JP2006035477A - Optical deflector - Google Patents

Optical deflector Download PDF

Info

Publication number
JP2006035477A
JP2006035477A JP2004215211A JP2004215211A JP2006035477A JP 2006035477 A JP2006035477 A JP 2006035477A JP 2004215211 A JP2004215211 A JP 2004215211A JP 2004215211 A JP2004215211 A JP 2004215211A JP 2006035477 A JP2006035477 A JP 2006035477A
Authority
JP
Japan
Prior art keywords
polygon mirror
mirror
pole
dot pitch
goes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004215211A
Other languages
Japanese (ja)
Other versions
JP4330145B2 (en
Inventor
Toshihiro Furuta
敏宏 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuka Fuji Xerox Manufacturing Co Ltd
Original Assignee
Suzuka Fuji Xerox Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuka Fuji Xerox Manufacturing Co Ltd filed Critical Suzuka Fuji Xerox Manufacturing Co Ltd
Priority to JP2004215211A priority Critical patent/JP4330145B2/en
Publication of JP2006035477A publication Critical patent/JP2006035477A/en
Application granted granted Critical
Publication of JP4330145B2 publication Critical patent/JP4330145B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Heads (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve such a problem as a variation in driving torque being generated from a motor consisting of a driving magnet and a core coil appears as a variation in inter-dot pitch of a beam for scanning a photosensitive body through rotation of a polygon mirror. <P>SOLUTION: In the optical deflector comprising a polygon mirror in which a plurality of mirror faces are formed, and a motor consisting of a driving magnet for rotary driving the polygon mirror and a core coil, number of magnetic poles of the driving magnet is nP (n is a natural number) assuming the number of mirror faces of the polygon mirror is P (P is an even number of 4 or more). When the angular difference between the ridge position where the plurality of mirror faces adjoin mutually and the boundary position of N and S poles constituting the magnetic poles is set at about 90°/nP or 270°/nP, variation in inter-dot pitch of a beam for scanning a photosensitive body can be minimized. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、レーザープリンタやデジタル複写機等の画像形成装置に用いられる光偏向器に関するものである。   The present invention relates to an optical deflector used in an image forming apparatus such as a laser printer or a digital copying machine.

従来、レーザープリンタやデジタル複写機等の画像形成装置に用いられる光偏向器としては、図6に示されるものが知られている(例えば、特許文献1参照)。   Conventionally, as an optical deflector used in an image forming apparatus such as a laser printer or a digital copying machine, one shown in FIG. 6 is known (for example, see Patent Document 1).

この光偏向器は、ハウジング100に固定配設される円柱状の固定軸101と、この固定軸101に回転自在に支持される回転体110とを有している。
この回転体110は、固定軸101との間にわずかの隙間をもって配設されるスリーブ111と、このスリーブ111の上部内側に固定配設されるリング状のマグネット112と、スリーブ111の中央部外側に固定配設されるポリゴンミラー113と、スリーブ111の下部外側にフランジ114を介して固定配設されるリング状の駆動マグネット115とを備えている。
尚、符号116は、回転体110の重量の偏心を修正するためのバランスウェイト(図示せず)が取り付けられる溝である。
The optical deflector includes a columnar fixed shaft 101 fixedly disposed on the housing 100 and a rotating body 110 that is rotatably supported by the fixed shaft 101.
The rotating body 110 includes a sleeve 111 disposed with a slight gap between the rotating shaft 110, a ring-shaped magnet 112 fixedly disposed on the upper inner side of the sleeve 111, and an outer central portion of the sleeve 111. A polygon mirror 113 fixedly disposed on the lower surface of the sleeve 111 and a ring-shaped drive magnet 115 fixedly disposed on the outside of the lower portion of the sleeve 111 via a flange 114.
Reference numeral 116 denotes a groove in which a balance weight (not shown) for correcting the eccentricity of the weight of the rotating body 110 is attached.

また、固定軸101の上部外側には、回転体110に設けられたリング状マグネット112と対向するようにリング状マグネット102が固定配設されており、これらリング状マグネット102及び112によって回転体110をスラスト方向に軸受けするスラスト磁気軸受Sが構成されている。   A ring-shaped magnet 102 is fixedly disposed on the outer side of the upper portion of the fixed shaft 101 so as to face a ring-shaped magnet 112 provided on the rotating body 110. The rotating body 110 is supported by the ring-shaped magnets 102 and 112. A thrust magnetic bearing S for bearing in the thrust direction is configured.

更に、ハウジング100には、回転体110に設けられたリング状マグネット115と対向するように鉄心コイル103が固定配設されており、これらリング状マグネット115及び鉄心コイル103によって回転体110を回転させるモータMが構成されている。   Further, an iron core coil 103 is fixedly disposed in the housing 100 so as to face a ring-shaped magnet 115 provided on the rotating body 110, and the rotating body 110 is rotated by the ring-shaped magnet 115 and the iron core coil 103. A motor M is configured.

また、回転体110のスリーブ111のうち、固定軸101と対向する内周面111aは、鏡面仕上げが施される一方、このスリーブ111の内周面111aと対向する固定軸101の外周面101aには図中破線で示すようにヘリングボーン状の溝104が形成されており、これらスリーブ111の内周面111a及び固定軸101の外周面101aに設けられた溝104によって、回転体110をラジアル方向に支持するラジアル動圧軸受Rが構成されている。   Of the sleeve 111 of the rotating body 110, the inner peripheral surface 111a facing the fixed shaft 101 is mirror-finished, while the outer peripheral surface 101a of the fixed shaft 101 facing the inner peripheral surface 111a of the sleeve 111 is mirror-finished. Is formed with herringbone-shaped grooves 104 as shown by broken lines in the figure, and the rotating body 110 is moved in the radial direction by the grooves 104 provided on the inner peripheral surface 111a of the sleeve 111 and the outer peripheral surface 101a of the fixed shaft 101. A radial dynamic pressure bearing R is supported.

この光偏向器では、モータMにより回転体110を回転させると、回転体110が、ラジアル動圧軸受Rにより固定軸101に対して一定距離をもって非接触に支持されると共に、スラスト磁気軸受Sにより固定軸101に対して一定高さに支持されることとなる。これにより、スラスト方向の軸受として動圧軸受を用いるタイプのものより、光偏向器の高さを低くできるという利点がある。   In this optical deflector, when the rotating body 110 is rotated by the motor M, the rotating body 110 is supported in a non-contact manner with respect to the fixed shaft 101 by the radial dynamic pressure bearing R, and at the same time by the thrust magnetic bearing S. The fixed shaft 101 is supported at a constant height. Accordingly, there is an advantage that the height of the optical deflector can be made lower than that of a type using a dynamic pressure bearing as a bearing in the thrust direction.

かかる光偏向器において、駆動マグネットのN極とS極の境界位置と、ポリゴンミラーの鏡面が互いに隣接する稜線位置との位置関係は、組立上の都合等から略一致させることが行われている(例えば、特許文献2参照)。   In such an optical deflector, the positional relationship between the boundary position between the N pole and the S pole of the drive magnet and the ridge line position where the mirror surfaces of the polygon mirror are adjacent to each other is made to substantially coincide with each other for convenience of assembly. (For example, refer to Patent Document 2).

特開平5−71532号公報JP-A-5-71532 特開2000−94747号公報JP 2000-94747 A

しかし、かかる場合、モータMにより発生する駆動トルクの変動が、ポリゴンミラーの回転により感光体等に走査されるビームのドット間ピッチの変動になって現れるという問題がある。かかる問題は、画像の形成を高精度化するに伴い、顕著に現れてくる。   However, in such a case, there is a problem that the fluctuation of the driving torque generated by the motor M appears as the fluctuation of the inter-dot pitch of the beam scanned on the photosensitive member or the like by the rotation of the polygon mirror. Such a problem becomes conspicuous as the image formation is highly accurate.

本発明は、かかる問題を解決するためになされたものであり、ポリゴンミラーの複数の鏡面が互いに隣接する稜線位置と、駆動マグネットの磁極を構成するN極とS極の境界位置との角度差を所定角度に設定するという簡単な構成で、感光体等に走査されるビームのドット間ピッチの変動量を最小にする光偏向器を提供するものである。   The present invention has been made to solve such a problem, and an angular difference between a ridge line position where a plurality of mirror surfaces of a polygon mirror are adjacent to each other and a boundary position between an N pole and an S pole constituting a magnetic pole of a drive magnet. An optical deflector is provided that minimizes the amount of fluctuation in the pitch between dots of a beam scanned on a photoconductor or the like with a simple configuration in which the angle is set to a predetermined angle.

請求項1に記載の光偏向器は、複数の鏡面が形成されたポリゴンミラーと、ポリゴンミラーを回転駆動させる駆動マグネットと鉄心コイルからなるモータを有する光偏向器において、ポリゴンミラーの鏡面の数をP(Pは4以上の偶数)としたときに、駆動マグネットの磁極の数はnP(nは自然数)であって、複数の鏡面が互いに隣接する稜線位置と、磁極を構成するN極とS極の境界位置との角度差を略90゜/nPまたは略270゜/nPとしたものである。   The optical deflector according to claim 1 is an optical deflector having a polygon mirror formed with a plurality of mirror surfaces, a drive magnet for rotationally driving the polygon mirror, and a motor composed of an iron core coil. When P (P is an even number equal to or greater than 4), the number of magnetic poles of the drive magnet is nP (n is a natural number), and a plurality of mirror surfaces are adjacent to each other in the ridge line position, and the N pole and S constituting the magnetic pole The angle difference from the pole boundary position is approximately 90 ° / nP or approximately 270 ° / nP.

本発明により、感光体等に走査されるビームのドット間ピッチの変動量を最小にする光偏向器を供給することができる。   According to the present invention, it is possible to supply an optical deflector that minimizes the amount of fluctuation in the dot-to-dot pitch of a beam scanned on a photoreceptor or the like.

以下に実施例を用いて、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail using examples.

本発明に係る第1実施例を図1乃至図3を用いて説明する。
説明を簡単にするため、ポリゴンミラーの鏡面の数が4、駆動マグネットの磁極数が4の場合であり、図1は、Aに駆動マグネットの磁極、Bに3相モータのトルクのリップル、Cにポリゴンミラーの面を示したものである。
鉄心コイルを有するモータの場合、コギングトルクが発生するため、3相モータのトルクのリップルは、略正弦波形とすることができる。
A first embodiment of the present invention will be described with reference to FIGS.
In order to simplify the explanation, the number of mirror surfaces of the polygon mirror is 4 and the number of magnetic poles of the drive magnet is 4. FIG. 1 shows a magnetic pole of the drive magnet in A, a torque ripple of the three-phase motor in B, C Shows the surface of the polygon mirror.
In the case of a motor having an iron core coil, cogging torque is generated, so that the torque ripple of the three-phase motor can be made into a substantially sine waveform.

(比較例1)
まず、従来技術であるポリゴンミラーの複数の鏡面が互いに隣接する稜線位置と、駆動マグネットの磁極を構成するN極とS極の境界位置との角度差がない場合(図1のCのa)を説明する。
(Comparative Example 1)
First, when there is no angle difference between the ridge line position where a plurality of mirror surfaces of the polygon mirror according to the prior art are adjacent to each other and the boundary position between the N pole and S pole constituting the magnetic pole of the drive magnet (a in FIG. 1C) Will be explained.

トルクのリップルを示す図1のBにおいて、1から3、5から7にかけてトルクが増大するため、ポリゴンミラーの回転は加速する。これに対し、3から5、7から9にかけてトルクが減少するため、ポリゴンミラーの回転が減速する。
その結果、レーザーダイオード等のビームをポリゴンミラーで走査したときの感光体等に形成されるビームのドット間ピッチは、1から3に向かうにつれて広くなり、3から5に向かうにつれて狭くなり、5から7に向かうにつれて広くなり、7から9も向かうにつれて狭くなるという現象が発生する。
つまり、ドット間ピッチが広い箇所と狭い箇所が交互に現れることになる。
In FIG. 1B showing the torque ripple, the torque increases from 1 to 3, 5 to 7, and the rotation of the polygon mirror is accelerated. On the other hand, since the torque decreases from 3 to 5, and from 7 to 9, the rotation of the polygon mirror is decelerated.
As a result, when the beam of a laser diode or the like is scanned by a polygon mirror, the dot-to-dot pitch of the beam formed on the photosensitive member becomes wider as it goes from 1 to 3, and becomes narrower as it goes from 3 to 5. A phenomenon occurs that the width becomes wider toward 7 and becomes narrower toward 7 to 9 as well.
That is, a portion having a large dot pitch and a narrow portion appear alternately.

(比較例2)
また、同様に、前記稜線位置と、前記境界位置との角度差が45゜ある場合(図1のCのc)を説明する。
(Comparative Example 2)
Similarly, a case where the angle difference between the ridge line position and the boundary position is 45 ° (c in FIG. 1C) will be described.

トルクのリップルを示す図1のBにおいて、3から5、7から9にかけてトルクが減少するため、ポリゴンミラーの回転は減速する。これに対し、5から7にかけてトルクが増加するため、ポリゴンミラーの回転が加速する。
その結果、レーザーダイオード等のビームをポリゴンミラーで走査したときの感光体等に形成されるビームのドット間ピッチは、3から5に向かうにつれて狭くなり、5から7に向かうにつれて広くなり、7から9に向かうにつれて狭くなるという現象が発生する。
つまり、ドット間ピッチが広い箇所と狭い箇所が交互に現れることになる。
In FIG. 1B showing the torque ripple, the torque decreases from 3 to 5, and from 7 to 9, so the rotation of the polygon mirror decelerates. On the other hand, since the torque increases from 5 to 7, the rotation of the polygon mirror is accelerated.
As a result, when the beam of a laser diode or the like is scanned with a polygon mirror, the inter-dot pitch of the beam formed on the photoconductor becomes narrower as it goes from 3 to 5, and becomes wider as it goes from 5 to 7. The phenomenon of narrowing toward 9 occurs.
That is, a portion having a large dot pitch and a narrow portion appear alternately.

前記した比較例1および比較例2は、高精度な印刷にとって大きな欠点となる。
これに対し、以下に示すように、前記稜線位置と、前記境界位置との角度差が略22.5゜(位相差1/4)または略67.5゜(位相差3/4)ある場合は、ドット間のピッチの変動量を最小にすることができる。
Comparative Example 1 and Comparative Example 2 described above are serious drawbacks for high-precision printing.
On the other hand, as shown below, when the angle difference between the ridge line position and the boundary position is approximately 22.5 ° (phase difference 1/4) or approximately 67.5 ° (phase difference 3/4) Can minimize the variation in pitch between dots.

(実施例1−1)
図2に示すように、ポリゴンミラーの複数の鏡面が互いに隣接する稜線位置と、駆動マグネットの磁極を構成するN極とS極の境界位置との角度差αが略22.5゜の場合(図1のCのb)を説明する。
(Example 1-1)
As shown in FIG. 2, when the angle difference α between the ridge line position where the mirror surfaces of the polygon mirror are adjacent to each other and the boundary position between the N pole and S pole constituting the magnetic pole of the drive magnet is approximately 22.5 ° ( FIG. 1C b) will be described.

トルクのリップルを示す図1のBにおいて、2から3、5から7にかけてトルクが増加するため、ポリゴンミラーの回転は加速する。これに対し、3から5、7から8にかけてトルクが減少するため、ポリゴンミラーの回転が減速する。
その結果、レーザーダイオード等のビームをポリゴンミラーで走査したときの感光体等に形成されるビームのドット間ピッチは、2から3に向かうにつれて広くなるが、3から4に向かうにつれて狭くなり4の時点でドットのピッチの変動は解消される。さらに4から5に向かうにつれて狭くなり、5から6に向かうにつれて広くなるから6の時点でドットのピッチの変動は解消される。さらに、6から7に向かうにつれて広くなり、7から8に向かうにつれて狭くなるから8の時点でドットのピッチの変動は解消される。
つまり、2から感光体等へのビームの露光をスタートすると、加減速を均等に繰り返すことになるから、ドットのピッチの変動を最小にすることができる。
In FIG. 1B showing the torque ripple, the torque increases from 2 to 3, 5 to 7, and the rotation of the polygon mirror is accelerated. On the other hand, since the torque decreases from 3 to 5, and from 7 to 8, the rotation of the polygon mirror is decelerated.
As a result, when the beam of a laser diode or the like is scanned with a polygon mirror, the inter-dot pitch of the beam formed on the photoconductor becomes wider as it goes from 2 to 3, but becomes narrower as it goes from 3 to 4. At that time, fluctuations in dot pitch are eliminated. Furthermore, since it becomes narrower as it goes from 4 to 5, and becomes wider as it goes from 5 to 6, the fluctuation of the dot pitch is eliminated at the time of 6. Further, since it becomes wider as it goes from 6 to 7, and becomes narrower as it goes from 7 to 8, the fluctuation of the dot pitch is eliminated at the time of 8.
In other words, when the exposure of the beam to the photosensitive member or the like is started from 2, acceleration / deceleration is repeated uniformly, so that the fluctuation of the dot pitch can be minimized.

(実施例1−2)
また、図3に示すように、ポリゴンミラーの複数の鏡面が互いに隣接する稜線位置と、駆動マグネットの磁極を構成するN極とS極の境界位置との角度差αが略67.5゜の場合(図1のCのd)を説明する。
(Example 1-2)
Further, as shown in FIG. 3, the angle difference α between the ridge line position where the mirror surfaces of the polygon mirror are adjacent to each other and the boundary position between the N pole and S pole constituting the magnetic pole of the drive magnet is approximately 67.5 °. The case (d in FIG. 1C) will be described.

トルクのリップルを示す図1のBにおいて、4から5、7から8にかけてトルクが減少するため、ポリゴンミラーの回転は減速する。これに対し、5から7にかけてトルクが増加するため、ポリゴンミラーの回転が加速する。   In FIG. 1B showing the torque ripple, the torque decreases from 4 to 5, and from 7 to 8, so the rotation of the polygon mirror decelerates. On the other hand, since the torque increases from 5 to 7, the rotation of the polygon mirror is accelerated.

その結果、レーザーダイオード等のビームをポリゴンミラーで走査したときの感光体等に形成されるビームのドット間ピッチは、4から5に向かうにつれて狭くなるが、5から6に向かうにつれて広くなり6の時点でドットのピッチの変動は解消される。さらに6から7に向かうにつれて広くなり、7から8に向かうにつれて狭くなるから8の時点でドットのピッチの変動は解消される。
つまり、4から感光体等へのビームの露光をスタートすると、加減速を均等に繰り返すことになるから、ドットのピッチの変動を最小にすることができる。
As a result, when the beam of a laser diode or the like is scanned with a polygon mirror, the inter-dot pitch of the beam formed on the photoconductor becomes narrower as it goes from 4 to 5, but becomes wider as it goes from 5 to 6. At that time, fluctuations in dot pitch are eliminated. Further, since it becomes wider as it goes from 6 to 7, and becomes narrower as it goes from 7 to 8, the fluctuation of the dot pitch is eliminated at the time of 8.
That is, when the exposure of the beam to the photosensitive member or the like is started from 4, acceleration / deceleration is repeated evenly, so that the fluctuation of the dot pitch can be minimized.

本発明に係る第2実施例を図4を用いて説明する。
本実施例では、ポリゴンミラーの鏡面の数が4、駆動マグネットの磁極数が8の場合であり、図4は、Aに駆動マグネットの磁極、Bに3相モータのトルクのリップル、Cにポリゴンミラーの面を示したものである。
A second embodiment according to the present invention will be described with reference to FIG.
In this embodiment, the number of mirror surfaces of the polygon mirror is 4 and the number of magnetic poles of the drive magnet is 8. FIG. 4 shows a magnetic pole of the drive magnet, A is a ripple of torque of a three-phase motor, and C is a polygon. It shows the surface of the mirror.

(比較例)
実施例1の場合と同様に、ポリゴンミラーの複数の鏡面が互いに隣接する稜線位置と、駆動マグネットの磁極を構成するN極とS極の境界位置との角度差αが略0゜(図4のCのa)および22.5゜の場合(図1のCのc)は、ドット間ピッチが広い箇所と狭い箇所が交互に現れることになる。
(Comparative example)
As in the case of the first embodiment, the angle difference α between the ridgeline position where a plurality of mirror surfaces of the polygon mirror are adjacent to each other and the boundary position between the N pole and S pole constituting the magnetic pole of the drive magnet is approximately 0 ° (FIG. 4). In the case of C of a) and 22.5 ° (c of FIG. 1C), a portion having a large dot pitch and a narrow portion appear alternately.

(実施例2−1)
これに対し、以下に示すように、前記稜線位置と、前記境界位置との角度差が略11.25゜(位相差1/4)または略33.75゜(位相差3/4)ある場合は、ドット間のピッチの変動量を最小にすることができる。
(Example 2-1)
On the other hand, as shown below, when the angle difference between the ridge line position and the boundary position is approximately 11.25 ° (phase difference ¼) or approximately 33.75 ° (phase difference 3/4). Can minimize the variation in pitch between dots.

ポリゴンミラーの複数の鏡面が互いに隣接する稜線位置と、駆動マグネットの磁極を構成するN極とS極の境界位置との角度差αが略11.25゜の場合(図4のCのb)を説明する。   When the angle difference α between the ridge line position where a plurality of mirror surfaces of the polygon mirror are adjacent to each other and the boundary position between the N pole and the S pole constituting the magnetic pole of the drive magnet is approximately 11.25 ° (b in FIG. 4C) Will be explained.

トルクのリップルを示す図4のBにおいて、2から3、5から7にかけてトルクが増加するため、ポリゴンミラーの回転は加速する。これに対し、3から5、7から8にかけてトルクが減少するため、ポリゴンミラーの回転が減速する。
その結果、レーザーダイオード等のビームをポリゴンミラーで走査したときの感光体等に形成されるビームのドット間ピッチは、2から3に向かうにつれて広くなるが、3から4に向かうにつれて狭くなり4の時点でドットのピッチの変動は解消される。さらに4から5に向かうにつれて狭くなり、5から6に向かうにつれて広くなるから6の時点でドットのピッチの変動は解消される。さらに、6から7に向かうにつれて広くなり、7から8に向かうにつれて狭くなるから8の時点でドットのピッチの変動は解消される。
つまり、2から感光体等へのビームの露光をスタートすると、加減速を均等に繰り返すことになるから、ドットのピッチの変動を最小にすることができる。
In FIG. 4B showing the torque ripple, since the torque increases from 2 to 3, 5 to 7, the rotation of the polygon mirror is accelerated. On the other hand, since the torque decreases from 3 to 5, and from 7 to 8, the rotation of the polygon mirror is decelerated.
As a result, when the beam of a laser diode or the like is scanned with a polygon mirror, the inter-dot pitch of the beam formed on the photoconductor becomes wider as it goes from 2 to 3, but becomes narrower as it goes from 3 to 4. At that time, fluctuations in dot pitch are eliminated. Furthermore, since it becomes narrower as it goes from 4 to 5, and becomes wider as it goes from 5 to 6, the fluctuation of the dot pitch is eliminated at the time of 6. Further, since it becomes wider as it goes from 6 to 7, and becomes narrower as it goes from 7 to 8, the fluctuation of the dot pitch is eliminated at the time of 8.
In other words, when the exposure of the beam to the photosensitive member or the like is started from 2, acceleration / deceleration is repeated uniformly, so that the fluctuation of the dot pitch can be minimized.

(実施例2−2)
また、ポリゴンミラーの複数の鏡面が互いに隣接する稜線位置と、駆動マグネットの磁極を構成するN極とS極の境界位置との角度差αが略33.75゜の場合(図4のCのd)を説明する。
(Example 2-2)
Further, when the angle difference α between the ridge line position where the mirror surfaces of the polygon mirror are adjacent to each other and the boundary position between the N pole and the S pole constituting the magnetic pole of the drive magnet is approximately 33.75 ° (in FIG. d) will be described.

トルクのリップルを示す図4のBにおいて、4から5、7から8にかけてトルクが減少するため、ポリゴンミラーの回転は減速する。これに対し、5から7にかけてトルクが増加するため、ポリゴンミラーの回転が加速する。
その結果、レーザーダイオード等のビームをポリゴンミラーで走査したときの感光体等に形成されるビームのドット間ピッチは、4から5に向かうにつれて狭くなるが、5から6に向かうにつれて広くなり6の時点でドットのピッチの変動は解消される。さらに6から7に向かうにつれて広くなり、7から8に向かうにつれて狭くなるから8の時点でドットのピッチの変動は解消される。
つまり、4から感光体等へのビームの露光をスタートすると、加減速を均等に繰り返すことになるから、ドットのピッチの変動を最小にすることができる。
In FIG. 4B showing the torque ripple, the torque decreases from 4 to 5, and from 7 to 8, so the rotation of the polygon mirror decelerates. On the other hand, since the torque increases from 5 to 7, the rotation of the polygon mirror is accelerated.
As a result, when the beam of a laser diode or the like is scanned with a polygon mirror, the inter-dot pitch of the beam formed on the photoconductor becomes narrower as it goes from 4 to 5, but becomes wider as it goes from 5 to 6. At that time, fluctuations in dot pitch are eliminated. Further, since it becomes wider as it goes from 6 to 7, and becomes narrower as it goes from 7 to 8, the fluctuation of the dot pitch is eliminated at the time of 8.
That is, when the exposure of the beam to the photosensitive member or the like is started from 4, acceleration / deceleration is repeated evenly, so that the fluctuation of the dot pitch can be minimized.

前記した実施例は、説明のために例示したものであって、本発明としてはそれらに限定されるものではなく、特許請求の範囲、発明の詳細な説明および図面の記載から当業者が認識することができる本発明の技術的思想に反しない限り、変更および付加が可能である。   The above-described embodiments are illustrated for explanation, and the present invention is not limited thereto, and those skilled in the art will recognize from the claims, the detailed description of the invention, and the description of the drawings. Modifications and additions are possible without departing from the technical idea of the present invention.

実施例1および実施例2に示した効果は、ポリゴンミラーの鏡面の数をP(Pは4以上の偶数)としたときに、駆動マグネットの磁極の数はnP(nは自然数)であって、複数の鏡面が互いに隣接する稜線位置と、前記磁極を構成するN極とS極の境界位置との角度差を略90゜/nPまたは略270゜/nPであるときに得ることができる。   The effects shown in the first and second embodiments are as follows. When the number of mirror surfaces of the polygon mirror is P (P is an even number of 4 or more), the number of magnetic poles of the drive magnet is nP (n is a natural number). It can be obtained when the angle difference between the ridge line position where a plurality of mirror surfaces are adjacent to each other and the boundary position between the N pole and S pole constituting the magnetic pole is approximately 90 ° / nP or approximately 270 ° / nP.

本発明は、画像形成装置等に使用される光偏向器に適用される。   The present invention is applied to an optical deflector used in an image forming apparatus or the like.

本発明に係るポリゴンミラーの稜線位置と駆動マグネットの磁極の境界位置の関係を示す図である(実施例1)(Example 1) which is a figure which shows the relationship between the ridgeline position of the polygon mirror which concerns on this invention, and the boundary position of the magnetic pole of a drive magnet 本発明に係るポリゴンミラーの稜線位置と駆動マグネットの磁極の境界位置の関係を示す図である(実施例1)(Example 1) which is a figure which shows the relationship between the ridgeline position of the polygon mirror which concerns on this invention, and the boundary position of the magnetic pole of a drive magnet 本発明に係るポリゴンミラーの稜線位置と駆動マグネットの磁極の境界位置の関係を示す図である(実施例1)(Example 1) which is a figure which shows the relationship between the ridgeline position of the polygon mirror which concerns on this invention, and the boundary position of the magnetic pole of a drive magnet 本発明に係るポリゴンミラーの稜線位置と駆動マグネットの磁極の境界位置の関係を示す図である(実施例2)(Example 2) which is a figure which shows the relationship between the ridgeline position of the polygon mirror which concerns on this invention, and the boundary position of the magnetic pole of a drive magnet 従来の光偏向器を示す図であるIt is a figure which shows the conventional optical deflector.

Claims (1)

複数の鏡面が形成されたポリゴンミラーと、
該ポリゴンミラーを回転駆動させる駆動マグネットと鉄心コイルからなるモータを有する光偏向器において、
前記ポリゴンミラーの鏡面の数をP(Pは4以上の偶数)としたときに、
前記駆動マグネットの磁極の数はnP(nは自然数)であって、
前記複数の鏡面が互いに隣接する稜線位置と、前記磁極を構成するN極とS極の境界位置との角度差を略90゜/nPまたは略270゜/nPとしたことを特徴とする光偏向器
A polygon mirror formed with a plurality of mirror surfaces;
In an optical deflector having a motor composed of a drive magnet and an iron core coil for rotationally driving the polygon mirror,
When the number of mirror surfaces of the polygon mirror is P (P is an even number of 4 or more),
The number of magnetic poles of the drive magnet is nP (n is a natural number),
An optical deflection characterized in that an angle difference between a ridge line position where the plurality of mirror surfaces are adjacent to each other and a boundary position between the N pole and the S pole constituting the magnetic pole is approximately 90 ° / nP or approximately 270 ° / nP. vessel
JP2004215211A 2004-07-23 2004-07-23 Optical deflector Expired - Fee Related JP4330145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004215211A JP4330145B2 (en) 2004-07-23 2004-07-23 Optical deflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004215211A JP4330145B2 (en) 2004-07-23 2004-07-23 Optical deflector

Publications (2)

Publication Number Publication Date
JP2006035477A true JP2006035477A (en) 2006-02-09
JP4330145B2 JP4330145B2 (en) 2009-09-16

Family

ID=35900984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004215211A Expired - Fee Related JP4330145B2 (en) 2004-07-23 2004-07-23 Optical deflector

Country Status (1)

Country Link
JP (1) JP4330145B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006259446A (en) * 2005-03-18 2006-09-28 Ricoh Co Ltd Optical deflector, optical scanner, and image forming apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006259446A (en) * 2005-03-18 2006-09-28 Ricoh Co Ltd Optical deflector, optical scanner, and image forming apparatus
JP4518396B2 (en) * 2005-03-18 2010-08-04 株式会社リコー Optical deflector, optical scanning device, and image forming apparatus

Also Published As

Publication number Publication date
JP4330145B2 (en) 2009-09-16

Similar Documents

Publication Publication Date Title
CN100465694C (en) Optical deflector, production method thereof, optical scanning device, and image forming apparatus
US7813020B2 (en) Hydrodynamic bearing unit, and optical deflector, optical scanner and image forming apparatus using the same
JP2014199452A (en) Manufacturing method of optical deflector, optical scanner, and image forming apparatus
US9229225B2 (en) Optical scanning device and image forming apparatus
JP4330145B2 (en) Optical deflector
JP4701938B2 (en) Optical deflector
JP3763226B2 (en) Optical scanning device
JP2005242024A (en) Optical scanner and color image forming apparatus
JP3740821B2 (en) Hydrodynamic bearing motor
JP6381254B2 (en) Optical deflector and scanning optical device
JP6207301B2 (en) Optical deflection device
JPS62184429A (en) Rotary polygonal mirror driving device
JP3128975B2 (en) Optical deflector
JP2000120659A (en) Dynamic pressure air bearing, motor with the bearing, and light polarizer
JP2007133192A (en) Dc brushless motor, light deflector, optical scanning device, and image forming apparatus
JPH11218124A (en) Dynamic pressure bearing
JPH11281910A (en) Frequency generator and optical deflector
JP4932217B2 (en) Polygon mirror scanner motor
JP5153145B2 (en) Optical deflector, optical scanning device, and image forming apparatus
JPS6381316A (en) Polygonal mirror
JP4715519B2 (en) Optical deflector
JP2000241739A (en) Light deflector and manufacture of coreless coil
JP2000120660A (en) Dynamic pressure air bearing, motor with the bearing, and light polarizer
JP2007124848A (en) Stator structure of stepping motor
JP2005043527A (en) Optical deflector and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070627

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090615

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140626

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees