JP2006035602A - Method for producing minute structure - Google Patents

Method for producing minute structure Download PDF

Info

Publication number
JP2006035602A
JP2006035602A JP2004217825A JP2004217825A JP2006035602A JP 2006035602 A JP2006035602 A JP 2006035602A JP 2004217825 A JP2004217825 A JP 2004217825A JP 2004217825 A JP2004217825 A JP 2004217825A JP 2006035602 A JP2006035602 A JP 2006035602A
Authority
JP
Japan
Prior art keywords
transfer mold
microstructure
manufacturing
dimensional structure
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004217825A
Other languages
Japanese (ja)
Other versions
JP4500962B2 (en
Inventor
Taketeru Mukai
向井剛輝
Takao Hachitaka
八高隆雄
Shoji Maruo
丸尾昭二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama National University NUC
Original Assignee
Yokohama National University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama National University NUC filed Critical Yokohama National University NUC
Priority to JP2004217825A priority Critical patent/JP4500962B2/en
Publication of JP2006035602A publication Critical patent/JP2006035602A/en
Application granted granted Critical
Publication of JP4500962B2 publication Critical patent/JP4500962B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Micromachines (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method which can accurately produce a minute structure having a minute, complex three-dimensional structure moldable by a photo-fabrication method and optional physical properties. <P>SOLUTION: A photo-polymer (1) is photo-fabricated as a minute, three-dimensional transfer mold (10). The three-dimensional structure of the photo-polymer is transferred to an optional metal (13) by the transfer mold. The metal is packed in the cavity (11) of the transfer mold, and the metal in the cavity, after being passed through an electrolytic grinding process and a resin elimination process, is demolded from the transfer mold. A mask for etching can be manufactured by the transfer mold. The profile of a transfer mold (30) is transferred to a special silicone resin (40). The silicone resin is adhered to a substrate (41) as the mask for etching, and the substrate (41) is etched. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、微小構造体の製造方法に関するものであり、より詳細には、任意の物性を有するマイクロ・ナノオーダーの微小構造体を成形する微小構造体の製造方法に関するものである。   The present invention relates to a method for manufacturing a microstructure, and more particularly to a method for manufacturing a microstructure that forms a micro / nano order microstructure having any physical property.

半導体等の表面を加工して三次元構造を得る技術として、リソグラフィが知られている。リソグラフィ装置又はリソグラフィ工程は、半導体ウェハ等に回路パターンを焼付ける装置又は工程として、光・電子デバイスの製造において使用されている。リソグラフィの技術は、微小構造体の製造工程においても使用し得ることから、リソグラフィ技術を応用して三次元構造のマイクロマシンを製造する微小構造体の製造方法が提案されている。例えば、特開平11−28768号公報及び特開平11−61436号公報には、基板上にリソグラフィ工程で二次元パターンの薄膜を形成し、基板及び薄膜をエッチング処理し、エッチング処理後の基板及び薄膜を多層に積層して三次元構造の微小ギア等を製造する微小構造体の製造方法が記載されている。   Lithography is known as a technique for processing a surface of a semiconductor or the like to obtain a three-dimensional structure. A lithography apparatus or a lithography process is used in the manufacture of optical / electronic devices as an apparatus or process for printing a circuit pattern on a semiconductor wafer or the like. Since the lithography technique can also be used in the manufacturing process of the microstructure, a manufacturing method of the microstructure that applies the lithography technique to manufacture a three-dimensional micromachine has been proposed. For example, in JP-A-11-28768 and JP-A-11-61436, a thin film having a two-dimensional pattern is formed on a substrate by a lithography process, the substrate and the thin film are etched, and the substrate and the thin film after etching are processed. Describes a method of manufacturing a micro structure in which three-dimensional micro gears are manufactured by laminating a plurality of layers.

他方、光重合性樹脂原料にレーザー光を照射して三次元構造の光重合体を造形する光造形法が知られており、これを用いた微小構造体の製造方法が提案されている。光造形法は、例えば、特開2003−25295号公報、特開2001−158050号公報及び特開平11−17037号公報等に記載される如く、液状の光重合性樹脂原料にレーザー光を照射し、所望形状の光重合体からなる三次元構造体を成形する加工法として知られている。このような光造形法によれば、レーザー光の集光点や、2光子吸収を正確に制御することにより、比較的複雑な三次元構造を有するマイクロギア等の微小構造体を光重合性樹脂原料より製造することができる。なお、この光重合体は、通常は、光硬化性樹脂と呼ばれている。
特開平11−28768号公報 特開平11−61436号公報 特開2003−25295号公報 特開2001−158050号公報 特開平11−17037号
On the other hand, there is known an optical modeling method for modeling a photopolymer having a three-dimensional structure by irradiating a photopolymerizable resin raw material with a laser beam, and a manufacturing method of a microstructure using this is proposed. For example, as described in JP-A-2003-25295, JP-A-2001-158050, and JP-A-11-17037, the optical modeling method irradiates a liquid photopolymerizable resin raw material with laser light. It is known as a processing method for forming a three-dimensional structure made of a photopolymer having a desired shape. According to such an optical modeling method, a micro-structure such as a micro gear having a relatively complicated three-dimensional structure can be obtained by accurately controlling the condensing point of laser light and two-photon absorption. It can be manufactured from raw materials. This photopolymer is usually called a photocurable resin.
JP-A-11-28768 Japanese Patent Laid-Open No. 11-61436 JP 2003-25295 A JP 2001-158050 A JP-A-11-17037

しかしながら、リソグラフィ技術を適用した微小構造体の製造方法では、一回のリソグラフィ工程で加工可能な立体構造に限界があり、比較的アスペクト比が高い三次元構造体又は比較的大きな凹凸を有する三次元構造体を製造する場合、或いは、微小且つ複雑な輪郭又は形状の三次元構造体を製造する場合、立体構造に相応して多段階のパターンニング及びエッチングを繰返し行う必要が生じる。このため、リソグラフィ技術を応用してマイクロギア等の微小構造体を製造する場合、製造工程が複雑化し、或いは、製造装置が高額化してしまう。従って、マイクロ・ナノオーダーの微小構造体を任意の材質(例えば、金属)で廉価に量産する上で有効な製造方法が未だ実現していない。   However, in a method for manufacturing a microstructure using a lithography technique, there is a limit to the three-dimensional structure that can be processed in one lithography process, and a three-dimensional structure having a relatively high aspect ratio or a three-dimensional structure having relatively large irregularities. When a structure is manufactured, or when a three-dimensional structure having a minute and complicated outline or shape is manufactured, it is necessary to repeatedly perform multi-step patterning and etching in accordance with the three-dimensional structure. For this reason, when a micro structure such as a micro gear is manufactured by applying the lithography technique, the manufacturing process becomes complicated or the manufacturing apparatus becomes expensive. Therefore, an effective manufacturing method has not yet been realized for mass-producing micro / nano-order microstructures with an arbitrary material (for example, metal) at low cost.

これに対し、光造形法を適用した微小構造体の製造方法によれば、レーザー光の制御性を向上させることにより、微細且つ複雑な輪郭を有する光重合体の三次元構造体を高精度に成形することができる。従って、比較的高いアスペクト比又は大きな凹凸の三次元構造体や、微小且つ複雑な輪郭の三次元構造体を光造形法により光重合体で製造することができる。しかしながら、微小構造体の物性は、光重合体の物性に支配されるので、任意の物性、例えば、金属製微小構造体のように高い機械的強度、耐熱性、耐薬品性又は耐蝕性等を有する微小構造体を光重合体で製造することは、現在の技術では極めて困難である。   On the other hand, according to the manufacturing method of the microstructure using the stereolithography method, by improving the controllability of the laser beam, the three-dimensional structure of the photopolymer having a fine and complicated contour can be obtained with high accuracy. Can be molded. Therefore, a three-dimensional structure having a relatively high aspect ratio or large unevenness, or a three-dimensional structure having a minute and complicated contour can be manufactured by a photopolymerization method by an optical modeling method. However, since the physical properties of the microstructure are governed by the physical properties of the photopolymer, any physical properties such as high mechanical strength, heat resistance, chemical resistance, corrosion resistance, etc., such as metal microstructures, can be obtained. It is very difficult to manufacture a microstructure having a photopolymer with a current technology.

本発明は、このような課題に鑑みてなされたものであり、その目的とするところは、光造形法により造形可能な微細且つ複雑な三次元構造を有し、しかも、任意の物性を有する微小構造体をリソグラフィ技術に依存することなく高精度に成形し得る微小構造体の製造方法を提供することにある。   The present invention has been made in view of such a problem, and the object of the present invention is to have a minute and complicated three-dimensional structure that can be formed by an optical modeling method, and to have a minute physical property. An object of the present invention is to provide a manufacturing method of a microstructure that can form a structure with high accuracy without depending on a lithography technique.

本発明は、上記目的を達成すべく、光造形法により造形した光重合体を用いた微小構造体の製造方法において、
光重合体の三次元構造体を光造形法で任意形態に造形して微小且つ三次元構造の転写型を形成する転写型作製工程と、
該転写型の輪郭を任意の素材に転写する転写工程とを有し、
光造形法で造形可能な三次元構造と実質的に同一の構造を有する微小且つ任意物性の微小構造体を製造することを特徴とする微小構造体の製造方法を提供する。
In order to achieve the above object, the present invention provides a microstructure manufacturing method using a photopolymer modeled by an optical modeling method.
A transfer mold manufacturing process in which a three-dimensional structure of a photopolymer is formed into an arbitrary shape by an optical modeling method to form a transfer mold having a microscopic and three-dimensional structure,
A transfer step of transferring the outline of the transfer mold to an arbitrary material,
Provided is a method for manufacturing a microstructure, characterized in that a microstructure having a substantially same structure as a three-dimensional structure that can be formed by an optical modeling method is manufactured.

本発明の上記構成によれば、三次元構造を有する光重合体の転写型が、リソグラフィ技術による多段階のパターンニング及びエッチング工程を経ることなく、光造形法により高精度に造形される。転写型は、光造形法で造形可能な微細且つ複雑な三次元構造に造形することができる。光重合体の三次元構造は、金属や半導体等の素材に転写され、光造形法で造形した三次元構造と実質的に同一の構造を有する微小且つ任意物性の微小構造体が製造される。微小構造体の物性は、光重合体の物性と直接に関係せず、三次元構造を転写した素材の物性により決定される。従って、使用目的に相応した耐性(機械的強度、耐熱性、耐薬品性、耐蝕性等)を有する微小構造体、例えば、金属製の微小構造体を製造することができる。しかも、このようにして成形された微小構造体は、光造形法の精度及び成形性を反映したものであり、光造形法で造形可能な微細且つ複雑な三次元構造を有する。また、微小構造体を光重合体以外の任意の素材で成形できるので、成形後の微小構造体の物性を熱処理又は化学的処理等によって改質することができる。   According to the above-described configuration of the present invention, a photopolymer transfer mold having a three-dimensional structure is formed with high accuracy by an optical modeling method without passing through a multi-stage patterning and etching process by a lithography technique. The transfer mold can be formed into a fine and complicated three-dimensional structure that can be formed by stereolithography. The three-dimensional structure of the photopolymer is transferred to a material such as a metal or a semiconductor, and a micro structure having substantially the same structure as the three-dimensional structure formed by the optical modeling method is manufactured. The physical properties of the microstructure are not directly related to the physical properties of the photopolymer, but are determined by the physical properties of the material to which the three-dimensional structure is transferred. Therefore, a microstructure having resistance (mechanical strength, heat resistance, chemical resistance, corrosion resistance, etc.) corresponding to the purpose of use, for example, a metal microstructure can be manufactured. In addition, the microstructure formed in this way reflects the accuracy and formability of the optical modeling method, and has a fine and complex three-dimensional structure that can be modeled by the optical modeling method. In addition, since the microstructure can be molded from any material other than the photopolymer, the physical properties of the microstructure after molding can be modified by heat treatment or chemical treatment.

好ましくは、上記転写工程において、任意の金属が転写型のキャビティ内に充填され、転写型の三次元輪郭がキャビティ内の金属に転写される。更に好ましくは、金属は、無電解メッキ法を用いて転写型のキャビティ内に充填される。ここに、光重合体は、耐熱性及び耐圧性が比較的低く、高温又は高圧の成形工程に適応し難い。しかしながら、比較的低温(60℃以下、好ましくは40〜50℃の範囲)且つ低圧の条件下に実施可能な無電解メッキ法は、光重合体の転写型を用いた上記転写工程に好ましく適用し得る。   Preferably, in the transfer step, an arbitrary metal is filled in the cavity of the transfer mold, and the three-dimensional contour of the transfer mold is transferred to the metal in the cavity. More preferably, the metal is filled into the transfer mold cavity using an electroless plating process. Here, the photopolymer has a relatively low heat resistance and pressure resistance, and is difficult to adapt to a high temperature or high pressure molding process. However, the electroless plating method that can be carried out under relatively low temperature (60 ° C. or lower, preferably in the range of 40 to 50 ° C.) and low pressure is preferably applied to the transfer step using a photopolymer transfer mold. obtain.

好適には、転写型の表面に形成されたメッキ層は、電解研削によって除去される。電解研削の特性(電気化学的不働態皮膜に研削工具が到達し、皮膜を剥離することにより、剥離された部分の加工のみが進行する性質)を利用し、転写型表面のメッキ層のみを正確に除去することができる。表面のメッキ層の全部又は一部を除去した結果として、光重合体の転写型と、転写型内に埋込んだ微小構造体とが残留するが、光重合体は、有機溶剤によって溶解し、或いは、熱によって融解又は焼失する性質を一般に有する。従って、転写型を有機溶剤によって溶解させ、或いは、熱によって融解又は焼失(又はガス化)させることにより、キャビティ内の金属を脱型することができる。所望により、脱型後の微小構造体の機械的強度を熱処理等によって向上し、或いは、金属成形体に表面処理を施すことができる。このようにして成形された微小構造体は、光造形法の精度、成形性及び成形自由度と、素材選択の自由度との双方を兼ね備える。このため、従来技術では煩雑な製造プロセスや、高額又は大規模な設備を要していた微細且つ複雑な三次元構造の微小構造体を簡易な製造プロセス及び設備で廉価に製造することができる。   Preferably, the plating layer formed on the surface of the transfer mold is removed by electrolytic grinding. Using the characteristics of electrolytic grinding (the property that the grinding tool reaches the electrochemically passive film and the film is peeled off so that only the peeled portion is processed), only the plating layer on the transfer mold surface is accurately measured. Can be removed. As a result of removing all or part of the plating layer on the surface, the photopolymer transfer mold and the microstructure embedded in the transfer mold remain, but the photopolymer is dissolved by the organic solvent, Alternatively, it generally has the property of melting or burning away by heat. Therefore, the metal in the cavity can be demolded by dissolving the transfer mold with an organic solvent or by melting or burning (or gasifying) it with heat. If desired, the mechanical strength of the microstructure after demolding can be improved by heat treatment or the like, or the metal molded body can be subjected to surface treatment. The microstructure formed in this way has both the accuracy, formability, and molding freedom of the optical modeling method, and the freedom of material selection. For this reason, it is possible to inexpensively manufacture a fine structure having a fine and complicated three-dimensional structure, which requires a complicated manufacturing process and expensive or large-scale equipment in the conventional technology, with a simple manufacturing process and equipment.

本発明に従って上記転写型でエッチング用マスクを作製しても良い。転写型の三次元構造は、エッチング用マスクに転写され、任意の基板がエッチング用マスクを用いてエッチング処理される。この結果、光造形法で造形した三次元構造と実質的に同一の立体構造が基板に形成される。好ましくは、エッチング用マスクは、転写型の三次元輪郭を転写可能な樹脂、例えば、特殊シリコーン樹脂からなり、転写型に着脱可能に密着する第1面と、前記基板の表面に密着可能な第2面とを有する。   In accordance with the present invention, an etching mask may be fabricated with the above transfer mold. The transfer type three-dimensional structure is transferred to an etching mask, and an arbitrary substrate is etched using the etching mask. As a result, a three-dimensional structure substantially the same as the three-dimensional structure modeled by the optical modeling method is formed on the substrate. Preferably, the etching mask is made of a resin that can transfer the three-dimensional contour of the transfer mold, for example, a special silicone resin, and a first surface that is detachably attached to the transfer mold and a first surface that can be attached to the surface of the substrate. Two sides.

第1面に転写型のパターンを転写したエッチング用マスクは、第2面を基板の表面に密着した状態でエッチング溶液でエッチング処理され、或いは、ドライエッチング処理を受ける。このような製造方法によれば、リソグラフィ技術を用いたレジストマスクの作製や、多段階の繰返し工程、或いは、放射光を利用したLIGA(lithographie galvanoformung Abformung)プロセスに代表される大型設備等を用いることなく、微細且つ複雑な三次元構造の微小構造体を簡易な製造プロセス及び設備で廉価に製造することができる。   The etching mask having the transfer pattern transferred to the first surface is etched with an etching solution with the second surface in close contact with the surface of the substrate, or is subjected to a dry etching process. According to such a manufacturing method, a large-scale facility represented by a LIGA (lithographie galvanoformung Abformung) process using a lithographic technique, a multi-step repetitive process, or radiant light is used. In addition, a fine structure having a complicated and three-dimensional structure can be manufactured inexpensively with a simple manufacturing process and equipment.

本発明の上記製造方法によれば、光造形法により造形可能な微細且つ複雑な三次元構造を有し、しかも、任意の物性を有する微小構造体をリソグラフィ技術に依存することなく高精度に成形することができる。   According to the manufacturing method of the present invention, a microstructure having a fine and complicated three-dimensional structure that can be shaped by an optical shaping method and having any physical property is formed with high accuracy without depending on lithography technology. can do.

以下、添付図面を参照して、本発明の好適な実施形態について詳細に説明する。
図1及び図2は、光造形法の原理を説明するための斜視図及び縦断面図である。図1には、積層方式の光造形法が示され、図2には、2光子吸収方式の光造形法が示されている。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
1 and 2 are a perspective view and a longitudinal sectional view for explaining the principle of the optical modeling method. FIG. 1 shows a layered stereolithography, and FIG. 2 shows a two-photon absorption stereolithography.

図1に示す積層方式の光造形法では、段階的に昇降可能な昇降ステージ4が用いられ、光重合性樹脂の固化層5が、段階的に積層される。以下、積層方式の光造形法について説明する。   In the layered stereolithography shown in FIG. 1, an elevating stage 4 that can be raised and lowered in stages is used, and a solidified layer 5 of a photopolymerizable resin is laminated in stages. Hereinafter, the lamination type stereolithography will be described.

光重合性樹脂原料の浴1が、容器(図示せず)内に収容される。図1(A)に示す如く、昇降ステージ4のプラットフォーム(テーブル)が浴1内に浸漬される。プラットフォームの上面と浴1の液面との間には、比較的薄い光重合性樹脂原料の液層が形成される。紫外レーザー光の光源を有するレーザーシステム(図示せず)が、レーザー光2を浴1の光重合性樹脂原料に照射する。レーザーシステムは、紫外レーザー光2を浴1の表層部分に集光し、予め設定された成形断面データに相応してレーザー光2を走査する。液面及び昇降ステージ4の間の液状樹脂原料は、焦点3の変移に従って順次固化し、所定厚の重合体層を形成する。焦点3の位置は、浴1の表層近傍でレーザーシステムの制御下に移動し、所望の三次元構造を有する光重合体がプラットフォーム上に造形される。   A bath 1 of a photopolymerizable resin material is accommodated in a container (not shown). As shown in FIG. 1A, the platform (table) of the elevating stage 4 is immersed in the bath 1. A relatively thin liquid layer of the photopolymerizable resin material is formed between the upper surface of the platform and the liquid surface of the bath 1. A laser system (not shown) having a light source of ultraviolet laser light irradiates the photopolymerizable resin raw material of the bath 1 with the laser light 2. The laser system focuses the ultraviolet laser beam 2 on the surface layer portion of the bath 1 and scans the laser beam 2 in accordance with preset molding cross-section data. The liquid resin raw material between the liquid surface and the elevating stage 4 is sequentially solidified according to the shift of the focal point 3 to form a polymer layer having a predetermined thickness. The position of the focal point 3 moves under the control of the laser system in the vicinity of the surface layer of the bath 1, and a photopolymer having the desired three-dimensional structure is shaped on the platform.

次いで、昇降ステージ4の駆動装置は、昇降ステージ4のプラットフォームを一層分だけ降下させ、レーザーシステムは、第1層と同様、レーザー光2を走査し、第2層の光重合体層が、レーザーシステムの制御下に第1層の上に造形される。   Next, the driving device for the lifting stage 4 lowers the platform of the lifting stage 4 by one layer, and the laser system scans the laser beam 2 in the same manner as the first layer, and the second photopolymer layer becomes the laser beam. Modeled on the first layer under the control of the system.

以後、図1(B)及び図1(C)に示す如く、このような操作が繰返し実行され、光重合体5が造形される。全層の硬化が所望の如く完了した後、プラットフォームが最上段まで引き上げられ、造形後の硬化体5が浴1から取り出される。硬化体5は、未重合樹脂原料を除去すべく、エタノール等の溶剤で洗浄される。かくして、所望の光重合体が、後述する光重合体製の母型又はマスター型として造形される。このような光造形法による加工分解能は、一般に約20〜200μm程度である。なお、必要に応じて、母型又はマスター型を複数の部品に分割し、上記工程に従って各構成部品を光造形して良い。この場合、光造形した構成部品は、一体的母型又はマスター型を形成するように相互接合される。   Thereafter, as shown in FIGS. 1B and 1C, such an operation is repeatedly executed, and the photopolymer 5 is formed. After the curing of all layers is completed as desired, the platform is pulled up to the uppermost stage, and the cured body 5 after shaping is removed from the bath 1. The cured body 5 is washed with a solvent such as ethanol in order to remove the unpolymerized resin raw material. Thus, a desired photopolymer is formed as a matrix or master mold made of a photopolymer described later. The processing resolution by such an optical shaping method is generally about 20 to 200 μm. In addition, if necessary, the master die or the master die may be divided into a plurality of parts, and each component part may be optically modeled according to the above process. In this case, the optically shaped components are joined together to form an integral master or master mold.

図2には、光重合性樹脂原料の浴1の内部に集光スポット7を形成し、集光スポットの位置制御によって液状樹脂原料内部に三次元構造の重合体を造形する2光子吸収方式の光造形法が示されている。   FIG. 2 shows a two-photon absorption method in which a condensing spot 7 is formed inside the photopolymerizable resin raw material bath 1 and a three-dimensional polymer is formed inside the liquid resin raw material by controlling the position of the condensing spot. Stereolithography is shown.

図2に示す光造形法では、レーザーシステム(図示せず)は、近赤外(又は赤色)フェムト秒パルスレーザーの光源を有し、光源の近赤外(又は赤色)レーザー光2が、短焦点レンズ6を介して光重合性樹脂原料の浴1に照射される。光重合性樹脂原料は、レーザー光2に対して透過性を有し、レーザー光2は、浴1の内部において集光し、集光スポット7を形成する。集光スポット7には、近赤外線を紫外線に変化させる2光子吸収現象が誘起し、焦点位置近傍(焦点スポット7)の光重合性樹脂原料のみが重合する。   In the stereolithography shown in FIG. 2, the laser system (not shown) has a light source of a near infrared (or red) femtosecond pulse laser, and the near infrared (or red) laser light 2 of the light source is short. The bath 1 of the photopolymerizable resin material is irradiated through the focus lens 6. The photopolymerizable resin material is transmissive to the laser beam 2, and the laser beam 2 is condensed inside the bath 1 to form a condensed spot 7. A two-photon absorption phenomenon that changes near infrared rays into ultraviolet rays is induced in the condensed spot 7, and only the photopolymerizable resin raw material in the vicinity of the focal position (the focal spot 7) is polymerized.

レーザーシステムは、集光スポット7を浴1内で走査し、所望輪郭の光重合体8を造形する。造形後の光重合体8は、浴1から取出され、エタノール等の溶剤で洗浄される。かくして、所望輪郭の光重合体8が、後述する光重合体製の母型又はマスター型として造形される。このような光造形法による加工分解能は、一般に約0.1〜10μm程度である。なお、必要に応じて、母型又はマスター型の構成部品を光造形し、造形後の各構成部品を相互接合して一体的母型又はマスター型を製作しても良い。   The laser system scans the focused spot 7 in the bath 1 and forms a photopolymer 8 having a desired contour. The molded photopolymer 8 is removed from the bath 1 and washed with a solvent such as ethanol. Thus, the photopolymer 8 having a desired contour is formed as a matrix or master mold made of a photopolymer described later. Processing resolution by such an optical shaping method is generally about 0.1 to 10 μm. If necessary, the master mold or master mold components may be optically modeled, and the molded components may be joined together to produce an integral master mold or master mold.

図3は、本発明による微小構造体製造方法の第1実施形態を示す工程説明図である。   FIG. 3 is a process explanatory view showing the first embodiment of the microstructure manufacturing method according to the present invention.

図1又は図2に示す光造形法によって造形した母型10が、図3(A)及び図3(B)に示されている。母型10は、光造形法でキャビティ11を形成した光重合体からなる。キャビティ11の輪郭は、図3(G)に示す微小構造体20の輪郭と一致する。   A mother die 10 shaped by the optical shaping method shown in FIG. 1 or FIG. 2 is shown in FIG. 3 (A) and FIG. 3 (B). The mother die 10 is made of a photopolymer having cavities 11 formed by stereolithography. The contour of the cavity 11 matches the contour of the microstructure 20 shown in FIG.

図3(C)に示す如く、金属皮膜13が無電解メッキ法で母型10の表面及びキャビティ11内に形成される。   As shown in FIG. 3C, a metal film 13 is formed on the surface of the mother die 10 and in the cavity 11 by electroless plating.

無電解メッキ過程では、金属塩(硫酸ニッケル等)、還元剤(次亜リン酸ナトリウム等)、pH調整剤、緩衝剤、錯化剤(クエン酸ナトリウム等)、安定剤、改良剤(鉛イオン)等を配合した無電解メッキの溶液(図示せず)が調製され、母型10は、メッキ浴(溶液)に浸漬される。メッキ浴(溶液)の温度は、60℃以下、好ましくは40〜50℃の範囲に設定される。溶液中の金属イオンが、還元剤の酸化時に放出されるイオンによって還元され、メッキ皮膜として析出し、母型10にメッキ皮膜を形成する。このような無電解メッキ法によれば、光重合体製の母型10に任意の厚さの金属皮膜13を均一に形成するとともに、キャビティ11内に金属を充填することができる。   In the electroless plating process, metal salts (such as nickel sulfate), reducing agents (such as sodium hypophosphite), pH adjusters, buffers, complexing agents (such as sodium citrate), stabilizers, improvers (lead ions) ) And the like are prepared, and an electroless plating solution (not shown) is prepared, and the matrix 10 is immersed in a plating bath (solution). The temperature of the plating bath (solution) is set to 60 ° C. or lower, preferably 40 to 50 ° C. Metal ions in the solution are reduced by ions released during oxidation of the reducing agent, and are deposited as a plating film to form a plating film on the mother die 10. According to such an electroless plating method, the metal film 13 having an arbitrary thickness can be uniformly formed on the matrix 10 made of photopolymer, and the cavity 11 can be filled with metal.

無電解メッキ過程の実施例を以下のとおり例示する。   Examples of the electroless plating process are illustrated as follows.

脱脂工程:母型10を室温(約20℃)のエタノール浴(500ml)に3分間、浸漬した後、母型10を純水で洗浄する。   Degreasing step: After immersing the mother die 10 in an ethanol bath (500 ml) at room temperature (about 20 ° C.) for 3 minutes, the mother die 10 is washed with pure water.

感受性化工程:塩化第一スズ2gを塩酸500mlに混合して室温(約20℃)の液浴を調製し、母型10を3分間、液浴に浸漬した後、母型10を純水で洗浄する。   Sensitization process: 2 g of stannous chloride is mixed with 500 ml of hydrochloric acid to prepare a liquid bath at room temperature (about 20 ° C.), and the mother mold 10 is immersed in the liquid bath for 3 minutes. Wash.

活性化工程:塩化パラジウム0.3gを混合した塩酸30ml及びイオン交換水270mlの液浴を調製し、室温(約20℃)の液浴に母型10を3分間、浸漬した後、母型10を純水で洗浄する。   Activation step: A liquid bath of 30 ml of hydrochloric acid mixed with 0.3 g of palladium chloride and 270 ml of ion-exchanged water was prepared, and the mother mold 10 was immersed in a liquid bath at room temperature (about 20 ° C.) for 3 minutes. Wash with pure water.

無電解メッキ工程:硫酸ニッケル21g、グリシン22g、塩化鉛4mg、次亜リン酸ナトリウム20gを純水1リットルに溶解して液浴を調製し、40〜50℃に液温を管理した液浴に母型10を1〜10分間、浸漬し、母型10をメッキ層で被覆する。   Electroless plating process: Prepare a liquid bath by dissolving 21 g of nickel sulfate, 22 g of glycine, 4 mg of lead chloride and 20 g of sodium hypophosphite in 1 liter of pure water, and in a liquid bath whose liquid temperature is controlled at 40 to 50 ° C. The mother die 10 is immersed for 1 to 10 minutes, and the mother die 10 is covered with a plating layer.

このような無電解メッキプロセスで母型10に形成された金属皮膜13は、一般に500〜600Hv程度の硬度を有する。母型10は、不要な金属皮膜部分を除去する電解研削プロセス(図3(D))を経た後、母型除去プロセス(図3(E)、(F))において、有機溶剤により溶解し、或いは、熱により融解又は焼失せしめられる。   The metal film 13 formed on the mother die 10 by such an electroless plating process generally has a hardness of about 500 to 600 Hv. The mother die 10 is dissolved by an organic solvent in a mother die removing process (FIGS. 3E and 3F) after an electrolytic grinding process (FIG. 3D) for removing an unnecessary metal film portion, Alternatively, it is melted or burned away by heat.

電解研削法は、被加工物を陽極に設定し且つ研削工具を陰極に設定した状態で両者間の狭小間隙に電解作用を生じさせ、被加工物の溶出によって被加工物を研削する研削法として知られている。本発明における電解研削法の採用は、非導電性部分に研削工具が到達すると研削作用が自動的に停止する電解研削法の特性に着目したものであり、図4に示す如く、母型10の表面(上面)を被覆した金属皮膜13の部分が、電解研削プロセスによって研削される。   Electrolytic grinding is a grinding method in which the workpiece is set to the anode and the grinding tool is set to the cathode to cause an electrolytic action in the narrow gap between the two and to grind the workpiece by elution of the workpiece. Are known. Employment of the electrolytic grinding method in the present invention focuses on the characteristics of the electrolytic grinding method in which the grinding action is automatically stopped when the grinding tool reaches the non-conductive portion. As shown in FIG. The portion of the metal film 13 covering the surface (upper surface) is ground by an electrolytic grinding process.

図4(A)には、研削工具50としてメタルボンド回転電極磁石を使用し、固定台51上に無電解メッキ後の母型10を配置した状態が示されている。なお、排気路52は、吸引装置(図示せず)に接続され、母型10は、排気路52を介して作用する吸引圧力によって固定台51上に真空固定される。   FIG. 4A shows a state in which a metal bond rotating electrode magnet is used as the grinding tool 50 and the matrix 10 after electroless plating is disposed on the fixed base 51. The exhaust path 52 is connected to a suction device (not shown), and the mother die 10 is vacuum-fixed on the fixed base 51 by a suction pressure acting through the exhaust path 52.

研削工具50は電源装置53の陰極に接続され、金属皮膜13は、電源装置の陽極に接続される。電解液(例えば、NaNO3等)を噴霧ノズル54から噴霧し、電源装置63によって母型10及び研削工具50に電圧を印加すると、母型10の上面に不働態膜が形成される。図4(B)に示すように切削工具50を水平変位させて母型10の上面を軽く擦過すると、不働態膜が剥離し、図4(C)に示す如く、電解切削が進行する。電解液を噴霧ノズル54から供給しながら電解切削を進行させ、金属皮膜13の厚さを低減させると、図4(D)に示すように母型上面の金属皮膜部分が完全に除去され、この結果、母型10を構成する光重合体が母型上面に露出する。電気的不導体である光重合体の露出によって電解作用は自動的に停止し、微小構造体20の形状・輪郭を有する金属部分20’がキャビティ11内に残留する。 The grinding tool 50 is connected to the cathode of the power supply 53, and the metal film 13 is connected to the anode of the power supply. When an electrolytic solution (for example, NaNO 3 or the like) is sprayed from the spray nozzle 54 and a voltage is applied to the mother die 10 and the grinding tool 50 by the power supply device 63, a passive film is formed on the upper surface of the mother die 10. When the cutting tool 50 is horizontally displaced as shown in FIG. 4B and the upper surface of the mother die 10 is lightly rubbed, the passive film is peeled off, and electrolytic cutting proceeds as shown in FIG. 4C. When electrolytic cutting is advanced while supplying the electrolytic solution from the spray nozzle 54 and the thickness of the metal film 13 is reduced, the metal film portion on the upper surface of the mother die is completely removed as shown in FIG. As a result, the photopolymer constituting the mother die 10 is exposed on the upper surface of the mother die. The electrolytic action automatically stops due to the exposure of the photopolymer which is an electrical nonconductor, and the metal portion 20 ′ having the shape and contour of the microstructure 20 remains in the cavity 11.

電解研削プロセスを終了した母型10が図3(E)に示されている。母型10は、キャビティ10内の金属部分20’を脱型すべく、有機溶剤に浸漬され、或いは、光重合体の融点以上に加熱され、これにより、金属部分20’は光重合体から分離する。脱型した金属部分20’は、所望により、硬化のために熱処理を施され、或いは、表面処理を施され、かくして、図3(F)及び図3(G)に示す微小構造体20が製造される。   The mother die 10 that has finished the electrolytic grinding process is shown in FIG. The mother die 10 is immersed in an organic solvent or heated to a temperature higher than the melting point of the photopolymer so as to remove the metal portion 20 ′ in the cavity 10, whereby the metal portion 20 ′ is separated from the photopolymer. To do. The metal part 20 ′ thus demolded is subjected to heat treatment for curing or surface treatment as desired, and thus the microstructure 20 shown in FIGS. 3F and 3G is manufactured. Is done.

このようにして製造される微小構造体20として、例えば、図5に示すようなマイクロタービン、複数の歯形部を有するマイクロギア、微小組立治具を構成するマイクロマニピュレータ、或いは、磁気システムを利用した医療用マイクロマシーン等を例示し得る。   As the microstructure 20 manufactured in this manner, for example, a micro turbine as shown in FIG. 5, a micro gear having a plurality of tooth profile portions, a micro manipulator constituting a micro assembly jig, or a magnetic system is used. A medical micromachine or the like can be exemplified.

なお、説明を簡略化すべく、単一のキャビティ11を有する母型10を図示し、説明したが、図6に示す如く複数のキャビティ11を母型10に形成し、複数の微小構造体20を同時に製造するようにしても良い。   In order to simplify the description, the mother die 10 having a single cavity 11 is shown and described. However, as shown in FIG. 6, a plurality of cavities 11 are formed in the mother die 10 and a plurality of microstructures 20 are formed. You may make it manufacture simultaneously.

図7は、本発明による微小構造体製造方法の第2実施形態を示す工程説明図である。   FIG. 7 is a process explanatory view showing a second embodiment of the microstructure manufacturing method according to the present invention.

前述した積層方式又は2光子方式の光造形法によって製作した光重合体製のマスター型30が、図7(A)に示されている。マスター型30の表面には、微小且つ複雑な凹凸を有する表面輪郭31が光造形法によって形成されており、表面輪郭31は、最終製品としての微小構造体40の輪郭(図7(E))に相応する。ここに、比較的大きな起伏を有する複雑な表面輪郭31をマイクロ・ナノオーダーで成形するには、従来は、リソグラフィ技術を用いたレジストマスクの作製や、多段階の繰返し工程、更には、放射光を利用したLIGA(lithographie galvanoformung Abformung)プロセスに代表される大型設備等を要していたが、光造形法によれば、このような工程又は設備を要することなく、所望の表面輪郭31をマスター型30に形成することができる。   A master mold 30 made of a photopolymer manufactured by the above-described lamination method or two-photon method of optical modeling is shown in FIG. A surface contour 31 having minute and complicated irregularities is formed on the surface of the master mold 30 by an optical modeling method, and the surface contour 31 is a contour of the microstructure 40 as a final product (FIG. 7E). It corresponds to. Here, in order to form a complicated surface contour 31 having relatively large undulations in the micro / nano order, conventionally, a resist mask using a lithography technique, a multi-step repetitive process, and a synchrotron radiation are used. Large equipment such as LIGA (lithographie galvanoformung Abformung) process using LIGA was required. However, according to stereolithography, the desired surface contour 31 can be formed into a master type without requiring such steps or equipment. 30 can be formed.

図7(B)に示すように、特殊シリコーン樹脂のシート40が、マスター型30に圧接される。シート40の特殊シリコーン樹脂は、表面輪郭31に圧接して変形する変形能と、表面輪郭31と同形に賦形した輪郭を保持する形状保持性とを有する。   As shown in FIG. 7B, a special silicone resin sheet 40 is pressed against the master mold 30. The special silicone resin of the sheet 40 has a deformability capable of being deformed by being pressed against the surface contour 31 and a shape retaining property for retaining a contour shaped in the same shape as the surface contour 31.

マスター型30を構成する光重合性樹脂原料として、エポキシ系光硬化性樹脂を例示し得る。一般に、エポキシ系光硬化性樹脂の熱変形温度は、約56℃であり、その引張り強度は、約80MPaである。他方、シート40を構成する特殊シリコーン樹脂として、ポリジメチルシロキサン系シリコーンエラストマーを好適に使用し得る。ポリジメチルシロキサン系シリコーンエラストマーは、適度なガス透過性を有し、このガス透過性は、光重合体のガス透過性よりも大きい。また、ポリジメチルシロキサン系シリコーンエラストマーは、適度な弾性及び引張り強度(約7MPa)を有する。   As a photopolymerizable resin material constituting the master mold 30, an epoxy-based photocurable resin can be exemplified. In general, the thermal deformation temperature of an epoxy photocurable resin is about 56 ° C., and its tensile strength is about 80 MPa. On the other hand, a polydimethylsiloxane-based silicone elastomer can be suitably used as the special silicone resin constituting the sheet 40. The polydimethylsiloxane-based silicone elastomer has moderate gas permeability, and this gas permeability is larger than the gas permeability of the photopolymer. Further, the polydimethylsiloxane-based silicone elastomer has moderate elasticity and tensile strength (about 7 MPa).

マスター型30の表面輪郭31は、マスター型30から脱型したシート40の第1面(図7(B)、(C)における下側面)に転写され、シート40の第2面(図7(B)、(C)における上側面)が、図7(D)に示す如く、上下反転した状態でエッチング・マスクとして基板41上に配置される。シート40の第2面は、基板41の上面に密着する。マスター型30を構成する特殊シリコーン樹脂のガス透過性及び密着性を利用し、エッチングガス(例えば、XeF2(フッ化キセノン(II))が、図7(D)に矢印で示すようにシート40に適用され、基板41の等方性エッチングが、室温条件で行われる。エッチングガスは、シート40を介して基板41に作用し、基板41は、エッチングされる。このようなエッチング処理により、シート40に転写したマスター型30の三次元構造は、基板41に更に転写される。従って、光造形法の精度又は分解能で造形した微細且つ複雑な立体構造(三次元構造)と実質的に同一の構造が基板41に形成される。しかも、このような製造方法によれば、エッチング処理可能な任意の素材の基板を基板41として採用することができる。なお、本実施形態のマスター型30は、微小構造体製造過程において化学処理又は熱処理等を受けず、従って、繰返し再利用することができる。 The surface contour 31 of the master mold 30 is transferred to the first surface of the sheet 40 released from the master mold 30 (the lower surface in FIGS. 7B and 7C), and the second surface of the sheet 40 (FIG. B) and (C) are disposed on the substrate 41 as an etching mask in an inverted state, as shown in FIG. 7D. The second surface of the sheet 40 is in close contact with the upper surface of the substrate 41. An etching gas (for example, XeF 2 (xenon fluoride (II)) is applied to the sheet 40 as indicated by an arrow in FIG. 7D by utilizing the gas permeability and adhesion of the special silicone resin constituting the master mold 30. The isotropic etching of the substrate 41 is performed under room temperature conditions, and the etching gas acts on the substrate 41 through the sheet 40, and the substrate 41 is etched. The three-dimensional structure of the master mold 30 transferred to 40 is further transferred to the substrate 41. Therefore, it is substantially the same as the fine and complicated three-dimensional structure (three-dimensional structure) formed with the accuracy or resolution of the optical modeling method. The structure is formed on the substrate 41. Moreover, according to such a manufacturing method, a substrate made of any material that can be etched can be adopted as the substrate 41. Note that this embodiment Master mold 30 are not subjected to chemical treatment or heat treatment in the microstructure manufacturing process, therefore, can be repeatedly reused.

以上、本発明の好適な実施形態について詳細に説明したが、本発明は上記実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の範囲内で種々の変形又は変更が可能である。   The preferred embodiments of the present invention have been described in detail above. However, the present invention is not limited to the above-described embodiments, and various modifications or changes can be made within the scope of the present invention described in the claims. Is possible.

例えば、基板41のエッチング処理は、ドライエッチング方式に限定されるものではなく、エッチング溶液をシート40に吹き付けるウェットエッチング方式のエッチング処理を採用しても良い。   For example, the etching process for the substrate 41 is not limited to the dry etching method, and a wet etching method in which an etching solution is sprayed onto the sheet 40 may be employed.

また、キャビティ11に充填される金属として、チタン等の他の金属を採用しても良い。   Further, other metals such as titanium may be adopted as the metal filled in the cavity 11.

本発明の上記製造方法は、マイクロ・ナノオーダーのマイクロマシン又は半導体素子等の製造に適用することができる。本発明によれば、低廉、簡易且つ高精度にマイクロマシン又は半導体素子等を製造することが可能となる。   The production method of the present invention can be applied to the production of micro / nano-order micromachines or semiconductor elements. According to the present invention, it is possible to manufacture a micromachine, a semiconductor element, or the like at low cost, simply, and with high accuracy.

殊に、現状では多くのマイクロマシンがシリコンを素材としたものであるのに対し、本発明をマイクロマシンの製造に適用した場合には、マイクロカンチレバーアレイや、ナノ振動子等の金属製マイクロマシンを簡易且つ廉価に製造することが可能となる。これは、殊に医療機器分野等で将来性が期待される金属製マイクロマシンの量産を可能にする。   In particular, while many micromachines are made of silicon at present, when the present invention is applied to the manufacture of micromachines, metal micromachines such as microcantilever arrays and nano-vibrators can be easily and simply used. It can be manufactured at a low price. This enables mass production of metal micromachines that are expected to be promising especially in the medical device field.

また、本発明は、半導体光素子の製造に適用することができる。例えば、本発明を半導体表面のレンズ加工に適用した場合、上面発光素子に特定の機能を付与することが可能となり、これにより、発光ダイオード(LED)又はエレクトロルミネッセンス(EL)素子の発光効率の向上、或いは、面発光型半導体レーザー(VCSEL)素子又は単一光子光源と光ファイバーケーブルとのカップリング効率の向上、更には、短焦点距離の高精度レンズの製造等が可能となる。   Further, the present invention can be applied to the manufacture of a semiconductor optical device. For example, when the present invention is applied to lens processing of a semiconductor surface, it becomes possible to give a specific function to the top light emitting element, thereby improving the light emitting efficiency of a light emitting diode (LED) or an electroluminescence (EL) element. Alternatively, it is possible to improve the coupling efficiency between a surface emitting semiconductor laser (VCSEL) element or a single photon light source and an optical fiber cable, and to manufacture a high-precision lens with a short focal length.

更に、本発明を光導波路の形成に適用しても良い。光導波路を用いた回路の形成において、表面に極端な凹凸を形成する必要がある場合であっても、本発明によれば、多段階のリソグラフィに依存せず、複雑な三次元構造を比較的短時間且つ簡易に成形することができる。   Furthermore, the present invention may be applied to the formation of an optical waveguide. Even when it is necessary to form extreme irregularities on the surface in the formation of a circuit using an optical waveguide, according to the present invention, a complicated three-dimensional structure can be relatively formed without depending on multi-step lithography. It can be molded in a short time and easily.

段階的に昇降可能な昇降ステージを使用して光重合性樹脂原料の固化層を積層する積層方式の光造形法の工程を示す斜視図である。It is a perspective view which shows the process of the lamination | stacking type optical shaping method which laminates | stacks the solidified layer of a photopolymerizable resin raw material using the raising / lowering stage which can be raised / lowered in steps. 液状の光重合性樹脂原料の内部に集光スポットを形成して液状樹脂原料内部に光重合体を形成する2光子吸収方式の光造形法を示す縦断面図である。It is a longitudinal cross-sectional view which shows the two-photon absorption-type optical modeling method which forms a condensing spot inside a liquid photopolymerizable resin raw material, and forms a photopolymer inside a liquid resin raw material. 本発明による微小構造体製造方法の第1実施形態を縦断面図及び斜視図によって示す工程説明図である。It is process explanatory drawing which shows 1st Embodiment of the microstructure manufacturing method by this invention with a longitudinal cross-sectional view and a perspective view. 電解研削工程(図3(C)〜(E))の詳細を縦断面図によって示す工程説明図である。It is process explanatory drawing which shows the detail of an electrolytic grinding process (FIG.3 (C)-(E)) with a longitudinal cross-sectional view. 図3及び図4に示す製造工程によって製造される微小構造体(マイクロタービン)を例示する斜視図である。FIG. 5 is a perspective view illustrating a microstructure (microturbine) manufactured by the manufacturing process illustrated in FIGS. 3 and 4. 複数のキャビティを形成した母型を例示する斜視図である。It is a perspective view which illustrates the mother die in which a plurality of cavities were formed. 本発明による微小構造体製造方法の第2実施形態を縦断面図によって示す工程説明図である。It is process explanatory drawing which shows 2nd Embodiment of the microstructure manufacturing method by this invention with a longitudinal cross-sectional view.

符号の説明Explanation of symbols

1 浴(光重合性樹脂原料)
2 レーザー光
3 焦点
4 昇降ステージ(プラットフォーム)
5 光重合体
6 短焦点レンズ
7 集光スポット
8 光重合体
10 母型
11 キャビティ
13 金属皮膜
20 微小構造体
20’金属部分
30 マスター型
31 表面輪郭
40 シート
41 基板
42 表面輪郭
50 研削工具
51 固定台
52 排気路
53 電源装置
54 噴霧ノズル
1 Bath (raw material for photopolymerizable resin)
2 Laser light 3 Focus 4 Lifting stage (platform)
5 Photopolymer 6 Short focus lens 7 Condensing spot 8 Photopolymer 10 Master mold 11 Cavity 13 Metal coating 20 Microstructure 20 ′ Metal part 30 Master mold 31 Surface contour 40 Sheet 41 Substrate 42 Surface contour 50 Grinding tool 51 Fixed Stand 52 Exhaust path 53 Power supply 54 Spray nozzle

Claims (8)

光造形法により造形した光重合体を用いた微小構造体の製造方法において、
光重合体の三次元構造体を光造形法で任意形態に造形して微小且つ三次元構造の転写型を形成する転写型作製工程と、
該転写型の輪郭を任意の素材に転写する転写工程とを有し、
光造形法で造形可能な三次元構造と実質的に同一の構造を有する微小且つ任意物性の微小構造体を製造することを特徴とする微小構造体の製造方法。
In the manufacturing method of the microstructure using the photopolymer modeled by the optical modeling method,
A transfer mold manufacturing process in which a three-dimensional structure of a photopolymer is formed into an arbitrary shape by an optical modeling method to form a transfer mold having a microscopic and three-dimensional structure,
A transfer step of transferring the outline of the transfer mold to an arbitrary material,
A method for manufacturing a microstructure, comprising manufacturing a microstructure having a substantially same structure as a three-dimensional structure that can be formed by stereolithography and having an arbitrary physical property.
前記転写工程において、任意の金属を前記転写型のキャビティ内に充填し、該キャビティ内の金属に前記転写型の三次元輪郭を転写することを特徴とする請求項1に記載の微小構造体の製造方法。   2. The microstructure according to claim 1, wherein in the transfer step, an arbitrary metal is filled in the cavity of the transfer mold, and the three-dimensional contour of the transfer mold is transferred to the metal in the cavity. Production method. 任意の金属を無電解メッキによって前記転写型のキャビティ内に充填することを特徴とする請求項2に記載の微小構造体の製造方法。   3. The method for manufacturing a microstructure according to claim 2, wherein an arbitrary metal is filled in the cavity of the transfer mold by electroless plating. 無電解メッキによって前記転写型の表面に形成されたメッキ層を電解研削によって除去することを特徴とする請求項3に記載の微小構造体の製造方法。   4. The method for manufacturing a microstructure according to claim 3, wherein a plating layer formed on the surface of the transfer mold by electroless plating is removed by electrolytic grinding. 前記転写型を融解、焼失又は溶解させて、前記キャビティ内の金属を前記転写型から脱型することを特徴とする請求項2乃至4のいずれか1項に記載の微小構造体の製造方法。   5. The method for manufacturing a microstructure according to claim 2, wherein the metal in the cavity is removed from the transfer mold by melting, burning, or dissolving the transfer mold. 6. 前記転写型の三次元構造をエッチング用マスクに転写し、該エッチング用マスクを用いて任意の基板をエッチングし、光造形法で造形した三次元構造と実質的に同一の構造を前記基板に形成することを特徴とする請求項1に記載の微小構造体の製造方法。   The transfer type three-dimensional structure is transferred to an etching mask, an arbitrary substrate is etched using the etching mask, and a substantially same structure as the three-dimensional structure formed by stereolithography is formed on the substrate. The method for manufacturing a microstructure according to claim 1. 前記エッチング用マスクは、前記転写型の三次元輪郭を転写可能な樹脂からなり、前記転写型に着脱可能に密着する第1面と、前記基板の表面に密着可能な第2面とを有することを特徴とする請求項6に記載の微小構造体の製造方法。   The etching mask is made of a resin capable of transferring the three-dimensional contour of the transfer mold, and has a first surface that can be detachably attached to the transfer mold and a second surface that can be closely attached to the surface of the substrate. The method for manufacturing a microstructure according to claim 6. 微小構造体の物性を熱処理又は化学的処理によって改質することを特徴とする請求項1乃至7のいずれか1項に記載の微小構造体の製造方法。
The method for producing a microstructure according to any one of claims 1 to 7, wherein physical properties of the microstructure are modified by heat treatment or chemical treatment.
JP2004217825A 2004-07-26 2004-07-26 Manufacturing method of microstructure Active JP4500962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004217825A JP4500962B2 (en) 2004-07-26 2004-07-26 Manufacturing method of microstructure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004217825A JP4500962B2 (en) 2004-07-26 2004-07-26 Manufacturing method of microstructure

Publications (2)

Publication Number Publication Date
JP2006035602A true JP2006035602A (en) 2006-02-09
JP4500962B2 JP4500962B2 (en) 2010-07-14

Family

ID=35901103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004217825A Active JP4500962B2 (en) 2004-07-26 2004-07-26 Manufacturing method of microstructure

Country Status (1)

Country Link
JP (1) JP4500962B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007069406A (en) * 2005-09-06 2007-03-22 Institute Of Physical & Chemical Research Manufacturing method of three-dimensional metal fine structure
JP2007253354A (en) * 2006-03-20 2007-10-04 Institute Of Physical & Chemical Research Method for producing minute three-dimensional metal structure
WO2008038540A1 (en) * 2006-09-27 2008-04-03 Jsr Corporation Method for manufacturing molding die and method for manufacturing molded product
JP2008196481A (en) * 2007-01-17 2008-08-28 Yokohama National Univ Micro-pump
JP2008212458A (en) * 2007-03-06 2008-09-18 Toppan Printing Co Ltd Needle-like body and needle-like body manufacturing method
JP2010518933A (en) * 2007-02-21 2010-06-03 シャネル パルファン ボーテ Cosmetic applicator manufacturing method, applicator, package including applicator, and applicator batch
WO2011086989A1 (en) * 2010-01-14 2011-07-21 国立大学法人横浜国立大学 Microfastener, microfastener production method, and microfastening element
GB2508378A (en) * 2012-11-29 2014-06-04 Kevin Smith Method of making a conductive component
JP2018048637A (en) * 2009-07-30 2018-03-29 スリーエム イノベイティブ プロパティズ カンパニー Nozzle and method for producing nozzle
CN108317233A (en) * 2018-04-09 2018-07-24 中国工程物理研究院电子工程研究所 Integration applied to MEMS micro-nano technologies is without assembly multilayer micro-cell electron capture detector structure
JP2018130935A (en) * 2017-02-17 2018-08-23 キヤノン株式会社 Injection mold, method for manufacturing injection mold, and method for manufacturing gear
WO2021253769A1 (en) * 2020-06-15 2021-12-23 苏州大学 Stl model slicing method and apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07329188A (en) * 1994-06-10 1995-12-19 Res Dev Corp Of Japan Photoforming application and manufacture of metal structure using said application
JPH08127074A (en) * 1994-10-31 1996-05-21 Mitsubishi Electric Corp Manufacture of minute mechanism part
JP2002144300A (en) * 2000-07-27 2002-05-21 Toshiba Tec Corp Pipe joint, method of manufacturing the same, and fluid device using pipe joint

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07329188A (en) * 1994-06-10 1995-12-19 Res Dev Corp Of Japan Photoforming application and manufacture of metal structure using said application
JPH08127074A (en) * 1994-10-31 1996-05-21 Mitsubishi Electric Corp Manufacture of minute mechanism part
JP2002144300A (en) * 2000-07-27 2002-05-21 Toshiba Tec Corp Pipe joint, method of manufacturing the same, and fluid device using pipe joint

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007069406A (en) * 2005-09-06 2007-03-22 Institute Of Physical & Chemical Research Manufacturing method of three-dimensional metal fine structure
JP2007253354A (en) * 2006-03-20 2007-10-04 Institute Of Physical & Chemical Research Method for producing minute three-dimensional metal structure
WO2008038540A1 (en) * 2006-09-27 2008-04-03 Jsr Corporation Method for manufacturing molding die and method for manufacturing molded product
JPWO2008038540A1 (en) * 2006-09-27 2010-01-28 Jsr株式会社 Manufacturing method of molding mold and manufacturing method of molded product
JP2008196481A (en) * 2007-01-17 2008-08-28 Yokohama National Univ Micro-pump
JP2010518933A (en) * 2007-02-21 2010-06-03 シャネル パルファン ボーテ Cosmetic applicator manufacturing method, applicator, package including applicator, and applicator batch
JP2008212458A (en) * 2007-03-06 2008-09-18 Toppan Printing Co Ltd Needle-like body and needle-like body manufacturing method
US10495043B2 (en) 2009-07-30 2019-12-03 3M Innovative Properties Company Fuel injector nozzle
JP2018048637A (en) * 2009-07-30 2018-03-29 スリーエム イノベイティブ プロパティズ カンパニー Nozzle and method for producing nozzle
US10539106B2 (en) 2009-07-30 2020-01-21 3M Innovative Properties Company Method of making a fuel injector nozzle
WO2011086989A1 (en) * 2010-01-14 2011-07-21 国立大学法人横浜国立大学 Microfastener, microfastener production method, and microfastening element
GB2508378A (en) * 2012-11-29 2014-06-04 Kevin Smith Method of making a conductive component
JP2018130935A (en) * 2017-02-17 2018-08-23 キヤノン株式会社 Injection mold, method for manufacturing injection mold, and method for manufacturing gear
CN108317233A (en) * 2018-04-09 2018-07-24 中国工程物理研究院电子工程研究所 Integration applied to MEMS micro-nano technologies is without assembly multilayer micro-cell electron capture detector structure
CN108317233B (en) * 2018-04-09 2023-06-20 中国工程物理研究院电子工程研究所 Integrated assembling-free multilayer micro-gear structure applied to MEMS micro-nano processing
WO2021253769A1 (en) * 2020-06-15 2021-12-23 苏州大学 Stl model slicing method and apparatus

Also Published As

Publication number Publication date
JP4500962B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
JP6010580B2 (en) LIGA-UV manufacturing method of multilayer metal structure in which adjacent layers do not completely overlap and structure obtained thereby
Park et al. Two‐photon stereolithography for realizing ultraprecise three‐dimensional nano/microdevices
JP5239056B2 (en) Electroforming mold manufacturing method, electroforming mold and electroformed part manufacturing method
JP4500962B2 (en) Manufacturing method of microstructure
CN1527793A (en) Method for forming microelectronic spring structures on a substrate
TWI756888B (en) Method for manufacturing a horological component
Holmes Laser processes for MEMS manufacture
US8986563B2 (en) Method for the production of three-dimensional microstructures
JP7112470B2 (en) Method for making watch components and components manufactured according to said method
KR101365211B1 (en) Method for copy mold manufacture
JP5621201B2 (en) Imprint mold manufacturing method and imprint mold
JP2006299371A (en) Method for producing fine metal structure, and fine metal structure
CN113589653A (en) Production of three-dimensional structures by means of photoresists
KR20040033088A (en) Method for fabrication of drum-type stamper and the ultraviolet continuous curing method for fabrication of micro patterns using drum-type stamper
JP2005050969A (en) Electric circuit component and its producing process
JP2008230083A (en) Stamper manufacturing method
KR101682556B1 (en) Method for Manufacturing Micro-scale Surface Wrinkles On Metal Structures
JP3612945B2 (en) Manufacturing method of microstructure
JP3638440B2 (en) X-ray mask and method of manufacturing the same
JP3627482B2 (en) Manufacturing method of microstructure
JP2002210745A (en) Method for manufacturing mold and replica master as well as mold
WO2003101889A1 (en) Mthod of producing micro component
JP2003236798A (en) Method and device for finishing surface of material by using ultraviolet ray or light beam with wavelength shorter than that of ultraviolet ray, and method and device for manufacturing product formed of high polymer compound by using these method and device
Kriama et al. Nano/microfabrication of three-dimensional device structures using a multilayered mould approach
JP3800273B2 (en) Microstructure manufacturing method and manufacturing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091229

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350