (1) JP4734864B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013161805A (en) * 2012-02-01 2013-08-19 Mitsubishi Electric Corp Method of manufacturing silicon carbide semiconductor device
WO2018216226A1 (en) * 2017-05-26 2018-11-29 アドバンストマテリアルテクノロジーズ株式会社 Film-forming device and film-forming method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02182873A (en) * 1989-01-10 1990-07-17 Seiko Epson Corp Production of thin film
JPH05195211A (en) * 1991-11-30 1993-08-03 Ricoh Co Ltd Sputtering method of al or al alloy
JPH0734240A (en) * 1993-07-15 1995-02-03 Nec Corp Sputtering method
JPH07258840A (en) * 1994-03-23 1995-10-09 Asahi Glass Co Ltd Formation of carbon thin film
JPH10265953A (en) * 1997-03-27 1998-10-06 Canon Inc Sputter film, liquid crystal element and their production
JP2002053954A (en) * 2000-05-22 2002-02-19 Sharp Corp Vacuum chamber for physical vapor deposition, physical vapor deposition method, thin film device, and liquid crystal display
JP2003089548A (en) * 2001-09-17 2003-03-28 Citizen Watch Co Ltd Method for manufacturing windshield for timepiece

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02182873A (en) * 1989-01-10 1990-07-17 Seiko Epson Corp Production of thin film
JPH05195211A (en) * 1991-11-30 1993-08-03 Ricoh Co Ltd Sputtering method of al or al alloy
JPH0734240A (en) * 1993-07-15 1995-02-03 Nec Corp Sputtering method
JPH07258840A (en) * 1994-03-23 1995-10-09 Asahi Glass Co Ltd Formation of carbon thin film
JPH10265953A (en) * 1997-03-27 1998-10-06 Canon Inc Sputter film, liquid crystal element and their production
JP2002053954A (en) * 2000-05-22 2002-02-19 Sharp Corp Vacuum chamber for physical vapor deposition, physical vapor deposition method, thin film device, and liquid crystal display
JP2003089548A (en) * 2001-09-17 2003-03-28 Citizen Watch Co Ltd Method for manufacturing windshield for timepiece

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013161805A (en) * 2012-02-01 2013-08-19 Mitsubishi Electric Corp Method of manufacturing silicon carbide semiconductor device
WO2018216226A1 (en) * 2017-05-26 2018-11-29 アドバンストマテリアルテクノロジーズ株式会社 Film-forming device and film-forming method
JPWO2018216226A1 (en) * 2017-05-26 2020-03-26 アドバンストマテリアルテクノロジーズ株式会社 Film forming apparatus and film forming method
TWI826939B (en) * 2017-05-26 2023-12-21 日商前進材料科技股份有限公司 membrane structure

Also Published As

Publication number Publication date
JP4734864B2 (en) 2011-07-27

Similar Documents

Publication Publication Date Title
US7407565B2 (en) Method and apparatus for ionized plasma deposition
TWI499682B (en) Plasma processing chambers and methods of depositing thin films
US6143128A (en) Apparatus for preparing and metallizing high aspect ratio silicon semiconductor device contacts to reduce the resistivity thereof
KR100987835B1 (en) Method for seed film formation, plasma film forming apparatus, and memory medium
KR101760846B1 (en) Methods for depositing metal in high aspect ratio features
US9633839B2 (en) Methods for depositing dielectric films via physical vapor deposition processes
TWI714553B (en) Auto capacitance tuner current compensation to control one or more film properties through target life
JP4344019B2 (en) Ionized sputtering method
JP5249328B2 (en) Thin film deposition method
TWI804477B (en) Methods for depositing amorphous silicon layers or silicon oxycarbide layers via physical vapor deposition
JP2010242213A (en) Sputtering method and film deposition apparatus
JP2012197463A (en) Film deposition method
TW200926300A (en) Krypton sputtering of thin tungsten layer for integrated circuits
JPH11168090A (en) Semiconductor manufacturing method
JP4734864B2 (en) Sputtering method
WO2007125836A1 (en) METHOD FOR DEPOSITING Ti FILM
JP4179047B2 (en) Plasma processing equipment
JP2009275281A (en) Sputtering method and system
JP4175242B2 (en) Magnetron sputtering apparatus and method
JP5312138B2 (en) Sputtering method
JP2005248222A (en) Sputtering method
JP2007154224A (en) Sputtering method and sputtering apparatus
JP2019102508A (en) Method and apparatus for forming boron-based film
JP2006032602A (en) Apparatus and method of sputtering
KR20230062399A (en) Pvd method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070604

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090626

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101013

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110411

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees