JP2006037150A - Ti BASED HIGH STRENGTH SUPERELASTIC ALLOY - Google Patents

Ti BASED HIGH STRENGTH SUPERELASTIC ALLOY Download PDF

Info

Publication number
JP2006037150A
JP2006037150A JP2004217024A JP2004217024A JP2006037150A JP 2006037150 A JP2006037150 A JP 2006037150A JP 2004217024 A JP2004217024 A JP 2004217024A JP 2004217024 A JP2004217024 A JP 2004217024A JP 2006037150 A JP2006037150 A JP 2006037150A
Authority
JP
Japan
Prior art keywords
strength
modulus
based high
solid solution
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004217024A
Other languages
Japanese (ja)
Inventor
Shinbin O
新敏 王
Akihisa Inoue
明久 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sozai KK
Original Assignee
Nippon Sozai KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sozai KK filed Critical Nippon Sozai KK
Priority to JP2004217024A priority Critical patent/JP2006037150A/en
Publication of JP2006037150A publication Critical patent/JP2006037150A/en
Pending legal-status Critical Current

Links

Landscapes

  • Golf Clubs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To develop a material having a low Young's modulus and exhibiting a high elastic elongation threshold and high plastic elongation as well while having high tensile strength and hardness deviating from the past fundamental principles, i.e., a new alloy having high tensile strength and hardness, and further exhibiting high elastic elongation and plastic modulus. <P>SOLUTION: This invention is composed of a Ti based single phase solid solution consisting of a five componential system of M1 to M4 whose composition is represented by Ti<SB>100-x-y</SB>-M1<SB>x</SB>-(M2<SB>Y1</SB>-M3<SB>Y2</SB>-M4<SB>Y3</SB>) (all the numerical values are weight%); wherein, M1 is one kind of element selected from Nb, Zr, Ta and W; M2 is one kind of element selected from Al and Mo; M3 is one kind of element selected from Co, Cr, Ni and Fe; and M4 is one kind of element selected from Sn, Si, In and Ge. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高強度・超弾性・低ヤング率(超弾性)、高冷間加工性を持つ新規なTi系高強度超弾性合金の開発に関する。   The present invention relates to the development of a novel Ti-based high-strength superelastic alloy having high strength, superelasticity, low Young's modulus (superelasticity), and high cold workability.

一般に、結晶質金属材料では、降伏強度(σy)、極限引張強度(σu)及びビッカース硬さ(Hv)が高くなると、それに伴ってヤング率(E)も上昇することが知られており、これらの特性の間には(σy)〜0.02E(=先の表現は降伏強度(σy)はヤング率(E)の約50分の1という意味である。)、(Hv)〜0.06E(=先の表現はビッカース硬さ(Hv)はヤング率(E)の約100分の6という意味を表す。)の関係が存在している。また、弾性伸び限界は通常低い、金属では1.0%以下であり、これ以上の伸び変形を結晶質金属材料に与えると永久的な塑性変形をおこし、結晶材料は元の形状に戻らなくなる。   Generally, in crystalline metal materials, it is known that as the yield strength (σy), ultimate tensile strength (σu) and Vickers hardness (Hv) increase, the Young's modulus (E) increases accordingly. (Σy) to 0.02E (= The above expression means that the yield strength (σy) is about 1/50 of Young's modulus (E)), (Hv) to 0.06E (= The above expression has the relationship that Vickers hardness (Hv) means about 6/100 of Young's modulus (E).) In addition, the elastic elongation limit is usually low, 1.0% or less for metals, and if the crystalline metal material is subjected to elongation deformation beyond this, permanent plastic deformation occurs, and the crystalline material does not return to its original shape.

換言すれば、従来の結晶材料では大きい弾性伸び[=低いヤング率(E)]を求めれば、当然ビッカース硬さ(Hv)が低く(=柔らかく)、降伏強度(σy)や極限引張強度(σu)が小さくなって小さな引っ張り応力で降伏してしまたり破断してしまうし、逆に降伏強度(σy)や極限引張強度(σu)を大きくするとビッカース硬さ(Hv)も高くなると共にヤング率(E)も大きくなって弾性伸びが小さくなる。   In other words, if a large elastic elongation [= low Young's modulus (E)] is obtained in the conventional crystal material, naturally, the Vickers hardness (Hv) is low (= soft), the yield strength (σy) and the ultimate tensile strength (σu ) Decreases and yields or breaks with small tensile stress, conversely, increasing yield strength (σy) and ultimate tensile strength (σu) increases Vickers hardness (Hv) and Young's modulus ( E) also increases and the elastic elongation decreases.

そこで、引張強度や硬さが高い状態で、ヤング率(E)が低く、大きな弾性伸び限界を示すと共に大きな塑性伸びを示す結晶材料(簡単に言えば強くて伸びやすい結晶材料)が開発されれば、従来の結晶材料では、降伏強度(σy)、極限引張強度(σu)及びビッカース硬さ(Hv)が高く)その新規特性を生かした広範な分野での応用が期待される。しかしながら、ヤング率(E)は結晶金属材料の構成原子の結合力が強くなればなるほど大きくなり、その結合力の増大により降伏強度や硬さも増大するという材料強度の基本原則がある。従って、降伏強度や硬さが高くてヤング率(E)が低い材料を得ることは、これまでの結晶材料の強度と弾性の基本原則に反することになり、今日までこの原則から逸脱した金属結晶材料は見いだされていなかった。   Therefore, a crystalline material (a crystalline material that is strong and easily stretched) that has a high Young's modulus (E), a large elastic elongation limit, and a large plastic elongation with high tensile strength and hardness has been developed. For example, conventional crystal materials have high yield strength (σy), ultimate tensile strength (σu), and Vickers hardness (Hv)), and are expected to be applied in a wide range of fields that take advantage of their new properties. However, the Young's modulus (E) increases as the bonding force of the constituent atoms of the crystalline metal material increases, and the basic principle of material strength is that the yield strength and hardness increase as the bonding force increases. Therefore, obtaining a material with high yield strength and hardness and low Young's modulus (E) is contrary to the basic principles of strength and elasticity of conventional crystal materials. The material was not found.

そこで、このような金属材料の原則を逸脱するような特殊な物性を持つ材料を得るため、発明者らが鋭意研究の行った結果、このような従来の技術常識に反する材料(即ち、過去の基本原則から逸脱にするような引張強度や硬さが高い状態で、ヤング率が低く、大きな弾性伸び限界を示すと共に大きな塑性伸びも示す材料、換言すれば、引張強度や硬さが高くて而も大きな弾性伸びと塑性伸びを示す新合金)を開発した。(特開2001−192755号公報)
特開2001−192755号公報
Therefore, in order to obtain a material having special physical properties that deviate from the principle of such a metal material, the inventors have conducted intensive research, and as a result, the material is contrary to the conventional technical common sense (i.e., the past). A material with high tensile strength and hardness that deviates from the basic principle, low Young's modulus, large elastic elongation limit and large plastic elongation, in other words, high tensile strength and hardness. A new alloy that also exhibits large elastic elongation and plastic elongation) was developed. (JP 2001-192755 A)
JP 2001-192755 A

しかしながら、前述の新合金の場合でも弾性変形領域が不十分な用途、たとえばゴルフクラブ(特にドライバー)のヘッドのフェース面に用いられる材料においては、更なる高性能が要求されている。すなわち、ゴルフクラブのフェース面は高い引っ張り強さと硬さが要求される半面、ゴルフボールをヒットしたときのインパクト時の球持ちのよさとこれによる優れた方向性並びに高い反発力、即ち、大きな弾性変形が要求されている。この点において発明者らが開発した新合金は不十分であり、更なる改善が要求されていた。   However, even in the case of the above-mentioned new alloy, higher performance is required in applications where the elastic deformation region is insufficient, for example, materials used for the face surface of the head of a golf club (especially a driver). In other words, the face surface of a golf club is required to have high tensile strength and hardness. On the other hand, when a golf ball is hit, the ball has a good ball holding at the time of impact, excellent directionality, and high repulsive force, that is, high elasticity. Deformation is required. In this respect, the new alloy developed by the inventors is insufficient and further improvement has been required.

本発明は、従来の新合金に比べて硬度を維持あるいは向上させつつ更なる引っ張り強さと弾性変形の向上をその技術課題とするものである。   An object of the present invention is to further improve tensile strength and elastic deformation while maintaining or improving hardness as compared with conventional new alloys.

請求項1に記載のTi系高強度超弾性合金は、
組成がTi100-x-y−M1x−(M2Y1−M3Y2−M4Y3)で示され(数値は全て重量%)、M1〜M4の5成分系からなるTi系単相固溶体であって、
(a)M1は、Nb、Zr、Ta、Wから選ばれる1種類の元素、
M2は、Al、Moから選ばれる1種類の元素、
M3は、Co、Cr、Ni、Feから選ばれる1種類の元素、
M4は、Sn、Si、In、Geから選ばれる1種類の元素であって、且つ
12重量%<X<30重量%、
1重量%<Yl<5重量%、
1重量%<Y2<6重量%、
1重量%<Y3<6重量%である事、
(b)Ti−Mlの2成分の原子寸法の比が2.5%以上である事、
(c)Ti−Ml構成元素の混合熱が正の値、0或いは僅かに負の値を持ち、原子間の結合性が互いに反発し合う状態にある事、
という三条件を満足する組成であることを特徴とする。
The Ti-based high-strength superelastic alloy according to claim 1,
Ti 100-xy -M1 x- (M2 Y1 -M3 Y2 -M4 Y3 ) (numerical values are all by weight), a Ti-based single-phase solid solution consisting of five components M1 to M4,
(a) M1 is one element selected from Nb, Zr, Ta, W,
M2 is one element selected from Al and Mo,
M3 is one element selected from Co, Cr, Ni and Fe,
M4 is one element selected from Sn, Si, In and Ge, and
12% by weight <X <30% by weight,
1 wt% <Yl <5 wt%,
1 wt% <Y2 <6 wt%,
1 wt% <Y3 <6 wt%,
(b) the ratio of atomic dimensions of the two components of Ti-Ml is 2.5% or more;
(c) The heat of mixing of the Ti-Ml constituent elements has a positive value, 0 or a slightly negative value, and the bonding properties between atoms are repelling each other,
The composition satisfies the following three conditions.

本発明に適用できる合金の元素としては、主構成素材としてTiが使用され、その主添加材料(M1)としては、Zr、Nb、Ta、Wが、第二添加材料(M2)としてはAl、Moが、第3添加材料(M3)としてはCo、Cr、Ni、Feが、第4添加材料(M4)としてはSn、Si、Ge、Inなどがある。これらの原子半径は以下の通りである。   As an alloy element applicable to the present invention, Ti is used as a main constituent material, Zr, Nb, Ta, W as the main additive material (M1), Al as the second additive material (M2), Mo is Co, Cr, Ni, Fe as the third additive material (M3), Sn, Si, Ge, In, etc. as the fourth additive material (M4). These atomic radii are as follows.

Ti;1.47オングストローム、
Zr;1.62オングストローム、
Nb;1.43オングストローム、
Ta;1.43オングストローム、
W ;1.37オングストローム、
Ti: 1.47 angstrom,
Zr: 1.62 angstrom,
Nb: 1.43 angstrom,
Ta: 1.43 angstrom,
W: 1.37 Angstroms,

原子寸法差の計算方法は、Ti、Zrを例にとって説明すれば、(Zrの半径−Tiの半径)÷のTi半径×100で表され、前記式にTi、Zrの原子半径を代入すると、(1.62−1.47)÷1.62×100=9.2%となる。本発明では、構成多元素の少なくとも2つ、即ち、主構成素材としてTiが使用され、その主添加材料(M1)としては、Zr、Nb、Ta、Wの原子寸法の比の関係が2.5%以上である事が必要である。   The calculation method of the atomic dimensional difference is described by taking Ti and Zr as an example, and is expressed by (radius of Zr−radius of Ti) ÷ Ti radius × 100. When the atomic radii of Ti and Zr are substituted into the above formula, (1.62-1.47) ÷ 1.62 × 100 = 9.2%. In the present invention, at least two constituent multi-elements, that is, Ti is used as a main constituent material, and the main additive material (M1) has a ratio of atomic ratios of Zr, Nb, Ta, and W of 2.5%. That is necessary.

構成元素の混合熱とは、一般的に1モルのA元素と1モルのB元素とを原子レベルで混合した場合の熱的変化である。混合熱が零の状態とは、混合するときほぼ吸熱も放熱もない状態であり、正の値を持つ状態とは混合する時に吸熱する状態であり、負の値を持つ状態とは混合する時に放熱する状態である。TiとZrの混合熱(HmixKJ/mol)は0であり、TiとTaでは1であり、ZrとNbでは4である。本発明では、少なくとも2つの構成多元素、即ち、主構成素材としてTiが使用され、その主添加材料(M1)としては、Zr、Nb、Ta、Wの混合熱が正の値或いは零又は僅かに負の値を持つ必要がある。   The heat of mixing of the constituent elements is generally a thermal change when 1 mol of A element and 1 mol of B element are mixed at the atomic level. The state where the heat of mixing is zero is a state where there is almost no heat absorption or heat dissipation when mixing, a state having a positive value is a state where heat is absorbed when mixing, and a state having a negative value is when mixing It is in a state of radiating heat. The heat of mixing of Ti and Zr (HmixKJ / mol) is 0, 1 for Ti and Ta, and 4 for Zr and Nb. In the present invention, at least two constituent multi-elements, that is, Ti is used as a main constituent material, and as the main additive material (M1), the mixed heat of Zr, Nb, Ta, W is a positive value or zero or slightly. Must have a negative value.

単相固溶体とは、合金元素が均一に解け合って、合金全体が例えば単一のα相とかβ相或いはγ相等で構成されている状態であり、複相固溶体とは、合金全体が例えば(α+β)相とか(α+β+γ)相のように2以上の相が混在して構成されている状態である。本発明ではβ相単相である。第2析出物を伴うβ相固溶体とは、前記β相単相中に若干の析出物(例えば金属間化合物)等を伴っている場合をいう。   Single-phase solid solution is a state in which alloy elements are uniformly dissolved and the whole alloy is composed of, for example, a single α phase, β phase, or γ phase. This is a state in which two or more phases are mixed together such as (α + β) phase or (α + β + γ) phase. In the present invention, it is a β phase single phase. The β-phase solid solution accompanied by the second precipitate means a case where some precipitates (for example, intermetallic compounds) are accompanied in the β-phase single phase.

原子間の結合性が互いに反発し合う状態にある事とは、原子同士を或る一定限度以上に近づけると隣接する原子間に反発力が働くようになる状態である。   The state in which the bonds between atoms repel each other is a state in which a repulsive force acts between adjacent atoms when the atoms are brought closer to a certain limit.

本合金の主構成元素であるTiは常温では六方稠密構造で882℃以上で体心立方構造に変わるが、Nbを12〜30重量%添加することで、常温で母相をβ相とすることができ冷間加工が可能となる。   Ti, the main constituent element of this alloy, has a hexagonal close-packed structure at room temperature, and changes to a body-centered cubic structure at 882 ° C or higher. Can be cold worked.

本合金の主添加元素であるNbは、常温では六方稠密格子構造(α相)をとり、862℃以上で体心立方構造(β相)に変わる。また、Nbは、空気中で緻密な酸化被膜を生じ、耐食性に優れ、特に高温の水中での耐食性は他金属に比べて著しく高く、融解アルカリ中でも反応しにくいという性質を有する。このようにZrは優れた耐食及び耐酸性を有するため、各種機械用途に用いられる。なお、純Nbのヤング率は、105GPaである。   Nb, which is the main additive element of this alloy, takes a hexagonal close-packed lattice structure (α phase) at room temperature and changes to a body-centered cubic structure (β phase) at 862 ° C. or higher. Further, Nb produces a dense oxide film in the air and has excellent corrosion resistance. In particular, the corrosion resistance in high-temperature water is remarkably higher than that of other metals, and has the property that it hardly reacts even in molten alkali. Thus, since Zr has excellent corrosion resistance and acid resistance, it is used for various machine applications. The Young's modulus of pure Nb is 105 GPa.

本合金の他の主添加元素であるNbは、展延性を示し、そのヤング率は105GPaであり、その硬さは錬鉄と同程度で、他の構成元素であるTaより柔らかい金属である。したがって、Nbを添加することにより、得られる合金にしなやかさ(低弾性=低ヤング率)を付与することができる。また、Nbは、空気中で酸化被膜を生成して耐食性を示す金属であり、フッ化水素酸以外の酸には不溶であり、アルカリ水溶液にも溶けず、各種合金(例えば、耐熱合金)の添加元素として広く用いられている。Nbを本発明のTi−Nb系合金の構成成分とすることによって、Nbと協働して耐食性・耐酸性を更に向上させることができる。   Nb, which is another main additive element of this alloy, exhibits ductility, its Young's modulus is 105 GPa, its hardness is similar to that of wrought iron, and is a metal softer than Ta, which is another constituent element. Therefore, by adding Nb, flexibility (low elasticity = low Young's modulus) can be imparted to the obtained alloy. Nb is a metal that forms an oxide film in the air and exhibits corrosion resistance, is insoluble in acids other than hydrofluoric acid, does not dissolve in alkaline aqueous solutions, and is a component of various alloys (for example, heat-resistant alloys). Widely used as an additive element. By using Nb as a constituent of the Ti—Nb alloy of the present invention, the corrosion resistance and acid resistance can be further improved in cooperation with Nb.

Nbの含有量Xが12重量%より小さい場合、合金中にTiのα相が析出して加工性を著しく阻害する。逆に、Xが30重量%より大きい場合、耐食性の改善は見られず、比重が増加するだけとなる。Tiは常温空気中で変化せず、Nbは固溶体を形成し、合金の強度が上がるので、両者の特長が相乗して良好な特性を示す。   When the Nb content X is less than 12% by weight, Ti α-phase precipitates in the alloy, which significantly impairs workability. Conversely, when X is greater than 30% by weight, no improvement in corrosion resistance is observed, and only the specific gravity increases. Ti does not change in air at normal temperature, and Nb forms a solid solution and increases the strength of the alloy.

Ti、Nb、Zr、Ta及びWは合金表面に緻密な酸化被膜を形成し、常温空気中では変化せず、強度に優れ耐食性を有する。また、Ti、ZrおよびNbいずれも人体親和性に優れた素材であり、人体に接触する部材に使用した場合、人体にアレルギーを生じさせない優れた作用を発揮する。TaもNbとよく似た性質を有する元素である。   Ti, Nb, Zr, Ta, and W form a dense oxide film on the alloy surface, do not change in air at room temperature, and have excellent strength and corrosion resistance. Ti, Zr and Nb are all materials excellent in human compatibility, and when used as a member that comes into contact with the human body, they exhibit an excellent action that does not cause allergies to the human body. Ta is an element having properties similar to those of Nb.

以上から、Ti系合金は、大気中でその表面にTiO 2の緻密な酸化被膜を形成する事により耐食性に優れている事、軽くて強く比強度(引張強度を比重で割った商)の大きな材料である。一般的に、Ti系合金は常温ではその金属組織は、硬くて脆いα相であるため圧延・鍛造或いは切削などの機械加工は困難であるが、上記の組成であれば前述のように常温でβ相単相となり、常温での機械加工(換言すれば常温塑性加工性)が容易にできる。加えて弾性変形領域が大幅に拡大し大きな伸びを示す。また、溶体化処理後、80%冷間圧延を行い、時効硬化させるとその引っ張り強さは大幅に向上すると共にそのヤング率は溶体化処理時のヤング率より若干上昇するだけで、従来の新合金よりも大幅に低い値を示す。 From the above, Ti alloys are excellent in corrosion resistance by forming a dense oxide film of TiO 2 on the surface in the atmosphere, light and strong specific strength (quotient obtained by dividing tensile strength by specific gravity) Material. In general, Ti-based alloys have a hard and brittle α phase at room temperature, and are difficult to machine such as rolling, forging, or cutting. It becomes a β phase single phase and can be easily machined at room temperature (in other words, room temperature plastic workability). In addition, the elastic deformation region is greatly expanded and exhibits a large elongation. Also, after 80% cold rolling and age hardening, the tensile strength is greatly improved and the Young's modulus is slightly higher than the Young's modulus during the solution treatment. The value is significantly lower than that of the alloy.

「請求項2」は請求項1に記載のTi系合金の金属組織に関し「β相固溶体が第2析出物を伴う」ことを特徴とするものであり、「請求項3」は請求項1に記載のTi系合金の他の金属組織に関し「β相固溶体内に時効硬化処理に基づく時効析出物が析出している」ことを特徴とする。これにより母相内に微細な析出物が析出し、合金内に分散析出した無数の微細な時効析出物により転位のピン止め作用を働かせて高強度・高硬度・高弾性を達成することができ、また、これに加えて低ヤング率(高弾性変形率)であるから、ドライバーヘッドのフェース面やアイアンヘッドに加工した時、ゴルフボールのつかまりや反発力が大幅に向上し、飛距離が大幅に伸びるだけでなく、その方向性の向上にもつながる。また、M3やM4に示す金属の添加により機械的性質が向上するが、人体親和性は若干低下する。しかしながら、TiやM1に示す金属の緻密な酸化皮膜によりその毒性は緩和され、たとえば眼鏡フレームのような高加工度・高強度・高弾性などを必要とする素材にも適用可能となる。   “Claim 2” is characterized in that “β-phase solid solution is accompanied by the second precipitate” with respect to the metallographic structure of the Ti-based alloy according to claim 1, and “Claim 3” is claimed in Claim 1. The other metal structure of the described Ti-based alloy is characterized in that “aging precipitates based on age hardening treatment are precipitated in the β-phase solid solution”. As a result, fine precipitates are precipitated in the matrix, and high strength, high hardness, and high elasticity can be achieved by using the pinning action of dislocations by countless fine aging precipitates dispersed and precipitated in the alloy. In addition, since it has a low Young's modulus (high elastic deformation rate), when processed into the face surface of an driver head or an iron head, the grip and repulsive force of the golf ball are greatly improved, and the flight distance is greatly increased. Not only will it grow, it will also improve its direction. In addition, the mechanical properties are improved by the addition of metals shown in M3 and M4, but the human affinity is slightly lowered. However, its toxicity is mitigated by a dense oxide film of metal such as Ti or M1, and it can be applied to a material that requires high workability, high strength, high elasticity and the like such as a spectacle frame.

「請求項4」は請求項1に記載のTi合金を他の観点から見た成立条件に関し「請求項1に記載の3条件の内、少なくとも一つの条件を満足し、且つ、その溶媒金属のヤング率が溶質金属のヤング率の80%以下である」ことを特徴とし、
「請求項5」は請求項1に記載の更に他の観点から見た成立条件に関し「請求項1」に記載の3条件の内、少なくとも一つの条件を満足し、且つ、降伏強度αy(MPa)/ヤング率E(MPa)が0.015以上である」ことを特徴とする。
“Claim 4” relates to the conditions for establishing the Ti alloy according to claim 1 from another viewpoint. “At least one of the three conditions according to claim 1 is satisfied and the solvent metal is The Young's modulus is 80% or less of the Young's modulus of the solute metal "
“Claim 5” relates to the fulfillment condition as viewed from still another aspect of claim 1, satisfies at least one of the three conditions described in “Claim 1”, and yield strength αy (MPa ) / Young's modulus E (MPa) is 0.015 or more.

「請求項6」は請求項1に記載の更に他の観点から見た成立条件に関し「請求項1に記載の3条件の内、少なくとも一つの条件を満足し、且つ、硬度Hv(DPN)/ヤング率E(MPa)が0.05以上である」ことを特徴とする。   “Claim 6” relates to the conditions established from another viewpoint according to claim 1. “At least one of the three conditions according to claim 1 is satisfied, and the hardness Hv (DPN) / The Young's modulus E (MPa) is 0.05 or more ".

「請求項7」はTi系高強度超弾性合金の加工度に関し「断面減少率が50%以上にて冷間加工が施されている」ことを特徴とするもので、断面減少率は、圧延の場合、[圧延前の元の厚さ(t0)−圧延後の厚さ(t1)]÷圧延前の元の厚さ(t0)で表され、これが50%以上になることが必要である。これにより合金内部に多量の転位が発生し且つ互いに絡まり合って動きにくくなり、強度向上に寄与する。時効処理と冷間加工とを組み合わせる事で大幅に強度を向上させることが出来る。   “Claim 7” is characterized in that the degree of workability of the Ti-based high-strength superelastic alloy “is cold-worked with a cross-section reduction rate of 50% or more”. In the case of [original thickness before rolling (t0) −thickness after rolling (t1)] ÷ original thickness before rolling (t0), this needs to be 50% or more. . As a result, a large amount of dislocations are generated inside the alloy and entangled with each other, making it difficult to move and contributing to strength improvement. The strength can be greatly improved by combining aging treatment and cold working.

「請求項8」は本発明のTi系高強度超弾性合金の具体例であって「M1がNb、M2がAl又はMo、M3がCr、M4がSnである」ことを特徴とする。   “Claim 8” is a specific example of the Ti-based high-strength superelastic alloy of the present invention, and is characterized in that “M1 is Nb, M2 is Al or Mo, M3 is Cr, and M4 is Sn”.

本発明合金によれば、(a)の組成において、条件(b)および(c)を満足するので、過去の金属学の基本原則から逸脱するような引張強度や硬さが高い状態で、ヤング率が大幅に低く、大きな弾性伸び限界(大幅な反発性の向上)を示すと共に大きな塑性伸び(大幅な塑性加工が可能)も示す材料、換言すれば、引張強度や硬さが高くて而も大きな弾性伸びと塑性伸びを示す新合金の開発する事が出来た。   According to the alloy of the present invention, the composition (a) satisfies the conditions (b) and (c), so that the tensile strength and hardness deviate from the basic principles of metallurgy in the past, and the Young A material that has a significantly low rate, a large elastic elongation limit (substantial improvement in resilience) and a large plastic elongation (substantially capable of plastic working), in other words, high tensile strength and hardness. We were able to develop a new alloy that exhibits large elastic and plastic elongation.

又、時効処理や大幅な冷間加工を施すことで、転位の絡み合いを飛躍的に増大させたり、合金内に微細な時効析出物を分散析出させて転位のピン止め作用を図る事により、合金の大幅な強度の向上を達成する事が出来た。   Also, by applying aging treatment or significant cold working, the entanglement of dislocations can be dramatically increased, or fine aging precipitates can be dispersed and precipitated in the alloy to achieve the pinning action of dislocations. It was possible to achieve a significant improvement in strength.

本発明合金は、如上のようにTiを主構成成分とする5成分系合金であり、その金属組織は常温でβ相を示すので、常温での非常に優れた塑性加工性を示す。加えて、本発明の5成分系合金は高強度、高弾性・低ヤング率(すなわち、超弾性)、高展延性(高い伸び率、例えば減面率90%の場合でも最低6%程度[従来例では最大3%程度])を示すので、しなやかさを必要とする部材に使用するには特に有効であり、たとえばゴルフフェースに使用した湯合、ゴルフボールをヒットしたとき、あたかもゴムのようにゴルフボールに接触してゴルフボールを捕らえやすく、非常に方向性が優れたものとなるだけでなく、インパクト時に大きな反発力を示し、ゴルフボールの飛距離を大きく伸ばすことができる。しかも、Ti及び主添加元素であるNb及び/又はZrは、耐食性がよく且つ生体親和性に優れているので、第2、3添加材料に人体阻害材料が若干添加されているとしても金属成分の溶出がなく人体に接触する部位に使用する部材に好適である。たとえば「眼鏡フレーム」「時計バンド」「スプリングワイヤ」のような用途に適用される。特に、「ゴルフフェース」「スプリングワイヤ」「眼鏡フレーム」「時計バンド」については本発明合金の無毒性、高強度、高弾性が有効である。   The alloy of the present invention is a ternary alloy containing Ti as a main component as described above, and its metal structure exhibits a β phase at room temperature, and thus exhibits excellent plastic workability at room temperature. In addition, the five-component alloy of the present invention has high strength, high elasticity / low Young's modulus (that is, superelasticity), high ductility (high elongation, for example, at least about 6% even when the area reduction is 90% [conventional] In the example, the maximum is about 3%]), which is particularly effective when used for parts that require suppleness. For example, when hitting a golf ball or hitting a golf ball, it looks like rubber. In addition to being easy to catch the golf ball in contact with the golf ball and having excellent directionality, the golf ball exhibits a large repulsive force upon impact and can greatly increase the flight distance of the golf ball. Moreover, since Ti and the main additive elements Nb and / or Zr have good corrosion resistance and excellent biocompatibility, even if a human body inhibiting material is slightly added to the second and third additive materials, It is suitable for a member used for a portion that does not elute and contacts the human body. For example, it is applied to uses such as “glasses frame”, “watch band”, and “spring wire”. In particular, non-toxicity, high strength and high elasticity of the alloy of the present invention are effective for “golf face”, “spring wire”, “glasses frame”, and “watch band”.

以下、本発明にかかる高強度超弾性合金の1つであるTi-18Nb-2Al−4Sn−4Cr合金及びTi-18Nb-2Mo−4Sn−4Cr合金をその代表例として詳述する。前記数字はいずれも重量%である。本実施例合金は、元素の周期律表において隣接又は近接した族番号に属する元素グループ5成分系からなる。Tiに対するM1グループのNbの原子寸法の比が2.5%以上であり、TiとNbの混合熱(HmixKJ/mol)は、+2である。これら合金をアーク溶解炉で作成したインゴットをX線回折法で調べた結果、β相単相の体心立方である事が確認された。添加量によっては第2析出物を伴う。   Hereinafter, Ti-18Nb-2Al-4Sn-4Cr alloy and Ti-18Nb-2Mo-4Sn-4Cr alloy, which are one of the high-strength superelastic alloys according to the present invention, will be described in detail as typical examples. All the figures are weight percent. This example alloy is composed of an element group five-component system belonging to a group number adjacent or close to each other in the periodic table of elements. The ratio of atomic size of Nb of M1 group to Ti is 2.5% or more, and the heat of mixing of Ti and Nb (HmixKJ / mol) is +2. As a result of examining X-ray diffractometry of ingots made of these alloys in an arc melting furnace, it was confirmed that they were β-phase single-phase body-centered cubes. Depending on the amount added, the second precipitate is accompanied.

これらと従来の結晶合金(例えば純Ti、Ti−6Al−4Vなど)と比較した。図1は縦軸に引張応力(MPa)、横軸に伸び(%)を取った弾性変形領域のイメージ図で、純Ti(六方稠密構造=hcp相)は弾性変形領域(斜線部分で弾性伸びは0.02%〜0.5%程度)は極く僅かで、290MPa程度で降伏を開始し、以後、塑性変形領域に入り、最終的には破断する。発明者らの発明に係る従来の新金属の1つであるTi−6Al−4V(六方稠密構造+体心立方構造の混相=hcp+bcc相)はこれより大幅に大きく、770MPa程度で降伏を開始し、1%程度の弾性伸びを示し、以後、塑性変形領域に入り、最終的には破断する。弾性伸びは純Tiの2倍以上である。これに対して、Ti-18Nb-2Al−4Sn−4Cr合金及びTi-18Nb-2Mo−4Sn−4Cr合金は975MPa程度で降伏を開始し、2.5%程度の弾性伸びを示し、以後、塑性変形領域に入り、最終的には破断する。なお、弾性伸びは加工度によって大きく変化するので、一義的に示すことができないが一般的に前述のような傾向を示す。   These were compared with conventional crystal alloys (for example, pure Ti, Ti-6Al-4V, etc.). FIG. 1 is an image of an elastic deformation region in which the vertical axis indicates tensile stress (MPa) and the horizontal axis indicates elongation (%). Pure Ti (dense hexagonal structure = hcp phase) is the elastic deformation region (the elastic elongation is the hatched portion). (Approx. 0.02% to 0.5%) is negligible, yielding starts at about 290 MPa, and then enters the plastic deformation region and eventually breaks. Ti-6Al-4V (a hexagonal close-packed structure + mixed phase of body-centered cubic structure = hcp + bcc phase), one of the conventional new metals according to the inventors' invention, is significantly larger than this, and starts yielding at about 770 MPa. It exhibits an elastic elongation of about 1%, and then enters the plastic deformation region and eventually breaks. The elastic elongation is more than twice that of pure Ti. On the other hand, Ti-18Nb-2Al-4Sn-4Cr alloy and Ti-18Nb-2Mo-4Sn-4Cr alloy started yielding at about 975 MPa and showed elastic elongation of about 2.5%. Enters and eventually breaks. The elastic elongation varies greatly depending on the degree of processing, and thus cannot be uniquely indicated, but generally exhibits the above-described tendency.

表1は比較例としての各種従来Ti合金(比1〜5)と本発明合金(本1〜2)とを比較したものである。   Table 1 compares various conventional Ti alloys (ratio 1 to 5) as comparative examples with the present invention alloys (1 to 2).

表1によれば、時効硬化後の引張強度は従来金属と比較して高い部類に属するが、ヤング率は大幅に低下している。換言すれば、高い引張強度を保ちつつ従来にない低ヤング率を実現した。   According to Table 1, the tensile strength after age hardening belongs to a higher class than conventional metals, but the Young's modulus is greatly reduced. In other words, an unprecedented low Young's modulus was achieved while maintaining high tensile strength.

また、本発明材料の機械的性質の特徴である低弾性率は、構成元素が互いに引力相互作用を持たない或いは弱い事により低応力で原子が可逆的に移動できる事で実現される。そして、本発明材料の機械的性質の特徴である大きな弾性伸びは、相互作用を持たない多種類の元素による移動サイトの多様性のために、可逆的な原子移動が高ひずみ域までおきることができると共に流動応力の上昇も起こりづらくなることに原因していると推察される。   Moreover, the low elastic modulus, which is a characteristic of the mechanical properties of the material of the present invention, is realized by the ability of the atoms to move reversibly with low stress due to the fact that the constituent elements do not have an attractive interaction with each other or are weak. The large elastic elongation characteristic of the mechanical properties of the material of the present invention is that reversible atomic transfer can occur up to a high strain range due to the diversity of transfer sites due to many kinds of elements that do not interact. It is presumed that this is due to the fact that the increase in flow stress is difficult to occur.

上記した3つの条件を満たす成分から成る固溶体単相等を作製し、必要に応じてそれを加工硬化させることにより、高強度・高硬度と共に低弾性率、高弾性伸び、高塑性伸びが得られることは、Ti基合金が高耐食性や高冷間加工成形性を具備していることから、今後、スポーツ用具材料(特に、ゴルフクラブのフェース材料)、バネ材料、フレーム材料、医療・生体材料、玩具材料、音響用材料、装飾品材料、衝撃吸収性材料、航空・宇宙材料などの極めて広範な分野への応用が期待される。   By producing a solid solution single phase composed of components that satisfy the above three conditions and work hardening it as necessary, low elasticity, high elastic elongation, and high plastic elongation can be obtained along with high strength and high hardness. Since Ti-based alloys have high corrosion resistance and high cold workability, sports equipment materials (especially face materials for golf clubs), spring materials, frame materials, medical and biomaterials, toys It is expected to be applied to a wide range of fields such as materials, acoustic materials, decorative materials, shock-absorbing materials, and aerospace materials.

次に、この素材を使ってゴルフクラブのヘッド材料を形成する場について説明する。前述のように溶製したTi−18Nb−2Al−4Sn−4Cr合金及びTi−18Nb−2Mo−4Sn−4Cr合金を一定の厚みを有するブロック又は板材とし、更にはこれを金型で冷間鍛造を行い所定の形状にする。しかる後この部材を溶体化処理して母相中に析出物を全て固溶させた後、たとえば250〜500℃に加熱して固溶成分を母相中に微細な時効析出物として析出させ、母相の強化を図る。時効硬化処理における冷却方法は、空冷あるいは炉冷によって行われる。このようにして、この用途の材料として好ましい機械的性質を現出させた。   Next, the place where the head material of the golf club is formed using this material will be described. The Ti-18Nb-2Al-4Sn-4Cr alloy and Ti-18Nb-2Mo-4Sn-4Cr alloy melted as described above are used as blocks or plates having a certain thickness, and this is further subjected to cold forging with a die. To a predetermined shape. Thereafter, this member is subjected to a solution treatment to dissolve all precipitates in the mother phase, and then heated to, for example, 250 to 500 ° C. to precipitate the solid solution components as fine aging precipitates in the mother phase. Strengthen the mother phase. The cooling method in the age hardening treatment is performed by air cooling or furnace cooling. In this way, the preferred mechanical properties for the material for this application were revealed.

図2は本発明に掛かる2種類の金属に冷間加工度と機械的性質の変化(両金属ともほぼ同じ)を示したもので、横軸に左から加工度(減面率;%)を取り、上の(イ)では左縦軸に引張強度(MPa)、右縦軸にヤング率(GPa)、下の(ロ)では左縦軸に硬さ(Hv)、右縦軸に破断までの伸び(%)を取った。また、折れ線グラフに併記された矢印は、上の(イ)では右向き矢印がヤング率、左矢印が引張強度、下の(ロ)では右向き矢印が伸び、左矢印が硬さを示す。   Fig. 2 shows the change in cold work and mechanical properties of the two types of metal according to the present invention (both metals are almost the same), and the horizontal axis shows the work degree (area reduction rate:%) from the left. In the upper (b), the left vertical axis is the tensile strength (MPa), the right vertical axis is the Young's modulus (GPa), the lower (b) is the left vertical axis is the hardness (Hv), and the right vertical axis is until the fracture. The growth (%) was taken. In the arrows shown in the line graph, in the upper (A), the right arrow indicates the Young's modulus, the left arrow indicates the tensile strength, and in the lower (B), the right arrow indicates the extension, and the left arrow indicates the hardness.

図3は本発明に掛かる2種類の金属に圧延(圧延率80%)したものを焼鈍したもので、焼鈍温度と機械的性質の変化(両金属ともほぼ同じ)を示したもので、横軸に左から焼鈍温度(℃)を取り、上の(イ)では左縦軸に引張強度(MPa)、右縦軸にヤング率(GPa)、下の(ロ)では左縦軸に硬さ(Hv)、右縦軸に破断までの伸び(%)を取った。また、折れ線グラフに併記された矢印は、上の(イ)では右向き矢印がヤング率、左矢印が引張強度、下の(ロ)では右向き矢印が硬さ、左矢印が伸びを示す。これらによれば高い硬さ、高強度を保ちながらも低ヤング率を実現している。また、低ヤング率であるが故に破断伸びも大きい値を示している。従って、本発明材料で作成されたゴルフフェース面はゴルフボールをヒットしたときの打感がよく、しかもあたかもゴムのようにゴルフボールに接触してゴルフボールを捕らえやすく、非常に方向性が優れたものとなるだけでなく、インパクト時に大きな反発力を示し、ゴルフボールの飛距離を大きく伸ばすことができる。   Fig. 3 shows the annealing of the two types of metal according to the present invention (rolling rate 80%), showing the change in annealing temperature and mechanical properties (both metals are almost the same). (B), the left vertical axis is the tensile strength (MPa), the right vertical axis is the Young's modulus (GPa), and the lower (b) is the hardness ( Hv), and the right vertical axis represents the elongation (%) to break. Further, in the arrows shown in the line graph, in the upper (A), the right arrow indicates the Young's modulus, the left arrow indicates the tensile strength, in the lower (B), the right arrow indicates the hardness, and the left arrow indicates the elongation. According to these, low Young's modulus is realized while maintaining high hardness and high strength. In addition, the elongation at break shows a large value because of its low Young's modulus. Therefore, the golf face surface made of the material of the present invention has a good hit feeling when hitting the golf ball, and it easily touches the golf ball like a rubber to catch the golf ball and has excellent directionality. In addition to being a thing, it shows a large repulsive force at the time of impact and can greatly increase the flight distance of the golf ball.

以上のように本発明合金は、Ti基合金であって、高耐食性や高冷間加工成形性、高生体親和性、超弾性等数々の優れた特徴を具備していることから、今後、スポーツ用具材料(ゴルフフェース)、バネ材料、フレーム材料、医療・生体材料、玩具材料、音響用材料、装飾品材料、衝撃吸収性材料、航空・宇宙材料などの極めて広範な分野への応用が期待される。   As described above, the alloy of the present invention is a Ti-based alloy and has many excellent features such as high corrosion resistance, high cold workability, high biocompatibility, and superelasticity. Expected to be applied to a wide range of fields such as equipment materials (golf faces), spring materials, frame materials, medical / biomaterials, toy materials, acoustic materials, decorative materials, shock absorbing materials, aerospace materials, etc. The

従来例と本発明との弾性変形領域の比較グラフComparison graph of elastic deformation region between the conventional example and the present invention 本発明の機械的性質の加工率に関する変化を示すグラフThe graph which shows the change regarding the processing rate of the mechanical property of this invention 本発明の機械的性質の焼鈍温度に関する変化を示すグラフThe graph which shows the change regarding the annealing temperature of the mechanical property of this invention

Claims (8)

組成がTi100-X-Y−M1−(M2Y1−M3Y2−M4Y3)で示され(数値は全て重量%)、M1〜M4の5成分系からなるTi系単相固溶体であって、
(a)M1は、Nb、Zr、Ta、Wから選ばれる1種類の元素、
M2は、Al、Moから選ばれる1種類の元素、
M3は、Co、Cr、Ni、Feから選ばれる1種類の元素、
M4は、Sn、Si、In、Geから選ばれる1種類の元素であって、且つ
12重量%<X<30重量%、
1重量%<Yl<5重量%、
1重量%<Y2<6重量%、
1重量%<Y3<6重量%である事、
(b)Ti−Mlの2成分の原子寸法の比が2.5%以上である事、
(c)Ti−Ml構成元素の混合熱が正の値、0或いは僅かに負の値を持ち、原子間の結合性が互いに反発し合う状態にある事、
という三条件を満足する組成であることを特徴とするTi系高強度超弾性合金。
Ti 100-XY -M1 x- (M2 Y1 -M3 Y2 -M4 Y3 ) (numerical values are all by weight), and a Ti-based single-phase solid solution consisting of five component systems of M1 to M4,
(a) M1 is one element selected from Nb, Zr, Ta, W,
M2 is one element selected from Al and Mo,
M3 is one element selected from Co, Cr, Ni and Fe,
M4 is one element selected from Sn, Si, In and Ge, and
12% by weight <X <30% by weight,
1 wt% <Yl <5 wt%,
1 wt% <Y2 <6 wt%,
1 wt% <Y3 <6 wt%,
(b) the ratio of atomic dimensions of the two components of Ti-Ml is 2.5% or more;
(c) The heat of mixing of the Ti-Ml constituent elements has a positive value, 0 or a slightly negative value, and the bonding properties between atoms are repelling each other,
A Ti-based high-strength superelastic alloy characterized in that the composition satisfies the following three conditions.
Ti系単相固溶体がβ相固溶体であり、前記β相固溶体が第2析出物を伴うことを特徴とする請求項1に記載のTi系高強度超弾性合金。   2. The Ti-based high-strength superelastic alloy according to claim 1, wherein the Ti-based single-phase solid solution is a β-phase solid solution, and the β-phase solid solution is accompanied by a second precipitate. Ti系単相固溶体がβ相固溶体であり、前記β相固溶体内に時効硬化処理に基づく時効析出物が析出していることを特徴とする請求項1に記載のTi系高強度超弾性合金。   The Ti-based high-strength superelastic alloy according to claim 1, wherein the Ti-based single-phase solid solution is a β-phase solid solution, and an aging precipitate based on an age hardening treatment is precipitated in the β-phase solid solution. 請求項1に記載の3条件の内、少なくとも一つの条件を満足し、且つ、その溶媒金属のヤング率が溶質金属のヤング率の80%以下であることを特徴とするTi系高強度超弾性合金。   A Ti-based high-strength superelasticity characterized in that at least one of the three conditions according to claim 1 is satisfied and the Young's modulus of the solvent metal is 80% or less of the Young's modulus of the solute metal alloy. 請求項1に記載の3条件の内、少なくとも一つの条件を満足し、且つ、降伏強度σy(MPa)/ヤング率E(MPa)が0.015以上であることを特徴とするTi系高強度超弾性合金。   A Ti-based high strength characterized in that at least one of the three conditions according to claim 1 is satisfied and the yield strength σy (MPa) / Young's modulus E (MPa) is 0.015 or more. Super elastic alloy. 請求項1に記載の3条件の内、少なくとも一つの条件を満足し、且つ、硬度Hv(DPN)/ヤング率E(MPa)が0.05以上であることを特徴とするTi系高強度超弾性合金。   A Ti-based high-strength super-characteristic material characterized by satisfying at least one of the three conditions according to claim 1 and having a hardness Hv (DPN) / Young's modulus E (MPa) of 0.05 or more Elastic alloy. 断面減少率が50%以上にて冷間加工が施されていることを特徴とする請求項1〜6のいずれかに記載のTi系高強度超弾性合金。 The Ti-based high-strength superelastic alloy according to any one of claims 1 to 6, wherein the Ti-based high-strength superelastic alloy is cold-worked at a cross-section reduction rate of 50% or more. M1がNb、M2がAl又はMo、M3がCr、M4がSnであることを特徴とする請求項1〜7のいずれかに記載のTi系高強度超弾性合金。 The Ti-based high-strength superelastic alloy according to any one of claims 1 to 7, wherein M1 is Nb, M2 is Al or Mo, M3 is Cr, and M4 is Sn.
JP2004217024A 2004-07-26 2004-07-26 Ti BASED HIGH STRENGTH SUPERELASTIC ALLOY Pending JP2006037150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004217024A JP2006037150A (en) 2004-07-26 2004-07-26 Ti BASED HIGH STRENGTH SUPERELASTIC ALLOY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004217024A JP2006037150A (en) 2004-07-26 2004-07-26 Ti BASED HIGH STRENGTH SUPERELASTIC ALLOY

Publications (1)

Publication Number Publication Date
JP2006037150A true JP2006037150A (en) 2006-02-09

Family

ID=35902459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004217024A Pending JP2006037150A (en) 2004-07-26 2004-07-26 Ti BASED HIGH STRENGTH SUPERELASTIC ALLOY

Country Status (1)

Country Link
JP (1) JP2006037150A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008196044A (en) * 2006-04-04 2008-08-28 Daido Steel Co Ltd Beta-type titanium alloy and product thereof
KR100888679B1 (en) 2007-06-01 2009-03-13 한국생산기술연구원 Ti-BASE ALLOY WITH EXCELLENT BIOSTABILITY AND BIOCOMPATIBILITY
JP2010001503A (en) * 2008-06-18 2010-01-07 Daido Steel Co Ltd beta TYPE TITANIUM ALLOY
US8512486B2 (en) 2006-04-04 2013-08-20 Daido Tokushuko Kabushiki Kaisha Beta-type titanium alloy and product thereof
CN109097628A (en) * 2018-10-10 2018-12-28 广州宇智科技有限公司 A kind of novel fire resistant titanium alloy that the 500-600 degree under non-oxidizing atmosphere uses
CN112538587A (en) * 2019-09-20 2021-03-23 尼瓦罗克斯-法尔股份公司 Balance spring for a timepiece movement
CN114150182A (en) * 2021-11-30 2022-03-08 长安大学 Nine-element system ultrahigh-strength two-phase titanium alloy and processing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192755A (en) * 2000-01-13 2001-07-17 Akihisa Inoue High strength superelastic alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192755A (en) * 2000-01-13 2001-07-17 Akihisa Inoue High strength superelastic alloy

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008196044A (en) * 2006-04-04 2008-08-28 Daido Steel Co Ltd Beta-type titanium alloy and product thereof
US8512486B2 (en) 2006-04-04 2013-08-20 Daido Tokushuko Kabushiki Kaisha Beta-type titanium alloy and product thereof
KR100888679B1 (en) 2007-06-01 2009-03-13 한국생산기술연구원 Ti-BASE ALLOY WITH EXCELLENT BIOSTABILITY AND BIOCOMPATIBILITY
JP2010001503A (en) * 2008-06-18 2010-01-07 Daido Steel Co Ltd beta TYPE TITANIUM ALLOY
CN109097628A (en) * 2018-10-10 2018-12-28 广州宇智科技有限公司 A kind of novel fire resistant titanium alloy that the 500-600 degree under non-oxidizing atmosphere uses
CN112538587A (en) * 2019-09-20 2021-03-23 尼瓦罗克斯-法尔股份公司 Balance spring for a timepiece movement
CN114150182A (en) * 2021-11-30 2022-03-08 长安大学 Nine-element system ultrahigh-strength two-phase titanium alloy and processing method thereof

Similar Documents

Publication Publication Date Title
JP2001348635A (en) Titanium alloy excellent in cold workability and work hardening
JP3335224B2 (en) Method for producing high formability copper-based shape memory alloy
JP4256668B2 (en) Golf club
JP2010007166A (en) alpha+beta TYPE TITANIUM ALLOY FOR CASTING, AND GOLF CLUB HEAD USING THE SAME
JP5005889B2 (en) High strength low Young&#39;s modulus titanium alloy and its manufacturing method
JP4152050B2 (en) Ti-Zr alloy
JP2009114513A (en) TiAl-BASED ALLOY
JP5201202B2 (en) Titanium alloy for golf club face
JP2006037150A (en) Ti BASED HIGH STRENGTH SUPERELASTIC ALLOY
JP2010275606A (en) Titanium alloy
JP2006089825A (en) Superelastic titanium alloy for living body
JP5305067B2 (en) Stress buffer material made of aluminum alloy
WO2013125039A1 (en) Titanium alloy for use in golf-club face
JP2006183104A (en) High-strength titanium alloy having excellent cold workability
US20080193323A1 (en) Ti-Nb-Zr Alloy
JP4412174B2 (en) Low rigidity and high strength titanium alloy with excellent cold workability, glasses frame and golf club head
JP2006089826A (en) Superelastic titanium alloy for living body
JP2000273598A (en) Manufacture of high strength coil cold rolled titanium alloy sheet excellent in workability
JP2008101234A (en) Ti-BASED HIGH-STRENGTH SUPERELASTIC ALLOY
JP2004197112A (en) Method of producing biological superelastic titanium alloy
JPWO2004042096A1 (en) Low rigidity and high strength titanium alloy with excellent cold workability, glasses frame and golf club head
JPS59215448A (en) Functional alloy
JP2007016313A (en) Structural member for eyeglass, eyeglass frame comprising the structural member, and processes for production of the structural member and the eyeglass frame
JP4984198B2 (en) Low thermal expansion alloy
JP2008231553A (en) Method for producing low elastic titanium alloy sheet and titanium alloy sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070705

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090911

A131 Notification of reasons for refusal

Effective date: 20090929

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110208