JP2006034235A - Culture apparatus of polymer compound-producing microorganism and culture method - Google Patents

Culture apparatus of polymer compound-producing microorganism and culture method Download PDF

Info

Publication number
JP2006034235A
JP2006034235A JP2004222133A JP2004222133A JP2006034235A JP 2006034235 A JP2006034235 A JP 2006034235A JP 2004222133 A JP2004222133 A JP 2004222133A JP 2004222133 A JP2004222133 A JP 2004222133A JP 2006034235 A JP2006034235 A JP 2006034235A
Authority
JP
Japan
Prior art keywords
culture
culture solution
molecular weight
pga
viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004222133A
Other languages
Japanese (ja)
Inventor
Yoshiharu Noda
義治 野田
Tatsuro Ueki
達朗 植木
Yuji Hirofuji
祐史 廣藤
Hiromi Yamamoto
博美 山本
Kenji Taguchi
研治 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUKUOKA PREFECTURE SHOYU JOZO
FUKUOKA PREFECTURE SHOYU JOZO KYODO KUMIAI
Fukuoka Prefecture
Original Assignee
FUKUOKA PREFECTURE SHOYU JOZO
FUKUOKA PREFECTURE SHOYU JOZO KYODO KUMIAI
Fukuoka Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUKUOKA PREFECTURE SHOYU JOZO, FUKUOKA PREFECTURE SHOYU JOZO KYODO KUMIAI, Fukuoka Prefecture filed Critical FUKUOKA PREFECTURE SHOYU JOZO
Priority to JP2004222133A priority Critical patent/JP2006034235A/en
Publication of JP2006034235A publication Critical patent/JP2006034235A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/06Nozzles; Sprayers; Spargers; Diffusers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/02Stirrer or mobile mixing elements

Landscapes

  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a culture apparatus of microorganisms, capable of solving such a problem that deterioration of oxygen supply capacity is caused by viscosity rise of a culture solution accompanied by accumulation of a polymer compound, when the polymer compound is produced by aeration-agitation culture, and to provide a culture method. <P>SOLUTION: This culture apparatus 1 cultures the microorganisms, by supplying oxygen to the culture solution containing the microorganisms which produce the polymer compound, such as γ-PGA, wherein the culture apparatus 1 is equipped with an aeration means 6 which relieves the deterioration of the oxygen supply capacity caused by the viscosity rise of the culture solution. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、培養中における培養液の高粘度化にともなう酸素供給能力の低下を軽減し、高分子化合物、例えばポリ−γ−グルタミン酸などの高分子を生産する能力を有する微生物(以下「γ−PGA生産菌」という。)を用いて、高分子量ポリ−γ−グルタミン酸(以下「γ−PGA」と言う)を製造する方法及び装置に関する。   The present invention reduces a decrease in oxygen supply capacity accompanying the increase in viscosity of a culture solution during culture, and a microorganism having the ability to produce a polymer such as a polymer such as poly-γ-glutamic acid (hereinafter referred to as “γ-”). The present invention relates to a method and an apparatus for producing high molecular weight poly-γ-glutamic acid (hereinafter referred to as “γ-PGA”) using “PGA-producing bacteria”.

高分子化合物、例えばγ−PGAは、バチルス(Bacillus)属細菌が生産する蛋白質であって、近年、食品、医薬品、化粧品、水質浄化などの多くの分野で機能性素材として利用されている。   A high molecular compound such as γ-PGA is a protein produced by bacteria belonging to the genus Bacillus, and has recently been used as a functional material in many fields such as foods, pharmaceuticals, cosmetics, and water purification.

ところが、工業的な製造に好適な液体培養でγ−PGAを生産する場合、特に分子量300万以上の高分子量γ−PGAを生産しようとする場合、培養液中に産生するγ−PGAの高分子量化および/または高濃度化によって培養液の粘度が上昇し、培養液と空気の接触が不均一となって、生産が停止または不安定化する事が問題で、このことが、高分子量γ−PGAの工業的生産の障害となっていた。   However, when γ-PGA is produced by liquid culture suitable for industrial production, especially when high molecular weight γ-PGA having a molecular weight of 3 million or more is to be produced, the high molecular weight of γ-PGA produced in the culture solution. The problem is that the viscosity of the culture broth increases due to the increase in concentration and / or concentration, the contact between the culture broth and air becomes non-uniform, and production stops or becomes unstable. It was an obstacle to industrial production of PGA.

この培養液の粘度の上昇による問題を解決する方法として、先ず培養装置においてディスクタービン羽根のような攪拌羽根の攪拌速度を上げて酸素供給効率を上げ培養液を均質に保持しようとする試みがある。しかしこの方法による培養液の攪拌は、剪断力によりγ−PGAの分子鎖の切断等のダメージを受けるため、攪拌速度を抑えなければならない。すなわち、攪拌速度の強化は培養中の培養液の高粘度化に対応できる手段とはならない。従って、高分子量γ−PGAの生産は困難であった。   As a method for solving the problem due to the increase in the viscosity of the culture solution, there is an attempt to increase the oxygen supply efficiency by maintaining the culture solution homogeneously by first increasing the stirring speed of a stirring blade such as a disk turbine blade in the culture apparatus. . However, the stirring of the culture solution by this method is subject to damage such as the cleavage of the molecular chain of γ-PGA by the shearing force, so the stirring speed must be suppressed. That is, the enhancement of the stirring speed is not a means that can cope with the increase in the viscosity of the culture solution during the culture. Therefore, production of high molecular weight γ-PGA has been difficult.

次に、ステンレスメッシュのスパージャーのような、一般的に用いられるリングスパージャーに比べ微細気泡を形成し酸素供給効率のよい酸素供給装置の利用の試みがある。この方法は、低粘度下では微細気泡を形成するものの高粘度下では微細気泡を形成できないので酸素供給能力低下の軽減ができず、培養液の高粘度化に対応できない。   Next, there is an attempt to use an oxygen supply device such as a stainless mesh sparger that forms fine bubbles and has a high oxygen supply efficiency compared to a commonly used ring sparger. This method forms microbubbles under low viscosity but cannot form microbubbles under high viscosity, so the reduction in oxygen supply capacity cannot be reduced and the culture solution cannot be made highly viscous.

さらに、培養装置に通気する空気の酸素分圧を増加させる試みがある。この場合、先に述べた高粘度下で攪拌速度が抑えられ、かつ微細気泡が形成できない環境下ではその目的を充分達成できない。   Furthermore, there is an attempt to increase the oxygen partial pressure of the air that flows to the culture apparatus. In this case, the purpose cannot be sufficiently achieved in an environment where the stirring speed is suppressed under the high viscosity described above and fine bubbles cannot be formed.

一方、γ−PGAを微生物により液体培養で製造することは、特許文献1〜4などに開示されているが、製造されるγ−PGAの分子量は数千〜200万程度であった。これは、先に述べた培養液の高粘度化の問題を避け著量のγ−PGAを生産する有効な一手段であったが、結果的に高分子量のγ−PGAを製造できない。   On the other hand, manufacturing γ-PGA by liquid culture using microorganisms is disclosed in Patent Documents 1 to 4 and the like, but the molecular weight of γ-PGA to be manufactured is about several thousand to 2 million. This was an effective means for avoiding the above-mentioned problem of increasing the viscosity of the culture solution and producing a significant amount of γ-PGA, but as a result, a high molecular weight γ-PGA cannot be produced.

ところで、γ−PGA生産菌の中でも食経験があって安全・安心な納豆製造に供する納豆菌(Bacillus subtilis natto)のγ−PGAは、その分子量が数百から500万程度と他のγ−PGA生産菌に比べ高分子量であり、その有用性が期待できる。しかし、高分子量であるため先に述べた培養液の高粘度化がもたらす技術上の困難さが顕著である。例えば、比較的少量の3リットル以下の培養容量の場合に比べて300リットル以上の培養容量の場合にはその生産性が格段に不安定で、100リットルを超す培養容量で納豆製造に供する納豆菌のγ−PGAを製造した報告はなく、結果的にγ−PGAのような消費者により身近で安心感を与え且つ高分子量のγ−PGAを得る機会を逃している。   By the way, among γ-PGA-producing bacteria, γ-PGA of Bacillus subtilis natto, which has food experience and is used for safe and secure natto production, has a molecular weight of several hundred to about 5 million and other γ-PGAs. It has a higher molecular weight than the producing bacteria, and its usefulness can be expected. However, due to the high molecular weight, the technical difficulties brought about by the high viscosity of the culture solution described above are significant. For example, in the case of a culture volume of 300 liters or more compared to a relatively small amount of culture volume of 3 liters or less, the productivity is remarkably unstable, and Bacillus natto used for natto production with a culture volume exceeding 100 liters. There has been no report on the production of γ-PGA, and as a result, consumers such as γ-PGA are more familiar with safety and missed the opportunity to obtain high molecular weight γ-PGA.

また、γ−PGAの生産以外、例えばバイオセルロース、キサンタンガム、プルラン、デキストラン、フラクタン及びレバンなどの生産における微生物の培養においても、その培養液の粘度が上昇する場合、培養液への酸素の供給に関する同様の問題が発生し有用な生産物の製造が制限される。
特開昭43−24472号公報 特開平01−174397号公報 特開平03−47087号公報 特許第3081901号
In addition to the production of γ-PGA, for example, in the cultivation of microorganisms in the production of biocellulose, xanthan gum, pullulan, dextran, fructan, levan, etc., when the viscosity of the culture solution increases, it relates to the supply of oxygen to the culture solution. Similar problems occur and the production of useful products is limited.
JP 43-24472 A Japanese Patent Laid-Open No. 01-174597 Japanese Patent Laid-Open No. 03-47087 Patent No.3081901

本発明が目的とするところは、高分子化合物の通気攪拌培養による製造において、高分子化合物の蓄積に伴う培養液粘度の上昇に起因する酸素供給能力の低下の問題を解決し、また、通気攪拌培養によるγ−PGAの製造において、γ−PGAの蓄積に伴う培養液粘度の上昇に起因する酸素供給能力の低下の問題を解決し、平均分子量300万以上の高分子量γ−PGAを収率良くかつ安定して製造することができる高分子量γ−PGAを生産する微生物の培養装置及び培養方法を提供することにある。   The object of the present invention is to solve the problem of a decrease in oxygen supply capacity caused by an increase in the viscosity of a culture solution accompanying the accumulation of a polymer compound in the production of the polymer compound by aeration and agitation culture. In the production of γ-PGA by culture, the problem of decrease in oxygen supply capacity due to increase in viscosity of the culture solution accompanying accumulation of γ-PGA was solved, and high molecular weight γ-PGA having an average molecular weight of 3 million or more was obtained in high yield. It is another object of the present invention to provide a culture apparatus and culture method for microorganisms that produce high molecular weight γ-PGA that can be stably produced.

本発明は、γ−PGA生産菌を液体培養する際に観察される培養液粘度の上昇に伴うγ−PGA産生の停止または不安定化を、高粘度条件下での酸素供給能力の低下を軽減することによって防止できるという新たな知見に基づくものである。   The present invention reduces the decrease in oxygen supply capacity under high-viscosity conditions by suspending or destabilizing γ-PGA production that accompanies an increase in the viscosity of the culture solution observed in liquid culture of γ-PGA-producing bacteria. It is based on the new knowledge that it can prevent by doing.

前記の知見から、本発明は、高分子化合物を生産する微生物を含む培養液に酸素を供給して培養する培養装置において、前記培養装置内に培養液の粘度の上昇によって生じる酸素供給能力の低下を軽減させる通気手段を備えていることを特徴とする。   Based on the above knowledge, the present invention provides a culture apparatus for culturing by supplying oxygen to a culture solution containing a microorganism that produces a polymer compound, and reducing the oxygen supply capacity caused by an increase in the viscosity of the culture solution in the culture device. It is characterized by having a ventilation means for reducing the above.

本発明の高分子量γ−PGAを生産する微生物の培養装置は、培養液の粘度の上昇によって生じる酸素供給能力の低下を軽減させる通気手段を備え、分子量300万以上の高分子量γ−PGAを生産することを特徴とする。   The microorganism culturing apparatus for producing high molecular weight γ-PGA of the present invention is equipped with aeration means for reducing a decrease in oxygen supply capacity caused by an increase in the viscosity of a culture solution, and produces high molecular weight γ-PGA having a molecular weight of 3 million or more. It is characterized by doing.

本発明の高分子量γ−PGAを生産する微生物の培養方法は、高分子量γ−PGAを生産する微生物の培養液に酸素を供給して分子量300万以上の高分子量γ−PGAを生産する微生物の培養方法において、培養液の粘度の上昇によって生じる酸素供給能力の低下を軽減させる通気を行うことを特徴とする。   The method for culturing microorganisms producing high molecular weight γ-PGA according to the present invention is a method of cultivating microorganisms producing high molecular weight γ-PGA having a molecular weight of 3 million or more by supplying oxygen to the culture medium of microorganisms producing high molecular weight γ-PGA. The culture method is characterized in that aeration is performed to reduce a decrease in oxygen supply capacity caused by an increase in the viscosity of the culture solution.

本発明によれば、培養の経過と共に培養液の粘度が上昇する条件下であっても酸素を含む気体の微細気泡を形成する酸素供給装置または高粘度流体の散気装置と攪拌羽根を備えた攪拌装置を組み合わせることで攪拌の剪断力による高分子量γ−PGAのダメージを低減し酸素を効率的に供給することができる。   According to the present invention, there is provided an oxygen supply device or a high-viscosity fluid aeration device and a stirring blade that form fine bubbles of a gas containing oxygen even under conditions where the viscosity of the culture solution increases with the progress of culture. By combining the stirrer, damage of the high molecular weight γ-PGA due to the shearing force of stirring can be reduced and oxygen can be supplied efficiently.

本発明を用いた納豆製造に供する納豆菌の培養では、高粘度条件下での酸素供給能力の低下を軽減させることにより、1000ミリパスカル秒(mPa・s)以上の粘度を示す培養液条件下においても、安全性が高く且つ平均分子量300万以上の高分子量γ−PGAを対培養液当たり2%以上の回収率で得ることができ、従来の方法に比べて収率よくかつ安定して製造することが可能となる。これは、ファーメンターで一般的に用いられるリングスパージャーを用いて培養した場合に比べ約2.3倍の生産量である。加えて、従来のγ−PGAは分子量が約100万以下のものが大半であり、高分子量であることによる新たな機能または公知の機能の強化が期待される。従って、本発明は、γ−PGAの化粧品、食品、医療関係品等への用途を拡大させるものであり、産業上極めて有用である。   In the culture of natto for use in the production of natto using the present invention, by reducing the decrease in oxygen supply capacity under high-viscosity conditions, culture medium conditions exhibiting a viscosity of 1000 millipascal seconds (mPa · s) or more Can produce high-molecular-weight γ-PGA with high safety and average molecular weight of 3 million or more at a recovery rate of 2% or more per culture medium. It becomes possible to do. This is about 2.3 times the production amount compared to the case of culturing using a ring sparger generally used in fermenters. In addition, most of conventional γ-PGA has a molecular weight of about 1 million or less, and it is expected that new functions or enhancement of known functions will be expected due to the high molecular weight. Therefore, the present invention expands the application of γ-PGA to cosmetics, foods, medical-related products and the like, and is extremely useful industrially.

本発明が対象とするγ−PGA生産菌は、特に限定されるものではないが、特に、市販の納豆製造に供される納豆菌が好ましい。納豆の製造に用いられる代表的な納豆菌は、宮城野菌、高橋菌、成瀬菌、旭川菌、松村菌などであるが、γ−PGAの生産に供する菌株はこれらのいずれでもよく、任意のタイプカルチャー(例えばIFO3009、IFO3013、IFO3336、IFO3936、IFO13169、ATCC7058、ATCC7069、ATCC15245)を用いてもよい。また、市販納豆から公知の手法(納豆試験法研究会、納豆試験法、pp.65−73、 光琳 (1990))によって選択した高粘性発現株でもよい。   The γ-PGA-producing bacterium targeted by the present invention is not particularly limited, but natto bacterium used for commercial natto production is particularly preferable. Representative natto bacteria used in the production of natto are Miyagino, Takahashi, Naruse, Asahikawa, and Matsumura. Any of these strains may be used for the production of γ-PGA. Cultures (eg, IFO 3009, IFO 3013, IFO 3336, IFO 3936, IFO 13169, ATCC 7058, ATCC 7069, ATCC 15245) may be used. Alternatively, a high-viscosity expression strain selected from commercially available natto by a known method (Natto Test Method Research Group, Natto Test Method, pp. 65-73, Kohan (1990)) may be used.

加えて、納豆菌以外であってもγ−PGAを生産する菌であればいかなるものでもよく、例えばバチルス・ズブチリス(Bacillus subtillis)、バチルス・リケニホルミス(Bacillus licheniformis)、バチルス・メガテリウム(Bacillus megaterium)などのバチルス属細菌やキサントバクター(Xanthobacter)、マイコバクテリウム・チュバクロセス(Mycobaterium tuberculosis)、コリネバクテリウム・グルタミカム(Corynebacterium glutamicum)などでもよい。   In addition, any bacteria other than natto bacteria may be used as long as they produce γ-PGA, such as Bacillus subtilis, Bacillus licheniformis, Bacillus megaterium, and the like. Bacillus genus bacteria, Xanthobacter, Mycobacterium tuberculosis, Corynebacterium glutamicum, and the like may be used.

また、前記の菌から公知の各種変異処理法を用いて得られる変異株を用いることができる。変異処理法としては紫外線照射法、エックス線照射法、薬品の接触などが挙げられる。   Moreover, the mutant strain obtained from the said microbe using various well-known mutation processing methods can be used. Examples of the mutation treatment method include an ultraviolet irradiation method, an X-ray irradiation method, and a chemical contact.

本発明の培養装置に、γ−PGA生産菌を培養するか、または該装置にγ−PGA生産菌の培養液を一定期間保持することで目的が達成できる。高粘度条件下での酸素供給能力低下を軽減させる通気手段は、該条件下において酸素を含む気体の微細気泡を形成する能力を有している酸素供給装置(例えば、特開2001−000890号公報、特開2002−045667号公報参照)または高粘度流体の散気装置であれば使用できる。   The object can be achieved by culturing γ-PGA-producing bacteria in the culture apparatus of the present invention or holding a culture solution of γ-PGA-producing bacteria in the apparatus for a certain period. The aeration means for reducing the decrease in oxygen supply capacity under high viscosity conditions is an oxygen supply apparatus (for example, Japanese Patent Application Laid-Open No. 2001-000890) having the ability to form fine bubbles of gas containing oxygen under the conditions. JP, 2002-045667, A) or a high-viscosity fluid diffuser.

さらに、通気手段を備える培養装置は、微生物を純粋培養する性能を有している培養装置、または純粋培養した培養液を無菌的に保持可能な容器であれば使用できる。培養装置に通気する空気の酸素分圧は、培養液の粘度に応じて任意に変更することができる。   Furthermore, the culture apparatus provided with the aeration means can be used as long as it is a culture apparatus capable of purely culturing microorganisms, or a container capable of holding a purely cultured culture solution aseptically. The oxygen partial pressure of the air ventilated to the culture apparatus can be arbitrarily changed according to the viscosity of the culture solution.

また、γ−PGA生産菌の培養液培養で分子量300万以上のγ−PGAを製造するか、または300万以下のγ−PGAを高濃度に蓄積し培養液粘度が1000ミリパスカル秒(mPa・s)以上となる場合であれば本発明を使用できる。加えて、本発明によるγ−PGAの製造は、好適には納豆製造に供する納豆菌の培養液培養による分子量300万以上の高分子量γ−PGAの製造に使用される。   In addition, γ-PGA having a molecular weight of 3 million or more is produced by culturing a culture solution of γ-PGA producing bacteria, or γ-PGA having a molecular weight of 3 million or less is accumulated at a high concentration and the viscosity of the culture solution is 1000 millipascal second (mPa · s) If it becomes more than this, this invention can be used. In addition, the production of γ-PGA according to the present invention is preferably used for the production of high molecular weight γ-PGA having a molecular weight of 3 million or more by culturing a culture solution of Bacillus natto used for natto production.

本発明は、γ−PGAの製造の他に、培養液の粘度が高くなる高分子化合物の製造、例えば、(1)バイオセルロースの生産(生産菌:アセトバクター キシリナム サブスピーシーズ シュクロファーメンタンス(Acetobacter xylinum subsp. Sucrofermentans)、アセトバクター キシリナム(Acetobacter xylinum)ATCC23768、ATCC23769、ATCC14851、ATCC11142、ATCC10821、アセトバクター パスツリアヌス(Acetobacter pasteurianus)ATCC10245などの酢酸菌、アグロバクテリウム属、アゾトバクター属、サルシナ属、シュードモナス属、アクロモバクター属、アルカリゲネス属、アエロバクター属、アゾトバクター属、ズーグレア属など)、(2)キサンタンガムの生産(生産菌:ザントモナス カンペストリス(Xanthomonas campestris)など)、(3)プルランの生産(生産菌:アウレオバシディウム プルランス(Aureobasidium pullulans)など)、(4)デキストランの生産(生産菌:リューコノストック メゼンテロイデス( Leuconostoc mesenteroides)など)、(5)フラクタン及びレバンの生産(生産菌:バチルス サブチルス(Bacillus subtilis)、バチルス サブチルス ナットウ(Bacillus subtilis natto)などのバチルス(Bacillus)属、ラーネラ アクアティリス(Rahnella aquatilis)、ザイモモナス モビリス(Zymomonas mobilis)、シュードモナス オーランチアカ(Pseudomonas aurantiaca)、グルコノバクター オキシダンス(Gluconobacter oxydans)、エアロバクター レバニカム(Aerobacter levanicum)、コリネバクテリウム レバニフォルマンス(Corynebacterium laevaniformans)、エルウィニナ アミロボーラ(Erwinia amylovora)、ストレプトコッカス サリバリウス(Streptococcus salivarius)、アセトバクター(Acetobacter)属、アスペルギルス(Aspergillus)属など)に応用することができる。   In addition to the production of γ-PGA, the present invention can be used for the production of a polymer compound that increases the viscosity of a culture solution, for example, (1) production of biocellulose (producing bacteria: Acetobacter xylinum subspecies Schcrofermentans ( Acetobacter xylinum subsp. Sucrofermentans), Acetobacter xylinum ATCC 23768, ATCC 23769, ATCC 14851, ATCC 11142, ATCC 10821, Acetobacter pasteurianus ATCC 10245, etc. , Achromobacter genus, Alkaligenes genus, Aerobacter genus, Azotobacter genus, Zoogrea genus, etc.), (2) Production of xanthan gum (producing bacteria: Zanthomonas campe) (3) Pullulan production (producer: Aureobasidium pullulans, etc.), (4) Dextran production (producer: Leuconostoc mesenteroides, etc.) (5) Production of fructans and levans (Producing bacteria: Bacillus subtilis, Bacillus subtilis natto, and other genus Bacillus, Rahnella aquatilis, Zymomonas mobilis) , Pseudomonas aurantiaca, Gluconobacter oxydans, Aerobacter levanicum, Corynebacterium laevaniformans, L It can be applied to Winwina amylobora (Erwinia amylovora), Streptococcus salivarius, Acetobacter genus, Aspergillus genus and the like.

図1は本発明の培養装置の一例を示す概略図である。   FIG. 1 is a schematic view showing an example of the culture apparatus of the present invention.

培養液を収納する容器(ファーメンター)1の上部には、培養液を容器1内に供給する蓋2a付きの培養液供給口2、容器内に供給された空気を排出する排気口3、培養液を攪拌するためモータMで回転する攪拌羽根4、容器1の温度を一定に維持するため熱交換媒体が流れるジャケット5が設けられている。容器内には攪拌羽根4の下方に空気を供給する通気手段として循環流発生装置6が配設される。循環流発生装置6には、コンプレッサー8から高圧空気が配管7を通して供給される(図2参照)。   At the top of the container (fermenter) 1 for storing the culture solution, there is a culture solution supply port 2 with a lid 2a for supplying the culture solution into the container 1, an exhaust port 3 for discharging the air supplied into the container, and the culture A stirring blade 4 that is rotated by a motor M to stir the liquid, and a jacket 5 through which a heat exchange medium flows are provided to keep the temperature of the container 1 constant. A circulating flow generator 6 is disposed in the container as a ventilation means for supplying air below the stirring blade 4. The circulating flow generator 6 is supplied with high-pressure air from the compressor 8 through the pipe 7 (see FIG. 2).

図2は本発明で使用する通気手段の一例である循環流発生装置を示し、(a)はパイプの縦断面図、(b)は気体吹き込み孔部分の横断面図、(c)は培養液放出口部分の縦断面図、(d)は循環流発生装置の高圧空気供給の経路を示す図である。   FIG. 2 shows a circulating flow generator as an example of aeration means used in the present invention, (a) is a longitudinal sectional view of a pipe, (b) is a transverse sectional view of a gas blowing hole portion, and (c) is a culture solution. The longitudinal cross-sectional view of a discharge port part, (d) is a figure which shows the path | route of the high pressure air supply of a circulating flow generator.

図2(a)において、循環流発生装置6のパイプ11内には流路12が形成され、流路12の一端には培養液放出口13が錐台形状に末拡がりに形成され、他端には培養液吸い込み口14が形成されている。   In FIG. 2A, a flow path 12 is formed in the pipe 11 of the circulating flow generator 6, and a culture medium discharge port 13 is formed at one end of the flow path 12 so as to expand in the shape of a frustum. Is formed with a culture solution suction port 14.

また、パイプ11の下部には、複数の気体吹き込み孔15が形成される。気体吹き込み孔15は、パイプ11の垂直断面においては、流路12における培養液の進行方向(矢印a方向)に対して、鋭角に(角度θ1で)斜向するように設けられる。そして、さらに気体吹き込み孔15は、図2(b)に示すように、パイプ11の水平断面においては、流路12の壁面の接線方向に形成される。     A plurality of gas blowing holes 15 are formed in the lower part of the pipe 11. In the vertical cross section of the pipe 11, the gas blowing hole 15 is provided so as to be inclined at an acute angle (at an angle θ <b> 1) with respect to the traveling direction (arrow a direction) of the culture solution in the flow path 12. Further, as shown in FIG. 2B, the gas blowing hole 15 is formed in the tangential direction of the wall surface of the flow path 12 in the horizontal cross section of the pipe 11.

循環流発生装置6では、酸素を含む高圧気体が、矢印bに示すように、気体吹き込み孔15を通じて、流路12に吹き込まれると、気泡となって流路12の壁面に沿って、旋回しながら上昇する。培養液は、このような気泡の旋回流に巻き込まれ、エジェクタ効果によって、培養液吸込み口14から吸込まれて、旋回流と混合し流路12を流れ、気体吹き込み孔15から吹込まれた気体と混合されて、流路12を流れ、培養液放出口13から放出される。その結果、矢印cに示すような気液混合循環流が発生する。   In the circulating flow generating device 6, when a high-pressure gas containing oxygen is blown into the flow path 12 through the gas blowing holes 15 as indicated by an arrow b, bubbles are formed along the wall surface of the flow path 12. While rising. The culture solution is entrained in the swirling flow of such bubbles, and is sucked from the culture solution suction port 14 by the ejector effect, mixed with the swirling flow, flows through the flow path 12, and the gas blown from the gas blowing hole 15. After being mixed, it flows through the flow path 12 and is discharged from the culture solution discharge port 13. As a result, a gas-liquid mixed circulation flow as shown by an arrow c is generated.

培養液吸い込み口14から培養液放出口13に至るまでの流路12は、一定半径を持つ円筒状になっているが、流路12に連続する培養液放出口13は、末拡がりの形状をしている。そのため、流路12を高エネルギー状態で流れてきた培養液の圧力が急激に低下し、強力な剪断力が発生することで、培養液に含まれていた気泡は、剪断力により分断され、培養液と気泡の接触面積が拡大し、吹き込まれた気体(酸素)の溶解が加速されることとなる。   The flow path 12 from the culture solution suction port 14 to the culture solution discharge port 13 has a cylindrical shape with a constant radius, but the culture solution discharge port 13 continuous to the flow channel 12 has a divergent shape. is doing. For this reason, the pressure of the culture solution flowing in the flow path 12 in a high energy state is rapidly reduced and a strong shearing force is generated, so that bubbles contained in the culture solution are separated by the shearing force, and the culture is performed. The contact area between the liquid and the bubbles is expanded, and the dissolved gas (oxygen) is accelerated.

気体吹き込み孔15の角度θ1は、10度以上80度以下の範囲に設定する。この範囲で旋回流が最も激しくなり、10度より小さい角度、または、80度より大きい角度では、いずれも旋回流が不十分となる。なお、θ2=90−θ1である。また、気体吹き込み孔15は、パイプ11の水平断面においては、壁面の接線方向に形成される。このように、流路12の壁面の接線方向に形成した場合が、最も強力な旋回流を発生させることができる。なお、気体吹き込み孔15の数は、3〜8個程度とするが、必要に応じて適宜増減してよい。   The angle θ1 of the gas blowing hole 15 is set in the range of 10 degrees to 80 degrees. In this range, the swirl flow becomes the most intense, and the swirl flow is insufficient at angles less than 10 degrees or greater than 80 degrees. Note that θ2 = 90−θ1. Further, the gas blowing hole 15 is formed in the tangential direction of the wall surface in the horizontal cross section of the pipe 11. Thus, when it forms in the tangent direction of the wall surface of the flow path 12, the strongest swirl | vortex flow can be generated. In addition, although the number of the gas blowing holes 15 shall be about 3-8, you may increase / decrease suitably as needed.

以上のようにして形成された気体吹き込み孔15から吹き込まれた高圧気体は、気泡となって、流路12の壁面に沿って旋回しながら上昇し、培養液吸い込み口14から培養液を吸込む。吸込まれた培養液は、旋回しながら気泡と混合されて上昇し、末拡がりとなるように設けられた培養液放出口13に到達したところで、強力な剪断応力がおこり、気泡が、より微細な気泡に分断されることとなる。ここで、気体吹き込み孔15から流路12へ吹き込む高圧気体の圧力は、概ね0.1〜10kgf/平方メートルの範囲が適切である。なお、高圧気体は培養に必要な空気、酸素である。   The high-pressure gas blown from the gas blow hole 15 formed as described above becomes bubbles, rises while turning along the wall surface of the flow path 12, and sucks the culture solution from the culture solution suction port 14. The sucked culture medium is mixed with bubbles while swirling, rises, reaches a culture solution discharge port 13 provided so as to spread, and a strong shear stress occurs, so that the bubbles become finer. It will be divided into bubbles. Here, the pressure of the high-pressure gas blown from the gas blow hole 15 into the flow path 12 is appropriately in the range of about 0.1 to 10 kgf / square meter. The high-pressure gas is air and oxygen necessary for culture.

図2(c)において、流路12と培養液放出口13との接続点Aにおいて、培養液放出口13の曲面に接する接線dが形成する角度λを、培養液放出口13の開き角とする。培養液放出口13の開き角λは、50度以上70度以下が最も好ましい。そうでない場合でも、開き角λは、30度以上が好ましい。30度未満では、吹き込まれた高圧気体によって生じた気泡を微細化できなくなり、また、開き角λは、90度より大きくなると、気泡を微細化できなくなる。   In FIG. 2C, an angle λ formed by a tangent line d in contact with the curved surface of the culture medium discharge port 13 at a connection point A between the flow path 12 and the culture solution discharge port 13 is defined as an opening angle of the culture solution discharge port 13. To do. The opening angle λ of the culture solution outlet 13 is most preferably not less than 50 degrees and not more than 70 degrees. Even if this is not the case, the opening angle λ is preferably 30 degrees or more. If the angle is less than 30 degrees, the bubbles generated by the blown high-pressure gas cannot be refined, and if the opening angle λ is greater than 90 degrees, the bubbles cannot be refined.

パイプ1の下端はホルダ16と接続され、ホルダ16は、垂直断面においては、矩形状になっており、その内部には、空洞17が形成される。また、ホルダ16の下部内面には、パイプ11の外形に即した孔が形成される。さらに、その孔からホルダ16の外部まで貫通するように、培養液吸い込み口14が形成される。また、ホルダ16の側部には、コンプレッサ8から空洞17へ配管7を通して高圧空気を吹き込む。   The lower end of the pipe 1 is connected to a holder 16, and the holder 16 has a rectangular shape in a vertical cross section, and a cavity 17 is formed inside thereof. Further, a hole conforming to the outer shape of the pipe 11 is formed in the lower inner surface of the holder 16. Furthermore, the culture solution suction port 14 is formed so as to penetrate from the hole to the outside of the holder 16. Further, high-pressure air is blown into the side portion of the holder 16 through the pipe 7 from the compressor 8 to the cavity 17.

本実施例は納豆製造に供される納豆菌を図2に示す循環流発生装置を備えた500リットル培養容量の培養装置で培養したものである。比較例は図4に示す従来のリングスパージャーを備えた従来の500リットル培養容量の培養装置で培養した例を示す。なお、図4に示す培養装置は、図1に示す。容器1に循環流発生装置6でなく空気供給のために多数の空気噴出孔を有するリング状のリングスパージャー18を配置したもので、図1と同一部材に同一符号を付してその説明は省略する。   In this example, Bacillus natto used for natto production was cultured in a 500 liter culture volume culture apparatus equipped with the circulating flow generator shown in FIG. The comparative example shows an example of culturing in a conventional 500 liter culture volume culture apparatus equipped with the conventional ring sparger shown in FIG. The culture apparatus shown in FIG. 4 is shown in FIG. A ring-shaped ring sparger 18 having a large number of air ejection holes for air supply is arranged in the container 1 instead of the circulating flow generator 6, and the same members as those in FIG. Omitted.

培養に用いた培養液の培地組成は重量/容量として、グルタミン酸ナトリウム5.0%、塩化ナトリウム0.05%、リン酸水素2ナトリウム12水0.42%、リン酸2水素カリウム0.27%、グルコース2.0%、硫酸マグネシウム7水0.05%、ビオチン1.0ppmからなる。循環流発生装置を備えたファーメンターに培養液400Lを投入し121℃で30分間殺菌した。これに、市販の食用納豆菌を10cfu/ミリリットルに成るように接種し、通気量0.6vvm、攪拌速度80rpm、培養温度40℃で80時間培養した。 The culture medium composition used for the culture was weight / volume: sodium glutamate 5.0%, sodium chloride 0.05%, disodium hydrogen phosphate 12 water 0.42%, potassium dihydrogen phosphate 0.27% Glucose 2.0%, magnesium sulfate 7 water 0.05%, biotin 1.0ppm. 400 L of the culture solution was put into a fermenter equipped with a circulating flow generator and sterilized at 121 ° C. for 30 minutes. This was inoculated with 10 4 cfu / ml of commercially available edible natto bacteria, and cultured for 80 hours at an aeration rate of 0.6 vvm, a stirring speed of 80 rpm, and a culture temperature of 40 ° C.

なお、培養液の見掛け粘度は、B型粘度計にてNo.2ローター又はNo.3ローターを使用し、測定回転数30rpm、測定温度20℃で測定した。また、見掛け粘度が1000ミリパスカル秒(mPa・s)未満ではNo.2ローターでの測定値をそのまま採用し、1000ミリパスカル秒(mPa・s)以上ではNo.3ローターの測定値を予め求めたNo.2ローター測定値とNo.3ローターの測定値の回帰式によりNo.2ローターでの値に換算して示した。   The apparent viscosity of the culture broth was measured using a B-type viscometer. 2 rotor or no. Three rotors were used, and measurement was performed at a measurement rotation speed of 30 rpm and a measurement temperature of 20 ° C. In addition, when the apparent viscosity is less than 1000 millipascal seconds (mPa · s), no. The measured value with 2 rotors is adopted as it is, and when it is 1000 millipascal second (mPa · s) or more, No. No. 3 rotor was measured in advance. 2 rotor measured value and No. No. 3 from the regression equation of the measured values of the three rotors. It was converted into a value with 2 rotors.

その結果、従来のリングスパージャーを備えたファーメンターでは、図3の△で示すように、培養45時間目に培養液の見掛け粘度は1000ミリパスカル秒(mPa・s)に達したが、それ以降粘度の上昇が停止しγ−PGAの生産が停止した。これに対して、循環流発生装置を備えた本発明によるファーメンターでは、図3の○で示すように、その後も見掛け粘度が上昇し培養76時間目で3500ミリパスカル秒(mPa・s)に達した。   As a result, in the fermenter equipped with the conventional ring sparger, as shown by Δ in FIG. 3, the apparent viscosity of the culture solution reached 1000 millipascal second (mPa · s) at 45 hours of culture. Thereafter, the increase in viscosity was stopped and production of γ-PGA was stopped. In contrast, in the fermenter according to the present invention equipped with a circulating flow generator, as shown by the circles in FIG. 3, the apparent viscosity subsequently increased and reached 3500 millipascal seconds (mPa · s) at 76 hours of culture. Reached.

本実施例で製造した培養液から公知の方法であるアルコール沈澱によりγ−PGAを回収した例を示す。アルコール沈澱したγ−PGAを真空乾燥して9.1kgの白色ペレットを得た。この白色ペレットの純度は90%以上であった。また、分離カラムとしてTSK−GEL GMPW(7.8×300mm)を装着した高速液体クロマトグラフにて、移動相に50mMリン酸ナトリウム緩衝液を用い紫外部214nmで分子量を測定した結果、分子量は300万であった。   An example is shown in which γ-PGA is recovered from the culture solution produced in this example by alcohol precipitation, which is a known method. The alcohol-precipitated γ-PGA was vacuum-dried to obtain 9.1 kg of white pellets. The purity of this white pellet was 90% or more. In addition, as a result of measuring the molecular weight at a UV region of 214 nm using a 50 mM sodium phosphate buffer as a mobile phase in a high performance liquid chromatograph equipped with TSK-GEL GMPW (7.8 × 300 mm) as a separation column, the molecular weight was 300 It was ten thousand.

表1に、本発明で食用納豆菌を培養した場合と、従来のリングスパージャーにて培養した場合の培養液粘度とγ−PGA生産量および得られたγ−PGAの平均分子量の比較を示す。

Figure 2006034235
Table 1 shows a comparison of the viscosity of the culture solution and the amount of γ-PGA produced and the average molecular weight of the obtained γ-PGA when edible natto bacteria are cultured in the present invention and when cultured with a conventional ring sparger. .
Figure 2006034235

表1から、本発明によるγ−PGAの生産量が、従来のリングスパージャーにて培養した場合に比べて優れていることが分かる。   From Table 1, it can be seen that the production amount of γ-PGA according to the present invention is superior to the case of culturing with a conventional ring sparger.

本発明は、γ−PGAの化粧品、食品、医療関係品等への用途を拡大させるものであり、また、微生物生産する高分子物質の培養生産にも応用可能である。   The present invention expands the use of γ-PGA for cosmetics, foods, medical-related products, and the like, and can also be applied to culture production of high-molecular substances produced by microorganisms.

また、本発明は、微生物より生産される高分子物質の製造において、その培養液の粘度の上昇に伴う酸素の供給能力の低減により、高分子物質の生産が抑制される場合において効果が期待できる。   In addition, the present invention can be expected to be effective in the production of a polymer substance produced from microorganisms when the production of the polymer substance is suppressed by reducing the oxygen supply capacity accompanying an increase in the viscosity of the culture solution. .

本発明の培養装置の一例を示す概略図である。It is the schematic which shows an example of the culture apparatus of this invention. 本発明で使用する通気手段である循環流発生装置を示す図である。It is a figure which shows the circulating flow generator which is a ventilation means used by this invention. 本発明と従来例の培養液粘度の経時変化を示す図である。It is a figure which shows the time-dependent change of the culture solution viscosity of this invention and a prior art example. 従来の培養装置を示す概略図である。It is the schematic which shows the conventional culture apparatus.

符号の説明Explanation of symbols

1:容器
2:培養液供給口
3:排気口
4:攪拌羽根
5:ジャケット
6:循環流発生装置
7:配管
8:コンプレッサー
11:パイプ
12:流路
13:培養液放出口
14:培養液吸い込み口
15:気体吹き込み孔
16:ホルダ
17:空洞
18:リングスパージャー
1: container 2: culture solution supply port 3: exhaust port 4: stirring blade 5: jacket 6: circulating flow generator 7: piping 8: compressor 11: pipe 12: channel 13: culture solution discharge port 14: culture solution suction Mouth 15: Gas blowing hole 16: Holder 17: Cavity 18: Ring sparger

Claims (5)

高分子化合物を生産する微生物を含む培養液に酸素を供給して培養する培養装置において、前記培養装置内に培養液の粘度の上昇によって生じる酸素供給能力の低下を軽減させる通気手段を備えていることを特徴とする高分子化合物を生産する微生物の培養装置。   A culture apparatus for culturing by supplying oxygen to a culture solution containing a microorganism that produces a polymer compound, and comprising a ventilation means for reducing a decrease in oxygen supply capacity caused by an increase in the viscosity of the culture solution. A microorganism culturing apparatus for producing a polymer compound. ポリ−γ−グルタミン酸を生産する微生物を含む培養液に酸素を供給して培養する培養装置において、前記培養装置内に培養液の粘度の上昇によって生じる酸素供給能力の低下を軽減させる通気手段を備え、分子量300万以上の高分子量ポリ−γ−グルタミン酸を生産することを特徴とする高分子量ポリ−γ−グルタミン酸を生産する微生物の培養装置。   A culture apparatus for culturing by supplying oxygen to a culture solution containing microorganisms that produce poly-γ-glutamic acid, and comprising aeration means for reducing a decrease in oxygen supply capacity caused by an increase in the viscosity of the culture solution in the culture device A culture apparatus for microorganisms producing high molecular weight poly-γ-glutamic acid, characterized by producing high molecular weight poly-γ-glutamic acid having a molecular weight of 3 million or more. 通気手段が、培養液中に酸素を含む気体の微細気泡を形成させる装置であることを特徴とする請求項2記載の高分子量ポリ−γ−グルタミン酸を生産する微生物の培養装置。   3. The culture apparatus for microorganisms producing high molecular weight poly- [gamma] -glutamic acid according to claim 2, wherein the aeration means is an apparatus for forming fine gas bubbles containing oxygen in the culture solution. 高分子量ポリ−γ−グルタミン酸を生産する微生物の培養液に酸素を供給して分子量300万以上の高分子量γ−PGAを生産する微生物の培養方法において、培養液の粘度の上昇によって生じる酸素供給能力の低下を軽減させる通気を行うことを特徴とする高分子量ポリ−γ−グルタミン酸を生産する微生物の培養方法。   Oxygen supply ability produced by an increase in the viscosity of a culture solution in a microorganism culture method for producing high molecular weight γ-PGA having a molecular weight of 3 million or more by supplying oxygen to a culture solution of a microorganism producing high molecular weight poly-γ-glutamic acid A method for culturing a microorganism that produces high-molecular-weight poly-γ-glutamic acid, wherein aeration is performed to reduce the decrease in the amount. 培養液中に酸素を含む気体の微細気泡を形成させることを特徴とする請求項4記載の高分子量γ−PGAポリ−γ−グルタミン酸を生産する微生物の培養方法。
The method for culturing microorganisms producing high molecular weight γ-PGA poly-γ-glutamic acid according to claim 4, wherein fine bubbles of gas containing oxygen are formed in the culture solution.
JP2004222133A 2004-07-29 2004-07-29 Culture apparatus of polymer compound-producing microorganism and culture method Pending JP2006034235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004222133A JP2006034235A (en) 2004-07-29 2004-07-29 Culture apparatus of polymer compound-producing microorganism and culture method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004222133A JP2006034235A (en) 2004-07-29 2004-07-29 Culture apparatus of polymer compound-producing microorganism and culture method

Publications (1)

Publication Number Publication Date
JP2006034235A true JP2006034235A (en) 2006-02-09

Family

ID=35899887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004222133A Pending JP2006034235A (en) 2004-07-29 2004-07-29 Culture apparatus of polymer compound-producing microorganism and culture method

Country Status (1)

Country Link
JP (1) JP2006034235A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101161427B1 (en) * 2011-06-17 2012-07-02 농업회사법인 주식회사 그린에너지코리아 Algae cultivating apparatus
JP2020512844A (en) * 2017-04-13 2020-04-30 ツィテナ ゲーエムベーハーCytena Gmbh Liquid sample processing method
WO2021149369A1 (en) * 2020-01-20 2021-07-29 株式会社ワカイダ・エンジニアリング Water quality improving apparatus and water quality improving method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6486867A (en) * 1987-09-28 1989-03-31 Hitachi Ltd Apparatus for aerobic cultivation of microorganism and method for control thereof
JPH02119771A (en) * 1988-10-29 1990-05-07 Nitto Denko Corp Cell culturing method and agitating fan for cell culture used in the same method
JPH0356399U (en) * 1989-10-09 1991-05-30
JPH04234981A (en) * 1991-01-08 1992-08-24 Mitsui Toatsu Chem Inc Method for high-density culture of bacillus subtilis and apparatus for culture
JPH04129798U (en) * 1991-05-16 1992-11-27 住友重機械工業株式会社 Aeration stirring device
JPH06292558A (en) * 1993-04-09 1994-10-21 Sumitomo Heavy Ind Ltd Agitation type fermentation tank
JPH09252794A (en) * 1996-03-21 1997-09-30 Ajinomoto Co Inc Isolation of poly-gamma-glutamic acid
JPH1042890A (en) * 1996-07-29 1998-02-17 Bio Polymer Res:Kk Production of bacteria cellulose by aerobic culture under agitation under high oxygen-transfer coefficient
JP2002045667A (en) * 2000-08-04 2002-02-12 Fukuoka Prefecture Device for generating circulating flow
JP2002125655A (en) * 2000-10-30 2002-05-08 Canon Inc Apparatus for producing polyhydroxyalkanoate

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6486867A (en) * 1987-09-28 1989-03-31 Hitachi Ltd Apparatus for aerobic cultivation of microorganism and method for control thereof
JPH02119771A (en) * 1988-10-29 1990-05-07 Nitto Denko Corp Cell culturing method and agitating fan for cell culture used in the same method
JPH0356399U (en) * 1989-10-09 1991-05-30
JPH04234981A (en) * 1991-01-08 1992-08-24 Mitsui Toatsu Chem Inc Method for high-density culture of bacillus subtilis and apparatus for culture
JPH04129798U (en) * 1991-05-16 1992-11-27 住友重機械工業株式会社 Aeration stirring device
JPH06292558A (en) * 1993-04-09 1994-10-21 Sumitomo Heavy Ind Ltd Agitation type fermentation tank
JPH09252794A (en) * 1996-03-21 1997-09-30 Ajinomoto Co Inc Isolation of poly-gamma-glutamic acid
JPH1042890A (en) * 1996-07-29 1998-02-17 Bio Polymer Res:Kk Production of bacteria cellulose by aerobic culture under agitation under high oxygen-transfer coefficient
JP2002045667A (en) * 2000-08-04 2002-02-12 Fukuoka Prefecture Device for generating circulating flow
JP2002125655A (en) * 2000-10-30 2002-05-08 Canon Inc Apparatus for producing polyhydroxyalkanoate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101161427B1 (en) * 2011-06-17 2012-07-02 농업회사법인 주식회사 그린에너지코리아 Algae cultivating apparatus
JP2020512844A (en) * 2017-04-13 2020-04-30 ツィテナ ゲーエムベーハーCytena Gmbh Liquid sample processing method
US11845044B2 (en) 2017-04-13 2023-12-19 cytena Bioprocess Solutions co., Ltd. Method for processing a liquid sample
WO2021149369A1 (en) * 2020-01-20 2021-07-29 株式会社ワカイダ・エンジニアリング Water quality improving apparatus and water quality improving method
JP2021112719A (en) * 2020-01-20 2021-08-05 株式会社ワカイダ・エンジニアリング Water quality improving apparatus and water quality improving method
JP7441453B2 (en) 2020-01-20 2024-03-01 株式会社ワカイダ・エンジニアリング Water quality improvement equipment and water quality improvement method

Similar Documents

Publication Publication Date Title
Margaritis et al. Mixing, mass transfer, and scale‐up of polysaccharide fermentations
EP1451290B1 (en) A unit and a process for carrying out high cell density fermentation
US7201884B2 (en) Process and apparatus for performing a gas-sparged reaction
Gill et al. Quantification of power consumption and oxygen transfer characteristics of a stirred miniature bioreactor for predictive fermentation scale‐up
US3962042A (en) Fermentation apparatus
Herbst et al. Xanthan production in stirred tank fermenters: Oxygen transfer and scale‐up
WO2006101074A1 (en) Ventilating/stirring culture tank
AU2002333739A1 (en) A unit and a process for carrying out high cell density fermentation
WO2004065608A1 (en) Method of collecting highly pure polyhydroxyalkanoate from microbial cells
DK141534B (en) Method and apparatus for aerobically culturing microorganisms in a liquid nutrient medium.
Hasegawa et al. Productivity of concentrated hyaluronic acid using a Maxblend® fermentor
JPWO2005085461A1 (en) Nucleic acid degradation method and use thereof
JP2006034235A (en) Culture apparatus of polymer compound-producing microorganism and culture method
WO2018139343A1 (en) Biological reaction device in which micro-nano bubbles are used, and biological reaction method in which said biological reaction device is used
Li et al. Effect of fluid rheological properties on mass transfer in a bioreactor
Hensirisak et al. Scale-up of microbubble dispersion generator for aerobic fermentation
JPH02110101A (en) Novel beta-1, 3-glucan exopolysaccharide and production thereof
WO2017017998A1 (en) Bioreactor using oxygen-enriched micro/nano-bubbles, and bioreaction method using bioreactor using oxygen-enriched micro/nano-bubbles
CN111099753A (en) Aeration device for efficiently producing oxygen-enriched water
Wang et al. Productivity enhancement in L-lysine fermentation using oxygen-enhanced bioreactor and oxygen vector
Lawford et al. Influence of bioreactor design on the rate and amount of curdlan-type exopolysaccharide production by Alcaligenes faecalis
JP2012191901A (en) Stirring type culture tank
JP2020130079A (en) Liquid-feeding pump used in biological reaction apparatus, biological reaction apparatus equipped with the liquid-feeding pump, and biological reaction method using the biological reaction apparatus
Martinov et al. Surfactant effects on aeration performance of stirred tank reactors
JPH09308495A (en) Continuous production of bacterial cellulose

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070727

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100402

A131 Notification of reasons for refusal

Effective date: 20100709

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20100906

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20101001

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20110210

Free format text: JAPANESE INTERMEDIATE CODE: A02