JP2006035263A - Electron beam surface treatment method and electron beam surface treatment device - Google Patents

Electron beam surface treatment method and electron beam surface treatment device Download PDF

Info

Publication number
JP2006035263A
JP2006035263A JP2004218401A JP2004218401A JP2006035263A JP 2006035263 A JP2006035263 A JP 2006035263A JP 2004218401 A JP2004218401 A JP 2004218401A JP 2004218401 A JP2004218401 A JP 2004218401A JP 2006035263 A JP2006035263 A JP 2006035263A
Authority
JP
Japan
Prior art keywords
electron beam
surface treatment
processed
workpiece
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004218401A
Other languages
Japanese (ja)
Other versions
JP4177300B2 (en
Inventor
Tetsuya Fujimoto
哲也 藤本
Yoshihiro Yamamoto
吉廣 山本
Masahiro Hanai
正博 花井
Yoshihito Imai
祥人 今井
Takayuki Nakagawa
孝幸 中川
Yoshimizu Takeno
祥瑞 竹野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004218401A priority Critical patent/JP4177300B2/en
Priority to TW095102774A priority patent/TWI277475B/en
Publication of JP2006035263A publication Critical patent/JP2006035263A/en
Application granted granted Critical
Publication of JP4177300B2 publication Critical patent/JP4177300B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electron beam surface treatment method where the surface of a work can be finished so as to have a fine surface roughness of about 1 μm in a relatively short period of time, and further, the surface can be uniformly finished over the whole of an objective region to be subjected to surface treatment, and to provide a device therefor. <P>SOLUTION: In the case that the surface layer is melted and solidified, and subjected to surface treatment by irradiating the surface of the work W with an electron beam, region information prescribing the objective region to be subjected to surface treatment in the work W is beforehand registered into a memory 19, and, based on the region information, the electron beam is two-dimensionally scanned in such a manner that a locus with the shape of a curved line is drawn in the objective region to be treated in the work W. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、被処理物に電子ビームを照射して表面処理を行う電子ビーム表面処理方法、およびその方法に使用する電子ビーム表面処理装置に関する。   The present invention relates to an electron beam surface treatment method for performing surface treatment by irradiating an object with an electron beam, and an electron beam surface treatment apparatus used in the method.

一般に、プラスチック射出成型用や半導体部品製造用などの各種の金型は、切削加工機械で予め粗加工した後、放電加工や化学エッチング法等により微細な表面粗さとなるように表面処理を行っている。   In general, various dies for plastic injection molding and semiconductor component manufacturing are subjected to surface treatment so as to have a fine surface roughness by electrical discharge machining, chemical etching, etc. after roughing in advance with a cutting machine. Yes.

ところが、放電加工を行った後の表面粗さは数μm〜〜数10μm程度で、通常、金型において必要とされる数μm以下の表面粗さを達成することは難しい。これに対して、化学エッチング法を用いると、表面粗さを1μm程度の表面に仕上げることも可能であるが、加工条件の制御が極めて難しい。そのため、従来、例えば放電加工を行った後、研磨紙や磨き粉等によって表面研磨を行って表面粗さが0.1μm〜1μm程度になるような表面処理を行っている。   However, the surface roughness after electrical discharge machining is about several μm to several tens of μm, and it is difficult to achieve the surface roughness of several μm or less that is usually required in a mold. In contrast, when a chemical etching method is used, it is possible to finish the surface with a surface roughness of about 1 μm, but it is extremely difficult to control the processing conditions. Therefore, conventionally, for example, after performing electric discharge machining, surface treatment is performed by polishing paper or polishing powder so that the surface roughness is about 0.1 μm to 1 μm.

しかし、この平滑化のための研磨作業は全て手作業で行われているため、熟練者の技能に頼るところが多いばかりか、表面仕上げを完了するまでに多大な作業時間を要する。特に、被処理物の形状が複雑な場合には表面を均一に研磨仕上げすることが難しく、しかも、研磨作業に長時間を要することになり、表面処理の効率化を十分に図ることができない。   However, since all the polishing operations for smoothing are performed manually, there are many cases where the skill of the skilled worker is relied on and much time is required to complete the surface finishing. In particular, when the shape of the object to be processed is complicated, it is difficult to uniformly polish the surface, and it takes a long time for the polishing operation, and the efficiency of the surface treatment cannot be sufficiently achieved.

そのため、従来は、手作業によらずに被処理物の表面を平滑化するために、被処理物に対してイオンビームを照射して表面処理を行うようした技術や、被処理物の表面の広い範囲にわたって電子ビームをパルス照射して表面処理を行うようにした技術、さらには、被処理物の表面に電子ビームが円形の軌跡を描くように走査して表面処理するようにした技術がそれぞれ提案されている(例えば、特許文献1〜3等参照)。   Therefore, conventionally, in order to smooth the surface of the object to be processed without manual work, the surface treatment is performed by irradiating the object to be processed with an ion beam, or the surface of the object to be processed. A technology that performs surface treatment by irradiating an electron beam over a wide range, and a technology that performs surface treatment by scanning the surface of the workpiece so that the electron beam draws a circular trajectory. It has been proposed (see, for example, Patent Documents 1 to 3).

特開昭55−165288号公報JP 55-165288 A 特開2004−1086号公報JP 2004-1086 A 特開平9−216075号公報Japanese Patent Laid-Open No. 9-216075

しかしながら、特許文献1に記載されている技術は、被処理物に対してイオンビームを照射して表面の凸部をスパッタリングすることで平滑化を行うので、被処理物の形状が複雑なものでも対応可能であるものの、加工速度が遅くて手作業で表面研磨を行う場合と大差なく、表面処理の効率化を図ることが難しい。   However, since the technique described in Patent Document 1 performs smoothing by irradiating an object with an ion beam and sputtering the convex portions on the surface, even if the shape of the object to be processed is complicated Although it is possible to cope with it, it is difficult to improve the efficiency of the surface treatment because the processing speed is slow and it is not much different from the case where the surface is polished manually.

また、特許文献2に記載されている技術では、比較的短時間で微細な表面粗さに仕上げることが可能であるが、被処理物の広い面積にわたって電子ビームをパルス照射する関係上、被処理物の形状が複雑なものではその表面に均一に電子ビームを照射することができない。このため、表面粗さに局所的なむらを生じ易い。また、表面が平坦な場合でも、被処理物の広い面積にわたって電子ビームが同時に照射されるため、表面層が溶融凝固する熱量が照射された場合に引っ張り残留応力が生じ易く、被処理物の表面に微細なクラックを生じる。   Moreover, in the technique described in Patent Document 2, it is possible to finish the surface with a fine surface roughness in a relatively short time. However, due to the pulse irradiation of the electron beam over a wide area of the object to be processed, the object to be processed If the shape of the object is complicated, the surface cannot be irradiated with an electron beam uniformly. For this reason, local unevenness is likely to occur in the surface roughness. Further, even when the surface is flat, an electron beam is simultaneously irradiated over a wide area of the object to be processed, so that when the surface layer is irradiated with a heat amount that melts and solidifies, tensile residual stress is likely to occur, and the surface of the object to be processed Cause fine cracks.

さらに、特許文献3に記載されている技術では、比較的短時間で微細な表面粗さに仕上げることが可能であるが、被処理物の表面に電子ビームを照射する際に電子ビームが円形の軌跡となるように走査しているので、円形の軌跡が重なる接線部分に熱が集中して溶融むらを生じ易く、均一な表面仕上げを行うことが難しい。   Furthermore, with the technique described in Patent Document 3, it is possible to finish the surface with a fine surface roughness in a relatively short time. However, when the surface of the workpiece is irradiated with the electron beam, the electron beam is circular. Since scanning is performed so as to form a locus, heat tends to concentrate on a tangential portion where the circular locus overlaps, and uneven melting is likely to occur, and it is difficult to perform uniform surface finishing.

しかも、この特許文献3に記載されている技術では、電子ビームが収束される焦点は常に一定に設定されるため、被処理物に凹凸部がある場合には電子ビームの照射エネルギに差が生じ、その結果、均一な表面粗さに仕上げることができない。   Moreover, in the technique described in Patent Document 3, since the focal point on which the electron beam is converged is always set to be constant, there is a difference in the irradiation energy of the electron beam when the object to be processed has an uneven portion. As a result, a uniform surface roughness cannot be obtained.

本発明は、上記の課題を解決するためになされたもので、被処理物の表面を比較的短時間の内に1μm程度の微細な表面粗さに仕上げることが可能であり、しかも、その際に表面処理が必要な処理対象領域の全域にわたって均一に仕上げることができる電子ビーム表面処理方法、およびこの方法に用いる電子ビーム表面処理装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and it is possible to finish the surface of the object to be processed to a fine surface roughness of about 1 μm within a relatively short time. Another object of the present invention is to provide an electron beam surface treatment method capable of uniformly finishing the entire region to be treated that requires surface treatment, and an electron beam surface treatment apparatus used in this method.

上記の目的を達成するために、本発明の電子ビーム表面処理方法は、電子ビームを被処理物の表面に照射してその表層を溶融凝固させて表面処理を行う方法であって、上記被処理物の表面処理を行う処理対象領域を規定する領域情報を予め登録しておき、この領域情報に基づいて電子ビームを上記被処理物の処理対象領域内で屈曲線状の軌跡を描くように二次元走査することを特徴としている。   In order to achieve the above object, the electron beam surface treatment method of the present invention is a method of performing surface treatment by irradiating the surface of an object with an electron beam to melt and solidify a surface layer thereof. Area information that defines a processing target area for surface treatment of an object is registered in advance, and an electron beam is drawn based on this area information so as to draw a bent line-shaped locus in the processing target area of the object to be processed. It is characterized by dimension scanning.

また、本発明の電子ビーム表面処理装置は、被処理物の表面に電子ビームを照射する電子ビーム照射手段を有し、この電子ビーム照射手段は、電子ビームを発生する電子銃と、この電子銃からの電子ビームを収束するビーム収束手段と、電子ビームを偏向するビーム偏向手段とを備えるとともに、上記被処理物の表面処理を行う処理対象領域を規定する領域情報が予め登録された記憶手段と、この記憶手段に記憶されている上記領域情報に基づいて電子ビームが上記被処理物の処理対象領域内で屈曲線状の軌跡を描いて二次元走査されるように上記ビーム偏向手段を制御するビーム走査制御手段と、を含むことを特徴としている。   The electron beam surface treatment apparatus of the present invention has electron beam irradiation means for irradiating the surface of the workpiece with an electron beam. The electron beam irradiation means includes an electron gun for generating an electron beam and the electron gun. A beam converging unit for converging the electron beam from the beam and a beam deflecting unit for deflecting the electron beam, and a storage unit in which region information for defining a processing target region for performing the surface treatment of the workpiece is registered. Based on the region information stored in the storage unit, the beam deflecting unit is controlled so that the electron beam is two-dimensionally scanned in a bent line-like locus within the processing target region of the workpiece. And beam scanning control means.

本発明によれば、電子ビームを上記被処理物の処理対象領域内で二次元走査することで、その表層が溶融した場合、その表面張力により被処理物の元の形状から表面エネルギの少ない平坦な表面形状に変形した後に自己放冷されて凝固されるので、被処理物の表面を比較的短時間の内に1μm程度の微細な表面粗さに仕上げることができる。しかも、その際、電子ビームが屈曲線状の軌跡を描くように二次元走査されるので、熱が局部的に集中して溶融むらを生じることはなく、表面処理対象領域の全域にわたって均一な表面粗さに仕上げることができる。   According to the present invention, when the surface layer is melted by two-dimensional scanning within the region to be processed of the object to be processed by the electron beam, the surface tension causes the surface to be flat from the original shape of the object to be processed. After being deformed into a simple surface shape, it is self-cooled and solidified, so that the surface of the object to be processed can be finished to a fine surface roughness of about 1 μm within a relatively short time. In addition, since the electron beam is two-dimensionally scanned so as to draw a curved trajectory at that time, heat does not concentrate locally and uneven melting does not occur, and a uniform surface is obtained over the entire surface treatment target region. It can be finished to roughness.

実施の形態1.
図1は本発明の実施の形態1における電子ビーム表面処理装置の構成図である。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram of an electron beam surface treatment apparatus according to Embodiment 1 of the present invention.

この実施の形態1の電子ビーム表面処理装置1は、鋼等の鉄系金属、あるいはアルミニュウム合金等の非鉄金属からなる被処理物Wの表面処理を行うものであって、真空チャンバ2内に電子ビーム照射手段3とXYテーブル4とが配置されている。また、真空チャンバ2の外部には、真空排気装置5、ビーム収束装置6、ビーム偏向装置7、電源装置8、および制御装置9が設けられている。   The electron beam surface treatment apparatus 1 according to the first embodiment performs surface treatment of a workpiece W made of a ferrous metal such as steel or a non-ferrous metal such as an aluminum alloy. A beam irradiation means 3 and an XY table 4 are arranged. Further, outside the vacuum chamber 2, an evacuation device 5, a beam focusing device 6, a beam deflection device 7, a power supply device 8, and a control device 9 are provided.

上記の電子ビーム照射手段3は、被処理物Wの表面に電子ビームを照射するもので、電子ビームを発生する電子銃12、この電子銃12からの電子ビームを収束する収束レンズ13、および電子ビームを偏向する偏向レンズ14を備えている。そして、電子銃12は、カソード12a、アノード12bおよびバイアス電極12cから構成されており、電源装置8によりカソード12aとバイアス電極12cには負電圧が、アノード12bには正電圧が印加されることにより電子ビームが発生し、この電子ビームが収束レンズ13で収束された後、偏向レンズ14で偏向されて被処理物Wの表面に照射される。   The electron beam irradiation means 3 irradiates the surface of the workpiece W with an electron beam. The electron gun 12 generates an electron beam, a converging lens 13 that converges the electron beam from the electron gun 12, and an electron. A deflection lens 14 for deflecting the beam is provided. The electron gun 12 includes a cathode 12a, an anode 12b, and a bias electrode 12c. When the power supply device 8 applies a negative voltage to the cathode 12a and the bias electrode 12c and a positive voltage to the anode 12b. An electron beam is generated, converged by the converging lens 13, then deflected by the deflecting lens 14 and irradiated onto the surface of the workpiece W.

XYテーブル4は、図2に示すように、被処理物Wを互いに直交するX軸方向とY軸方向とにそれぞれ個別に移動できるようになっている。また、真空排気装置5は、真空チャンバ2内を所定の真空度になるように真空引きを行うものである。   As shown in FIG. 2, the XY table 4 can move the workpiece W individually in the X-axis direction and the Y-axis direction orthogonal to each other. The evacuation device 5 performs evacuation so that the vacuum chamber 2 has a predetermined degree of vacuum.

ビーム収束装置6は、制御装置9からの指令に基づいて収束レンズ13による電子ビームの収束度合いを調整するものであり、また、ビーム偏向装置7は、制御装置9からの指令に基づいて偏向レンズ14による電子ビームの偏向度合いを調整するものである。そして、収束レンズ13とビーム収束装置6とによってビーム収束手段15が構成され、また、偏向レンズ14とビーム偏向装置7とによってビーム偏向手段16が構成されている。   The beam converging device 6 adjusts the degree of convergence of the electron beam by the converging lens 13 based on a command from the control device 9, and the beam deflection device 7 is based on a command from the control device 9. 14 adjusts the degree of deflection of the electron beam. A beam converging unit 15 is configured by the converging lens 13 and the beam converging unit 6, and a beam deflecting unit 16 is configured by the deflecting lens 14 and the beam deflecting unit 7.

また、上記の制御装置9は、マイクロコンピュータ等から構成されるもので、予め設定された制御プログラムに基づいて電子ビーム照射手段3、XYテーブル4、真空排気装置5、および電源装置8の各動作を制御する。さらに、この制御装置9には、被処理物情報メモリ19が設けられている。   The control device 9 is composed of a microcomputer or the like, and each operation of the electron beam irradiation means 3, the XY table 4, the vacuum exhaust device 5, and the power supply device 8 based on a preset control program. To control. Further, the control device 9 is provided with a workpiece information memory 19.

この被処理物情報メモリ19は、特許請求の範囲における記憶手段に対応するもので、被処理物Wの表面処理を行う処理対象領域を規定する領域情報、ならびに被処理物Wの表面形状に関する形状情報が予め登録されている。   The workpiece information memory 19 corresponds to the storage means in the claims, and includes region information that defines a processing target region for performing the surface treatment of the workpiece W, and a shape related to the surface shape of the workpiece W. Information is registered in advance.

そして、制御装置9は、この被処理物情報メモリ19に記憶されている領域情報、ならびに形状情報に基づいて、電子ビームが被処理物Wの処理対象領域内で後述のごとく屈曲線状の軌跡を描いて二次元走査されるようにビーム偏向手段16を制御し、また、電子ビームが被処理物Wの表面の照射位置に常に焦点を結ぶようにビーム収束手段15を制御する。したがって、この制御装置9が特許請求の範囲におけるビーム走査制御手段およびフォーカス制御手段としての役目を果たしている。   Based on the region information and the shape information stored in the workpiece information memory 19, the control device 9 causes the electron beam to be bent in the processing target region of the workpiece W as described later. The beam deflecting unit 16 is controlled so as to be scanned two-dimensionally, and the beam converging unit 15 is controlled so that the electron beam always focuses on the irradiation position of the surface of the workpiece W. Therefore, this control device 9 serves as beam scanning control means and focus control means in the claims.

上記構成の電子ビーム表面処理装置1を用いた被処理物Wの表面処理方法について、次に説明する。   Next, a surface treatment method of the workpiece W using the electron beam surface treatment apparatus 1 having the above configuration will be described.

被処理物Wの表面処理を行う際、被処理物情報メモリ19に被処理物Wの処理対象領域を規定する領域情報、ならびに、被処理物Wの表面形状に関する形状情報を予め登録しておく。そして、被処理物WをXYテーブル4上に載置した後、真空排気装置5により真空チャンバ2内が所定の真空度に達するまで真空引きを行う。   When performing the surface treatment of the workpiece W, the region information for defining the processing target region of the workpiece W and the shape information related to the surface shape of the workpiece W are registered in advance in the workpiece information memory 19. . Then, after placing the workpiece W on the XY table 4, vacuuming is performed by the vacuum exhaust device 5 until the inside of the vacuum chamber 2 reaches a predetermined degree of vacuum.

真空チャンバ2内が所定の真空度に達すると、制御装置9は、XYテーブル4を駆動して表面処理が必要とされる処理対象領域に電子ビームが照射可能な位置まで被処理物Wを移動させた後、電源装置8を起動して電子銃12から電子ビームを発生させる。   When the inside of the vacuum chamber 2 reaches a predetermined degree of vacuum, the control device 9 drives the XY table 4 and moves the workpiece W to a position where an electron beam can be irradiated to a processing target area where surface processing is required. Then, the power supply device 8 is activated to generate an electron beam from the electron gun 12.

そして、制御装置9は、被処理物情報メモリ19に記憶されている領域情報に基づいて、電子ビームが被処理物Wの処理対象領域内で屈曲線状の軌跡を描いて二次元走査されるようにビーム偏向手段16を制御する。   Then, the control device 9 performs two-dimensional scanning with the electron beam drawing a bent line-shaped locus in the processing target region of the workpiece W based on the region information stored in the workpiece information memory 19. Thus, the beam deflection means 16 is controlled.

例えば図3(a)に示すように、被処理物Wの表面処理が必要な処理対象領域を符号Raで示す範囲とした場合、電子ビームは、この処理対象領域Ra内において鋸歯波状の軌跡を描くように二次元走査される。あるいは、例えば図3(b)に示すように、被処理物Wの表面処理が必要な処理対象領域を符号Rbで示す範囲とした場合、電子ビームは、この処理対象領域Rb内において多重反射状の軌跡を描くように二次元走査される。   For example, as shown in FIG. 3A, when the processing target area that requires surface treatment of the workpiece W is set to a range indicated by the symbol Ra, the electron beam has a sawtooth wave locus in the processing target area Ra. Two-dimensional scanning is performed as shown. Alternatively, for example, as shown in FIG. 3B, when the processing target area that requires surface treatment of the workpiece W is set to the range indicated by the symbol Rb, the electron beam is in a multiple reflection state within the processing target area Rb. Two-dimensional scanning is performed so as to draw the trajectory.

ここで、図3(a)に示すような鋸歯波状の軌跡を描くようにするには、X軸方向の走査速度成分をVx、Y軸方向の走査速度成分をVyとしたとき、Vy>>Vxに設定することにより実施することができる。   Here, in order to draw a sawtooth-like trajectory as shown in FIG. 3A, when the scanning speed component in the X-axis direction is Vx and the scanning speed component in the Y-axis direction is Vy, Vy >> It can be implemented by setting to Vx.

また、図3(b)に示すような多重反射状の軌跡を描くようにするには、X軸方向の走査速度成分Vx、Y軸方向の走査速度成分Vyとしたとき、両速度成分の差Δ(=Vx−Vy)が僅差となるように設定することにより実施することができる。なお、Vx=Vyのときには、図3(b)の破線で示す線上(45°の角度をもつ線上)を電子ビームが往復走査されるため、多重反射状の軌跡を描くようにはならない。   In order to draw a multiple reflection trajectory as shown in FIG. 3B, when the scanning speed component Vx in the X-axis direction and the scanning speed component Vy in the Y-axis direction are used, the difference between the two speed components is obtained. This can be implemented by setting Δ (= Vx−Vy) to be a small difference. When Vx = Vy, the electron beam is reciprocated on the line indicated by the broken line in FIG. 3B (on the line having an angle of 45 °), so that a multiple reflection trajectory is not drawn.

このように、図3(a)に示すような鋸歯波状の軌跡、あるいは図3(b)に示すような多重反射状の軌跡を描くように電子ビームを二次元走査すると、電子ビーム照射で生じる熱が局部的に集中することがないので都合がよい。   As described above, when the electron beam is two-dimensionally scanned so as to draw a sawtooth wave locus as shown in FIG. 3A or a multiple reflection locus as shown in FIG. It is convenient because heat does not concentrate locally.

すなわち、図4(a)に示すように、電子ビームが円形の軌跡を描くように二次元走査する場合には、ある一定幅Mをもつ領域(斜線部)内では長さLaにわたって電子ビームが走査されるために、電子ビームの照射時間も長くなって円軌跡の重なる接線部分に熱が集中してその他の部分との間で溶融むらを生じ易い。   That is, as shown in FIG. 4 (a), when two-dimensional scanning is performed so that the electron beam draws a circular locus, the electron beam extends over a length La within a region having a certain width M (shaded portion). Since scanning is performed, the irradiation time of the electron beam is increased, and heat is concentrated on the tangential portion where the circular trajectory overlaps, and uneven melting is likely to occur between the other portions.

これに対して、図4(b)に示すように、電子ビームが屈曲線状に二次元走査される場合には、同じ一定幅Mをもつ領域(斜線部)内では僅かな長さLb(<La)だけ電子ビームが走査されるために、電子ビームの照射時間が図4(a)の場合よりも短くなって軌跡の重なる接線部分での熱の集中が緩和される。このため、他の部分との間で溶融むらを生じることがなく、処理対象領域の全域にわたって均一な表面粗さに仕上げることができる。特に、図3(b)に示したように多重反射状の軌跡を描くように電子ビームが二次元走査される場合は、電子ビーム照射による発熱が特定箇所に集中するのを確実に避けることができる。   On the other hand, as shown in FIG. 4B, when the electron beam is two-dimensionally scanned in a bent line shape, a slight length Lb (in a region (shaded portion) having the same constant width M is used. Since the electron beam is scanned only by <La), the irradiation time of the electron beam is shorter than that in the case of FIG. 4A, and the heat concentration in the tangential portion where the trajectories overlap is alleviated. For this reason, it is possible to achieve a uniform surface roughness over the entire region to be processed without causing uneven melting with other portions. In particular, when the electron beam is two-dimensionally scanned so as to draw a multiple reflection trajectory as shown in FIG. 3B, it is possible to reliably avoid the heat generated by the electron beam irradiation from being concentrated at a specific location. it can.

さらに、この実施の形態1では、上記のようにして電子ビームを屈曲線状に二次元走査する際、制御装置9は、被処理物情報メモリ19に記憶されている被処理物Wの表面形状に関する形状情報に基づいて電子ビームが被処理物Wの表面の照射位置に常に焦点を結ぶようにビーム収束手段15を制御する。   Further, in the first embodiment, when the electron beam is two-dimensionally scanned in a bent line as described above, the control device 9 is configured to obtain the surface shape of the workpiece W stored in the workpiece information memory 19. The beam converging means 15 is controlled so that the electron beam is always focused on the irradiation position on the surface of the workpiece W based on the shape information regarding.

このため、例えば図5(a)に示すように、被処理物Wの表面に凹部W1が存在する場合でも、電子ビームは凹部W1内の表面、凹部W1外の表面のいずれの照射位置でも常に焦点を結ぶようになる。また、例えば図5(b)に示すように、被処理物Wの表面に円弧状の段差W2が存在する場合でも、電子ビームは段差W2の途中、段差W2の前後の表面のいずれの照射位置でも常に焦点を結ぶようになる。したがって、被処理物Wの形状が種々異なる場合でもその表面に対して常に同じエネルギ密度で電子ビームが照射される。   For this reason, as shown in FIG. 5A, for example, even when the concave portion W1 exists on the surface of the workpiece W, the electron beam is always irradiated at any irradiation position on the surface inside the concave portion W1 and the surface outside the concave portion W1. Become focused. Further, for example, as shown in FIG. 5B, even when an arc-shaped step W2 exists on the surface of the workpiece W, the irradiation position of the electron beam is on the surface of the step W2 and on the surface before and after the step W2. But always focus. Therefore, even when the shape of the workpiece W varies, the surface is always irradiated with the electron beam with the same energy density.

このように、この実施の形態1では、電子ビームを被処理物Wの処理対象領域内で走査することで、その表層が溶融した後に直ちに自己放冷されて凝固されるので、被処理物Wの表面を比較的短時間の内に1μm程度の微細な表面粗さに仕上げることができる。しかも、その際、電子ビームが図3に示したように屈曲線状になるように走査されるので、熱が局部的に集中して溶融むらを生じることはなく、処理対象領域の全域にわたって均一な表面粗さに仕上げることができる。さらに、電子ビームは、図5に示したように被処理物W表面の照射位置に常に収束するようにフォーカス制御されるので、被処理物Wの処理表面に対して照射される電子ビームのエネルギ密度が常に一定になる。したがって、電子ビームを表面に照射してその表層を均一に溶融凝固させることができる。このため、一層均一な表面処理をすることができる。   As described above, in the first embodiment, by scanning the electron beam within the region to be processed of the workpiece W, the surface layer is melted and then self-cooled and solidified immediately. Can be finished to a fine surface roughness of about 1 μm within a relatively short time. In addition, since the electron beam is scanned so as to form a bent line as shown in FIG. 3, the heat does not concentrate locally and uneven melting does not occur, and the entire region to be processed is uniform. It can be finished to a rough surface. Further, the focus of the electron beam is controlled so as to always converge to the irradiation position on the surface of the workpiece W as shown in FIG. The density is always constant. Therefore, the surface can be uniformly melted and solidified by irradiating the surface with an electron beam. For this reason, a more uniform surface treatment can be performed.

このようにして、電子ビームの二次元走査により被処理物Wの一定範囲の表面処理が終われば、次に、制御装置9はXYテーブル4を移動して被処理物Wの他の範囲について上記と同様に電子ビーム照射により表面処理が行われる。そして、最終的には被処理物Wの所定の処理対象領域の全域にわたって表面処理が行われる。なお、電子ビームの二次元走査とXYテーブル4の移動とを同期制御するようにしてもよい。   In this way, when the surface treatment of a certain range of the workpiece W is completed by the two-dimensional scanning of the electron beam, the control device 9 moves the XY table 4 and moves the XY table 4 on the other range of the workpiece W. In the same manner as above, surface treatment is performed by electron beam irradiation. Finally, the surface treatment is performed over the entire area of the predetermined processing target area of the workpiece W. The two-dimensional scanning of the electron beam and the movement of the XY table 4 may be controlled synchronously.

上記の実施の形態1では、被処理物Wの表面処理が必要な矩形の処理対象領域Ra,Rb内を鋸歯波状の軌跡(図3(a))、あるいは多重反射状の軌跡(図3(b))を描くように電子ビームを二次元走査しているが、電子ビームをデジタル的に微少量(例えばビーム径がφ0.3mmの1/10くらいで、0.01mm〜0.05mm)ずつ予め設定された位置をデータ通りに動かすようにすれば、矩形状の領域Ra,Rbだけでなく任意の複雑な領域に電子ビームを照射することができる。   In the first embodiment described above, a sawtooth wave locus (FIG. 3A) or a multiple reflection locus (FIG. 3 (A)) in the rectangular processing target areas Ra and Rb that require surface treatment of the workpiece W. b)), the electron beam is scanned two-dimensionally, but the electron beam is digitally minute (for example, the beam diameter is about 1/10 of φ0.3 mm, 0.01 mm to 0.05 mm). If the preset position is moved according to the data, it is possible to irradiate not only the rectangular areas Ra and Rb but also any complicated area with an electron beam.

また、実施の形態1において、メモリ19の形状情報に基づいて電子ビームが被処理物Wの表面の照射位置に常に焦点を結ぶようにフォーカス制御を行っているが、電子ビームの焦点位置は被処理物Wの表面から常に所定距離だけ離れた箇所に設定されるようにフォーカス制御を行うようにすることも可能である。   In the first embodiment, focus control is performed so that the electron beam always focuses on the irradiation position on the surface of the workpiece W based on the shape information in the memory 19. It is also possible to perform focus control so as to be always set at a predetermined distance from the surface of the workpiece W.

さらに、電子ビームが被処理物Wの表面に常に焦点を結ぶようにフォーカス制御を行っても、被処理物Wの表面が全般に傾斜しているような場合には、被処理物Wの表面が水平面の場合と比べて電子ビームの入熱密度(電子ビームのエネルギ密度)が異なってくるので、被処理物情報メモリ19に記憶されている被処理物Wの表面形状に関する形状情報に基づいて、被処理物に対する電子ビームの入熱密度(電子ビームのエネルギ密度)を変化させるようにしてもよい。この場合の入熱密度を変化させる方法としては、ビーム電流を変えたり、走査回数を変えたり、走査速度を変えたりすることで対処することが可能である。   Furthermore, even if the focus control is performed so that the electron beam always focuses on the surface of the workpiece W, if the surface of the workpiece W is generally inclined, the surface of the workpiece W Since the heat input density of the electron beam (energy density of the electron beam) is different from that in the case of the horizontal plane, based on the shape information relating to the surface shape of the workpiece W stored in the workpiece information memory 19. The heat input density (electron beam energy density) of the electron beam to the object to be processed may be changed. In this case, the heat input density can be changed by changing the beam current, changing the number of scans, or changing the scan speed.

さらにまた、上記の実施の形態1では、被処理物可動機構としてXYテーブル4を設けているが、これに限らず、他の構成の被処理物可動機構を設けることもできる。例えば、図6(a)に示すような被処理物Wを傾動保持する機構21や、図6(b)に示すような回転保持機構22をXYテーブル4上に配設することができる。   Furthermore, in the first embodiment, the XY table 4 is provided as the workpiece moving mechanism. However, the present invention is not limited to this, and a workpiece moving mechanism having another configuration may be provided. For example, a mechanism 21 that tilts and holds the workpiece W as shown in FIG. 6A and a rotation holding mechanism 22 as shown in FIG. 6B can be disposed on the XY table 4.

そして、例えば図6(a)に示すように、被処理物Wに溝W3がある場合、電子ビームを偏向するだけでは溝W3内の垂直壁を十分に照射できないことがあるが、傾動保持機構21を設けた場合には、この傾動保持機構21で被処理物Wを傾斜させることで溝W3の垂直壁に電子ビームを確実に照射して表面処理を行うことができる。   For example, as shown in FIG. 6A, when the workpiece W has a groove W3, the vertical wall in the groove W3 may not be sufficiently irradiated by simply deflecting the electron beam. When 21 is provided, surface treatment can be performed by reliably irradiating the vertical wall of the groove W3 with an electron beam by inclining the workpiece W by the tilt holding mechanism 21.

また、図6(b)に示すように、被処理物Wが円柱状をしている場合、回転保持機構22により被処理物Wを回転させることでその処理表面に対して電子ビームを垂直に照射することができるので、均一な表面処理をすることが可能になる。   Further, as shown in FIG. 6B, when the workpiece W has a cylindrical shape, the workpiece W is rotated by the rotation holding mechanism 22 so that the electron beam is perpendicular to the processing surface. Since it can be irradiated, a uniform surface treatment can be performed.

実施の形態2.
図7はこの実施の形態2における電子ビーム表面処理装置の要部を示す構成図である。
Embodiment 2. FIG.
FIG. 7 is a block diagram showing a main part of the electron beam surface treatment apparatus according to the second embodiment.

この実施の形態2の特徴は、電子ビームの放射方向に沿って複数段(この例では2段)にわたって偏向レンズ14a,14bが設けられている。このため、第1段目の偏向レンズ14aで偏向された電子ビームは、引き続いて第2段目の偏向レンズ14bでさらに偏向される。   A feature of the second embodiment is that deflection lenses 14a and 14b are provided over a plurality of stages (two stages in this example) along the radiation direction of the electron beam. For this reason, the electron beam deflected by the first stage deflection lens 14a is subsequently further deflected by the second stage deflection lens 14b.

これにより、被処理物Wの表面に照射される電子ビームの入射角を小さくすることができる。つまり、被処理物Wの表面に対して電子ビームをできるだけ垂直に照射できるようになる。このため、電子ビームを二次元走査する場合、被処理物Wの表面に対して照射される電子ビームのエネルギ密度が常に一定になるので、被処理物Wの表層を均一に溶融凝固させることができ、均一な表面処理をすることができる。   Thereby, the incident angle of the electron beam with which the surface of the workpiece W is irradiated can be reduced. That is, the electron beam can be irradiated as perpendicularly as possible to the surface of the workpiece W. For this reason, when the electron beam is scanned two-dimensionally, the energy density of the electron beam applied to the surface of the workpiece W is always constant, so that the surface layer of the workpiece W can be uniformly melted and solidified. And uniform surface treatment.

しかも、例えば図8に示すように、被処理物Wに凹部W4がある場合、単一の偏向レンズでは電子ビームを十分に偏向できないために凹部W4内に陰ができて電子ビームを十分に照射できないことがある。これに対して、この実施の形態2のように、複数段の偏向レンズ14a,14bによって電子ビームを複数回偏向させるようにすれば、凹部W4内に電子ビームを確実に照射して表面処理を行うことができる。   Moreover, for example, as shown in FIG. 8, when the workpiece W has a concave portion W4, the single deflection lens cannot sufficiently deflect the electron beam, so that the shadow is formed in the concave portion W4 and the electron beam is sufficiently irradiated. There are things that cannot be done. On the other hand, when the electron beam is deflected a plurality of times by the plurality of stages of deflection lenses 14a and 14b as in the second embodiment, the surface treatment is performed by reliably irradiating the electron beam into the recess W4. It can be carried out.

なお、この実施の形態2では、電子ビームの放射方向に沿って2段の偏向レンズ14a,14bを設けているが、3段以上設けることも可能である。その他の構成、ならびに作用効果は実施の形態1の場合と同様であるから、ここでは詳しい説明は省略する。   In the second embodiment, the two-stage deflection lenses 14a and 14b are provided along the electron beam radiation direction, but three or more stages may be provided. Other configurations and operational effects are the same as those in the first embodiment, and thus detailed description thereof is omitted here.

実施の形態3.
図9はこの実施の形態3における電子ビーム表面処理装置の構成図であり、図1に示した実施の形態1と対応する構成部分には同一の符号を付す。
Embodiment 3 FIG.
FIG. 9 is a block diagram of the electron beam surface treatment apparatus according to the third embodiment. Components corresponding to those of the first embodiment shown in FIG.

この実施の形態3の特徴は、電子ビーム照射手段3が配置された真空チャンバ2aと、XYテーブル4が配置された真空チャンバ2bとが互いに独立して設けられている。そして、両真空チャンバ2a,2b間は、例えば蛇腹状の真空シール23が施されて互いに連通されるとともに、電子ビーム照射手段3が配置された真空チャンバ2aには、他方の真空チャンバ2bに対して変位させるスライド手段24が設けられている。この場合のスライド手段24は、例えば、真空チャンバ2aの底部に設けたローラ25と、このローラ25を駆動するモータやギヤを備えた駆動部26とで構成される。   A feature of the third embodiment is that a vacuum chamber 2a in which the electron beam irradiation means 3 is arranged and a vacuum chamber 2b in which the XY table 4 is arranged are provided independently of each other. Between the two vacuum chambers 2a and 2b, for example, a bellows-like vacuum seal 23 is provided to communicate with each other, and the vacuum chamber 2a in which the electron beam irradiation means 3 is disposed is connected to the other vacuum chamber 2b. A sliding means 24 for displacing is provided. The sliding means 24 in this case is constituted by, for example, a roller 25 provided at the bottom of the vacuum chamber 2a, and a driving unit 26 having a motor and a gear for driving the roller 25.

この構成によれば、XYテーブル4を移動するだけでは被処理物Wに対する電子ビームの照射範囲に限界がある場合でも、電子ビーム照射手段3が配置された真空チャンバ2a全体を移動させれば被処理物Wの広い範囲にわたって電子ビームを照射することが可能になる。   According to this configuration, even if the irradiation range of the electron beam to the workpiece W is limited only by moving the XY table 4, if the entire vacuum chamber 2a in which the electron beam irradiation means 3 is disposed is moved, the object to be processed is moved. An electron beam can be irradiated over a wide range of the workpiece W.

なお、この実施の形態3では、電子ビーム照射手段3が配置された真空チャンバ2aを移動させるようにしているが、逆にXYテーブル4が収納された真空チャンバ2bを移動する構成とすることも可能である。その他の構成、ならびに作用効果は実施の形態1の場合と同様であるから、ここでは詳しい説明は省略する。   In the third embodiment, the vacuum chamber 2a in which the electron beam irradiation means 3 is arranged is moved. Conversely, the vacuum chamber 2b in which the XY table 4 is accommodated may be moved. Is possible. Other configurations and operational effects are the same as those in the first embodiment, and thus detailed description thereof is omitted here.

なお、図6(a)では被処理物Wを傾動保持する機構21をXYテーブル4上に配置した構成を示したが、電子ビーム照射手段3を真空チャンバ2a内のXYテーブル4に対して傾動保持する傾動保持機構(図示せず)を設けた構成とすることもできる。このような構成にすれば、被処理物Wの形状が大きい場合でも、電子ビーム照射手段3を傾斜させることで被処理物Wの広い表面にわたって適切に電子ビームを照射することができる。   6A shows a configuration in which the mechanism 21 for tilting and holding the workpiece W is arranged on the XY table 4, the electron beam irradiation means 3 is tilted with respect to the XY table 4 in the vacuum chamber 2a. It can also be set as the structure which provided the tilt holding mechanism (not shown) to hold | maintain. With such a configuration, even when the shape of the workpiece W is large, the electron beam can be appropriately irradiated over a wide surface of the workpiece W by tilting the electron beam irradiation means 3.

実施の形態4.
図10はこの実施の形態4における電子ビーム表面処理装置の要部を示す構成図である。
Embodiment 4 FIG.
FIG. 10 is a block diagram showing a main part of the electron beam surface treatment apparatus according to the fourth embodiment.

この実施の形態4の特徴は、XYテーブル4の上に載置される被処理物Wを所要温度になるように温度調節する温度調節手段29を備えていることである。この場合の温度調節手段29は、例えば、XYテーブル4と被処理物Wとの間に介在される加熱冷却器30と、この加熱冷却器30の温度制御を行う温度制御装置31とから構成されている。この場合の加熱冷却器30は、例えばペルチェ素子を用いたものや、ヒータ単体あるいはクーラ単体、または両者を組み合わせたものを適用することができる。   The feature of the fourth embodiment is that a temperature adjusting means 29 is provided for adjusting the temperature of the workpiece W placed on the XY table 4 so as to reach a required temperature. The temperature adjusting means 29 in this case is composed of, for example, a heating / cooling device 30 interposed between the XY table 4 and the workpiece W and a temperature control device 31 for controlling the temperature of the heating / cooling device 30. ing. As the heating / cooling device 30 in this case, for example, a device using a Peltier element, a heater alone or a cooler alone, or a combination of both can be applied.

この構成によれば、例えば図11に示すように、電子ビーム照射による被処理物Wの溶融温度をTqとしたとき、被処理物Wの処理前の母材温度をT1,T2と変えると、電子ビーム照射時の被処理物Wの温度分布曲線が実線および破線で示すように異なってきて表面からの溶融深さもD1,D2変化する。したがって、被処理物Wの材料に応じて適切な溶融深さD1,D2等を設定することができる。   According to this configuration, for example, as shown in FIG. 11, when the melting temperature of the workpiece W by electron beam irradiation is Tq, the base material temperature before the processing of the workpiece W is changed to T1 and T2, The temperature distribution curve of the workpiece W at the time of electron beam irradiation changes as indicated by the solid line and the broken line, and the melting depth from the surface also changes by D1 and D2. Therefore, appropriate melting depths D1, D2, etc. can be set according to the material of the workpiece W.

その他の構成、ならびに作用効果は実施の形態1の場合と同様であるから、ここでは詳しい説明は省略する。   Other configurations and operational effects are the same as those in the first embodiment, and thus detailed description thereof is omitted here.

上記の実施の形態1の構成を備えた電子ビーム表面処理装置を用いて、被処理物に表面処理をして評価実験を行った。この場合、被処理物の材料としては、STAVAX鋼(JIS G 4303〜4309:マルテンサイト系ステンレス鋼SUS420J2相当)を使用した。この表面処理前の素地の表面粗さは6μmである。また、処理条件として、真空度が6.7Pa以下、加速電圧30kV、ビーム電流が110mAの下で、処理対象領域を30mm×30mmの範囲とし、その範囲内で図3(a)に示すように鋸歯波状の軌跡を描くように電子ビームを二次元走査した。そして、被処理物の電子ビーム走査後の表面粗さを測定した。   Using the electron beam surface treatment apparatus having the configuration of the first embodiment, surface treatment was performed on an object to be evaluated. In this case, STAVAX steel (JIS G 4303 to 4309: martensitic stainless steel SUS420J2 equivalent) was used as the material of the workpiece. The surface roughness of the substrate before this surface treatment is 6 μm. Further, as processing conditions, under a vacuum degree of 6.7 Pa or less, an acceleration voltage of 30 kV, a beam current of 110 mA, a processing target area is set to a range of 30 mm × 30 mm, and within that range, as shown in FIG. The electron beam was scanned two-dimensionally so as to draw a sawtooth-like trajectory. Then, the surface roughness of the object to be processed after electron beam scanning was measured.

その結果、30mm×30mmの処理対象領域の全域を電子ビームを一度だけ二次元走査するのに要する時間は約1.6秒で、このときの被処理物の表面粗さは0.96μm(6回測定の平均値)であった。したがって、表面処理後の表面粗さは要求特性を十分に満たしていることが確認された。また、被処理物の処理後の表面状態を走査電子顕微鏡等で観察したところ、処理対象領域内において均一な表面処理が行われていることが確認された。   As a result, the time required to two-dimensionally scan the entire 30 mm × 30 mm processing target region with the electron beam once is about 1.6 seconds, and the surface roughness of the processing object at this time is 0.96 μm (6 Average value of the measurement times). Therefore, it was confirmed that the surface roughness after the surface treatment sufficiently satisfies the required characteristics. Moreover, when the surface state after the process of the to-be-processed object was observed with the scanning electron microscope etc., it was confirmed that the uniform surface treatment is performed in the process target area | region.

また、処理条件の内、ビーム電流のみを90mAに変更し、上記と同じ面積をもつ処理対象領域を5回繰り返して二次元走査した場合、処理に要する総時間は約7.4秒で、このときの被処理物の表面粗さは1.13μm(6回測定の平均値)であった。この場合も所要の表面粗さを得ることが確認できた。   In addition, if only the beam current is changed to 90 mA among the processing conditions and the processing target area having the same area as above is subjected to two-dimensional scanning repeatedly, the total time required for processing is about 7.4 seconds. The surface roughness of the object to be processed was 1.13 μm (average value of six measurements). In this case, it was confirmed that the required surface roughness was obtained.

なお、特許文献2に記載されているように、被処理物の広い面積にわたって電子ビームをパルス照射して上記と同様な30mm×30mmの面積内を1μm程度の表面粗さに仕上げるのに要する時間は約380秒程である。したがって、従来と比べると本発明は同じ程度の表面粗さに仕上げるのに要する時間が極めて短時間で済むことが理解される。   Note that, as described in Patent Document 2, the time required to finish the surface roughness of about 1 μm in the same 30 mm × 30 mm area as described above by irradiating an electron beam over a wide area of the object to be processed. Is about 380 seconds. Therefore, it is understood that the time required for finishing the present invention with the same level of surface roughness is extremely short as compared with the prior art.

本発明は、表面処理を行う被処理物Wが金型の場合に限定されるものではなく、微細な表面処理が要求される被処理物に対して本発明を広く適用することが可能である。   The present invention is not limited to the case where the workpiece W to be surface-treated is a mold, and the present invention can be widely applied to workpieces that require fine surface treatment. .

本発明の実施の形態1における電子ビーム表面処理装置の構成図である。It is a block diagram of the electron beam surface treatment apparatus in Embodiment 1 of this invention. 本発明の実施の形態1において、XYテーブル上に被処理物を載置した状態の概略を示す斜視図である。In Embodiment 1 of this invention, it is a perspective view which shows the outline of the state which mounted the to-be-processed object on the XY table. 本発明の実施の形態1において、被処理物に対して電子ビームを二次元走査する場合の説明図である。In Embodiment 1 of this invention, it is explanatory drawing at the time of carrying out two-dimensional scanning with an electron beam with respect to a to-be-processed object. 被処理物に対して電子ビームを二次元走査する場合の走査方法の違いに伴って生じる熱集中度合いを説明するための図である。It is a figure for demonstrating the heat concentration degree which arises with the difference in the scanning method in the case of scanning an electron beam with respect to a to-be-processed object two-dimensionally. 本発明の実施の形態1において、電子ビームが被処理物表面の照射位置に常に収束するようにフォーカス制御する場合の説明図である。In Embodiment 1 of this invention, it is explanatory drawing in the case of carrying out focus control so that an electron beam always converges on the irradiation position of the to-be-processed object surface. 被処理物可動機構の変形例を示す斜視図である。It is a perspective view which shows the modification of a to-be-processed object movable mechanism. 実施の形態2における電子ビーム表面処理装置の要部を示す構成図である。FIG. 5 is a configuration diagram showing a main part of an electron beam surface treatment apparatus in a second embodiment. 実施の形態2において、電子ビームを偏向して被処理物表面に照射する場合の説明図である。In Embodiment 2, it is explanatory drawing in the case of deflecting an electron beam and irradiating the to-be-processed surface. 実施の形態3における電子ビーム表面処理装置の構成図である。6 is a configuration diagram of an electron beam surface treatment apparatus in Embodiment 3. FIG. 実施の形態4における電子ビーム表面処理装置の要部を示す構成図である。FIG. 10 is a configuration diagram showing a main part of an electron beam surface treatment apparatus in a fourth embodiment. 実施の形態4において、温度調節手段で被処理物の温度を調節した場合の電子ビーム照射による温度分布の違いを示す特性図である。In Embodiment 4, it is a characteristic view which shows the difference in the temperature distribution by electron beam irradiation at the time of adjusting the temperature of a to-be-processed object with a temperature control means.

符号の説明Explanation of symbols

W 被処理物、1 電子ビーム表面処理装置、2 真空チャンバ、
3 電子ビーム照射手段、4 XYテーブル(被処理物可動機構)、
9 制御装置(ビーム走査制御手段、フォーカス制御手段)、12 電子銃、
13 収束レンズ、14,14a,14b 偏向レンズ、15 ビーム収束手段、
16 ビーム偏向手段、19 被処理物情報メモリ(記憶手段)、21 傾動保持機構、22 回転保持機構、24 スライド手段、29 温度調節手段。
W workpiece, 1 electron beam surface treatment device, 2 vacuum chamber,
3 electron beam irradiation means, 4 XY table (workpiece moving mechanism),
9 Control device (beam scanning control means, focus control means), 12 electron gun,
13 converging lens, 14, 14a, 14b deflection lens, 15 beam converging means,
16 Beam deflection means, 19 Workpiece information memory (storage means), 21 Tilt holding mechanism, 22 Rotation holding mechanism, 24 Slide means, 29 Temperature adjusting means.

Claims (12)

電子ビームを被処理物の表面に照射してその表層を溶融凝固させて表面処理を行う電子ビーム表面処理方法において、
上記被処理物の表面処理を行う処理対象領域を規定する領域情報を予め登録しておき、この領域情報に基づいて電子ビームを上記被処理物の処理対象領域内を屈曲線状の軌跡を描くように二次元走査することを特徴とする電子ビーム表面処理方法。
In an electron beam surface treatment method in which a surface treatment is performed by irradiating the surface of an object with an electron beam to melt and solidify the surface layer,
Area information that defines a process target area for performing the surface treatment of the object to be processed is registered in advance, and an electron beam is drawn in a bent line locus in the process target area of the object to be processed based on the area information. An electron beam surface treatment method characterized by performing two-dimensional scanning as described above.
上記の屈曲線状の軌跡を描く二次元走査とは、鋸歯波状の軌跡を描く二次元走査であることを特徴とする請求項1記載の電子ビーム表面処理方法。 2. The electron beam surface treatment method according to claim 1, wherein the two-dimensional scanning for drawing a bent line-shaped locus is a two-dimensional scanning for drawing a sawtooth-shaped locus. 上記の屈曲線状の軌跡を描く二次元走査とは、多重反射状の軌跡を描く二次元走査であることを特徴とする請求項1記載の電子ビーム表面処理方法。 2. The electron beam surface treatment method according to claim 1, wherein the two-dimensional scanning that draws the bent line-shaped locus is a two-dimensional scanning that draws a multi-reflection locus. 上記被処理物の表面形状に関する形状情報を予め登録しておき、この形状情報に基づいて電子ビームが上記被処理物の表面または表面から一定距離だけ離れた箇所に常に焦点を結ぶようにフォーカス制御を行うことを特徴とする請求項1ないし請求項3のいずれか1項に記載の電子ビーム表面処理方法。 Focus control is performed so that shape information relating to the surface shape of the object to be processed is registered in advance, and the electron beam is always focused on the surface of the object to be processed or a certain distance from the surface based on the shape information. The electron beam surface treatment method according to any one of claims 1 to 3, wherein: 上記被処理物の表面形状に関する形状情報を予め登録しておき、この形状情報に基づいて電子ビームの上記被処理物の照射位置に対するエネルギ密度が変化する制御を行うことを特徴とする請求項1ないし請求項3のいずれか1項に記載の電子ビーム表面処理方法。 2. Shape information regarding the surface shape of the object to be processed is registered in advance, and control is performed to change the energy density of the electron beam with respect to the irradiation position of the object to be processed based on the shape information. The electron beam surface treatment method according to any one of claims 3 to 4. 被処理物の表面に電子ビームを照射する電子ビーム照射手段を有し、この電子ビーム照射手段は、電子ビームを発生する電子銃と、この電子銃からの電子ビームを収束するビーム収束手段と、電子ビームを偏向するビーム偏向手段とを備えている電子ビーム表面処理装置において、
上記被処理物の表面処理を行う処理対象領域を規定する領域情報が予め登録された記憶手段と、この記憶手段に記憶されている上記領域情報に基づいて電子ビームが上記被処理物の処理対象領域内で屈曲線状の軌跡を描いて二次元走査されるように上記ビーム偏向手段を制御するビーム走査制御手段と、を備えることを特徴とする電子ビーム表面処理装置。
An electron beam irradiation means for irradiating the surface of the workpiece with an electron beam; the electron beam irradiation means; an electron gun for generating an electron beam; a beam focusing means for converging the electron beam from the electron gun; In an electron beam surface treatment apparatus comprising beam deflecting means for deflecting an electron beam,
Storage means in which area information for defining a process target area for surface treatment of the object to be processed is registered in advance, and an electron beam is processed on the object to be processed based on the area information stored in the storage means. An electron beam surface processing apparatus comprising: a beam scanning control unit that controls the beam deflecting unit so that a two-dimensional scanning is performed while drawing a bent line-shaped locus in a region.
上記記憶手段には、上記領域情報に加えて被処理物の表面形状に関する形状情報が予め登録される一方、この形状情報に基づいて電子ビームが上記被処理物の表面または表面から所定距離だけ離れた箇所に常に常に焦点を結ぶように上記ビーム収束手段を制御するフォーカス制御手段を備えることを特徴とする請求項6記載の電子ビーム表面処理装置。 In the storage means, in addition to the area information, shape information relating to the surface shape of the object to be processed is registered in advance, and on the basis of the shape information, the electron beam is separated from the surface or surface of the object to be processed by a predetermined distance. 7. The electron beam surface treatment apparatus according to claim 6, further comprising a focus control means for controlling the beam converging means so as to always focus on the spot. 上記被処理物を電子ビームの照射方向に対して水平移動、回転、傾動の内の少なくとも一つを行う被処理物可動機構を備えることを特徴とする請求項6または請求項7に記載の電子ビーム表面処理装置。 8. The electron according to claim 6 or 7, further comprising a workpiece moving mechanism that performs at least one of horizontal movement, rotation, and tilting of the workpiece with respect to an electron beam irradiation direction. Beam surface treatment equipment. 上記ビーム偏向手段が電子ビームの放射方向に沿って複数段にわたって設けられていることを特徴とする請求項6ないし請求項8のいずれか1項に記載の電子ビーム表面処理装置。 The electron beam surface treatment apparatus according to any one of claims 6 to 8, wherein the beam deflecting means is provided in a plurality of stages along the electron beam radiation direction. 上記電子ビーム照射手段の位置を上記被処理物可動機構に対して変位させるスライド手段を備えることを特徴とする請求項6ないし請求項9のいずれか1項に記載の電子ビーム表面処理装置。 10. The electron beam surface treatment apparatus according to claim 6, further comprising slide means for displacing the position of the electron beam irradiation means with respect to the workpiece moving mechanism. 上記電子ビーム照射手段の位置を上記被処理物可動機構に対して傾動させる傾動手段を備えることを特徴とする請求項6ないし請求項10のいずれか1項に記載の電子ビーム表面処理装置。 11. The electron beam surface treatment apparatus according to claim 6, further comprising tilting means for tilting the position of the electron beam irradiation means with respect to the workpiece moving mechanism. 上記被処理物を所定温度になるように温度調節する温度調節手段を備えることを特徴とする請求項6ないし請求項11のいずれか1項に記載の電子ビーム表面処理装置。 The electron beam surface treatment apparatus according to any one of claims 6 to 11, further comprising temperature adjusting means for adjusting the temperature of the object to be processed to a predetermined temperature.
JP2004218401A 2004-07-27 2004-07-27 Electron beam surface treatment method and electron beam surface treatment apparatus Active JP4177300B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004218401A JP4177300B2 (en) 2004-07-27 2004-07-27 Electron beam surface treatment method and electron beam surface treatment apparatus
TW095102774A TWI277475B (en) 2004-07-27 2006-01-25 Surface processing method using electron beam and surface processing apparatus using electron beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004218401A JP4177300B2 (en) 2004-07-27 2004-07-27 Electron beam surface treatment method and electron beam surface treatment apparatus

Publications (2)

Publication Number Publication Date
JP2006035263A true JP2006035263A (en) 2006-02-09
JP4177300B2 JP4177300B2 (en) 2008-11-05

Family

ID=35900805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004218401A Active JP4177300B2 (en) 2004-07-27 2004-07-27 Electron beam surface treatment method and electron beam surface treatment apparatus

Country Status (2)

Country Link
JP (1) JP4177300B2 (en)
TW (1) TWI277475B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007083363A1 (en) * 2006-01-18 2007-07-26 Mitsubishi Denki Kabushiki Kaisha Method for surface treatment with electron beam and apparatus for surface treatment with electron beam
WO2008062655A1 (en) * 2006-11-21 2008-05-29 Konica Minolta Opto, Inc. Mold fabrication method and projection optical system reflection mirror
JP2008255450A (en) * 2007-04-09 2008-10-23 Mitsubishi Electric Corp Surface treatment method and surface treatment device
JP2013121623A (en) * 2013-01-22 2013-06-20 Mitsubishi Electric Corp Device and method for surface treatment with electron beam
KR101425410B1 (en) * 2013-01-29 2014-08-04 한국기계연구원 Laser Processing Device for Avoiding Oxidation Layer using Bellows
CN114103185A (en) * 2020-08-31 2022-03-01 陈惠美 Medical grade mouth and nose wearing device and skin-friendly surface modification method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU677688B2 (en) 1993-07-16 1997-05-01 Dolby Laboratories Licensing Corporation Computationally efficient adaptive bit allocation for encoding method and apparatus with allowance for decoder spectral distortions

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007083363A1 (en) * 2006-01-18 2007-07-26 Mitsubishi Denki Kabushiki Kaisha Method for surface treatment with electron beam and apparatus for surface treatment with electron beam
WO2008062655A1 (en) * 2006-11-21 2008-05-29 Konica Minolta Opto, Inc. Mold fabrication method and projection optical system reflection mirror
JPWO2008062655A1 (en) * 2006-11-21 2010-03-04 コニカミノルタオプト株式会社 Manufacturing method of mold and reflection mirror for projection optical system
US8333637B2 (en) 2006-11-21 2012-12-18 Konica Minolta Opto, Inc. Manufacturing method of metal mold and relection mirror for projection optical system
JP2008255450A (en) * 2007-04-09 2008-10-23 Mitsubishi Electric Corp Surface treatment method and surface treatment device
JP2013121623A (en) * 2013-01-22 2013-06-20 Mitsubishi Electric Corp Device and method for surface treatment with electron beam
KR101425410B1 (en) * 2013-01-29 2014-08-04 한국기계연구원 Laser Processing Device for Avoiding Oxidation Layer using Bellows
CN114103185A (en) * 2020-08-31 2022-03-01 陈惠美 Medical grade mouth and nose wearing device and skin-friendly surface modification method thereof

Also Published As

Publication number Publication date
TW200728008A (en) 2007-08-01
JP4177300B2 (en) 2008-11-05
TWI277475B (en) 2007-04-01

Similar Documents

Publication Publication Date Title
JP6025837B2 (en) Method and apparatus for machining a workpiece, in particular for producing a cutting tool
JP2001276988A (en) Laser processing apparatus
US11285541B2 (en) Method for producing three-dimensional molded object
TWI277475B (en) Surface processing method using electron beam and surface processing apparatus using electron beam
JP2011025272A (en) Laser beam cutting apparatus and laser beam cutting method
JP7387870B2 (en) Method for beam machining plate or tubular workpieces
JP2005329436A (en) Laser machining method
TWI707768B (en) Layered modeling device
CN110730694B (en) Laser cleaning device and laser cleaning method
JP6299136B2 (en) Laser welding method and laser welding apparatus for steel sheet
JP2000035390A (en) Method for thin-piece preparation machining
JP5258402B2 (en) Electron beam surface treatment apparatus and electron beam surface treatment method
JP2005108472A (en) Film formation method using charged particle beam, selective etching method, and charged particle beam device
KR100664573B1 (en) Laser Processing Apparatus and Method thereof
JP5037132B2 (en) Method and apparatus for generating cavities
JP5242936B2 (en) Surface treatment method and surface treatment apparatus
WO2007083363A1 (en) Method for surface treatment with electron beam and apparatus for surface treatment with electron beam
JP2023104450A (en) Planarization method for semiconductor wafer surface
US20210276097A1 (en) 3d printing method for printing components, and corresponding devices
JP2006026660A (en) Surface smoothing device using electron beam, and method for treating surface of metal mold
KR102349328B1 (en) Laser assisted micro-machining system and method for micro-machining using the same
JP6768459B2 (en) Three-dimensional laminated molding method and three-dimensional laminated molding equipment
JP2009148794A (en) Laser welding method and laser welding system
JPH02241685A (en) Laser beam machining method for fine ceramics wire drawing die
CN117429051A (en) Method for manufacturing three-dimensional modeling object

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080821

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4177300

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250