JP2006035671A - Frp structure - Google Patents

Frp structure Download PDF

Info

Publication number
JP2006035671A
JP2006035671A JP2004219786A JP2004219786A JP2006035671A JP 2006035671 A JP2006035671 A JP 2006035671A JP 2004219786 A JP2004219786 A JP 2004219786A JP 2004219786 A JP2004219786 A JP 2004219786A JP 2006035671 A JP2006035671 A JP 2006035671A
Authority
JP
Japan
Prior art keywords
frp structure
frp
thermoplastic resin
layer
resin foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004219786A
Other languages
Japanese (ja)
Inventor
英樹 ▲ぬで▼島
Hideki Nudeshima
Jiro Sonoda
治朗 園田
Takeshi Yoshida
毅 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2004219786A priority Critical patent/JP2006035671A/en
Publication of JP2006035671A publication Critical patent/JP2006035671A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an FRP structure having high rigidity, lightweight property as well as high X ray transmission and damping performance, and to provide a suitable FRP structure for the member of X-ray instruments and the like. <P>SOLUTION: The FRP structure comprises the following structural elements: a thermoplastic resin foam layer [A]; an FRP layer [B] having a continuous carbon fiber as a reinforced fiber; and a sheet-like resin layer [C]. The FRP structure has a laminated composition having the structural element [C] with a thickness of 5-200 μm provided on one side of the structural element [B] and the structural element [A] provided on the other side, and a neutral plane of the FRP structure is in the inside of [A]. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、制振性に優れたFRP構造に関し、さらに詳しくは高剛性、軽量性、X線透過性が必要な医療機器部品等の部材として好適な良外観FRP構造に関する。   The present invention relates to an FRP structure excellent in vibration damping properties, and more particularly to a good-appearance FRP structure suitable as a member of a medical device component or the like that requires high rigidity, light weight, and X-ray permeability.

X線撮影用カセッテ、X線画像変換パネルやCT天板等の高いX線透過性を必要とする医療機器部品においては、アルミニウムに替わり、アルミニウムよりもX線透過性に優れ、軽量である繊維強化プラスチック(以下、FRPと略記する。)製、特に炭素繊維強化プラスチック(以下、CFRPと略記する。)製の構造体が提案されている。   For medical equipment parts that require high X-ray transmission, such as cassettes for X-ray imaging, X-ray image conversion panels, and CT top panels, fibers that are superior to X-ray transmission and lighter than aluminum instead of aluminum A structure made of reinforced plastic (hereinafter abbreviated as FRP), particularly made of carbon fiber reinforced plastic (hereinafter abbreviated as CFRP) has been proposed.

CFRP構造体は、自重および荷重に対する撓みの低減や、衝撃に対して、必要な剛性、強度を確保するのに有効であるが、X線機器用部材の中にはX線技師が直接持ち運び、取り扱う部材があり、さらなる軽量化が求められている。   The CFRP structure is effective in reducing the deflection due to its own weight and load, and ensuring the necessary rigidity and strength against impacts. However, an X-ray engineer directly carries in the X-ray equipment members, There are members to handle, and further weight reduction is required.

また、X線撮影においては、撮影画像の鮮鋭化が必要な反面、人体へのX線被爆量低減のためX線照射量を低減することが求められている。より少ない照射量で鮮鋭な画像特性を得るためには、X線機器構造体のさらなるX線透過性の向上が必要である。   In X-ray imaging, it is necessary to sharpen the captured image, but it is required to reduce the X-ray irradiation amount in order to reduce the amount of X-ray exposure to the human body. In order to obtain sharp image characteristics with a smaller amount of irradiation, it is necessary to further improve the X-ray transmittance of the X-ray equipment structure.

かかる課題を解決せんとして、CFRP等の2層の剛性層の間に剛性層よりも密度が小さくX線透過性が良好な充填材層を含む放射線画像変換パネルが提案されている(特許文献1)。   In order to solve this problem, a radiation image conversion panel including a filler layer having a density lower than that of the rigid layer and good X-ray permeability between two rigid layers such as CFRP has been proposed (Patent Document 1). ).

この方法では、充分な軽量性、剛性、強度が得られ、X線透過性も向上するものの、撮影画像の鮮鋭化については、従来のCFRP構造体に比較してさほどの改善は見られず充分満足できるレベルには至っていない。   In this method, sufficient lightness, rigidity, and strength can be obtained, and the X-ray transmission is improved. However, the sharpness of the photographed image is not significantly improved as compared with the conventional CFRP structure. The level is not satisfactory.

また最近、安定したX線画像特性を得るために、撮影中に構造体自身が大きく振動しないように、外部から伝達される振動に対する制振性が必要であることがわかってきている。   Recently, in order to obtain stable X-ray image characteristics, it has been found that damping is required for vibration transmitted from the outside so that the structure itself does not vibrate greatly during imaging.

一般的に制振性を向上させるためには以下のような要件が有効である。   In general, the following requirements are effective for improving the vibration damping performance.

(1)高剛性化による構造体の振動初期振幅の低減
(2)高剛性化と軽量化による固有振動数の増大
(3)振動エネルギー変換に係る損失係数の増大
本観点から特許文献1について考察すると高剛性化と軽量化により上記(1)と(2)の要件はある程度満たされると考えられるが、(3)の要件については考慮されておらず、制振性は不十分なものである。
(1) Reduction of initial vibration amplitude of structure by high rigidity (2) Increase of natural frequency by high rigidity and light weight (3) Increase of loss factor related to vibration energy conversion Patent Document 1 is considered from this viewpoint Then, it is considered that the above requirements (1) and (2) are satisfied to some extent by increasing the rigidity and weight, but the requirement (3) is not taken into account, and the damping performance is insufficient. .

このように、X線透過性が必要な医療機器部品等において、充分な制振性を有する構造材はこれまで提案されていなかった。
特開2002−303696 号公報
As described above, a structural material having sufficient vibration damping has not been proposed so far in medical device parts and the like that require X-ray transparency.
JP 2002-303696 A

本発明の目的は、かかる従来技術の欠点を鑑み、高剛性を備えながら、軽量性、X線透過性、制振性を同時に向上させたFRP構造体を提供することを目的とする。また、X線機器用構造体等に好適なFRP構造体を提供することを目的とする。       An object of the present invention is to provide an FRP structure in which lightness, X-ray permeability, and vibration damping properties are improved at the same time while having high rigidity in view of the drawbacks of the conventional technology. It is another object of the present invention to provide a suitable FRP structure for an X-ray device structure.

上記目的を達成するために本発明によれば、次の手段を採用するものである。すなわち、次の構成要素[A]、[B]、[C]を含み、構成要素[B]の片側に厚みが5〜300μmの構成要素[C]、もう一方の側に構成要素[A]となる積層構成を有し、かつFRP構造体の中立面が[A]の内部にあることを特徴とする。       In order to achieve the above object, according to the present invention, the following means are adopted. That is, it includes the following constituent elements [A], [B], and [C], the constituent element [C] having a thickness of 5 to 300 μm on one side of the constituent element [B], and the constituent element [A] on the other side. And the neutral surface of the FRP structure is inside [A].

[A]熱可塑性樹脂発泡体層
[B]連続炭素繊維を強化繊維とするFRP層
[C]シート状樹脂層
なお、本発明において、FRP層とは、異なる種類の強化繊維を備えたり、連続強化繊維が異なる角度で配されて、厚み方向に不均一な分布を備えていたとしても、同一のマトリックス樹脂によって一体化されているものは単一のFRP層と定義する。
[A] Thermoplastic resin foam layer [B] FRP layer using continuous carbon fiber as reinforcing fiber [C] Sheet-like resin layer In the present invention, the FRP layer includes a different type of reinforcing fiber or is continuous. Even if the reinforcing fibers are arranged at different angles and have a non-uniform distribution in the thickness direction, those integrated by the same matrix resin are defined as a single FRP layer.

また本発明において、中立面とは、厚み方向に外力を負荷し曲げ変形が生じた場合に、曲げ応力および曲げ歪が零になり伸縮しない面と定義する。   In the present invention, the neutral surface is defined as a surface that does not expand or contract because bending stress and bending strain become zero when an external force is applied in the thickness direction and bending deformation occurs.

上記構成要素[A]が、見かけ密度0.03〜0.7g/cmであることが好ましい。また上記構成要素[A]が、25℃での110Hzに対する損失係数が0.05〜1.5であることが好ましい。ここでいう損失係数は、JIS K 7244に基づき測定される。 The component [A] preferably has an apparent density of 0.03 to 0.7 g / cm 3 . The component [A] preferably has a loss coefficient of 0.05 to 1.5 with respect to 110 Hz at 25 ° C. The loss factor here is measured based on JIS K 7244.

さらに上記構成要素[A]が、せん断弾性率が0.01〜0.3GPaであることが好ましい。ここでいう熱可塑性樹脂発泡体のせん断弾性率とは、ASTM D3846に基づき測定される物性値である。またさらに上記構成要素[A]が、発泡セルの平均直径が1mm以下であることが好ましい。   Furthermore, the component [A] preferably has a shear modulus of 0.01 to 0.3 GPa. The shear modulus of elasticity of the thermoplastic resin foam here is a physical property value measured based on ASTM D3846. Furthermore, the constituent element [A] preferably has an average diameter of the foamed cell of 1 mm or less.

上記構成要素[B]が、引張弾性率200〜850GPaの連続炭素繊維を30〜80重量%含むことが好ましい。また上記構成要素[B]が、一方向に引き揃えた連続炭素繊維を異なる角度で積層した構成を含むことが好ましい。   The component [B] preferably contains 30 to 80% by weight of continuous carbon fiber having a tensile modulus of 200 to 850 GPa. Moreover, it is preferable that the said component [B] contains the structure which laminated | stacked the continuous carbon fiber arranged in one direction at a different angle.

上記構成要素[A]の総厚みTa(mm)と構成要素[B]の総厚みTb(mm)との比Ta/Tbが、0.5〜10であることが好ましい。   The ratio Ta / Tb between the total thickness Ta (mm) of the component [A] and the total thickness Tb (mm) of the component [B] is preferably 0.5 to 10.

上記構成要素[C]が、引張弾性率が0.5〜5GPaの樹脂からなることが好ましい。シート状樹脂層の引張弾性率とは、JIS K 7161に基づく物性値である。また上記構成要素[C]が、25℃での110Hzに対する損失係数が0.01〜1.00の樹脂からなることが好ましい。   The component [C] is preferably made of a resin having a tensile elastic modulus of 0.5 to 5 GPa. The tensile elastic modulus of the sheet-like resin layer is a physical property value based on JIS K 7161. Moreover, it is preferable that the said component [C] consists of resin whose loss coefficient with respect to 110Hz at 25 degreeC is 0.01-1.00.

構成要素[A]を構成する熱可塑性樹脂発泡体の25℃での110Hzに対する損失係数ηaと構成要素[C]を構成する熱可塑性樹脂の25℃での110Hzに対する損失係数ηcとの比ηa/ηcが、1〜100であることが好ましい。   Ratio ηa / loss factor ηa for 110 Hz at 25 ° C. of the thermoplastic resin foam constituting the component [A] and loss factor ηc for 110 Hz at 25 ° C. of the thermoplastic resin constituting the component [C] ηc is preferably 1 to 100.

全体の見かけ密度が、0.2〜1.4g/cmであることを特徴とする。また全体の厚みが、0.8〜5.0mmであることが好ましい。 The overall apparent density is 0.2 to 1.4 g / cm 3 . Moreover, it is preferable that the whole thickness is 0.8-5.0 mm.

FRP構造体は、構成要素[A]の両面に構成要素[B]を配置した構造を含むことが好ましい。少なくとも片側表面が構成要素[C]であり、該表面の算術平均粗さ(Ra)が、0.05〜0.5μmであることが好ましい。ここでいう表面の算術平均粗さ(Ra)とは、JIS B 0601に基づき測定される。   The FRP structure preferably includes a structure in which the constituent element [B] is arranged on both sides of the constituent element [A]. It is preferable that at least one surface is the component [C], and the arithmetic average roughness (Ra) of the surface is 0.05 to 0.5 μm. The arithmetic mean roughness (Ra) of the surface here is measured based on JIS B 0601.

本発明のFRP構造体は、X線透過性が必要な医療機器部品として使用されることが好ましい。   The FRP structure of the present invention is preferably used as a medical device component that requires X-ray transparency.

上記構成要素[A]を構成する熱可塑性樹脂発泡体の成形後の厚みが成形前の厚みの0.2〜0.95倍となるように、加熱加圧成形し、構成要素[A]、[B]および[C]を一体化することが好ましい。   The thermoplastic resin foam constituting the component [A] is heat-press molded so that the thickness after molding of the thermoplastic resin foam is 0.2 to 0.95 times the thickness before molding, and the component [A], [B] and [C] are preferably integrated.

また、上記構成要素[A]を構成する熱可塑性樹脂発泡体の成形後の厚みが成形前の厚みの0.2〜0.95倍となるように、加熱加圧成形し、構成要素[A]および[B]を一体化した後、構成要素[C]を形成することも好ましい。   The thermoplastic resin foam constituting the constituent element [A] is heat-press molded so that the thickness after molding is 0.2 to 0.95 times the thickness before molding, and the constituent element [A ] And [B] are integrated, and it is also preferable to form component [C].

本発明によれば、熱可塑性樹脂発泡体層、連続炭素繊維を強化繊維とするFRP層、およびシート状樹脂層が順に配された積層構造を含み、FRP構造体の中立面が熱可塑性樹脂発泡体層の内部に配置されていて、シート状樹脂層の厚みが5〜200μmの範囲内であることから、高剛性、軽量かつX線透過性が高く、制振性に優れたFRP構造体を得ることができる。   According to the present invention, it includes a laminated structure in which a thermoplastic resin foam layer, an FRP layer having continuous carbon fibers as reinforcing fibers, and a sheet-like resin layer are sequentially arranged, and the neutral surface of the FRP structure is a thermoplastic resin. FRP structure that is placed inside the foam layer and the sheet-like resin layer has a thickness in the range of 5 to 200 μm, and thus has high rigidity, light weight, high X-ray permeability, and excellent vibration damping. Can be obtained.

以下、本発明の好ましい実施形態の例を図面を参照しながら説明する。         Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

図1、図2、図3はいずれも、本発明によるFRP構造体の斜視図である。
これらは、いずれも熱可塑性樹脂発泡体層1、およびシート状樹脂層3がFRP層2を挟んで配されている積層構造を含んだFRP構造体である。
1, 2 and 3 are all perspective views of the FRP structure according to the present invention.
Each of these is an FRP structure including a laminated structure in which a thermoplastic resin foam layer 1 and a sheet-like resin layer 3 are arranged with an FRP layer 2 interposed therebetween.

FRP層2は、高い強度や剛性を確保するために必要である。強化繊維にマトリックス樹脂を含浸させて形成する。本発明では、軽量性とX線透過率をより高く確保するため、より少ない厚みで強度や剛性といった機械特性を得られることから、強化繊維の形態としては、連続繊維であることが必要である。   The FRP layer 2 is necessary to ensure high strength and rigidity. It is formed by impregnating a reinforcing fiber with a matrix resin. In the present invention, in order to ensure higher lightness and X-ray transmittance, mechanical properties such as strength and rigidity can be obtained with a smaller thickness. Therefore, the form of the reinforcing fiber needs to be a continuous fiber. .

強化繊維の材質としては、無機繊維、有機繊維の中で、比強度、比弾性率に優れ、X線透過性が良好な炭素繊維を用いる。炭素繊維として、ポリアクリロニトリル(PAN)系、ピッチ系、セルロース系など挙げられるが、強度・剛性のバランスからはPAN系の炭素繊維が好ましく、引張弾性率が200〜850GPaであることがより好ましい。引張弾性率が200GPa以上であれば、FRP層2に必要な剛性を効率よく得られることから好ましい。引張弾性率は高いほうが、少ない炭素繊維含有量で必要な剛性を得ることができるため、軽量性およびX線透過性の点でより好ましいため、現状技術レベルで入手しうるものを上限とした。さらに引張弾性率が高い炭素繊維があれば使用することが可能である。   As a material of the reinforcing fiber, a carbon fiber having excellent specific strength and specific elastic modulus and good X-ray permeability among inorganic fibers and organic fibers is used. Examples of the carbon fiber include polyacrylonitrile (PAN), pitch, and cellulose, but PAN-based carbon fiber is preferable from the balance of strength and rigidity, and a tensile elastic modulus is more preferably 200 to 850 GPa. A tensile modulus of 200 GPa or more is preferable because the rigidity necessary for the FRP layer 2 can be obtained efficiently. The higher the tensile modulus, the more the required rigidity can be obtained with a small carbon fiber content, which is more preferable in terms of light weight and X-ray permeability. Furthermore, if there is a carbon fiber having a high tensile elastic modulus, it can be used.

また、他の強化繊維、例えば、ガラス繊維、有機高弾性率繊維(例えば、米国デュポン(株)製のポリアラミド繊維“ケブラー”)、アルミナ繊維、シリコンカーバイド繊維、ボロン繊維、単価ケイ素繊維などの高強度、高弾性率繊維などを併用しても良い。   In addition, other reinforcing fibers such as glass fibers, organic high modulus fibers (for example, polyaramid fibers “Kevlar” manufactured by DuPont, USA), alumina fibers, silicon carbide fibers, boron fibers, unit price silicon fibers, etc. You may use together a strength, a high elastic modulus fiber, etc.

また、ポリアミド繊維、ポリエステル繊維、アクリル繊維、ポリオレフィン繊維、ビニロン繊維などの合成繊維や、有機天然繊維などを含んでも良い。   Further, synthetic fibers such as polyamide fibers, polyester fibers, acrylic fibers, polyolefin fibers, and vinylon fibers, and organic natural fibers may be included.

図4は、本発明によるFRP構造体中のFRP層2の一例を示す斜視図である。FRP層は通常、1方向に配向した連続炭素繊維4と、マトリックス樹脂5からなる層2’を複数層積層し、一体化したものである。積層数や連続炭素繊維4の各層の角度は特に限定されず、必要な強度や剛性に応じ任意に設定することができる。上記1方向に配向した層2’の各層はそれぞれ異なる配向方向に積層することが好ましい。異なる配向方向とは、少なくとも2種類以上の配向方向を備えていればよく、FRP層2を構成する複数の層2’の中には同じ配向角度からなる層2’を含んでいても良い。   FIG. 4 is a perspective view showing an example of the FRP layer 2 in the FRP structure according to the present invention. The FRP layer is usually formed by laminating a plurality of layers of continuous carbon fibers 4 oriented in one direction and a layer 2 ′ composed of a matrix resin 5. The number of layers and the angle of each layer of the continuous carbon fiber 4 are not particularly limited, and can be arbitrarily set according to required strength and rigidity. The layers of the layer 2 'oriented in the one direction are preferably laminated in different orientation directions. The different orientation directions only need to include at least two kinds of orientation directions, and a plurality of layers 2 ′ constituting the FRP layer 2 may include a layer 2 ′ having the same orientation angle.

またFRP層2の別の例として、連続炭素繊維の織物と、マトリックス樹脂5からなる層を含んだものも挙げることができるが、好ましくは、一方向に引き揃えた連続炭素繊維を異なる角度で複数層積層した図4に代表されるタイプの構造を含むものである。一方向に引き揃えられた連続炭素繊維は、連続炭素繊維の織物と比較すると、繊維の屈曲が少ないため、同じ引張弾性率の炭素繊維を同じ繊維含有率で使用した場合、より高い剛性を発現すること、また、炭素繊維が面内で均一に分布しやすいことに加えて、織り目等の空隙も生じないため、均一なX線透過性分布が得られやすいことから好ましい。   Another example of the FRP layer 2 may include a continuous carbon fiber fabric and a layer including a layer made of a matrix resin 5. Preferably, continuous carbon fibers aligned in one direction are formed at different angles. It includes a structure of the type represented by FIG. Continuous carbon fibers that are aligned in one direction exhibit less bending than continuous carbon fiber fabrics, and therefore exhibit higher rigidity when carbon fibers with the same tensile modulus are used at the same fiber content. In addition to the fact that the carbon fibers are likely to be uniformly distributed in the plane, there is no void such as a texture, so that a uniform X-ray transmission distribution is easily obtained.

またFRP層2は、引張弾性率200〜850GPaの範囲内の連続炭素繊維4をFRP層2の30〜80重量%の範囲内で含むことが好ましい。炭素繊維の含有率が30重量%未満の場合には、FRP層2が必要な剛性を得るための重量が大きくなるため、FRP構造体の軽量性を保持したまま高い剛性を得ることが難しくなる。反対に炭素繊維の含有率が80重量%より大きな場合には、強化繊維にマトリックス樹脂5を均一に含浸することが困難となり、FRP構造の強度不足や外観品位が著しく劣るなどの品質上の問題が発生する可能性がある。   Moreover, it is preferable that the FRP layer 2 contains the continuous carbon fiber 4 within the range of the tensile elastic modulus of 200 to 850 GPa within the range of 30 to 80% by weight of the FRP layer 2. When the carbon fiber content is less than 30% by weight, the weight required for the FRP layer 2 to obtain the required rigidity increases, so that it is difficult to obtain high rigidity while maintaining the light weight of the FRP structure. . On the other hand, when the carbon fiber content is higher than 80% by weight, it becomes difficult to uniformly impregnate the reinforcing fibers with the matrix resin 5, and the quality problems such as insufficient strength of the FRP structure and remarkably poor appearance quality. May occur.

マトリックス樹脂5としては、熱硬化性樹脂や熱可塑性樹脂を使用することができる。熱硬化性樹脂の具体例として、エポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、シアネート樹脂、ベンゾオキサジン樹脂、マレイミド樹脂、ポリイミド樹脂など、熱または光や電子線などの外部からのエネルギーにより硬化して、少なくとも部分的に三次元硬化物を形成する樹脂があげられる。熱可塑性樹脂の具体例として、ABS樹脂、ポリエチレンテレフタレート樹脂、ナイロン樹脂、ポリイミド樹脂などがある。本発明に適用するマトリックス樹脂としては、エポキシ樹脂などの熱硬化性樹脂が好ましい。   As the matrix resin 5, a thermosetting resin or a thermoplastic resin can be used. Specific examples of thermosetting resins include epoxy resin, phenol resin, unsaturated polyester resin, vinyl ester resin, cyanate resin, benzoxazine resin, maleimide resin, polyimide resin, etc., heat or energy from outside such as light or electron beam And a resin which is cured at least partially to form a three-dimensional cured product. Specific examples of the thermoplastic resin include ABS resin, polyethylene terephthalate resin, nylon resin, and polyimide resin. As matrix resin applied to this invention, thermosetting resins, such as an epoxy resin, are preferable.

熱硬化性マトリックス樹脂を使用した場合には、そのガラス転移温度は100℃以上、好ましくは120℃以上、さらに好ましくは150℃以上であることがよい。その理由は、本発明のFRP構造体は、100℃前後で塗装や蒸着などの表面処理工程を適用することがあり、マトリックス樹脂のガラス転移温度が100℃未満であると表面処理工程中にFRP構造体の剛性が低下し、変形や反りの問題が起きるからである。   When a thermosetting matrix resin is used, the glass transition temperature is 100 ° C. or higher, preferably 120 ° C. or higher, more preferably 150 ° C. or higher. The reason is that the FRP structure of the present invention may be applied with a surface treatment process such as painting or vapor deposition at around 100 ° C., and if the glass transition temperature of the matrix resin is less than 100 ° C. This is because the rigidity of the structure is lowered, causing problems of deformation and warping.

熱可塑性樹脂発泡体層1は、FRP構造体において軽量性を損なわずに断面2次モーメントを増加させ、FRP構造として高い剛性を得るためのものである。さらに熱可塑性樹脂発泡体層1は連続炭素繊維4を含むFRP層2よりも一般的に低密度であるためX線の透過性に優れる。   The thermoplastic resin foam layer 1 is for increasing the secondary moment of the cross section without impairing the light weight in the FRP structure, and obtaining high rigidity as the FRP structure. Furthermore, since the thermoplastic resin foam layer 1 is generally lower in density than the FRP layer 2 containing continuous carbon fibers 4, it is excellent in X-ray permeability.

X線透過性は、構造体材質の分子量および厚みに依存する。分子量および/または厚みが小さい程、一般的にX線透過性は向上する。すなわちFRP構造体は、見かけ密度が小さな熱可塑性樹脂発泡体層1を備え、かつ全体厚みが小さいほど、X線が透過しやすいため低照射量でも高コントラストでクリアな画像が得られる。医用放射線機器においては、構造体のX線の透過しやすさをにアルミニウム当量(mmAl)というパラメータで評価する。これは構造体のX線透過率がアルミニウムの厚さにして何mmに相当するかという尺度であり、アルミニウム当量が小さな値である程X線透過性が高く好ましい。   X-ray transparency depends on the molecular weight and thickness of the structure material. In general, the smaller the molecular weight and / or thickness, the better the X-ray transparency. That is, the FRP structure includes the thermoplastic resin foam layer 1 having a small apparent density, and the smaller the overall thickness, the more easily X-rays are transmitted. Therefore, a clear image can be obtained with high contrast even at a low dose. In medical radiology equipment, the ease of X-ray transmission of a structure is evaluated by a parameter called aluminum equivalent (mmAl). This is a measure of how much the X-ray transmittance of the structure corresponds to the thickness of the aluminum, and the smaller the aluminum equivalent, the higher the X-ray transmittance and the better.

また本発明のFRP構造体をX線機器用部材に用いた場合に、安定したX線画像特性を得るためには、撮影中に構造体外部からの加振に対する構造体の制振性を高める必要がる。そのための主な要件は以下の通りである。   In order to obtain stable X-ray image characteristics when the FRP structure of the present invention is used as a member for an X-ray device, the vibration damping performance of the structure against vibration from outside the structure is improved during imaging. I need it. The main requirements for this are as follows.

(1)構造体の振動初期振幅の低減
(2)構造体の固有振動数の増大
(3)構造体の損失係数の増大
高剛性化が(1)と(2)に効き、これには部材の高弾性化および/または厚肉化が有効である。本発明では、弾性率が高い連続炭素繊維を有したFRP層2を備えることによって高剛性化を図り、(1)と(2)に対し効果を発揮する。
(1) Reduction of initial vibration amplitude of structure (2) Increase of natural frequency of structure (3) Increase of loss factor of structure High rigidity is effective for (1) and (2). It is effective to increase the elasticity and / or increase the thickness. In the present invention, by providing the FRP layer 2 having continuous carbon fibers having a high elastic modulus, high rigidity is achieved, and effects are exerted on (1) and (2).

また軽量化が、(2)に効き、これには部材の低密度化および/または薄肉化が有効である。本発明では、熱可塑性樹脂発泡体層1を備えることによって低密度化を図り、(2)に対して効果を発揮する。   Further, weight reduction is effective for (2), and it is effective to reduce the density and / or thickness of the member. In this invention, density reduction is achieved by providing the thermoplastic resin foam layer 1, and an effect is demonstrated with respect to (2).

さらに動的粘弾性の向上および/または構造体内部での摩擦が振動エネルギーを他のエネルギーへ変換することから(3)に効く。本発明では、一般的に金属や熱硬化性樹脂よりも動的粘弾性が高い熱可塑性樹脂を使用することにより、外部からの加振に対して熱可塑性樹脂発泡体層1の振動エネルギーが内部損失で熱エネルギーに変換され、振動振幅が減衰される。またFRP層2の内部で強化繊維とマトリックス樹脂との間の摩擦によって振動エネルギーが熱エネルギーに変換される。さらに、FRP層2が熱可塑性樹脂発泡体層1に接していることによって、FRP層2を伝達する振動エネルギーが熱可塑性樹脂層1との界面で減衰することも期待できる。熱可塑性樹脂発泡体層1の表面は、セル構造によって平滑な面とはなりにくいため、FRP層2との界面は平面接触の場合と比較して接触面積が増加し振動エネルギーの減衰には特に効果的である。シート状樹脂層3も熱可塑性樹脂発泡体層1と同様に軽量性、X線透過性および制振性が期待できる。また、FRP層2と接して配されることにより、FRP層2の繊維模様や黒色を隠蔽し優れた意匠性をも期待できる。   Further, the improvement in dynamic viscoelasticity and / or friction within the structure converts vibration energy into other energy, which is effective in (3). In the present invention, generally, by using a thermoplastic resin having a higher dynamic viscoelasticity than a metal or a thermosetting resin, the vibration energy of the thermoplastic resin foam layer 1 is increased with respect to external vibration. Loss is converted into thermal energy, and the vibration amplitude is attenuated. Also, vibration energy is converted into heat energy by friction between the reinforcing fiber and the matrix resin inside the FRP layer 2. Furthermore, since the FRP layer 2 is in contact with the thermoplastic resin foam layer 1, vibration energy transmitted through the FRP layer 2 can be expected to be attenuated at the interface with the thermoplastic resin layer 1. Since the surface of the thermoplastic resin foam layer 1 is unlikely to be a smooth surface due to the cell structure, the contact area with the FRP layer 2 increases compared to the case of planar contact, and is particularly effective in damping vibration energy. It is effective. Similarly to the thermoplastic resin foam layer 1, the sheet-like resin layer 3 can be expected to be lightweight, X-ray transmissive and vibration-damping. Moreover, by arranging in contact with the FRP layer 2, it is possible to conceal the fiber pattern and black color of the FRP layer 2 and to expect excellent design.

またこの積層構造において、FRP構造体の中立面は熱可塑性樹脂発泡体層1の内部に配置されることが必要である。これによりFRP層2およびシート状樹脂層3と比較して弾性率の小さな熱可塑性樹脂発泡体層1に対する曲げ応力による変形の影響を低減することが可能で、FRP構造体の曲げ剛性向上が図れる。   In this laminated structure, the neutral surface of the FRP structure needs to be disposed inside the thermoplastic resin foam layer 1. As a result, it is possible to reduce the influence of deformation due to bending stress on the thermoplastic resin foam layer 1 having a smaller elastic modulus than the FRP layer 2 and the sheet-like resin layer 3, and to improve the bending rigidity of the FRP structure. .

またシート状樹脂層3の厚みは5〜300μmの範囲内であることが必要である。これは厚みが5μm未満であると制振効果が不十分となるためである。また、厚みが50μm以上であれば隠蔽効果により、外観意匠性が向上するため好ましい。反対に厚みが300μmより大きな場合には、FRP構造体の比弾性率の低下を招き、FRP構造体の剛性低下、重量増加に繋がり好ましくない。   Moreover, the thickness of the sheet-like resin layer 3 needs to be in the range of 5 to 300 μm. This is because the vibration damping effect becomes insufficient when the thickness is less than 5 μm. Moreover, if thickness is 50 micrometers or more, since an external appearance design property improves with the concealment effect, it is preferable. On the other hand, when the thickness is larger than 300 μm, the specific elastic modulus of the FRP structure is lowered, which leads to a decrease in rigidity and an increase in weight of the FRP structure.

熱可塑性樹脂発泡体層1の材質は、ポリアミド樹脂、変性フェニレンエーテル樹脂、ポリアセタール樹脂、ポリフェニレンサルファイド樹脂、液晶ポリエステル、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリシクロヘキサンジメチルテレフタレートなどのポリエステル樹脂、ポリアリレート樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、HIPS樹脂、ABS樹脂、AES樹脂、AAS樹脂などのスチレン系樹脂、ポリメチルメタクリレート樹脂などのアクリル樹脂、塩化ビニル、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂、変性ポリオレフィン樹脂、熱可塑性ポリイミド、ポリメタクリルイミド、ポリエーテルイミドなどのイミド系樹脂、さらにはエチレン/プロピレン共重合体、エチレン/1‐ブテン共重合体、エチレン/プロピレン/ジエン共重合体、エチレン/一酸化炭素/ジエン共重合体、エチレン/(メタ)アクリル酸グリシジル、エチレン/酢酸ビニル/(メタ)アクリル酸グリシジル共重合体、ポリエーテルエステルエラストマー、ポリエーテルエーテルエラストマー、ポリエーテルエステルアミドエラストマー、ポリエステルアミドエラストマー、ポリエステルエステルエラストマーなどの各種エラストマー類などがあるがこれらに限定されるものではなく、これらを単独で用いてもよいし、2種類以上の混合物であってもよい。   The material of the thermoplastic resin foam layer 1 is polyamide resin, modified phenylene ether resin, polyacetal resin, polyphenylene sulfide resin, liquid crystal polyester, polyethylene terephthalate, polybutylene terephthalate, polyester resin such as polycyclohexanedimethyl terephthalate, polyarylate resin, polycarbonate Resin, polystyrene resin, HIPS resin, ABS resin, AES resin, styrene resin such as AAS resin, acrylic resin such as polymethyl methacrylate resin, polyolefin resin such as vinyl chloride, polyethylene, polypropylene, modified polyolefin resin, thermoplastic polyimide, Imide resins such as polymethacrylimide and polyetherimide, ethylene / propylene copolymer, ethylene / 1- Ten copolymer, ethylene / propylene / diene copolymer, ethylene / carbon monoxide / diene copolymer, ethylene / (meth) acrylate glycidyl, ethylene / vinyl acetate / (meth) acrylate glycidyl copolymer, poly There are various elastomers such as ether ester elastomers, polyether ether elastomers, polyether ester amide elastomers, polyester amide elastomers, polyester ester elastomers, etc., but are not limited to these, and these may be used alone, Two or more types of mixtures may be used.

本発明のFRP構造体においては、熱可塑性樹脂発泡体層1は、見かけ密度が0.03〜0.7g/cmの熱可塑性樹脂発泡体からなることが好ましい。熱可塑性樹脂発泡体の見かけ密度が0.03g/cm以上であれば、FRP構造として十分な強度や剛性が確保でき好ましい。また見かけ密度が0.7g/cm以下の場合には、軽量性やX線透過性が良好となり、設計の自由度が広がるため好ましい。 In the FRP structure of the present invention, the thermoplastic resin foam layer 1 is preferably made of a thermoplastic resin foam having an apparent density of 0.03 to 0.7 g / cm 3 . If the apparent density of the thermoplastic resin foam is 0.03 g / cm 3 or more, it is preferable because sufficient strength and rigidity can be secured for the FRP structure. In addition, when the apparent density is 0.7 g / cm 3 or less, the lightness and X-ray transparency are good, and the degree of freedom of design is widened.

また、熱可塑性樹脂発泡体は、25℃での110Hzに対する損失係数が0.05〜1.5の範囲内であることが好ましい。損失係数が0.05以上であれば、振動エネルギーが効率よく減衰する。一方、振動エネルギーの減衰の観点からは損失係数は大きい方が好ましいが、一般に損失係数が1.5を超える領域では、剛性の低下が大きくなるため、損失係数は1.5以下である方が設計上の制約が少なくなることから好ましい。   Further, the thermoplastic resin foam preferably has a loss coefficient with respect to 110 Hz at 25 ° C. in the range of 0.05 to 1.5. If the loss coefficient is 0.05 or more, vibration energy is efficiently attenuated. On the other hand, a larger loss factor is preferable from the viewpoint of vibration energy attenuation. However, in general, in a region where the loss factor exceeds 1.5, the loss of rigidity increases, so the loss factor is preferably 1.5 or less. This is preferable because design constraints are reduced.

また、熱可塑性樹脂発泡体層1はFRP構造体中で中立面を含んで配されるため、FRP構造体の曲げ剛性には曲げ弾性率よりもせん断弾性率の寄与が大きい。また、せん断弾性率が0.3GPaを超える領域では、一般的に損失係数が小さくなることから、制振性が低下する。係る観点から熱可塑性樹脂発泡体層1は、せん断弾性率が0.01〜0.3GPaの熱可塑性樹脂発泡体からなることが好ましい。   In addition, since the thermoplastic resin foam layer 1 is disposed including the neutral plane in the FRP structure, the shear elastic modulus contributes more to the bending rigidity of the FRP structure than the bending elastic modulus. Further, in a region where the shear elastic modulus exceeds 0.3 GPa, since the loss coefficient is generally small, the vibration damping performance is lowered. From such a viewpoint, the thermoplastic resin foam layer 1 is preferably made of a thermoplastic resin foam having a shear modulus of 0.01 to 0.3 GPa.

また熱可塑性樹脂発泡体層1は、発泡セルの平均直径が1mm以下である熱可塑性樹脂発泡体からなることが好ましい。これは平均直径が1mm以下であれば、熱可塑性樹脂発泡体層1の厚みが薄い場合(例えば2mm以下の薄肉厚の場合等)でも、強度のばらつきが生じ難く、FRP構造体が安定した強度を得易くなるとともに、透過したX線がより均一な強度分布となり、また、熱可塑性樹脂発泡体層1の内部でX線の散乱が生じ難くなることから好ましい。   Moreover, it is preferable that the thermoplastic resin foam layer 1 consists of a thermoplastic resin foam whose average diameter of a foam cell is 1 mm or less. If the average diameter is 1 mm or less, even if the thickness of the thermoplastic resin foam layer 1 is thin (for example, if it is a thin wall thickness of 2 mm or less, etc.), the strength variation hardly occurs, and the FRP structure has a stable strength. This is preferable because X-rays that have passed through have a more uniform intensity distribution and are less likely to scatter X-rays inside the thermoplastic resin foam layer 1.

さらに、構成要素[A]である熱可塑性樹脂発泡体層1の総厚みTa(mm)と構成要素[B]であるFRP層2の総厚みTb(mm)との比Ta/Tbが、0.5〜10の範囲内であることが好ましい。これは、該比が0.5以上であれば、FRP構造体としての制振性やX線透過性が、熱可塑性樹脂発泡体層1の十分な厚みによって確保することが可能になり、設計の自由度が高くなる。また10以下であれば、曲げ剛性や強度の低下の点を懸念せず設計することができることから好ましい。   Further, the ratio Ta / Tb between the total thickness Ta (mm) of the thermoplastic resin foam layer 1 as the component [A] and the total thickness Tb (mm) of the FRP layer 2 as the component [B] is 0. Preferably it is in the range of 5-10. If this ratio is 0.5 or more, it becomes possible to ensure the vibration damping property and X-ray permeability as the FRP structure by a sufficient thickness of the thermoplastic resin foam layer 1. The degree of freedom increases. Moreover, if it is 10 or less, it is preferable since it can design without worrying about the point of bending rigidity and a fall of intensity | strength.

またシート状樹脂層3は、前記FRP層2のマトリックス樹脂5で挙げたような各種熱硬化性樹脂や、前記熱可塑性樹脂発泡体層1で挙げたような各種熱可塑性樹脂が使用できる。またシート状樹脂層3は、同種または異種の合成樹脂からなる織物や不織布を含んでいてもよい。さらに、シート状樹脂層3は、自由度の高い色調や、鏡面に近い平滑な面、シボなどの意匠性が高い表面構造などを比較的容易に得ることができるものであり、FRP層2の繊維模様や黒色を隠蔽することもできる。シート状樹脂層3の形成としては、フィルム、シート材、不織布をFRP構造体の表面に配設してもよいし、溶融した熱可塑性樹脂を塗布、コーティング、成形してもよい。   The sheet-like resin layer 3 can be made of various thermosetting resins such as those mentioned in the matrix resin 5 of the FRP layer 2 or various thermoplastic resins mentioned in the thermoplastic resin foam layer 1. The sheet-like resin layer 3 may include a woven fabric or a non-woven fabric made of the same kind or different kinds of synthetic resins. Furthermore, the sheet-like resin layer 3 can obtain a color tone having a high degree of freedom, a smooth surface close to a mirror surface, a surface structure having a high design such as a texture, and the like. The fiber pattern and black color can also be concealed. As the formation of the sheet-like resin layer 3, a film, a sheet material, or a nonwoven fabric may be disposed on the surface of the FRP structure, or a molten thermoplastic resin may be applied, coated, or molded.

またシート状樹脂層3は、引張弾性率が0.5〜5GPaの範囲内の樹脂からなることが好ましい。これはFRP構造体が高い剛性を確保するために有効である。またシート状樹脂層3は、25℃での110Hzに対する損失係数が0.01〜1.00の範囲内である樹脂からなることが好ましい。これは前記熱可塑性樹脂発泡体層1と同様に振動エネルギーの高い減衰と剛性とのバランスを保ち、設計の制約を少なくするために有効である。   Moreover, it is preferable that the sheet-like resin layer 3 consists of resin in the range whose tensile elasticity modulus is 0.5-5GPa. This is effective for ensuring high rigidity of the FRP structure. Moreover, it is preferable that the sheet-like resin layer 3 consists of resin whose loss coefficient with respect to 110 Hz in 25 degreeC exists in the range of 0.01-1.00. This is effective for maintaining a balance between high damping of vibration energy and rigidity, and reducing design constraints, as in the thermoplastic resin foam layer 1.

構成要素[A]を構成する熱可塑性樹脂発泡体の25℃での110Hzに対する損失係数ηaと構成要素[C]を構成する熱可塑性樹脂の25℃での110Hzに対する損失係数ηcとの比ηa/ηcは、1〜100であることが好ましい。1以上であると、振動減衰効果の高い中立面付近に、損失係数の大きな構造を配置することが可能となりFRP構造体の制振性を高めるために好ましい。100以下の場合には、制振性と曲げ剛性との適切なバランスを保持することが可能で、設計の制約を少なくするために好ましい。   Ratio ηa / loss factor ηa for 110 Hz at 25 ° C. of the thermoplastic resin foam constituting the component [A] and loss factor ηc for 110 Hz at 25 ° C. of the thermoplastic resin constituting the component [C] ηc is preferably 1 to 100. When it is 1 or more, it is possible to dispose a structure with a large loss coefficient in the vicinity of a neutral surface having a high vibration damping effect, which is preferable in order to improve the damping performance of the FRP structure. In the case of 100 or less, it is possible to maintain an appropriate balance between vibration damping properties and bending rigidity, which is preferable in order to reduce design restrictions.

またさらに、FRP構造体全体の見かけ密度は、0.2〜1.4g/cmの範囲内であることが好ましい。これは持ち運び性、X線透過性および制振性を向上させるためには見かけ密度1.4g/cm以下の軽量性が有効である。一方密度0.2g/cm以上の場合、十分な強度や曲げ剛性を得易く、設計上の制約が少なくすることができるため好ましい。 Furthermore, the apparent density of the entire FRP structure is preferably in the range of 0.2 to 1.4 g / cm 3 . In order to improve portability, X-ray permeability and vibration damping properties, a light weight with an apparent density of 1.4 g / cm 3 or less is effective. On the other hand, a density of 0.2 g / cm 3 or more is preferable because sufficient strength and bending rigidity can be easily obtained, and design restrictions can be reduced.

またFRP構造体全体の厚みは、0.8〜5.0mmの範囲内であることが好ましい。これは0.8mm以上の厚みであると、軽量性やX線透過性の向上と、強度や剛性、制振性の確保とが適切にバランスされ、設計の制約を少なくすることが可能である。また反対に厚みが5.0mm以下の場合には、軽量性やX線透過性が向上するとともに、構造体として装置の一部に組み込まれる際に、薄肉であるため部品間の干渉が生じることが少なく装置設計上の厚みの制限を受けにくいことから好ましい。   Moreover, it is preferable that the thickness of the whole FRP structure exists in the range of 0.8-5.0 mm. When the thickness is 0.8 mm or more, the improvement in lightness and X-ray permeability is properly balanced with the securing of strength, rigidity, and vibration damping properties, and design constraints can be reduced. . On the other hand, when the thickness is 5.0 mm or less, lightness and X-ray transmission are improved, and interference is caused between parts because it is thin when incorporated into a part of the apparatus as a structure. This is preferable because it is less likely to be restricted by the thickness of the device design.

さらに本発明のFRP構造体は、構成要素[A]の両面に構成要素[B]を配置した構造、すなわち、図2に示すように熱可塑性樹脂発泡体層1をFRP層2で両面から挟んだサンドイッチ構造を有することがより好ましい。これは、曲げ荷重に対して、曲げ応力が大きくなる両外層に曲げ弾性率が高いFRP層2を配置し、曲げ応力が零である中立面付近に曲げ弾性率が小さい熱可塑性樹脂発泡体層1を配置することによって、同一見かけ密度の下でFRP構造体の曲げ剛性を向上させる点で有効なためである。また、本構成を採ればFRP構造体の反りの低減に有効であり、表面の平滑性も得られやすいことからも好ましい。さらにより好ましくは、図3に示すような多層積層構造であり、層間の界面が多数存在するために、界面での振動減衰が大きいことから好ましい。   Furthermore, the FRP structure of the present invention has a structure in which the component [B] is disposed on both sides of the component [A], that is, the thermoplastic resin foam layer 1 is sandwiched from both sides by the FRP layer 2 as shown in FIG. More preferably, it has a sandwich structure. This is because the FRP layer 2 having a high bending elastic modulus is disposed on both outer layers where the bending stress increases with respect to the bending load, and the thermoplastic resin foam having a small bending elastic modulus in the vicinity of the neutral surface where the bending stress is zero. This is because the arrangement of the layer 1 is effective in improving the bending rigidity of the FRP structure under the same apparent density. Further, this configuration is preferable because it is effective in reducing the warpage of the FRP structure and the surface smoothness can be easily obtained. Even more preferably, it is a multilayer laminated structure as shown in FIG. 3, and since there are many interfaces between layers, vibration attenuation at the interfaces is large, which is preferable.

またさらにFRP構造体表面の少なくとも片面がシート状樹脂層3からなり、その表面の算術平均粗さ(Ra)が、0.05〜0.5μmの範囲内であることが好ましい。これはFRP構造体として高い意匠性を得る他に、FRP構造表面の後加工として、塗装や蒸着などの表面処理を施す場合があり、その際に均一厚みの表面膜厚が得られやすく、良好な表面品位を得るために有効であるとともに、FRP構造に入射するX線の散乱を低減する上で好ましい。   Furthermore, it is preferable that at least one surface of the surface of the FRP structure is composed of the sheet-like resin layer 3, and the arithmetic average roughness (Ra) of the surface is in the range of 0.05 to 0.5 μm. In addition to obtaining high designability as an FRP structure, surface treatment such as painting or vapor deposition may be applied as post-processing on the surface of the FRP structure. This is effective for obtaining a satisfactory surface quality and is preferable for reducing scattering of X-rays incident on the FRP structure.

本発明のFRP構造体は、軽量性を備えながら高強度、高剛性かつ制振性に優れたFRP構造体であり、X線透過性が必要な医療機器部品として使用されることが好ましい。   The FRP structure of the present invention is an FRP structure that is lightweight and has high strength, high rigidity, and excellent vibration damping properties, and is preferably used as a medical device component that requires X-ray permeability.

さらに本発明のFRP構造体は、熱可塑性樹脂発泡体層1の成形後の厚みが成形前の厚みの0.2〜0.95倍となるように、ホットプレス、オートクレーブ、レジントランスファーモールディング等の成形法を単独または併用することによって加熱加圧成形され、熱可塑性樹脂発泡体層1およびFRP層2が一体化することが好ましい。これにより加熱加圧成形される際に、熱可塑性樹脂発泡体層1が成形圧力の一部を吸収し、FRP構造体として面内で均一な圧力分布の下で成形がなされる。結果として厚みばらつきが小さく、残留歪や反りの小さなFRP構造体を提供できるため好ましい。なお、シート状樹脂層は、熱可塑性樹脂発泡体層1およびFRP層2と同時に一体化しても良いし、熱可塑性樹脂発泡体層1およびFRP層2を一体化後、貼着や塗装等により、形成しても良い。   Further, the FRP structure of the present invention is a hot press, an autoclave, a resin transfer molding, or the like so that the thickness of the thermoplastic resin foam layer 1 after molding is 0.2 to 0.95 times the thickness before molding. It is preferable that the thermoplastic resin foam layer 1 and the FRP layer 2 are integrated by heat and pressure molding by using a molding method alone or in combination. As a result, when the heat and pressure molding is performed, the thermoplastic resin foam layer 1 absorbs a part of the molding pressure, and the FRP structure is molded under a uniform pressure distribution in the plane. As a result, it is preferable because the FRP structure with small thickness variation and small residual strain and warpage can be provided. The sheet-like resin layer may be integrated simultaneously with the thermoplastic resin foam layer 1 and the FRP layer 2, or after the thermoplastic resin foam layer 1 and the FRP layer 2 are integrated, by pasting or painting. , May be formed.

(実施例)
実施例、比較例に使用した炭素繊維の引張弾性率の測定方法を以下に示す。
(Example)
The measuring method of the tensile elasticity modulus of the carbon fiber used for the Example and the comparative example is shown below.

(a)引張弾性率
JIS R 7601炭素繊維試験方法の樹脂含浸繊維束試験方法に準じて、引張弾性率の測定を行なった。試験片長は200mmとし、試験回数は5回で平均値を採用した。
(A) Tensile modulus The tensile modulus was measured according to the resin impregnated fiber bundle test method of the JIS R 7601 carbon fiber test method. The test piece length was 200 mm, the number of tests was 5 times, and the average value was adopted.

図1に示すFRP構造体を以下の手順で製造した。   The FRP structure shown in FIG. 1 was manufactured by the following procedure.

引張弾性率が230GPaの連続炭素繊維4(東レ(株)製”トレカ”T700S)を一方向にシート状に引き揃え、エポキシ樹脂を含浸した炭素繊維目付200g/m、炭素繊維含有率67重量%のUDプリプレグを用意した。本プリプレグを縦300mm、横300mmの大きさで3枚切り出し、配向角度が(0°/90°/0°)となるように常温で3枚を貼り合わせプリプレグ積層物を得た。 Continuous carbon fiber 4 ("Torayca" T700S manufactured by Toray Industries, Inc.) having a tensile elastic modulus of 230 GPa is aligned in a sheet shape and impregnated with an epoxy resin. The carbon fiber basis weight is 200 g / m 2 and the carbon fiber content is 67 weights. % UD prepreg was prepared. Three pieces of this prepreg were cut out in a size of 300 mm in length and 300 mm in width, and three pieces were bonded at room temperature so that the orientation angle was (0 ° / 90 ° / 0 °) to obtain a prepreg laminate.

厚み3.0mmのポリプロピレン樹脂発泡体シート(古河電気工業(株)製”エフセル”CP4030)1枚と、厚み0.19mmのPETフィルム(東レ(株)製"ルミラー”S10#188)1枚をそれぞれ縦300mm、横300mmの大きさで準備した。   One polypropylene resin foam sheet with a thickness of 3.0 mm ("Fcel" CP4030 manufactured by Furukawa Electric Co., Ltd.) and one PET film with a thickness of 0.19 mm ("Lumirror" S10 # 188 manufactured by Toray Industries, Inc.) Each was prepared in a size of 300 mm in length and 300 mm in width.

これらを、(ポリプロピレン樹脂発泡体シート/配向角度が(0°/90°/0°)のプリプレグ積層物/PETフィルム)となるように常温で貼り合わせ、積層体を得た。該積層体をホットプレス装置を用いて、130℃、1MPaで加熱加圧下、60分間保持し、プリプレグ積層物を硬化させると共に、各層を接着し、厚み3mmのFRP構造体を得た。   These were laminated at room temperature so as to be (polypropylene resin foam sheet / prepreg laminate / PET film having an orientation angle of (0 ° / 90 ° / 0 °)) to obtain a laminate. The laminate was heated and pressurized at 130 ° C. and 1 MPa for 60 minutes using a hot press apparatus to cure the prepreg laminate and bond each layer to obtain an FRP structure having a thickness of 3 mm.

得られたFRP構造体中で、ポリプロピレン樹脂発泡体シートが熱可塑性樹脂発泡体層1に、プリプレグ積層物の硬化したものが、FRP層2に、PETフィルムが、シート状樹脂層3に対応する。   In the obtained FRP structure, the polypropylene resin foam sheet corresponds to the thermoplastic resin foam layer 1, the cured prepreg laminate corresponds to the FRP layer 2, the PET film corresponds to the sheet-like resin layer 3. .

得られたFRP構造体のシート状樹脂層3の表面は滑らかで、凹凸などの欠点はなく良好であった。JIS B 0601表面粗さ−定義及び表示に準じて、シート状樹脂層3側のFRP構造体表面の算術平均粗さ(Ra)を触針式の表面粗さ計で測定を行なった。カットオフ値λcは0.8mmとし、評価長さlnは4mmとし、試験回数は5回で平均値を求めたところ、算術平均粗さ(Ra)は0.2μmであった。   The surface of the sheet-like resin layer 3 of the obtained FRP structure was smooth and good without any defects such as irregularities. According to JIS B 0601 surface roughness-definition and display, the arithmetic average roughness (Ra) of the surface of the FRP structure on the sheet-like resin layer 3 side was measured with a stylus type surface roughness meter. The cut-off value λc was 0.8 mm, the evaluation length ln was 4 mm, the number of tests was 5 times, and the average value was obtained. The arithmetic average roughness (Ra) was 0.2 μm.

またFRP構造体の断面を拡大顕微鏡で観察し、熱可塑性樹脂発泡体層1の総厚みとFRP層2の総厚みとを測定し、(熱可塑性樹脂発泡体層1の総厚み(mm))/(FRP層2の総厚み(mm))を求めたところ、3.92であった。   Further, the cross section of the FRP structure was observed with an enlarged microscope, and the total thickness of the thermoplastic resin foam layer 1 and the total thickness of the FRP layer 2 were measured. (Total thickness of the thermoplastic resin foam layer 1 (mm)) / (Total thickness (mm) of the FRP layer 2) was determined to be 3.92.

また断面拡大観察により、熱可塑性樹脂発泡体層1の発泡セル20個を無作為に選択し、その直径を測定した。20個の平均直径は0.15mmであった。   Moreover, 20 foam cells of the thermoplastic resin foam layer 1 were randomly selected by observing the enlarged cross section, and the diameter thereof was measured. The average diameter of 20 pieces was 0.15 mm.

さらにFRP構造体から熱可塑性樹脂発泡体層1の一部を5片切り出し、その見かけ体積と重量から5片の平均見かけ密度を求めたところ、0.41g/cmであった。 Further cut part 5 pieces of the thermoplastic resin foam layer 1 from FRP structure was determined an average apparent density of 5 pieces from the apparent volume and weight, was 0.41 g / cm 3.

またFRP構造体の見かけ体積と重量からFRP構造体の見かけ密度を求めたところ、0.75g/cmであった。熱可塑性樹脂発泡体層1の厚みは2.25mmであり、成形前のポリプロピレン樹脂発泡体シート厚みの0.75倍であった。 Further, when the apparent density of the FRP structure was determined from the apparent volume and weight of the FRP structure, it was 0.75 g / cm 3 . The thickness of the thermoplastic resin foam layer 1 was 2.25 mm, which was 0.75 times the thickness of the polypropylene resin foam sheet before molding.

X線照射装置((株)東芝製 診断用X線高電圧装置 KXO−30F)を用いて60kVでX線をFRP構造体の平滑面に向けて照射し、FRP構造体を透過したX線透過線量を線量計(Radical Corporation製 model No.2025 Radiation Monitor)で測定した結果、アルミニウム当量は0.17mmAlであった。   Using an X-ray irradiation device (X-ray high voltage device for diagnosis KXO-30F manufactured by Toshiba Corp.), X-ray transmission was performed at 60 kV toward the smooth surface of the FRP structure and transmitted through the FRP structure. As a result of measuring the dose with a dosimeter (model No. 2025 Radiation Monitor manufactured by Radial Corporation), the aluminum equivalent was 0.17 mmAl.

本FRP構造体から、幅15mm、長さ140mmの大きさの短冊状試験片を0°方向が長さ方向になるものを5本、90°方向が長さ方向になるものを5本切り出した。本試験片を用いて、JIS K 7074炭素繊維強化プラスチックの曲げ試験方法に準じて3点曲げ試験を行なった。使用した圧子は半径5mmの丸型圧子、支点間距離は120mm、試験速度は8mm/minである。短冊状試験片は、熱可塑性樹脂発泡体層1が圧子側になるように配置した。測定された0°方向の5片の曲げ弾性率の平均値は15GPaであり、同様に90°方向の5片の曲げ弾性率の平均値は11GPaであった。   From this FRP structure, five strip-shaped test pieces having a width of 15 mm and a length of 140 mm were cut out with the 0 ° direction being the length direction and the 90 ° direction being the length direction. . Using this test piece, a three-point bending test was performed according to the bending test method of JIS K7074 carbon fiber reinforced plastic. The indenter used was a round indenter with a radius of 5 mm, the distance between fulcrums was 120 mm, and the test speed was 8 mm / min. The strip-shaped test pieces were arranged so that the thermoplastic resin foam layer 1 was on the indenter side. The average value of the flexural modulus of the 5 pieces measured in the 0 ° direction was 15 GPa, and the average value of the flexural modulus of the 5 pieces in the 90 ° direction was similarly 11 GPa.

積層構造体の構造解析計算の結果、FRP構造の中立面は熱可塑性樹脂発泡体層1の内部に配されていた。   As a result of structural analysis calculation of the laminated structure, the neutral surface of the FRP structure was disposed inside the thermoplastic resin foam layer 1.

見かけ密度、アルミニウム当量、曲げ弾性率の測定結果から、本FRP構造体は軽量でX線透過性に優れ、高剛性である。   From the measurement results of the apparent density, the aluminum equivalent, and the flexural modulus, the FRP structure is lightweight, excellent in X-ray permeability, and highly rigid.

また、本FRP構造体から0°方向を長さ方向として、幅15mm、長さ170mmの試験片を5本切り出した。本試験片の片端を厚み5mmのシリコンゴム製シートを介して万力で固定し、スパン120mmの片持ち梁状に配置した。片持ち梁状の先端に加速度ピックアップを両面テープで接着するとともに、インパクト加振用ハンマーで梁の支持部付近を叩き試験片に加振した。ハンマーの衝撃電気信号と、加速度ピックアップの電気信号は、アンプを介してFFTアナライザ((株)小野測器製マルチパーパスFFTアナライザ CF−5210)に接続されている。FFT解析によって試験片の固有振動数と半値幅法による損失係数を求めた。試験片5片の平均値を求めると、固有振動数は140Hzであり、損失係数は0.18であった。この場合の振動減衰曲線は図5のようになる。縦軸が振動振幅、横軸が時間であり、短時間に振動振幅が0近似となり制振性に優れていた。   Further, five test pieces having a width of 15 mm and a length of 170 mm were cut out from the FRP structure with the 0 ° direction as the length direction. One end of the test piece was fixed with a vise through a silicon rubber sheet having a thickness of 5 mm and arranged in a cantilever shape with a span of 120 mm. The accelerometer was bonded to the tip of the cantilever with double-sided tape, and the vicinity of the support of the beam was hit with an impact vibration hammer to vibrate the test piece. The hammer impact electrical signal and the acceleration pickup electrical signal are connected to an FFT analyzer (multi-purpose FFT analyzer CF-5210 manufactured by Ono Sokki Co., Ltd.) via an amplifier. The natural frequency of the test piece and the loss factor by the half width method were obtained by FFT analysis. When the average value of the five test pieces was obtained, the natural frequency was 140 Hz and the loss factor was 0.18. The vibration attenuation curve in this case is as shown in FIG. The vertical axis is the vibration amplitude, and the horizontal axis is the time.

図2に示すFRP構造体を以下の条件にて製造した。   The FRP structure shown in FIG. 2 was manufactured under the following conditions.

FRP層2の材料には実施例1と同じUDプリプレグを使用した。該プリプレグを縦300mm、横300mmの大きさで6枚切り出し、一方向に引き揃えられた連続炭素繊維の配向角度が(0°/90°/0°)となるように常温で3枚を貼り合わせたプリプレグ積層物を2組準備した。   The same UD prepreg as in Example 1 was used as the material for the FRP layer 2. Cut out 6 prepregs with 300mm length and 300mm width, and paste 3 sheets at normal temperature so that the orientation angle of continuous carbon fiber aligned in one direction is (0 ° / 90 ° / 0 °) Two sets of combined prepreg laminates were prepared.

また別途シート状樹脂層3の材料には実施例1と同じPETフィルムを2枚、熱可塑性樹脂発泡体層1の材料には厚み2.0mmのポリプロピレン樹脂発泡体シート(古河電気工業(株)製”エフセル”CP3020)を1枚、それぞれ縦300mm、横300mmの大きさで準備した。   Separately, the sheet-like resin layer 3 is made of the same two PET films as in Example 1, and the thermoplastic resin foam layer 1 is made of a 2.0 mm-thick polypropylene resin foam sheet (Furukawa Electric Co., Ltd.). One “F-cell” CP3020) made of 300 mm in length and 300 mm in width was prepared.

これらを、図2の構成となるように常温で貼り合わせ、積層体を得た。   These were bonded together at room temperature so as to have the configuration of FIG. 2 to obtain a laminate.

積層体中の2対のプリプレグ積層物が積層体の厚さ方向に対して連続炭素繊維4の配向角が対称となるように貼り合わせた。実施例1と同様の条件で成形し、厚み3mmのFRP構造体を得た。   Two pairs of prepreg laminates in the laminate were bonded so that the orientation angles of the continuous carbon fibers 4 were symmetric with respect to the thickness direction of the laminate. Molding was performed under the same conditions as in Example 1 to obtain an FRP structure having a thickness of 3 mm.

得られたFRP構造体の表面は滑らかで、凹凸などの欠点はなく良好であった。実施例1と同様の方法で、得られたFRP構造体の特性を測定したところ、表面の算術平均粗さ(Ra)は0.2μm、(熱可塑性樹脂発泡体層1の総厚み(mm))/(FRP層2の総厚み(mm))は1.32、熱可塑性発泡体層1の発泡セルの平均直径は0.15mm、熱可塑性樹脂発泡体層1の見かけ密度は0.41g/cm、FRP構造体の見かけ密度は0.94g/cm、アルミニウム当量は0.25mmAl、0°方向の曲げ弾性率は30GPa、90°方向の曲げ弾性率は20GPaであった。 The surface of the obtained FRP structure was smooth and good without any defects such as irregularities. When the characteristics of the obtained FRP structure were measured in the same manner as in Example 1, the arithmetic average roughness (Ra) of the surface was 0.2 μm, (total thickness (mm) of the thermoplastic resin foam layer 1) ) / (Total thickness of FRP layer 2 (mm)) is 1.32, the average diameter of the foamed cell of the thermoplastic foam layer 1 is 0.15 mm, and the apparent density of the thermoplastic resin foam layer 1 is 0.41 g / The apparent density of the cm 3 , FRP structure was 0.94 g / cm 3 , the aluminum equivalent was 0.25 mm Al, the flexural modulus in the 0 ° direction was 30 GPa, and the flexural modulus in the 90 ° direction was 20 GPa.

FRP構造の中立面は熱可塑性樹脂発泡体層1の内部に配されている。   The neutral surface of the FRP structure is disposed inside the thermoplastic resin foam layer 1.

熱可塑性樹脂発泡体層1の厚みは1.5mmであり、成形前の厚みの0.75倍であった。
見かけ密度、アルミニウム当量、曲げ弾性率の測定結果から、本FRP構造体は軽量でX線透過性に優れ、高剛性である。
The thickness of the thermoplastic resin foam layer 1 was 1.5 mm, which was 0.75 times the thickness before molding.
From the measurement results of the apparent density, the aluminum equivalent, and the flexural modulus, the FRP structure is lightweight, excellent in X-ray permeability, and highly rigid.

また、実施例1と同様の方法で、試験片の固有振動数と損失係数を求めた。固有振動数は190Hzであり、損失係数は0.11であった。この場合の振動減衰曲線は図6のようになり、短時間に振動振幅が0近似となり制振性に優れていた。   Further, the natural frequency and loss factor of the test piece were obtained by the same method as in Example 1. The natural frequency was 190 Hz and the loss factor was 0.11. The vibration attenuation curve in this case is as shown in FIG. 6, and the vibration amplitude becomes 0 approximation in a short time, and the vibration damping property is excellent.

図2に示すようなFRP構造体を以下の条件にて製造した。   An FRP structure as shown in FIG. 2 was manufactured under the following conditions.

FRP層2の材料には、引張弾性率が230GPaの連続炭素繊維4(東レ(株)製”トレカ”T700S)の平織り織物に、エポキシ樹脂を含浸した炭素繊維目付320g/m2、炭素繊維含有率50重量%の織物プリプレグを準備した。該プリプレグを縦300mm、横300mmの大きさで2枚切り出した。 The material of the FRP layer 2 includes a carbon fiber basis weight of 320 g / m 2 in which a plain woven fabric of continuous carbon fiber 4 (“Torayca” T700S manufactured by Toray Industries, Inc.) having a tensile elastic modulus of 230 GPa is impregnated with an epoxy resin, containing carbon fiber A 50% by weight fabric prepreg was prepared. Two pieces of the prepreg were cut out in a size of 300 mm in length and 300 mm in width.

また、実施例1と同じPETフィルム2枚とポリプロピレン樹脂発泡体シート1枚をそれぞれ縦300mm、横300mmの大きさで準備した。   Also, two PET films and one polypropylene resin foam sheet as in Example 1 were prepared in a size of 300 mm in length and 300 mm in width, respectively.

これらを、図2の構成となるように常温で貼り合わせ、積層体を得た。実施例1と同様の条件で成形し、厚み3mmのFRP構造体を得た。   These were bonded together at room temperature so as to have the configuration of FIG. 2 to obtain a laminate. Molding was performed under the same conditions as in Example 1 to obtain an FRP structure having a thickness of 3 mm.

得られたFRP構造体の表面は滑らかで、凹凸などの欠点はなく良好であった。実施例1と同様の方法で、得られたFRP構造体の特性を測定したところ、表面の算術平均粗さ(Ra)は0.2μm、(熱可塑性樹脂発泡体層1の総厚み(mm))/(FRP層2の総厚み(mm))は、2.86、熱可塑性樹脂発泡体層1の発泡セルの平均直径は0.2mm、熱可塑性樹脂発泡体層1の見かけ密度は0.35g/cm、FRP構造体の見かけ密度は0.80g/cm、アルミニウム当量は0.18mmAl、0°方向の曲げ弾性率は17GPa、90°方向の曲げ弾性率は17GPaであった。FRP構造の中立面は熱可塑性樹脂発泡体層1の内部に配されている。熱可塑性樹脂発泡体層1の厚みは1.95mmであり、成形前の厚みの0.65倍であった。
見かけ密度、アルミニウム当量、曲げ弾性率の測定結果から、本FRP構造体は軽量でX線透過性に優れ、高剛性である。
The surface of the obtained FRP structure was smooth and good without any defects such as irregularities. When the characteristics of the obtained FRP structure were measured in the same manner as in Example 1, the arithmetic average roughness (Ra) of the surface was 0.2 μm, (total thickness (mm) of the thermoplastic resin foam layer 1) ) / (Total thickness (mm) of the FRP layer 2) is 2.86, the average diameter of the foam cell of the thermoplastic resin foam layer 1 is 0.2 mm, and the apparent density of the thermoplastic resin foam layer 1 is 0.8. 35 g / cm 3, an apparent density of FRP structure 0.80 g / cm 3, the aluminum equivalent weight 0.18mmAl, 0 ° direction flexural modulus 17 GPa, 90 ° direction flexural modulus was 17 GPa. The neutral surface of the FRP structure is disposed inside the thermoplastic resin foam layer 1. The thickness of the thermoplastic resin foam layer 1 was 1.95 mm, which was 0.65 times the thickness before molding.
From the measurement results of the apparent density, the aluminum equivalent, and the flexural modulus, the FRP structure is lightweight, excellent in X-ray permeability, and highly rigid.

また、実施例1と同様の方法で、試験片の固有振動数と損失係数を求めた。固有振動数は150Hzであり、損失係数は0.14であった。この場合の振動減衰曲線は図7のようになり、短時間に振動振幅が0近似となり制振性に優れていた。   Further, the natural frequency and loss factor of the test piece were obtained by the same method as in Example 1. The natural frequency was 150 Hz and the loss factor was 0.14. The vibration attenuation curve in this case is as shown in FIG. 7, and the vibration amplitude becomes 0 approximation in a short time, and the vibration damping property is excellent.

図3に示すようなFRP構造体を以下の条件にて製造した。   An FRP structure as shown in FIG. 3 was manufactured under the following conditions.

FRP層2の材料に引張弾性率が230GPaの連続炭素繊維4(東レ(株)製”トレカ”T700S)を一方向にシート状に引き揃え、エポキシ樹脂を含浸した炭素繊維目付125g/m、炭素繊維含有率67重量%のUDプリプレグを用意し、該プリプレグを縦300mm、横300mmの大きさで8枚切り出し、連続炭素繊維の配向角度が(0°/90°)となるように常温で2枚を貼り合わせたプリプレグ積層物を4組得た。 A continuous carbon fiber 4 having a tensile modulus of 230 GPa ("Torayca" T700S manufactured by Toray Industries, Inc.) is drawn in one direction on the material of the FRP layer 2, and the basis weight of the carbon fiber impregnated with an epoxy resin is 125 g / m 2 . A UD prepreg having a carbon fiber content of 67% by weight was prepared, and the prepreg was cut into 8 pieces of 300 mm length and 300 mm width at room temperature so that the orientation angle of the continuous carbon fiber was (0 ° / 90 °). Four sets of prepreg laminates obtained by bonding two sheets were obtained.

また実施例1と同じPETフィルム4枚と、実施例2と同じポリプロピレン樹脂発泡体シート1枚をそれぞれ縦300mm、横300mmの大きさで準備した。   Also, four PET films as in Example 1 and one polypropylene resin foam sheet as in Example 2 were prepared in a size of 300 mm in length and 300 mm in width, respectively.

これらを、図3の構成となるように常温で貼り合わせ、積層体を得た。積層体中の4対のプリプレグ積層物は積層体の厚さ方向に対して連続炭素繊維4の配向角が対称となるように貼り合わせた。実施例1と同様の条件で成形し、厚み3mmのFRP構造体を得た。得られたFRP構造体の表面は滑らかで、凹凸などの欠点はなく良好であった。実施例1と同様の方法で、得られたFRP構造体の特性を測定したところ、表面の算術平均粗さ(Ra)は0.2μm、(熱可塑性樹脂発泡体層1の総厚み(mm))/(FRP層2の総厚み(mm))は、1.37、熱可塑性樹脂発泡体層1の発泡セルの平均直径は0.15mm、熱可塑性樹脂発泡体層1の見かけ密度は0.47g/cm、FRP構造体の見かけ密度は0.99g/cm、アルミニウム当量は0.21mmAl、0°方向の曲げ弾性率は23GPa、90°方向の曲げ弾性率は20GPaであった。FRP構造の中立面は熱可塑性樹脂発泡体層1の内部に配されている。熱可塑性樹脂発泡体層1の厚みは1.32mmであり、成形前の厚みの0.66倍であった。
見かけ密度、アルミニウム当量、曲げ弾性率の測定結果から、本FRP構造体は軽量でX線透過性に優れ、高剛性である。
These were bonded together at room temperature so as to have the configuration of FIG. 3 to obtain a laminate. The four pairs of prepreg laminates in the laminate were bonded so that the orientation angles of the continuous carbon fibers 4 were symmetric with respect to the thickness direction of the laminate. Molding was performed under the same conditions as in Example 1 to obtain an FRP structure having a thickness of 3 mm. The surface of the obtained FRP structure was smooth and good without any defects such as irregularities. When the characteristics of the obtained FRP structure were measured in the same manner as in Example 1, the arithmetic average roughness (Ra) of the surface was 0.2 μm, (total thickness (mm) of the thermoplastic resin foam layer 1) ) / (Total thickness (mm) of the FRP layer 2) is 1.37, the average diameter of the foam cell of the thermoplastic resin foam layer 1 is 0.15 mm, and the apparent density of the thermoplastic resin foam layer 1 is 0.00. 47 g / cm 3, an apparent density of FRP structure 0.99 g / cm 3, the aluminum equivalent weight 0.21mmAl, 0 ° direction flexural modulus 23 GPa, 90 ° direction flexural modulus was 20 GPa. The neutral surface of the FRP structure is disposed inside the thermoplastic resin foam layer 1. The thickness of the thermoplastic resin foam layer 1 was 1.32 mm, which was 0.66 times the thickness before molding.
From the measurement results of the apparent density, the aluminum equivalent, and the flexural modulus, the FRP structure is lightweight, excellent in X-ray permeability, and highly rigid.

また、実施例1と同様の方法で、試験片の固有振動数と損失係数を求めた。固有振動数は160Hzであり、損失係数は0.17であった。この場合の振動減衰曲線は図8のようになり、短時間に振動振幅が0近似となり制振性に優れていた。   Further, the natural frequency and loss factor of the test piece were obtained by the same method as in Example 1. The natural frequency was 160 Hz, and the loss factor was 0.17. The vibration attenuation curve in this case is as shown in FIG. 8, and the vibration amplitude becomes 0 approximation in a short time, and the vibration damping property is excellent.

(比較例1)
FRP層2の材料として実施例1と同じ引張弾性率が230GPaの連続炭素繊維4を一方向にシート状に引き揃え、エポキシ樹脂を含浸した炭素繊維目付125g/m、炭素繊維含有率67重量%のUDプリプレグを準備した。本プリプレグを縦300mm、横300mmの大きさで22枚切り出し、一方向に引き揃えられた連続炭素繊維の配向角度が(0°/90°/0°/・・・/90°/0°/0°/90°/・・・/0°/90°/0°)となるように常温で22枚を貼り合わせプリプレグ積層物を得た。また別途シート状樹脂層3の材料として実施例1と同じPETフィルム2枚を縦300mm、横300mmの大きさで準備した。これらを、(PETフィルム/プリプレグ積層物/PETフィルム)となるように常温で貼り合わせ、積層体を得た。実施例とは異なり、熱可塑性樹脂発泡体シートは用いない。実施例1と同様の条件で成形し、厚み3mmのFRP構造体を得た。得られたFRP構造体の表面は滑らかで、凹凸などの欠点はなく良好であった。
(Comparative Example 1)
Implemented as the material of the FRP layer 2 in Example 1 to the same tensile modulus aligned pull the continuous carbon fibers 4 of 230GPa in one direction into a sheet, a carbon fiber basis weight 125 g / m 2 impregnated with epoxy resin, carbon fiber content 67 wt % UD prepreg was prepared. Twenty-two prepregs having a length of 300 mm and a width of 300 mm were cut out, and the orientation angle of continuous carbon fibers aligned in one direction was (0 ° / 90 ° / 0 ° /.../ 90 ° / 0 ° / (0 ° / 90 ° /... / 0 ° / 90 ° / 0 °) were bonded at room temperature to obtain a prepreg laminate. Separately, as the material for the sheet-like resin layer 3, two PET films as in Example 1 were prepared in a size of 300 mm in length and 300 mm in width. These were laminated at room temperature so as to be (PET film / prepreg laminate / PET film) to obtain a laminate. Unlike the examples, the thermoplastic resin foam sheet is not used. Molding was performed under the same conditions as in Example 1 to obtain an FRP structure having a thickness of 3 mm. The surface of the obtained FRP structure was smooth and good without any defects such as irregularities.

実施例1と同様の方法で、得られたFRP構造体の特性を測定したところ、表面の算術平均粗さ(Ra)は0.2μm、FRP構造体の見かけ密度は1.55g/cm、アルミニウム当量は0.39mmAl、0°方向の曲げ弾性率は49GPa、90°方向の曲げ弾性率は39GPaであった。見かけ密度、アルミニウム当量、曲げ弾性率の測定結果から、本FRP構造体は実施例と比較すると、高剛性であるが、軽量性、X線透過性に欠ける。 When the characteristics of the obtained FRP structure were measured in the same manner as in Example 1, the arithmetic average roughness (Ra) of the surface was 0.2 μm, the apparent density of the FRP structure was 1.55 g / cm 3 , The aluminum equivalent was 0.39 mm Al, the flexural modulus in the 0 ° direction was 49 GPa, and the flexural modulus in the 90 ° direction was 39 GPa. From the measurement results of the apparent density, the aluminum equivalent, and the flexural modulus, the present FRP structure has higher rigidity than the examples, but lacks light weight and X-ray permeability.

また、実施例1と同様の方法で、試験片の固有振動数と損失係数を求めた。固有振動数は190Hzであり、損失係数は0.05であった。この場合の振動減衰曲線は図9のようになり、実施例と比較すると振動振幅が0近似になる時間をより多く必要とし、制振性は劣っていた。   Further, the natural frequency and loss factor of the test piece were obtained by the same method as in Example 1. The natural frequency was 190 Hz, and the loss factor was 0.05. The vibration attenuation curve in this case is as shown in FIG. 9, and more time is required for the vibration amplitude to be approximated to 0 as compared with the example, and the damping performance is inferior.

(比較例2)
FRP層2の材料として実施例1と同じ引張弾性率が230GPaの連続炭素繊維4を一方向にシート状に引き揃え、エポキシ樹脂を含浸した炭素繊維目付200g/m、炭素繊維含有率67重量%のUDプリプレグを準備した。本プリプレグを縦300mm、横300mmの大きさで10枚切り出し、一方向に引き揃えられた連続炭素繊維の配向角度が(0°/90°/0°)となるように常温で3枚を貼り合わせたプリプレグ積層物を2組得た。また別途実施例の熱可塑性樹脂発泡体のかわりに熱可塑性樹脂シートとして、押出し成形により得た厚み1.9mmのナイロン樹脂(東レ(株)製”アミラン”CM1021)シート1枚を縦300mm、横300mmの大きさで準備した。これらを、(プリプレグ積層物/熱可塑性樹脂シート/プリプレグ積層物)となるように常温で貼り合わせ、積層体を得た。実施例とは異なり、熱可塑性樹脂発泡体層1は用いない。積層体中の2対のプリプレグ積層物が積層体の厚さ方向に対して連続炭素繊維4の配向角が対称となるように貼り合わせた。実施例1と同様の条件で成形し、厚み3mmのFRP構造体を得た。得られたFRP構造体の表面は滑らかで、凹凸などの欠点はなく良好であった。実施例1と同様の方法で、得られたFRP構造体の特性を測定したところ、表面の算術平均粗さ(Ra)は0.8μm、FRP構造体の見かけ密度は1.24g/cm、アルミニウム当量は0.35mmAl、0°方向の曲げ弾性率は42GPa、90°方向の曲げ弾性率は24GPaであった。
見かけ密度、アルミニウム当量、曲げ弾性率の測定結果から、本FRP構造体は実施例と比較すると、高剛性であるが、軽量性、X線透過性に欠ける。
(Comparative Example 2)
As the material of the FRP layer 2, continuous carbon fibers 4 having the same tensile modulus of 230 GPa as in Example 1 are aligned in a sheet shape in one direction, and the carbon fiber basis weight impregnated with epoxy resin is 200 g / m 2 , and the carbon fiber content is 67 weights. % UD prepreg was prepared. Cut out 10 prepregs of 300mm length and 300mm width, and paste 3 sheets at normal temperature so that the orientation angle of continuous carbon fiber aligned in one direction is (0 ° / 90 ° / 0 °) Two sets of combined prepreg laminates were obtained. Further, instead of the thermoplastic resin foam of the embodiment, as a thermoplastic resin sheet, a 1.9 mm thick nylon resin (“Amilan” CM1021 manufactured by Toray Industries, Inc.) sheet obtained by extrusion molding is 300 mm long, horizontal. Prepared in a size of 300 mm. These were laminated at room temperature so as to be (prepreg laminate / thermoplastic resin sheet / prepreg laminate) to obtain a laminate. Unlike Example, the thermoplastic resin foam layer 1 is not used. Two pairs of prepreg laminates in the laminate were bonded so that the orientation angles of the continuous carbon fibers 4 were symmetric with respect to the thickness direction of the laminate. Molding was performed under the same conditions as in Example 1 to obtain an FRP structure having a thickness of 3 mm. The surface of the obtained FRP structure was smooth and good without any defects such as irregularities. When the characteristics of the obtained FRP structure were measured in the same manner as in Example 1, the arithmetic average roughness (Ra) of the surface was 0.8 μm, the apparent density of the FRP structure was 1.24 g / cm 3 , The aluminum equivalent was 0.35 mm Al, the flexural modulus in the 0 ° direction was 42 GPa, and the flexural modulus in the 90 ° direction was 24 GPa.
From the measurement results of the apparent density, the aluminum equivalent, and the flexural modulus, the present FRP structure has higher rigidity than the examples, but lacks light weight and X-ray permeability.

また、実施例1と同様の方法で、試験片の固有振動数と損失係数を求めた。固有振動数は190Hzであり、損失係数は0.08であった。この場合の振動減衰曲線は図10のようになり、実施例と比較すると振動振幅が0近似になる時間をより多く必要とし、制振性は若干劣っていた。   Further, the natural frequency and loss factor of the test piece were obtained by the same method as in Example 1. The natural frequency was 190 Hz, and the loss factor was 0.08. The vibration attenuation curve in this case is as shown in FIG. 10, and more time is required for the vibration amplitude to be approximated to 0 as compared with the example, and the damping performance is slightly inferior.

(比較例3)
厚み0.5mmのアルミニウム板を縦300mm、横300mmの大きさで2枚切り出した。また別途熱可塑性樹脂発泡体層1の材料として実施例1と同じポリプロピレン樹脂発泡体シート1枚を縦300mm、横300mmの大きさで準備した。これらを、(アルミニウムシート/ポリプロピレン樹脂発泡体シート/アルミニウムシート)となるように2液硬化型エポキシ樹脂系接着剤を用いて貼り合わせ、厚み3mmの構造体を得た。得られた構造体の表面はアルミニウム特有の半光沢面で、凹凸などの欠点はなく良好であった。実施例1と同様の方法で、得られた構造体の特性を測定したところ、表面の算術平均粗さ(Ra)は1.0μm、熱可塑性樹脂発泡体層1の発泡セルの平均直径は0.20mm、熱可塑性樹脂発泡体層1の見かけ密度は0.35g/cm、構造体の見かけ密度は1.13g/cm、アルミニウム当量は1.10mmAl、0°方向の曲げ弾性率は31GPa、90°方向の曲げ弾性率は31GPaであった。熱可塑性樹脂発泡体層1の成形後の厚みは成形前の厚みの0.67倍であった。
見かけ密度、アルミニウム当量、曲げ弾性率の測定結果から、本構造体は実施例と比較すると、軽量性、X線透過性に欠ける。
(Comparative Example 3)
Two aluminum plates having a thickness of 0.5 mm were cut out in a size of 300 mm in length and 300 mm in width. Separately, one polypropylene resin foam sheet as in Example 1 was prepared as a material for the thermoplastic resin foam layer 1 in a size of 300 mm in length and 300 mm in width. These were bonded together using a two-component curable epoxy resin adhesive so as to be (aluminum sheet / polypropylene resin foam sheet / aluminum sheet) to obtain a structure having a thickness of 3 mm. The surface of the obtained structure was a semi-gloss surface peculiar to aluminum, and was satisfactory without defects such as irregularities. When the characteristics of the obtained structure were measured by the same method as in Example 1, the arithmetic average roughness (Ra) of the surface was 1.0 μm, and the average diameter of the foamed cells of the thermoplastic resin foam layer 1 was 0. 20 mm, the apparent density of the thermoplastic resin foam layer 1 is 0.35 g / cm 3 , the apparent density of the structure is 1.13 g / cm 3 , the aluminum equivalent is 1.10 mm Al, and the flexural modulus in the 0 ° direction is 31 GPa The bending elastic modulus in the 90 ° direction was 31 GPa. The thickness after molding of the thermoplastic resin foam layer 1 was 0.67 times the thickness before molding.
From the measurement results of the apparent density, the aluminum equivalent, and the flexural modulus, this structure lacks light weight and X-ray permeability as compared with the examples.

また、実施例1と同様の方法で、試験片の固有振動数と損失係数を求めた。固有振動数は210Hzであり、損失係数は0.08であった。この場合の振動減衰曲線は図11のようになり、実施例と比較すると振動振幅が0近似になる時間をより多く必要とし、制振性は劣っていた。   Further, the natural frequency and loss factor of the test piece were obtained by the same method as in Example 1. The natural frequency was 210 Hz, and the loss factor was 0.08. The vibration attenuation curve in this case is as shown in FIG. 11. Compared with the example, more time is required for the vibration amplitude to be approximated to 0, and the vibration damping property is inferior.

実施例1、2、3、4と比較例1、2、3の構成と各種評価について、表1の結果を得た。実施例1、2、3、4は比較例1、2、3と比較して、軽量でX線透過性に優れ、高い剛性を保持するとともに、優れた制振性が得られた。   The results of Table 1 were obtained for the configurations and various evaluations of Examples 1, 2, 3, and 4 and Comparative Examples 1, 2, and 3. Examples 1, 2, 3, and 4 were lighter in weight, excellent in X-ray permeability, maintained high rigidity, and had excellent vibration damping properties as compared with Comparative Examples 1, 2, and 3.

Figure 2006035671
Figure 2006035671

本発明は、X線透過性が必要な医療機器に限らず、電子機器を格納する筐体部材や航空宇宙用途の機械部材などにも応用することができるが、その応用範囲が、これらに限られるものではない。       The present invention can be applied not only to medical devices that require X-ray transparency but also to housing members for storing electronic devices and mechanical members for aerospace applications. However, the scope of application is limited to these. Is not something

本発明の一実施態様に係るFRP構造体を示す斜視図である。It is a perspective view which shows the FRP structure which concerns on one embodiment of this invention. 本発明の他の実施態様に係るFRP構造体を示す斜視図である。It is a perspective view which shows the FRP structure which concerns on the other embodiment of this invention. 本発明のさらに他の実施態様に係るFRP構造体を示す斜視図である。It is a perspective view which shows the FRP structure which concerns on the further another embodiment of this invention. 本発明の一実施態様に係るFRP構造体に含まれるFRP層を示す拡大斜視図である。It is an expansion perspective view which shows the FRP layer contained in the FRP structure which concerns on one embodiment of this invention. 本発明の実施例1に係る振動減衰曲線である。It is a vibration attenuation curve which concerns on Example 1 of this invention. 本発明の実施例2に係る振動減衰曲線である。It is a vibration attenuation curve which concerns on Example 2 of this invention. 本発明の実施例3に係る振動減衰曲線である。It is a vibration attenuation curve which concerns on Example 3 of this invention. 本発明の実施例4に係る振動減衰曲線である。It is a vibration damping curve which concerns on Example 4 of this invention. 本発明の比較例1に係る振動減衰曲線である。It is a vibration damping curve which concerns on the comparative example 1 of this invention. 本発明の比較例2に係る振動減衰曲線である。It is a vibration damping curve which concerns on the comparative example 2 of this invention. 本発明の比較例3に係る振動減衰曲線である。It is a vibration damping curve which concerns on the comparative example 3 of this invention.

符号の説明Explanation of symbols

1 熱可塑性樹脂発泡体層
2 FRP層
3 シート状樹脂層
4 連続炭素繊維
5 マトリックス樹脂
6 振動振幅が0近似となる時間
DESCRIPTION OF SYMBOLS 1 Thermoplastic resin foam layer 2 FRP layer 3 Sheet-like resin layer 4 Continuous carbon fiber 5 Matrix resin 6 Time when vibration amplitude becomes 0 approximation

Claims (18)

次の構成要素[A]、[B]、[C]を含み、構成要素[B]の片側に厚みが5〜300μmの構成要素[C]、もう一方の側に構成要素[A]となる積層構成を有し、かつFRP構造体の中立面が[A]の内部にあることを特徴とするFRP構造体。
[A]熱可塑性樹脂発泡体層
[B]連続炭素繊維を強化繊維とするFRP層
[C]シート状樹脂層
Including the following constituent elements [A], [B], and [C], the constituent element [B] is a constituent element [C] having a thickness of 5 to 300 μm on one side and the constituent element [A] on the other side. A FRP structure having a laminated configuration and having a neutral surface of the FRP structure inside [A].
[A] Thermoplastic resin foam layer [B] FRP layer using continuous carbon fiber as reinforcing fiber [C] Sheet-like resin layer
構成要素[A]が、見かけ密度0.03〜0.7g/cmである請求項1に記載のFRP構造体。 The FRP structure according to claim 1, wherein the component [A] has an apparent density of 0.03 to 0.7 g / cm 3 . 構成要素[A]は、25℃での110Hzに対する損失係数が0.05〜1.5である請求項1または2に記載のFRP構造体。 The FRP structure according to claim 1 or 2, wherein the component [A] has a loss coefficient of 0.05 to 1.5 with respect to 110 Hz at 25 ° C. 構成要素[A]は、せん断弾性率が0.01〜0.3GPaである請求項1〜3のいずれかに記載のFRP構造体。 The FRP structure according to any one of claims 1 to 3, wherein the component [A] has a shear elastic modulus of 0.01 to 0.3 GPa. 構成要素[A]は、発泡セルの平均直径が1mm以下である請求項1〜4のいずれかに記載のFRP構造体。 The FRP structure according to any one of claims 1 to 4, wherein the constituent element [A] has an average diameter of foamed cells of 1 mm or less. 構成要素[B]が、引張弾性率200〜850GPaの連続炭素繊維を30〜80重量%含む請求項1〜5のいずれかに記載のFRP構造体。 The FRP structure according to any one of claims 1 to 5, wherein the constituent element [B] contains 30 to 80% by weight of continuous carbon fibers having a tensile modulus of 200 to 850 GPa. 構成要素[B]が、一方向に引き揃えた連続炭素繊維を異なる角度で積層した構成を含む請求項1〜6のいずれかに記載のFRP構造体。 The FRP structure according to claim 1, wherein the component [B] includes a configuration in which continuous carbon fibers aligned in one direction are stacked at different angles. 構成要素[A]の総厚みTa(mm)と構成要素[B]の総厚みTb(mm)との比Ta/Tbが、0.5〜10である請求項1〜7のいずれかに記載のFRP構造体。 The ratio Ta / Tb between the total thickness Ta (mm) of the constituent element [A] and the total thickness Tb (mm) of the constituent element [B] is 0.5 to 10. FRP structure. 構成要素[C]は、引張弾性率が0.5〜5GPaの樹脂からなる請求項1〜8のいずれかに記載のFRP構造体。 The component [C] is made of a resin having a tensile modulus of 0.5 to 5 GPa, and the FRP structure according to any one of claims 1 to 8. 構成要素[C]は、25℃での110Hzに対する損失係数が0.01〜1.00の樹脂からなる請求項1〜9のいずれかに記載のFRP構造体。 The component [C] is made of a resin having a loss coefficient of 0.01 to 1.00 with respect to 110 Hz at 25 ° C. The FRP structure according to any one of claims 1 to 9. 構成要素[A]を構成する熱可塑性樹脂発泡体の25℃での110Hzに対する損失係数ηaと構成要素[C]を構成する熱可塑性樹脂の25℃での110Hzに対する損失係数ηcとの比ηa/ηcが、1〜100である請求項1〜10のいずれかに記載のFRP構造体。 Ratio ηa / loss factor ηa for 110 Hz at 25 ° C. of the thermoplastic resin foam constituting the component [A] and loss factor ηc for 110 Hz at 25 ° C. of the thermoplastic resin constituting the component [C] (eta) c is 1-100, The FRP structure in any one of Claims 1-10. 全体の見かけ密度が、0.2〜1.4g/cmである請求項1〜11のいずれかに記載のFRP構造体。 The FRP structure according to claim 1, wherein the overall apparent density is 0.2 to 1.4 g / cm 3 . 全体の厚みが、0.8〜5.0mmである請求項1〜12のいずれかに記載のFRP構造体。 The FRP structure according to any one of claims 1 to 12, wherein the entire thickness is 0.8 to 5.0 mm. 構成要素[A]の両面に構成要素[B]を配置した構造を有する請求項1〜13のいずれかに記載のFRP構造体。 The FRP structure according to any one of claims 1 to 13, which has a structure in which the constituent element [B] is arranged on both surfaces of the constituent element [A]. 少なくとも片側表面が構成要素[C]であり、該表面の算術平均粗さ(Ra)が、0.05〜0.5μmである請求項1〜14のいずれかに記載のFRP構造体。 The FRP structure according to any one of claims 1 to 14, wherein at least one surface is a constituent element [C], and the arithmetic average roughness (Ra) of the surface is 0.05 to 0.5 µm. X線透過性が必要な医療機器部品として使用される請求項1〜15のいずれかに記載のFRP構造体。 The FRP structure according to any one of claims 1 to 15, which is used as a medical device part requiring X-ray transparency. 構成要素[A]を構成する熱可塑性樹脂発泡体の成形後の厚みが成形前の厚みの0.2〜0.95倍となるように、加熱加圧成形し、構成要素[A]、[B]および[C]を一体化して請求項1〜15のいずれかに記載のFRP構造体を得るFRP構造体の製造方法。 The thermoplastic resin foam constituting the component [A] is heat-press molded so that the thickness after molding of the thermoplastic resin foam is 0.2 to 0.95 times the thickness before molding, and the components [A], [ The manufacturing method of the FRP structure which integrates B] and [C] and obtains the FRP structure in any one of Claims 1-15. 構成要素[A]を構成する熱可塑性樹脂発泡体の成形後の厚みが成形前の厚みの0.2〜0.95倍となるように、加熱加圧成形し、構成要素[A]および[B]を一体化した後、構成要素[C]を形成して、請求項1〜15のいずれかに記載のFRP構造体を得るFRP構造体の製造方法。 The thermoplastic resin foam constituting the component [A] is subjected to heat and pressure molding so that the thickness after molding of the thermoplastic resin foam is 0.2 to 0.95 times the thickness before molding, and the components [A] and [A The manufacturing method of the FRP structure which forms the component [C] after integrating B] and obtains the FRP structure in any one of Claims 1-15.
JP2004219786A 2004-07-28 2004-07-28 Frp structure Pending JP2006035671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004219786A JP2006035671A (en) 2004-07-28 2004-07-28 Frp structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004219786A JP2006035671A (en) 2004-07-28 2004-07-28 Frp structure

Publications (1)

Publication Number Publication Date
JP2006035671A true JP2006035671A (en) 2006-02-09

Family

ID=35901168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004219786A Pending JP2006035671A (en) 2004-07-28 2004-07-28 Frp structure

Country Status (1)

Country Link
JP (1) JP2006035671A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009241486A (en) * 2008-03-31 2009-10-22 Sekisui Chem Co Ltd Damping sheet for automobile
JP4558091B1 (en) * 2009-10-29 2010-10-06 株式会社イノアックコーポレーション Fiber-reinforced molded body and method for producing the same
JP2011067957A (en) * 2009-09-24 2011-04-07 Mitsubishi Chemicals Corp Foam having thermoplastic resin composition layer containing carbon fiber on surface
WO2016052207A1 (en) * 2014-09-29 2016-04-07 積水化成品工業株式会社 Polyester resin foam and method for producing resin composite
JP2018039268A (en) * 2017-10-27 2018-03-15 積水化成品工業株式会社 Polyester resin foam and method for producing fiber-reinforced complex
JP2018510090A (en) * 2015-03-31 2018-04-12 ワールドビュー・サテライツ・リミテッド Satellite frame and method for manufacturing satellite
WO2023032893A1 (en) * 2021-09-01 2023-03-09 東レ株式会社 X-ray transmission member

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009241486A (en) * 2008-03-31 2009-10-22 Sekisui Chem Co Ltd Damping sheet for automobile
JP2011067957A (en) * 2009-09-24 2011-04-07 Mitsubishi Chemicals Corp Foam having thermoplastic resin composition layer containing carbon fiber on surface
JP4558091B1 (en) * 2009-10-29 2010-10-06 株式会社イノアックコーポレーション Fiber-reinforced molded body and method for producing the same
WO2011052243A1 (en) * 2009-10-29 2011-05-05 株式会社イノアックコーポレーション Fiber-reinforced molded product and method for producing same
JP2011093175A (en) * 2009-10-29 2011-05-12 Inoac Corp Fiber-reinforced molding and method of manufacturing the same
US8628842B2 (en) 2009-10-29 2014-01-14 Inoac Corporation Fiber-reinforced molded product and method for manufacturing the same
WO2016052207A1 (en) * 2014-09-29 2016-04-07 積水化成品工業株式会社 Polyester resin foam and method for producing resin composite
JP2016069460A (en) * 2014-09-29 2016-05-09 積水化成品工業株式会社 Polyester resin foam and method for producing fiber-reinforced complex
US10723055B2 (en) 2014-09-29 2020-07-28 Sekisui Plastics Co., Ltd. Polyester-based resin foam and method for producing resin composite
JP2018510090A (en) * 2015-03-31 2018-04-12 ワールドビュー・サテライツ・リミテッド Satellite frame and method for manufacturing satellite
JP2018039268A (en) * 2017-10-27 2018-03-15 積水化成品工業株式会社 Polyester resin foam and method for producing fiber-reinforced complex
WO2023032893A1 (en) * 2021-09-01 2023-03-09 東レ株式会社 X-ray transmission member
JP7243940B1 (en) * 2021-09-01 2023-03-22 東レ株式会社 X-ray transparent member

Similar Documents

Publication Publication Date Title
JP5098132B2 (en) Fiber reinforced resin sandwich panel
JP5126405B2 (en) Manufacturing method of sandwich panel made of fiber reinforced resin
JP6942961B2 (en) Electronic device housing
US10908651B2 (en) Electronic device housing
JP2008207523A (en) Panel for x-ray cassette
EP2006464B1 (en) Sandwich panel
WO2017047442A1 (en) Housing
US10571963B2 (en) Housing
JP2000343476A (en) Carrying member
JP2017047522A (en) Robot arm
US10509443B2 (en) Housing
JP2006035671A (en) Frp structure
WO2019182076A1 (en) Imaging table, mammography apparatus imaging table and manufacturing method therefor, and mammography apparatus
JP6360766B2 (en) Damping structure and damping material
JP6728607B2 (en) Electronic device housing
JP6728606B2 (en) Electronic device housing
WO2023132287A1 (en) X-ray-transmitting member, x-ray inspection device, and article to be subjected to x-ray inspection
JP4178964B2 (en) Medical equipment top plate
JP7243940B1 (en) X-ray transparent member
JP6736859B2 (en) Electronic device housing
Koricho et al. Evaluation of progressive damage of nano-modified composite laminates under repeated impacts
RU2687938C1 (en) Polymer composite material with integrated vibration-absorbing layer
JP2021160153A (en) Sandwich structure, and production method thereof
JPH0616396Y2 (en) X-ray wave conditioning grid
JPH0618998U (en) X-ray wave grid