JP7441453B2 - Water quality improvement equipment and water quality improvement method - Google Patents

Water quality improvement equipment and water quality improvement method Download PDF

Info

Publication number
JP7441453B2
JP7441453B2 JP2020007071A JP2020007071A JP7441453B2 JP 7441453 B2 JP7441453 B2 JP 7441453B2 JP 2020007071 A JP2020007071 A JP 2020007071A JP 2020007071 A JP2020007071 A JP 2020007071A JP 7441453 B2 JP7441453 B2 JP 7441453B2
Authority
JP
Japan
Prior art keywords
flow path
waste liquid
air
gas flow
discharge port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020007071A
Other languages
Japanese (ja)
Other versions
JP2021112719A (en
Inventor
元陽 若井田
靖夫 若井田
太 栗栖
遼 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WAKAIDA ENGINEERING INC.
University of Tokyo NUC
Original Assignee
WAKAIDA ENGINEERING INC.
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WAKAIDA ENGINEERING INC., University of Tokyo NUC filed Critical WAKAIDA ENGINEERING INC.
Priority to JP2020007071A priority Critical patent/JP7441453B2/en
Priority to PCT/JP2020/045183 priority patent/WO2021149369A1/en
Publication of JP2021112719A publication Critical patent/JP2021112719A/en
Application granted granted Critical
Publication of JP7441453B2 publication Critical patent/JP7441453B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/20Activated sludge processes using diffusers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

本発明は、水質改善装置及び水質改善方法に関する。 The present invention relates to a water quality improvement device and a water quality improvement method.

従来、ビルピット、合併浄化槽の水質改善、ダムなどのアオコ対策、工場の冷却水腐敗防止、下水処理場での浮遊物低減、生体触媒を用いて生化学反応を行うバイオリアクターの撹拌など種々の分野で、水処理施設での効率よい処理が要請されており、様々な技術が提案されている。基本的には、水を空気にさらし、水である液体(廃液)に空気を供給することで、廃液中の溶存酸素率の向上を図り、液中のスカム(浮遊物・沈殿物)の発生や悪臭の発生を防止し回避しようとするものである。 Traditionally, it has been used in various fields such as improving water quality in building pits and combined septic tanks, controlling blue-green algae in dams, preventing rot in cooling water in factories, reducing suspended matter in sewage treatment plants, and stirring bioreactors that perform biochemical reactions using biocatalysts. Therefore, efficient treatment at water treatment facilities is required, and various technologies have been proposed. Basically, by exposing water to air and supplying air to the water liquid (waste liquid), the dissolved oxygen rate in the waste liquid is improved, and scum (suspended matter/precipitates) in the liquid is generated. This aims to prevent and avoid the occurrence of odor and odor.

一般的な曝気装置は、水中で空気を真上に吐出する構造を有する。廃液処理を行う際はマイクロバブル等で溶存酸素率を高め、強撹拌力によってスカム等を破砕し、この循環流により均質化を図ることで、廃液への酸素供給を効率化し、悪臭の原因となる還元状態化を避けている。 A typical aeration device has a structure that discharges air directly above the water. When treating waste liquid, increase the dissolved oxygen rate using microbubbles, etc., crush scum etc. with strong stirring force, and aim for homogenization with this circulating flow, making the oxygen supply to the waste liquid more efficient and eliminating the cause of bad odors. This avoids becoming a reduced state.

微生物の浮遊物や沈殿物を原因とするスカムや悪臭の原因物質を分解し、水質を改善するために有効な手段として、例えば、特許文献1乃至特許文献3に開示された技術が着目されている。特許文献1乃至特許文献3には、ポンプやプロペラ羽根のような撹拌装置を必要とせずに、貯留槽内に立設された噴出手段のパイプ内の流路内に、廃液を投入しつつ上昇させ、この廃液に対して物理的な刺激(振動)を与えると共に、空気の微細化と分断化などを図り、槽内廃液への強制循環及び撹拌を図るという技術が開示されている。 For example, the techniques disclosed in Patent Documents 1 to 3 have attracted attention as effective means for improving water quality by decomposing scum and odor-causing substances caused by suspended matter and sediments of microorganisms. There is. Patent Documents 1 to 3 disclose a method in which waste liquid is introduced into a flow path in a pipe of an ejection means installed vertically in a storage tank and is raised without the need for a stirring device such as a pump or a propeller blade. A technique has been disclosed in which a physical stimulus (vibration) is applied to this waste liquid, and the air is made finer and segmented to force circulation and agitation to the waste liquid in the tank.

図9Aは特許文献1に記載の循環流発生装置の説明図である。貯留槽4内に噴出用パイプ2を有する噴出手段1が立設されている。噴出用パイプ2には廃液流路2a及び気体流路2bが設けられている。さらに、気体流路2bに連通する空気室3aを有する空気供給機構3が設けられている。以上のようにして循環流発生装置5が構成されている。貯留槽4内の廃液処理に際し、噴出手段1により貯留槽4内の廃液を底面部位側から取り込んで上面部位側から放出し、廃液を循環させる。ここで、空気室3aから導入された空気を廃液に混合し分散させて、気液混合した廃液を循環させる。 FIG. 9A is an explanatory diagram of the circulating flow generator described in Patent Document 1. A spouting means 1 having a spouting pipe 2 is provided upright within the storage tank 4 . The jetting pipe 2 is provided with a waste liquid flow path 2a and a gas flow path 2b. Furthermore, an air supply mechanism 3 having an air chamber 3a communicating with the gas flow path 2b is provided. The circulating flow generator 5 is configured as described above. When treating the waste liquid in the storage tank 4, the ejection means 1 takes in the waste liquid in the storage tank 4 from the bottom side and discharges it from the top side, thereby circulating the waste liquid. Here, the air introduced from the air chamber 3a is mixed with the waste liquid and dispersed, and the gas-liquid mixed waste liquid is circulated.

図9Bは特許文献2に記載の気液混合循環流発生装置の基本構成を示す説明図である。噴出用パイプ2を有する噴出手段1が設けられている。噴出用パイプ2には廃液流路2aが設けられている。さらに、空気室3a及び気体流路3bを有する空気供給機構3が設けられている。廃液処理に際し、噴出手段1により貯留槽内の廃液を底面部位側から取り込んで上面部位側から放出し、廃液を循環させる。ここで、空気室3aから導入された空気を廃液に混合し分散させて、気液混合した廃液の旋回流を発生させて循環させる。 FIG. 9B is an explanatory diagram showing the basic configuration of the gas-liquid mixed circulating flow generator described in Patent Document 2. A jetting means 1 having a jetting pipe 2 is provided. The jetting pipe 2 is provided with a waste liquid flow path 2a. Furthermore, an air supply mechanism 3 having an air chamber 3a and a gas flow path 3b is provided. During waste liquid treatment, the ejection means 1 takes in the waste liquid in the storage tank from the bottom side and discharges it from the top side, thereby circulating the waste liquid. Here, the air introduced from the air chamber 3a is mixed with the waste liquid and dispersed to generate a swirling flow of the gas-liquid mixed waste liquid and circulate it.

特許文献3には、水中微生物の活性化による水質改善方法及び装置が開示されている。空気を導入して高速噴射上昇流を発生させて、高速循環上昇流を発生させることにより、水中微生物を活性化し、水質の改善を行う。 Patent Document 3 discloses a method and device for improving water quality by activating microorganisms in water. By introducing air and generating a high-speed jet upward flow to generate a high-speed circulating upward flow, microorganisms in the water are activated and water quality is improved.

特開2002-045667号公報Japanese Patent Application Publication No. 2002-045667 特開2011-152534号公報Japanese Patent Application Publication No. 2011-152534 特開2018-187558号公報Japanese Patent Application Publication No. 2018-187558

しかしながら、貯留槽内の廃液処理の際に、廃液を循環させる旋回上昇流を強化すると共に、廃液と空気との気液混合効率を高めることが求められている。 However, when treating waste liquid in a storage tank, it is required to strengthen the swirling upward flow that circulates the waste liquid and to increase the gas-liquid mixing efficiency between the waste liquid and air.

本発明の目的は、貯留槽内の廃液処理の際に、廃液を循環させる旋回上昇流を強化すると共に、廃液と空気との気液混合効率を高めて、廃液の水質を改善できる水質改善装置及び水質改善方法を提供することである。 An object of the present invention is to provide a water quality improvement device that can improve the water quality of waste liquid by strengthening the swirling upward flow that circulates waste liquid and increasing the gas-liquid mixing efficiency between waste liquid and air when treating waste liquid in a storage tank. and to provide a method for improving water quality.

本願特許出願人は、鋭意研究の結果、貯留槽内の廃液処理に際して、物理的な刺激を強力に与えることができるように、噴出手段の廃液流路を上昇させる廃液に対して、噴出手段に取り込まれた空気をその気体流路から放出口を介して廃液流路中に放出し、上昇する廃液と放出される空気との衝突及び合成を図り、気液混合の旋回上昇流とする強力なバブリング部を備え、これを上記貯留槽内に広範囲に強制循環させ、槽内廃液中の溶存酸素の増加を図ると共に、好気性微生物だけでなく好気性・嫌気性微生物の両方をバランスよく共存生育することができる水質改善技術を見出した。 As a result of intensive research, the applicant of this patent has developed a method for applying strong physical stimulation to the ejecting means to raise the waste liquid flow path of the ejecting means when treating waste liquid in the storage tank. The captured air is discharged from the gas flow path through the discharge port into the waste liquid flow path, and the rising waste liquid and the released air collide and synthesize, creating a strong swirling upward flow of gas-liquid mixture. Equipped with a bubbling section, this is forced to circulate widely within the storage tank to increase dissolved oxygen in the waste liquid in the tank, and to coexist and grow not only aerobic microorganisms but also aerobic and anaerobic microorganisms in a well-balanced manner. We have discovered a technology that can improve water quality.

本発明の水質改善装置は、貯留槽に貯留された微生物を含有する廃液を前記貯留槽内で循環させて前記微生物を活性化することにより前記廃液の水質を改善する水質改善装置であって、前記廃液を底面部側から取り込むと共に上面部側から放出する廃液流路を有し、前記廃液流路に連通して前記廃液流路に空気を放出する気体流路が穿設されてなる円筒状の噴出パイプと、前記貯留槽の外部から導入される空気を貯留すると共に前記気体流路に連通して貯留した空気を前記気体流路に供給する供給口が設けられた空気室を有する空気供給部と、前記貯留槽の外部に設けられて前記空気室に空気を導入する空気導入部とを有し、前記気体流路は、前記廃液流路に連通して設けられた第1放出口を有する第1気体流路と、前記噴出パイプの底面部からの距離が前記第1放出口と異なり、前記廃液流路に連通して設けられた第2放出口を有する第2気体流路とを含む。 The water quality improvement device of the present invention is a water quality improvement device that improves the water quality of the waste liquid by circulating the waste liquid containing microorganisms stored in the storage tank in the storage tank and activating the microorganisms, A cylindrical shape having a waste liquid flow path that takes in the waste liquid from the bottom side and discharges it from the top side, and a gas flow path that communicates with the waste liquid flow path and releases air into the waste liquid flow path. an air supply having an air chamber provided with a blowout pipe and a supply port that stores air introduced from outside the storage tank and communicates with the gas flow path to supply the stored air to the gas flow path; and an air introduction part provided outside the storage tank to introduce air into the air chamber, and the gas flow path includes a first discharge port provided in communication with the waste liquid flow path. and a second gas flow path having a second discharge port that is different from the first discharge port in a distance from the bottom surface of the jet pipe and that is provided in communication with the waste liquid flow channel. include.

本発明の水質改善方法は、貯留槽に貯留された微生物を含有する廃液を前記貯留槽内で循環させて前記微生物を活性化することにより前記廃液の水質を改善する水質改善方法であって、廃液流路を有する円筒状の噴出パイプであって、前記廃液流路に連通して設けられた第1放出口を有する第1気体流路と、前記噴出パイプの底面部からの距離が前記第1放出口と異なると共に前記廃液流路に連通して設けられた第2放出口を有する第2気体流路とを含む気体流路が穿設されてなる前記噴出パイプにおいて、前記廃液を前記噴出パイプの底面部側から取り込むと共に前記噴出パイプの上面部側から放出する工程と、前記貯留槽の外部から導入される空気を貯留すると共に前記気体流路に連通して貯留した空気が送流される導入口が設けられた空気室に、前記貯留槽の外部から空気を導入することで、前記第1放出口及び前記第2放出口から空気を放出する工程とを同時に行うことにより、前記廃液を前記貯留槽内で循環させる。 The water quality improvement method of the present invention is a water quality improvement method that improves the water quality of the waste liquid by circulating the waste liquid containing microorganisms stored in the storage tank in the storage tank and activating the microorganisms, A cylindrical ejection pipe having a waste liquid flow path, a first gas flow path having a first discharge port provided in communication with the waste liquid flow path, and a distance from the bottom of the ejection pipe to the first gas flow path. In the spouting pipe, the spouting pipe is provided with a gas flow path including a second gas flow path having a second gas flow path that is different from the first discharge port and is provided in communication with the waste liquid flow path. A step of taking in air from the bottom side of the pipe and discharging it from the top side of the jet pipe, and storing air introduced from the outside of the storage tank and communicating with the gas flow path to send the stored air. By introducing air from outside the storage tank into an air chamber provided with an inlet, and simultaneously performing the steps of releasing air from the first discharge port and the second discharge port, the waste liquid is removed. Circulate within the storage tank.

本発明によれば、貯留槽内の廃液処理に際して、異なる高さの放出口から放出された空気によるバブリングの相乗効果により廃液を循環させる旋回上昇流を強化でき、これにより、廃液に繰り返し与える物理的な刺激を強化することができる。さらに、上記のバブリングの相乗効果により、廃液と空気との気液混合効率を高めることができ、これにより、槽内廃液中の溶存酸素の増加が図られ、好気性微生物だけでなく好気性・嫌気性微生物の両方をバランスよく共存生育することができ、悪臭の発生を防止することができる。 According to the present invention, when treating waste liquid in a storage tank, the swirling upward flow that circulates the waste liquid can be strengthened by the synergistic effect of bubbling caused by the air released from the discharge ports at different heights. It can strengthen the stimulation. Furthermore, the synergistic effect of the bubbling mentioned above can increase the gas-liquid mixing efficiency between the waste liquid and air, which increases the amount of dissolved oxygen in the waste liquid in the tank. Both anaerobic microorganisms can coexist in a well-balanced manner, and the generation of bad odors can be prevented.

図1は本発明の実施形態に係る水質改善装置が適用された貯留槽の説明図である。FIG. 1 is an explanatory diagram of a storage tank to which a water quality improvement device according to an embodiment of the present invention is applied. 図2は図1の水質改善装置の噴出部の縦断面の模式図である。FIG. 2 is a schematic vertical cross-sectional view of the spout section of the water quality improvement device shown in FIG. 図3は図1の水質改善装置の噴出パイプと空気供給部との配置を示す説明図である。FIG. 3 is an explanatory diagram showing the arrangement of the jet pipe and the air supply section of the water quality improvement device of FIG. 1. 図4は一実施例の水質改善装置の噴出パイプの放出口を示す説明図である。FIG. 4 is an explanatory diagram showing the outlet of the jet pipe of the water quality improvement device of one embodiment. 図5は一実施例の水質改善装置の噴出パイプの各放出口を模式的に示す説明図である。FIG. 5 is an explanatory diagram schematically showing each discharge port of the jet pipe of the water quality improvement device of one embodiment. 図6Aは放出口の一例の形状を示す平面図である。FIG. 6A is a plan view showing the shape of an example of the outlet. 図6Bは図6Aに示す放出口から空気が放出される様子を模式的に示す説明図である。FIG. 6B is an explanatory diagram schematically showing how air is discharged from the discharge port shown in FIG. 6A. 図7は貯留槽における廃液の循環の繰り返しを示す説明図である。FIG. 7 is an explanatory diagram showing repeated circulation of waste liquid in the storage tank. 図8は好・嫌気性微生物の活性化状況を示す説明図である。FIG. 8 is an explanatory diagram showing the activation status of anaerobic and anaerobic microorganisms. 図9Aは従来の循環流発生装置の説明図である。FIG. 9A is an explanatory diagram of a conventional circulating flow generator. 図9Bは従来の気液混合循環流発生装置の説明図である。FIG. 9B is an explanatory diagram of a conventional gas-liquid mixed circulating flow generator.

本発明の実施の形態について、図面を参照して詳細に説明する。 Embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本実施形態に係る水質改善装置が適用された貯留槽の説明図である。貯留槽10は、水処理施設に設けられ、処理しようとする廃液WLを貯留する。貯留槽10は、閉塞された側面部10a、底面部10b及び上面部10cに囲まれている。上面部10cはマンホール等の開口部が設けられている。貯留槽10には、また、水液を流し込む流入管16と、貯留槽10内で処理された廃液WLを排水する排水管17が設けられている。 FIG. 1 is an explanatory diagram of a storage tank to which a water quality improvement device according to the present embodiment is applied. The storage tank 10 is provided in a water treatment facility and stores waste liquid WL to be treated. The storage tank 10 is surrounded by a closed side surface 10a, a bottom surface 10b, and a top surface 10c. The upper surface portion 10c is provided with an opening such as a manhole. The storage tank 10 is also provided with an inflow pipe 16 through which the aqueous liquid flows, and a drain pipe 17 through which the waste liquid WL treated in the storage tank 10 is drained.

貯留槽10に適用された水質改善装置は、貯留槽10に貯留された微生物を含有する廃液WLを貯留槽10内で循環させて微生物を活性化することにより廃液WLの水質を改善する水質改善装置である。微生物は、菌類を含んでいてもよい。 The water quality improvement device applied to the storage tank 10 improves the water quality of the waste liquid WL by circulating the waste liquid WL containing microorganisms stored in the storage tank 10 in the storage tank 10 and activating the microorganisms. It is a device. Microorganisms may include fungi.

図2は、本実施形態に係る水質改善装置の噴出部11の縦断面の模式図である。水質改善装置は、噴出パイプ12、空気供給部14、及び空気導入部15を備える。 FIG. 2 is a schematic vertical cross-sectional view of the spout section 11 of the water quality improvement device according to this embodiment. The water quality improvement device includes a blowout pipe 12, an air supply section 14, and an air introduction section 15.

噴出パイプ12は、略円筒状の形状の噴出パイプ本体12aを有する。噴出パイプ本体12aには、廃液WLを底面部側から取り込むと共に上面部側から放出する廃液流路13がZ方向に伸びるように設けられている。廃液流路13は、略円筒状の流路内壁面13aと、上方で流路径が大きくなるテーパー部13bとを有する。さらに、廃液流路13に連通して廃液流路13に空気を放出する第1気体流路12bx及び第2気体流路12byを含む気体流路12bが穿設されてなる。第1気体流路12bx及び第2気体流路12byをまとめて気体流路12bとも称する。気体流路12bは、廃液流路13に連通して設けられた第1放出口121bxを有する第1気体流路12bxと、廃液流路13に連通して設けられた第2放出口121byを有する第2気体流路12byとを含む。第1放出口121bx及び第2放出口121byをまとめて放出口121bとも称する。第2放出口121byの噴出パイプ12の底面部からの距離は、第1放出口121bxと異なる。噴出パイプ12の底面部からの距離は、図2中における噴出パイプ12の底面部からのZ方向の長さであり、また、噴出パイプ12の底面部からの高さである。図2は、第1放出口121bxの高さH1と第2放出口121byの高さH2の一例として、それらの差Sが50mmであることを示す。 The jet pipe 12 has a jet pipe main body 12a having a substantially cylindrical shape. The ejection pipe body 12a is provided with a waste liquid channel 13 extending in the Z direction, which takes in the waste liquid WL from the bottom side and discharges it from the top side. The waste liquid flow path 13 has a substantially cylindrical inner wall surface 13a and a tapered portion 13b in which the flow path diameter increases at the upper side. Further, a gas flow path 12b including a first gas flow path 12bx and a second gas flow path 12by communicating with the waste liquid flow path 13 and discharging air into the waste liquid flow path 13 is provided. The first gas flow path 12bx and the second gas flow path 12by are also collectively referred to as the gas flow path 12b. The gas flow path 12b has a first gas flow path 12bx having a first discharge port 121bx provided in communication with the waste liquid flow path 13, and a second discharge port 121by provided in communication with the waste liquid flow path 13. and a second gas flow path 12by. The first discharge port 121bx and the second discharge port 121by are also collectively referred to as the discharge port 121b. The distance of the second discharge port 121by from the bottom surface of the jet pipe 12 is different from that of the first discharge port 121bx. The distance from the bottom of the jet pipe 12 is the length in the Z direction from the bottom of the jet pipe 12 in FIG. 2, and is the height of the jet pipe 12 from the bottom. FIG. 2 shows, as an example of the height H1 of the first discharge port 121bx and the height H2 of the second discharge port 121by, that the difference S between them is 50 mm.

空気供給部14は、略環状(ドーナツ状)の空気室本体14aを有し、内部に中空の空気室14bが設けられている。空気室14bは、貯留槽10の外部から導入される空気を貯留すると共に、気体流路12bに連通して、空気室14bに貯留した空気を気体流路12bに供給する供給口14dが設けられている。空気室14bには通気口14cが設けられており、外部から空気室14bの内部に空気を供給可能に構成されている。 The air supply unit 14 has a substantially annular (doughnut-shaped) air chamber main body 14a, and a hollow air chamber 14b is provided inside. The air chamber 14b stores air introduced from outside the storage tank 10, and is provided with a supply port 14d that communicates with the gas flow path 12b and supplies the air stored in the air chamber 14b to the gas flow path 12b. ing. The air chamber 14b is provided with a vent 14c, and is configured to be able to supply air from the outside to the inside of the air chamber 14b.

図3は、本実施形態に係る水質改善装置の噴出パイプと空気供給部との配置を示す説明図である。図2及び図3に示すように、噴出パイプ12は、空気供給部14に挿嵌された状態で貯留槽10内に立設される。所望の箇所に張設されるフランジ部12cに空気供給部14が当接されており、両者はボルト12dにより組付けられている。この組付けに関しては、従来周知の組付け手段を適宜採用することができる。 FIG. 3 is an explanatory diagram showing the arrangement of the jet pipe and the air supply section of the water quality improvement device according to the present embodiment. As shown in FIGS. 2 and 3, the ejection pipe 12 is installed upright within the storage tank 10 while being inserted into the air supply section 14. The air supply part 14 is in contact with the flange part 12c stretched at a desired location, and both are assembled with bolts 12d. Regarding this assembly, conventionally known assembly means can be appropriately employed.

噴出パイプ12と空気供給部14とは、一体的に組付けされて噴出部11を構成している。噴出パイプ12と空気供給部14とは、気体流路12bと供給口14dが連通するように位置合わせして組付けられており、噴出部11としての作用を果たすように構成されている。 The ejection pipe 12 and the air supply section 14 are integrally assembled to form the ejection section 11. The ejection pipe 12 and the air supply section 14 are aligned and assembled so that the gas flow path 12b and the supply port 14d communicate with each other, and are configured to function as the ejection section 11.

第1気体流路12bx及び第2気体流路12byとは、図2ではXZ平面に伸びる流路として描かれているが、図2は空気室14bの供給口14dと第1放出口121bx及び第2放出口121byとがそれぞれ第1気体流路12bxと第2気体流路12byとによって連通されていることを模式的に示しているにすぎない。即ち、第1気体流路12bx及び第2気体流路12byとは、後述のようにXZ平面に伸びてはいない。第1放出口121bxを有する第1気体流路12bxと、第2放出口121byを有する第2気体流路12byとの詳細については後述する。 The first gas flow path 12bx and the second gas flow path 12by are depicted as flow paths extending in the XZ plane in FIG. 2, but in FIG. It is merely shown schematically that the two discharge ports 121by are communicated with each other by the first gas flow path 12bx and the second gas flow path 12by. That is, the first gas flow path 12bx and the second gas flow path 12by do not extend in the XZ plane as described later. Details of the first gas flow path 12bx having the first discharge port 121bx and the second gas flow path 12by having the second discharge port 121by will be described later.

図1に示すように、空気導入部15は、貯留槽10の外部に設けられて空気室14bに空気を導入するように構成されている。図1に示すように、空気導入部15は空気導入口15bを有するポンプ15aにより構成され、ポンプ15aには通気路15cが接続されている。通気路15cは貯留槽10の内部へ延ばされて通気口14cに接続されている。空気導入部15により、空気室14bに空気を流し込むことが可能となっている。 As shown in FIG. 1, the air introduction part 15 is provided outside the storage tank 10 and is configured to introduce air into the air chamber 14b. As shown in FIG. 1, the air introduction section 15 includes a pump 15a having an air introduction port 15b, and a ventilation path 15c is connected to the pump 15a. The ventilation path 15c extends into the storage tank 10 and is connected to the ventilation port 14c. The air introduction section 15 allows air to flow into the air chamber 14b.

図2に示すように、噴出部11は固定用基台18上に載置されており、噴出部11が戴置された固定用基台18は貯留槽10の底面部位に載置されている。固定用基台18は、噴出部11を載置するため基材18aと脚18bとより構成されるが、このような作用をなすものであればこれに限定されない。 As shown in FIG. 2, the spouting part 11 is placed on a fixing base 18, and the fixing base 18 on which the spouting part 11 is placed is placed on the bottom of the storage tank 10. . The fixing base 18 is composed of a base material 18a and legs 18b on which the ejection part 11 is placed, but is not limited to this as long as it has such an effect.

噴出パイプ12は、貯留槽10内の廃液WLを底面部位側から取り込むと共に、上面部位側から放出すべく廃液流路13が中央にZ方向に伸びるように設けられている。貯留槽10内の廃液WLは、貯留槽10(噴出部11)の底面部から取り込まれて噴出部11の上面部側へ上昇される。 The spout pipe 12 is provided with a waste liquid channel 13 extending in the Z direction at the center so as to take in the waste liquid WL in the storage tank 10 from the bottom side and discharge it from the top side. The waste liquid WL in the storage tank 10 is taken in from the bottom of the storage tank 10 (spouting part 11) and raised to the top side of the spouting part 11.

第1気体流路12bx及び第2気体流路12byは、噴出パイプ12内において(径幅方向において縦方向に条設)形成された空気を流すための気体流路であり、その下端は空気室14bの供給口14dにそれぞれ連通している。第1気体流路12bx及び第2気体流路12byの上端は漸次先細りとなり、それらの先端に廃液流路13の流路内壁面13aに臨んで第1放出口121bx及び第2放出口121byがそれぞれ形成されている。第1気体流路12bx及び第2気体流路12byは、噴出パイプ12の内部で斜め方向に横切って形成されている。第1放出口121bx及び第2放出口121byは、鋭角に傾斜している。 The first gas flow path 12bx and the second gas flow path 12by are gas flow paths formed in the ejection pipe 12 (vertically provided in the radial width direction) for flowing air, and their lower ends are connected to the air chamber. The supply ports 14b and 14d each communicate with the supply ports 14d. The upper ends of the first gas flow path 12bx and the second gas flow path 12by gradually taper, and a first discharge port 121bx and a second discharge port 121by are formed at their tips facing the flow channel inner wall surface 13a of the waste liquid flow path 13, respectively. It is formed. The first gas flow path 12bx and the second gas flow path 12by are formed diagonally across the inside of the ejection pipe 12. The first discharge port 121bx and the second discharge port 121by are inclined at an acute angle.

図4(a)~(d)及び図5により、気体流路12bの詳細な構造と動作を説明する。図4(a)~(d)は一実施例に係る水質改善装置の噴出パイプ12の放出口を示す説明図であり、高さの異なるXY平面における気体流路12b及び放出口121bと放出される気体の方向とを模式的に示す。図5は一実施例に係る水質改善装置の噴出パイプ12の各放出口を模式的に示す説明図であり、図4(a)~(d)の放出口を1つの図にまとめて示したものである。図4(a)~(d)及び図5では、放出口121bの噴出パイプ12の底面部からの距離が互いに異なる4個の気体流路12ba,12bb,12bc,12bdを有する例を示す。ここでは4個の気体流路を有する例を示すが、4個に限定されるものではなく、複数であればよい。 The detailed structure and operation of the gas flow path 12b will be explained with reference to FIGS. 4(a) to 4(d) and FIG. 5. FIGS. 4(a) to 4(d) are explanatory diagrams showing the discharge port of the jet pipe 12 of the water quality improvement device according to one embodiment, and the gas flow path 12b and the discharge port 121b in the XY plane at different heights. The direction of the gas is schematically shown. FIG. 5 is an explanatory diagram schematically showing each discharge port of the jet pipe 12 of the water quality improvement device according to one embodiment, and the discharge ports in FIGS. 4(a) to 4(d) are shown together in one diagram. It is something. 4A to 4D and FIG. 5 show an example in which there are four gas channels 12ba, 12bb, 12bc, and 12bd whose distances from the bottom of the jet pipe 12 of the discharge port 121b are different from each other. Although an example having four gas flow paths is shown here, the number is not limited to four, and any number may be used.

図4(a)~(d)及び図5に示すように、例えば4本の気体流路12ba,12bb,12bc,12bdを有する。4本の気体流路12ba,12bb,12bc,12bdのそれぞれの放出口121ba,121bb,121bc,121bdは、廃液流路13の上下方向の幅50mmの範囲内に位置するように設けられている。なお、放出口121ba,121bb,121bc,121bdの廃液流路13の上下方向の幅は5mm~10mmの範囲内が好適である。放出口121ba,121bb,121bc,121bdの高さが近すぎたり遠すぎたりすると放出口のから放出された空気によるバブリングの相乗効果が得られにくくなる。4本の気体流路12ba,12bb,12bc,12bdの各放出口121ba,121bb,121bc,121bdは、順次旋回上昇する仮想螺旋線上にある。空気は、一定間隔を隔てて配置された各放出口121ba,121bb,121bc,121bdから放出される。 As shown in FIGS. 4(a) to 4(d) and FIG. 5, it has, for example, four gas flow paths 12ba, 12bb, 12bc, and 12bd. The respective discharge ports 121ba, 121bb, 121bc, and 121bd of the four gas flow paths 12ba, 12bb, 12bc, and 12bd are provided so as to be located within a width range of 50 mm in the vertical direction of the waste liquid flow path 13. Note that the vertical width of the waste liquid channel 13 of the discharge ports 121ba, 121bb, 121bc, and 121bd is preferably within a range of 5 mm to 10 mm. If the heights of the outlets 121ba, 121bb, 121bc, and 121bd are too close or too far apart, it becomes difficult to obtain the synergistic effect of bubbling caused by the air released from the outlets. The respective discharge ports 121ba, 121bb, 121bc, and 121bd of the four gas flow paths 12ba, 12bb, 12bc, and 12bd are on a virtual spiral line that rotates upward in sequence. Air is discharged from each discharge port 121ba, 121bb, 121bc, and 121bd arranged at regular intervals.

4本の気体流路12ba,12bb,12bc,12bd及び4個の放出口121ba,121bb,121bc,121bdについて説明する。まず、図4(a)に示すように、気体流路12baと放出口121baについて説明する。廃液流路13の流路内壁面13aにおける最上位の放出口121baから廃液流路13内に放出される空気は、図中中央左より右斜めで、流路内壁面13aに沿いつつやや上昇方向に向かう旋回流として放出される。空気が放出される方向をXY平面に投影した方向は、例えば、放出口121baにおける流路内壁面13aの法線方向となす角が15度の方向である。 The four gas channels 12ba, 12bb, 12bc, and 12bd and the four discharge ports 121ba, 121bb, 121bc, and 121bd will be described. First, as shown in FIG. 4(a), the gas flow path 12ba and the discharge port 121ba will be explained. The air discharged into the waste liquid flow path 13 from the uppermost discharge port 121ba on the flow path inner wall surface 13a of the waste liquid flow path 13 is slanted to the right from the center left in the figure, and is slightly upwardly moving along the flow path inner wall surface 13a. It is released as a swirling flow towards. The direction in which the air is discharged is projected onto the XY plane, for example, in a direction that makes an angle of 15 degrees with the normal direction of the channel inner wall surface 13a at the discharge port 121ba.

図4(b)に示すように、気体流路12bbと放出口121bbについて説明する。廃液流路13の流路内壁面13aにおける次段の放出口121bbから廃液流路13内に放出される空気は、図中中央上より右斜めで、流路内壁面13aに沿いつつやや上昇方向に向かう旋回流として放出される。空気が放出される方向をXY平面に投影した方向は、例えば、放出口121bbにおける流路内壁面13aの法線方向となす角が60度の方向である。 As shown in FIG. 4(b), the gas flow path 12bb and the discharge port 121bb will be explained. The air discharged into the waste liquid flow path 13 from the next stage discharge port 121bb on the flow path inner wall surface 13a of the waste liquid flow path 13 is diagonally to the right from the upper center in the figure, and is slightly upwardly moving along the flow path inner wall surface 13a. It is released as a swirling flow towards. The direction in which the air is discharged is projected onto the XY plane, for example, at a 60 degree angle with the normal direction of the channel inner wall surface 13a at the discharge port 121bb.

図4(c)に示すように、気体流路12bcと放出口121bcについて説明する。廃液流路13の流路内壁面13aにおける次段の放出口121bcから廃液流路13内に放出される空気は、図中中央右より左斜めで、流路内壁面13aに沿いつつやや上昇方向に向かう旋回流として放出される。空気が放出される方向をXY平面に投影した方向は、例えば、放出口121bcにおける流路内壁面13aの法線方向となす角が45度の方向である。 As shown in FIG. 4(c), the gas flow path 12bc and the discharge port 121bc will be explained. The air discharged into the waste liquid flow path 13 from the next stage discharge port 121bc on the flow path inner wall surface 13a of the waste liquid flow path 13 is diagonally left from the center right in the figure, and is slightly upwardly moving along the flow path inner wall surface 13a. It is released as a swirling flow towards. The direction in which the air is discharged is projected onto the XY plane, for example, at a 45 degree angle with the normal direction of the channel inner wall surface 13a at the discharge port 121bc.

図4(d)に示すように、気体流路12bdと放出口121bdについて説明する。廃液流路13の流路内壁面13aにおける最下位の放出口121bdから廃液流路13内に放出される空気は、図中中央下より左斜めで、流路内壁面13aに沿いつつやや上昇方向に向かう旋回流として放出される。空気が放出される方向をXY平面に投影した方向は、例えば、放出口121bdにおける流路内壁面13aの法線方向となす角が30度の方向である。 As shown in FIG. 4(d), the gas flow path 12bd and the discharge port 121bd will be explained. The air discharged into the waste liquid flow path 13 from the lowest discharge port 121bd on the flow path inner wall surface 13a of the waste liquid flow path 13 is diagonally to the left from the bottom center in the figure, and is slightly upwardly moving along the flow path inner wall surface 13a. It is released as a swirling flow towards. The direction in which the air is discharged is projected onto the XY plane, for example, in a direction that makes an angle of 30 degrees with the normal direction of the channel inner wall surface 13a at the discharge port 121bd.

廃液流路13の流路内壁面13aに臨む各放出口121ba,121bb,121bc,121bdは、廃液流路13に対して断面形状が涙状の形状であることが好ましい。即ち、空気が旋回しつつ上昇する仮想螺旋線方向に放出され、流路内壁面13aにおける断面形状が涙状の形状の放出口であることが好ましい。流路内壁面13aにおける断面形状としては、涙形の各放出口121ba,121bb,121bc,121bdから廃液流路13に放出されることが好ましい。 Each of the discharge ports 121ba, 121bb, 121bc, and 121bd facing the inner wall surface 13a of the waste liquid flow path 13 preferably has a teardrop-shaped cross-sectional shape with respect to the waste liquid flow path 13. That is, it is preferable that the air be discharged in the direction of an imaginary spiral line in which air is swirled and ascends, and that the cross-sectional shape of the flow channel inner wall surface 13a is a teardrop-shaped discharge port. As for the cross-sectional shape of the channel inner wall surface 13a, it is preferable that the waste fluid is discharged into the waste fluid channel 13 from teardrop-shaped discharge ports 121ba, 121bb, 121bc, and 121bd.

図6Aは、上記の放出口の一例の形状を示す平面図である。即ち、略円筒状の曲面を平面にしたときの放出口の形状をしめす。図6Aの例では、放出口121bは涙型の形状である。涙型の形状とは、例えば円形形状の一部の周部分が外周方向に引き伸ばされた形状である。図6Aに示した放出口121bの例では、半円部P1と、半円よりも外周方向に引き伸ばされた突出部P2とが滑らかに繋ぎ合わされた形状となっている。 FIG. 6A is a plan view showing an example of the shape of the above-mentioned outlet. That is, it shows the shape of the outlet when the substantially cylindrical curved surface is made into a flat surface. In the example of FIG. 6A, the outlet 121b has a teardrop shape. The teardrop-shaped shape is, for example, a shape in which a part of the circumferential portion of a circular shape is stretched in the outer circumferential direction. The example of the discharge port 121b shown in FIG. 6A has a shape in which a semicircular portion P1 and a protruding portion P2 that is elongated in the outer circumferential direction than the semicircle are smoothly connected.

図6Bは、図6Aに示す放出口から空気が放出される様子を模式的に示す説明図である。気体流路12bに対して放出口121bは鋭角に傾斜しており、気体流路12bから放出される空気の流れFに対して流路内壁面側に半円部P1が配置され、空気の流れFに対して廃液流路13の側に突出部P2が配置される。 FIG. 6B is an explanatory diagram schematically showing how air is released from the outlet shown in FIG. 6A. The discharge port 121b is inclined at an acute angle with respect to the gas flow path 12b, and a semicircular portion P1 is arranged on the inner wall surface side of the flow path with respect to the air flow F released from the gas flow path 12b, and the air flow is The protrusion P2 is arranged on the waste liquid flow path 13 side with respect to F.

上記の水質改善装置によれば、仮想螺旋線上にあって、高さが異なり、一定間隔を隔て配置された4本の気体流路12ba,12bb,12bc,12bdの放出口121ba,121bb、121bc、121bdから空気が放出され、旋回上昇流が生成される。各旋回上昇流は、順次旋回上昇すると共に、互いに衝突して打ち消し合うようなことはなく、互いに相乗して干渉し合う。これにより、上昇する廃液WLは、強力にバブリング化された気液混合の廃液(強力バブリング化気液混合廃液)とされ、この強力バブリング化された気液混合廃液が貯留槽10内に広範囲に強制循環される。 According to the above water quality improvement device, the discharge ports 121ba, 121bb, 121bc of the four gas flow paths 12ba, 12bb, 12bc, 12bd, which are on a virtual spiral line, have different heights, and are arranged at regular intervals, Air is released from 121bd and a swirling upward flow is generated. Each swirling upward flow sequentially swirls upward, and does not collide with each other and cancel each other out, but synergistically interferes with each other. As a result, the rising waste liquid WL is turned into a strongly bubbling gas-liquid mixed waste liquid (strongly bubbling gas-liquid mixed waste liquid), and this strongly bubbling gas-liquid mixed waste liquid is spread over a wide range in the storage tank 10. forced circulation.

4本の気体流路12ba,12bb,12bc,12bdの放出口121ba,121bb、121bc、121bdは、流路内壁面13aの廃液流路13内において、上下50mmの範囲内に近接されているため、互いに相乗して干渉し合い合成される。 The discharge ports 121ba, 121bb, 121bc, and 121bd of the four gas channels 12ba, 12bb, 12bc, and 12bd are located close to each other within a range of 50 mm above and below within the waste liquid channel 13 of the channel inner wall surface 13a, They synergize and interfere with each other and are synthesized.

本実施形態の水質改善装置によれば、バブリングの相乗効果により廃液WLを循環させる旋回上昇流を強化でき、これにより、廃液WLに繰り返し与える物理的な刺激を強化することができる。さらに、上記のバブリングの相乗効果により、廃液WLと空気との気液混合効率を高めることができ、これにより、槽内廃液中の溶存酸素の増加が図られ、好気性微生物だけでなく好気性・嫌気性微生物の両方をバランスよく共存生育することができ、悪臭の発生を防止することができる。 According to the water quality improvement device of this embodiment, the swirling upward flow that circulates the waste liquid WL can be strengthened due to the synergistic effect of bubbling, and thereby the physical stimulation repeatedly applied to the waste liquid WL can be strengthened. Furthermore, due to the synergistic effect of the bubbling mentioned above, it is possible to increase the gas-liquid mixing efficiency between the waste liquid WL and air, thereby increasing dissolved oxygen in the waste liquid in the tank, and not only aerobic microorganisms but also aerobic - Both anaerobic microorganisms can coexist in a well-balanced manner, and the generation of bad odors can be prevented.

本実施形態の水質改善装置を用いた水質改善方法は、貯留槽10に貯留された微生物を含有する廃液WLを貯留槽10内で循環させて微生物を活性化することにより廃液WLの水質を改善する水質改善方法である。廃液流路13を有する円筒状の噴出パイプ12であって、廃液流路13に連通して設けられた第1放出口121bxを有する第1気体流路12bxと、噴出パイプ12の底面部からの距離が第1放出口121bxと異なると共に廃液流路13に連通して設けられた第2放出口121byを有する第2気体流路12byとを含む気体流路12bが穿設されてなる噴出パイプ12において、廃液WLを噴出パイプ12の底面部側から取り込むと共に噴出パイプ12の上面部側から放出する工程と、貯留槽10の外部から導入される空気を貯留すると共に気体流路12bに連通して貯留した空気が送流される供給口14dが設けられた空気室14bに、貯留槽10の外部から空気を導入することで、第1放出口121bx及び第2放出口121byから空気を放出する工程とを同時に行うことにより、廃液WLを貯留槽10内で循環させる。 The water quality improvement method using the water quality improvement device of this embodiment improves the water quality of the waste liquid WL by circulating the waste liquid WL containing microorganisms stored in the storage tank 10 in the storage tank 10 and activating the microorganisms. This is a water quality improvement method. A cylindrical ejection pipe 12 having a waste liquid flow path 13, a first gas flow path 12bx having a first discharge port 121bx provided in communication with the waste liquid flow path 13, and a first gas flow path 12bx from the bottom of the ejection pipe 12. An ejection pipe 12 in which a gas flow path 12b including a second gas flow path 12by having a second discharge port 121by which is different in distance from the first discharge port 121bx and is provided in communication with the waste liquid flow path 13 is bored. , a step of taking in the waste liquid WL from the bottom side of the spout pipe 12 and discharging it from the top side of the spout pipe 12, and storing the air introduced from the outside of the storage tank 10 and communicating with the gas flow path 12b. A step of releasing air from the first discharge port 121bx and the second discharge port 121by by introducing air from outside the storage tank 10 into the air chamber 14b provided with the supply port 14d through which the stored air is sent. By performing these simultaneously, the waste liquid WL is circulated within the storage tank 10.

本実施形態の水質改善方法によれば、バブリングの相乗効果により廃液WLを循環させる旋回上昇流を強化でき、これにより、廃液WLに繰り返し与える物理的な刺激を強化することができる。さらに、上記のバブリングの相乗効果により、廃液WLと空気との気液混合効率を高めることができ、これにより、槽内廃液中の溶存酸素の増加が図られ、好気性微生物だけでなく好気性・嫌気性微生物の両方をバランスよく共存生育することができ、悪臭の発生を防止することができる。 According to the water quality improvement method of this embodiment, the swirling upward flow that circulates the waste liquid WL can be strengthened due to the synergistic effect of bubbling, and thereby the physical stimulus repeatedly applied to the waste liquid WL can be strengthened. Furthermore, due to the synergistic effect of the bubbling mentioned above, it is possible to increase the gas-liquid mixing efficiency between the waste liquid WL and air, thereby increasing dissolved oxygen in the waste liquid in the tank, and not only aerobic microorganisms but also aerobic - Both anaerobic microorganisms can coexist in a well-balanced manner, and the generation of bad odors can be prevented.

図7は、貯留槽における廃液WLの循環の繰り返しを示す説明図である。噴出部11の廃液流路13より放出される気液混合の旋回上昇流A,Bは、貯留槽10内で広範囲に強制的に押し出される。これにより、廃液流路13の上方において廃液WLが撹拌される。廃液流路13において強力にバブリングされた旋回上昇流A,Bによって、貯留槽10内の廃液WLの再循環が繰り返し行なわれる。 FIG. 7 is an explanatory diagram showing the repetition of circulation of the waste liquid WL in the storage tank. The swirling upward flows A and B of the gas-liquid mixture discharged from the waste liquid channel 13 of the spouting part 11 are forcibly pushed out over a wide range within the storage tank 10 . As a result, the waste liquid WL is stirred above the waste liquid flow path 13. The waste liquid WL in the storage tank 10 is repeatedly recirculated by the swirling upward flows A and B that are strongly bubbled in the waste liquid flow path 13.

図7に示すように、噴出部11からの旋回上昇流A,Bによって、気液混合の廃液は貯留槽10内の広範囲にわたって攪拌されると共に下方向に巡回する循環流C,Dが発生し、貯留槽10内の全体で廃液WLの攪拌及び再循環が行われる。 As shown in FIG. 7, the swirling upward flows A and B from the jetting part 11 stir the gas-liquid mixed waste liquid over a wide area in the storage tank 10, and generate circulation flows C and D that circulate downward. , the waste liquid WL is stirred and recirculated throughout the storage tank 10.

上記の噴出部11の流路内壁面13aの内側で発生した気液混合の廃液の旋回上昇流は、上昇して、一定の半径を持つ流路内壁面13aの内側の部分から外側程径が広がるテーパー部13bに至る。このとき、廃液流路13を高エネルギー状態で流されてきた廃液WLの圧力が急激に低下し、廃液WLに強力な剪断力が発生する。廃液WL中の気泡は剪断力により分断され、液体と気泡の接触面積が爆発的に拡大する。この結果、気泡(酸素)の廃液WLへの溶解が一気に加速される。 The swirling upward flow of the gas-liquid mixed waste liquid generated inside the channel inner wall surface 13a of the above-mentioned spouting part 11 rises, and the diameter increases from the inner part of the channel inner wall surface 13a having a constant radius to the outer side. The tapered portion 13b is reached. At this time, the pressure of the waste liquid WL that has been flowing through the waste liquid flow path 13 in a high-energy state decreases rapidly, and a strong shearing force is generated in the waste liquid WL. The bubbles in the waste liquid WL are broken up by the shear force, and the contact area between the liquid and the bubbles expands explosively. As a result, the dissolution of the bubbles (oxygen) into the waste liquid WL is accelerated at once.

上記の効果は、外部からの動力を必要とせず、少ないエネルギーで、かつ高い溶解効率で、酸素を廃液WL中に溶解することができる。これにより、溶存酸素率の高い廃液WLを貯留槽10内の全体で攪拌及び再循環できる。 The above effect allows oxygen to be dissolved in the waste liquid WL without requiring external power, with little energy, and with high dissolution efficiency. Thereby, the waste liquid WL with a high dissolved oxygen content can be stirred and recirculated throughout the storage tank 10.

本実施形態の水質改善装置によれば、上記の強力なバブリング効果を備えた旋回上昇流及び循環流を生成して、貯留槽10内で、水中の微生物に対する強力な振動として物理的な刺激が与えられる。気液の調整は、微生物の栄養分と微生物の存在比が均一な分散となるように行われる。また、溶存酸素率の最適化が図られ、好・嫌気性微生物の両方をバランスよく共存生育する。これにより、廃液WL中のスカム(浮遊物・沈殿物)や悪臭の発生を防止しつつ、貯留槽10内の廃液WLの処理を行うことができる。 According to the water quality improvement device of this embodiment, the swirling upward flow and circulating flow with the above-mentioned strong bubbling effect are generated, and physical stimulation is generated in the form of strong vibrations to microorganisms in the water in the storage tank 10. Given. The gas and liquid are adjusted so that the microbial nutrients and the microbial abundance ratio are uniformly dispersed. In addition, the dissolved oxygen rate has been optimized, allowing both aerobic and anaerobic microorganisms to grow together in a well-balanced manner. Thereby, the waste liquid WL in the storage tank 10 can be treated while preventing the generation of scum (floating matter/sediment) and bad odor in the waste liquid WL.

換言すれば、超高速上昇旋回エアーにより開口部から汚水が吸い上げられると共に、噴出パイプ12の内部で強力な混合がなされ、微生物の活性化に寄与していると考えられる。 In other words, it is considered that the ultra-high speed upward swirling air sucks up the wastewater from the opening and also causes strong mixing inside the spout pipe 12, contributing to the activation of microorganisms.

さらに、無機系浮遊物(金属物質・粘土鉱物等)のフロック(結合)形成が促進されるので、廃液WLの濁度が改善される。 Furthermore, since the formation of flocs (bonds) of inorganic suspended matter (metallic substances, clay minerals, etc.) is promoted, the turbidity of the waste liquid WL is improved.

貯留槽10内の廃液WLは、微生物の栄養分と微生物の存在比が均一分散として調整される。 The waste liquid WL in the storage tank 10 is adjusted so that the microbial nutrients and the microbial abundance ratio are uniformly dispersed.

また、この複雑な廃液WLの流れによってヘドロが循環流に沿って運ばれる気泡(酸素)と接触し、硫化水素等の臭気物質生成が起こりにくい酸化還元状態に保つことができる。 Further, due to the complicated flow of waste liquid WL, the sludge comes into contact with the bubbles (oxygen) carried along the circulating flow, and can be maintained in an oxidation-reduction state in which the production of odor substances such as hydrogen sulfide is difficult to occur.

これにより、貯留槽10内の廃液WL中に存在する微生物に対して、物理的な刺激を強力に与え、その増殖である活性化を一層促進し、嫌気性及び好気性の両微生物の生育のバランス環境を好適な共存環境として自らの力(自助努力)で維持することが可能な水質改善を提供すると考えられる。 This provides a strong physical stimulus to the microorganisms present in the waste liquid WL in the storage tank 10, further promoting their proliferation or activation, and promoting the growth of both anaerobic and aerobic microorganisms. It is thought that it will provide water quality improvement that can be maintained by one's own efforts (self-help efforts) as a balanced environment as a suitable coexistence environment.

図8は、好・嫌気性微生物の活性化状況を示す説明図である。好・嫌気性微生物が活性化されていない状態では、図8左側に示すように微生物aがスカムや臭いの原因物質bを取り込んでいないが、好・嫌気性微生物が活性化されている状態では、図8右側に示すように微生物aがスカムや臭いの原因物質bを取り込んだ状態になる。これにより、微生物aは原因物質bを分解し、水質を改善できる。 FIG. 8 is an explanatory diagram showing the activation status of anaerobic and anaerobic microorganisms. When anaerobic and anaerobic microorganisms are not activated, microorganisms a do not take in scum and odor-causing substances b, as shown on the left side of Figure 8, but when anaerobic and anaerobic microorganisms are activated, As shown on the right side of FIG. 8, microorganisms a have taken in scum and odor-causing substances b. Thereby, the microorganism a can decompose the causative substance b and improve the water quality.

一方、水質改善において、不用意に溶存酸素率を高めることはスカム等の分解能力に有効な嫌気性細菌の生息域が減少し、好気性微生物の環境だけが優位になり、嫌気性、好気性の両薇生物が共存できる環境とはならない。 On the other hand, when improving water quality, carelessly increasing the dissolved oxygen rate will reduce the habitat of anaerobic bacteria, which are effective in decomposing scum, etc., and the environment will become dominated by aerobic microorganisms, causing anaerobic and aerobic This does not create an environment in which both types of organisms can coexist.

このため、廃液WL中に空気を吐出すると共に、停滞された廃液WL中に竜巻状の水流を起こし、かつ竜巻状の水流が微生物に物理的な刺激を与えて活性化させ、微生物を原因とするスカムや臭いの原因物質を分解し、水質を改善できる。また、これにより排水設備機器の誤作動や誤表示等が減少し、機材の腐食や劣化を抑止することができる。 For this reason, air is discharged into the waste liquid WL, and a tornado-shaped water flow is generated in the stagnant waste liquid WL, and the tornado-shaped water flow gives a physical stimulus to the microorganisms, activating them, and causing the microorganisms. It can improve water quality by decomposing scum and odor-causing substances. In addition, this reduces malfunctions and incorrect displays of drainage equipment, and prevents corrosion and deterioration of equipment.

また、保守時の酸欠事故や環境悪化物質の流出を防止でき、貯留槽の底面に沈めるだけの簡単な設置を指向し、水質改善効果が期待できる。分解清掃などのメンテナンスの必要性が小さい方が望ましい。 In addition, it can prevent oxygen deficiency accidents during maintenance and the outflow of environmentally harmful substances, and it can be installed easily by simply sinking it into the bottom of the storage tank, which is expected to improve water quality. It is desirable that the need for maintenance such as disassembly and cleaning is small.

微生物に対して超高速噴射上昇流によって刺激をあたえることで、同時に強力な循環流によって汚水を均一に分散させて有機物の分解を促進することができる。 By stimulating microorganisms with ultra-high-speed upward jets, it is possible to uniformly disperse wastewater and promote the decomposition of organic matter using powerful circulation flows.

なお、後述の実験例では、従来の曝気装置に比べて、表1に示す条件で消費電力の少ないブロワーを採用した。 In addition, in the experimental examples described below, a blower that consumes less power under the conditions shown in Table 1 was used compared to a conventional aeration device.

Figure 0007441453000001
Figure 0007441453000001

上記のように、物理的な刺激を繰り返し強力に与え、廃液WL中の溶存酸素の増加を図ると共に、好気性微生物だけでなく好気性・嫌気性微生物の両方をバランスよく共存生育することができる水中微生物の活性化による水質改善を行った実験例を示す。 As mentioned above, by repeatedly and strongly applying physical stimulation, it is possible to increase dissolved oxygen in the waste liquid WL, and to coexist not only aerobic microorganisms but also aerobic and anaerobic microorganisms in a well-balanced manner. An example of an experiment in which water quality was improved by activating underwater microorganisms is shown.

装置導入前後における目レベルでの微生物群集構造を説明する。目レベルでの微生物群集構造は、いずれにおいてもClostridiales,Lactobacillales,Bacteroidales,Enterobacterialesの4目の微生物が主要な微生物種となっており、実験期間を通じて60%から80%程度を占めていた。また、目レベルで見た場合には、装置設置前後における明確な群集組成の違いは見られない。これら4目の微生物種はいずれも嫌気性微生物種であり、装置運転の有無に関わらず、嫌気性微生物種が優占していた。 We will explain the microbial community structure at the eye level before and after the introduction of the device. Regarding the microbial community structure at the order level, microorganisms of the four orders Clostridiales, Lactobacillales, Bacteroidales, and Enterobacteriales were the main microbial species, and accounted for about 60% to 80% throughout the experimental period. Furthermore, when viewed at the visual level, there is no clear difference in the composition of the community before and after the installation of the device. All of these fourth microbial species were anaerobic microbial species, and anaerobic microbial species were dominant regardless of whether the device was in operation or not.

次に、属レベルでは、Mitsuokella属、およびVeiolellaceae科の細菌が大きく減少した。また、Coriobacteraceae科細菌、Bifidobacterium属細菌も他方の系列でも減少していた。いずれにおいても共通した微生物種が減少していることから、これらの細菌が装置設置により減少する代表的な細菌種であるといえる。これらはすべて偏性嫌気性微生物であり、装置により酸素供給効率が向上したことで活性を失った種であると考えられる。 Next, at the genus level, bacteria in the genus Mitsuokella and the family Veiolellaceae decreased significantly. Coriobacteraceae and Bifidobacterium bacteria also decreased in the other series. Since the common microbial species decreased in both cases, it can be said that these bacteria are the typical bacterial species that are decreased by installing the device. All of these are obligate anaerobic microorganisms, and it is thought that they are species that have lost their activity due to the improved oxygen supply efficiency caused by the device.

一方、装置設置後に増加した微生物種について説明する。Novosphingobium属、Veionella属Strpetococcus属は共通して増加していた。Novosphingobium属細菌は絶対好気性細菌であるものの、Streptococcus属は通性嫌気性、Veionella属細菌は偏性嫌気性細菌であり、必ずしも好気性細菌のみが活性化されたわけではなかった。 On the other hand, the microbial species that increased after the installation of the device will be explained. The genera Novosphingobium, Veionella and Strpetococcus were commonly increasing. Although Novosphingobium bacteria are obligate aerobic bacteria, Streptococcus bacteria are facultative anaerobic bacteria, and Veionella bacteria are obligate anaerobic bacteria, so it was not always the case that only aerobic bacteria were activated.

本実験装置において供給される酸素量は、流入廃水の有機物負荷と比較しても小さく、有機物のすべてを好気的に酸化するための必要量よりもはるかに小さい。したがって、槽内を好気状態に保つまでの酸素量でないことが群集解析の結果からもあきらかである。このことから、本装置による微生物活性化においては厨房廃水に含まれる高分子有機物である炭水化物類等の発酵による低分子化の促進、また低分子化された有機物を用いて、発酵よりも分解速度の速い呼吸による代謝を行う微生物が活性化されているものと推察される。 The amount of oxygen supplied in this experimental apparatus is small compared to the organic load of the influent wastewater, and is much smaller than the amount required to aerobically oxidize all of the organic matter. Therefore, it is clear from the crowd analysis results that the amount of oxygen is not enough to keep the tank in an aerobic state. Therefore, in microbial activation using this device, it is possible to promote the reduction of carbohydrates, which are high-molecular organic substances contained in kitchen wastewater, into low-molecular-weight substances through fermentation, and to use low-molecular-weight organic substances to decompose them at a faster rate than fermentation. It is presumed that microorganisms that perform metabolism through rapid respiration are activated.

また、悪臭の原因となる硫化水素等は、強い還元的条件で生成すると考えられる。酸素の効率的な供給により、強い還元的環境となっているゾーンが減少し、悪臭物生成をする微生物が不活化されていることが、悪臭減少の要因となっていると考えられる。 Furthermore, it is thought that hydrogen sulfide and the like, which cause bad odors, are generated under strongly reducing conditions. The reduction in malodors is thought to be due to the efficient supply of oxygen, which reduces the number of zones with strongly reducing environments and inactivates malodor-producing microorganisms.

上記理論を検証するため、東京大学工学系研究科附属水環境工学研究センター栗栖太准教授と共に某空港内厨房排水槽において、水質改善及び改善における微生物の群集観測試験を行った。 In order to verify the above theory, I conducted a microbial community observation test for water quality improvement and improvement in a kitchen wastewater tank at an airport with Associate Professor Kurisu Futa of the Water Environmental Engineering Research Center, Graduate School of Engineering, the University of Tokyo.

試験の結果、排水槽においてBOD・ヘキサン抽出物・SS・硫化物イオンの含有量が低減したことを確認した。 As a result of the test, it was confirmed that the contents of BOD, hexane extract, SS, and sulfide ions in the drainage tank were reduced.

ここで、BOD・ヘキサン抽出物・SS・硫化物イオンの各数値は以下の指標である。
『BOD』:水質の状態を数値化し、汚染を表す指標のひとつ。微生物が一定時間中に水中の有機物を酸化分解する際に消費する酸素の量で、数値が大きいほど水質は悪いという指標となる。
『ヘキサン抽出物』:主に油分の量を表す数値。
『SS』:水中内に浮遊している2槻以下の不溶性の粒子の数値を表す。
『硫化物イオン』:一定の条件下において硫化水素を発生させる物質で、数値が高いほど硫化水素を発生させやすい状態になる。
『硫化水素』:致死性の非常に高い気体で、排水の腐卵臭のような強い臭気の原因となる。
Here, each numerical value of BOD, hexane extract, SS, and sulfide ion is the following index.
``BOD'': An indicator that quantifies water quality and represents pollution. This is the amount of oxygen consumed by microorganisms during the oxidation and decomposition of organic matter in water over a certain period of time, and the higher the number, the worse the water quality.
``Hexane extract'': A value that mainly represents the amount of oil content.
"SS": Represents the number of insoluble particles of 2 or less suspended in water.
"Sulfide ion": A substance that generates hydrogen sulfide under certain conditions; the higher the value, the easier it is to generate hydrogen sulfide.
``Hydrogen sulfide'': A highly lethal gas that causes a strong odor similar to that of rotten eggs in wastewater.

本実施形態の水質改善装置は、貯留槽内の廃液処理に際して、強力なバブリング部により物理的な刺激を繰り返し強力に与え、槽内廃液中の溶存酸素の増加を図ると共に、好気性微生物だけでなく好気性・嫌気性微生物の両方をバランスよく共存生育して、水中微生物の活性化により水質を改善できる。 The water quality improvement device of this embodiment uses a powerful bubbling section to repeatedly and strongly apply physical stimulation when treating waste liquid in a storage tank, thereby increasing dissolved oxygen in the waste liquid in the tank, and using only aerobic microorganisms. By allowing both aerobic and anaerobic microorganisms to grow together in a well-balanced manner, water quality can be improved by activating aquatic microorganisms.

貯留槽や厨房廃水受水槽など、ビルピット、合併浄化槽の水質改善、ダムなどのアオコ対策、工場の冷却水腐敗防止、下水処理場での浮遊物低減、バイオリアクターの撹拌などのあらゆる水処理施設で適応できるが、例えば、中華店や料亭などの油処理やその他の生化学分野などにも適応できる。農業の肥料としてその場所の土壌等にある微生物を活性化して液肥としても適応できる。 For all types of water treatment facilities, such as storage tanks and kitchen wastewater receiving tanks, improving water quality in building pits and combined septic tanks, algae control measures in dams, preventing spoilage of cooling water in factories, reducing suspended solids in sewage treatment plants, and stirring bioreactors. It can be applied, for example, to oil processing in Chinese restaurants and restaurants, and other biochemical fields. It can also be used as a liquid fertilizer in agriculture by activating microorganisms in the soil.

WL 廃液
A,B 旋回上昇流
C,D 循環流
10 貯留槽
10a 側面部
10b 底面部
10c 上面部
11 噴出部
12 噴出パイプ
12a 噴出パイプ本体
12b 気体流路
12bx 第1気体流路
12by 第2気体流路
12c フランジ部
12d ボルト
121bx 第1放出口
121by 第2放出口
13 廃液流路
13a 流路内壁面
13b テーパー部
14 空気供給部
14a 空気室本体
14b 空気室
14c 通気口
14d 供給口
15 空気導入部
15a ポンプ
15b 空気導入口
15c 通気路
16 流入管
17 排水管
18 固定用基台
18a 基材
18b 脚

WL Waste liquid A, B Swirling upward flow C, D Circulating flow 10 Storage tank 10a Side part 10b Bottom part 10c Top part 11 Spout part 12 Spout pipe 12a Spout pipe main body 12b Gas flow path 12bx First gas flow path 12by Second gas flow Channel 12c Flange portion 12d Bolt 121bx First discharge port 121by Second discharge port 13 Waste liquid flow path 13a Channel inner wall surface 13b Tapered portion 14 Air supply portion 14a Air chamber main body 14b Air chamber 14c Vent port 14d Supply port 15 Air introduction portion 15a Pump 15b Air inlet 15c Air passage 16 Inflow pipe 17 Drain pipe 18 Fixing base 18a Base material 18b Legs

Claims (4)

貯留槽に貯留された微生物を含有する廃液を前記貯留槽内で循環させて前記微生物を活性化することにより前記廃液の水質を改善する水質改善装置であって、
前記廃液を底面部側から取り込むと共に上面部側から放出する廃液流路を有し、前記廃液流路に連通して前記廃液流路に空気を放出する気体流路が穿設されてなる円筒状の噴出パイプと、
前記貯留槽の外部から導入される空気を貯留すると共に前記気体流路に連通して貯留した空気を前記気体流路に供給する供給口が設けられた空気室を有する空気供給部と、
前記貯留槽の外部に設けられて前記空気室に空気を導入する空気導入部とを有し、
前記気体流路は、前記廃液流路に連通して設けられた第1放出口を有する第1気体流路と、前記噴出パイプの底面部からの距離が前記第1放出口と異なり、前記廃液流路に連通して設けられた第2放出口を有する第2気体流路とを含み、
前記第1放出口及び前記第2放出口の前記噴出パイプの底面部からの距離の差は5mm以上10mm以下である
水質改善装置。
A water quality improvement device that improves the water quality of the waste liquid by circulating the waste liquid containing microorganisms stored in the storage tank in the storage tank and activating the microorganisms,
A cylindrical shape having a waste liquid flow path that takes in the waste liquid from the bottom side and discharges it from the top side, and a gas flow path that communicates with the waste liquid flow path and releases air into the waste liquid flow path. a spout pipe,
an air supply unit having an air chamber that stores air introduced from outside the storage tank and is provided with a supply port that communicates with the gas flow path and supplies the stored air to the gas flow path;
an air introduction part provided outside the storage tank and introducing air into the air chamber,
The gas flow path has a first gas flow path provided in communication with the waste liquid flow path, and a distance from the bottom surface of the jet pipe is different from the first gas flow path, and the gas flow path has a first gas flow path provided in communication with the waste liquid flow path. a second gas flow path having a second discharge port provided in communication with the flow path ;
The difference in distance between the first discharge port and the second discharge port from the bottom surface of the jet pipe is 5 mm or more and 10 mm or less.
Water quality improvement equipment.
前記第1放出口及び前記第2放出口から放出される空気はそれぞれ螺旋状の軌道に沿って旋回上昇し、前記空気と前記廃液とが気液混合した旋回上昇流を生成する
請求項1に記載の水質改善装置。
The air discharged from the first discharge port and the second discharge port respectively swirls upward along a spiral trajectory, and the air and the waste liquid generate a swirling upward flow in which a gas-liquid mixture is formed. The water quality improvement device described.
貯留槽に貯留された微生物を含有する廃液を前記貯留槽内で循環させて前記微生物を活性化することにより前記廃液の水質を改善する水質改善方法であって、
廃液流路を有する円筒状の噴出パイプであって、前記廃液流路に連通して設けられた第1放出口を有する第1気体流路と、前記噴出パイプの底面部からの距離が前記第1放出口と異なると共に前記廃液流路に連通して設けられた第2放出口を有する第2気体流路とを含む気体流路が穿設されてなる前記噴出パイプにおいて、前記廃液を前記噴出パイプの底面部側から取り込むと共に前記噴出パイプの上面部側から放出する工程と、
前記貯留槽の外部から導入される空気を貯留すると共に前記気体流路に連通して貯留した空気が送流される導入口が設けられた空気室に、前記貯留槽の外部から空気を導入することで、前記第1放出口及び前記第2放出口から空気を放出する工程と
を同時に行うことにより、前記廃液を前記貯留槽内で循環させ
前記第1放出口及び前記第2放出口の前記噴出パイプの底面部からの距離の差を5mm以上10mm以下に設定する
水質改善方法。
A water quality improvement method for improving the water quality of the waste liquid by circulating the waste liquid containing microorganisms stored in the storage tank in the storage tank and activating the microorganisms, the method comprising:
A cylindrical ejection pipe having a waste liquid flow path, a first gas flow path having a first discharge port provided in communication with the waste liquid flow path, and a distance from the bottom of the ejection pipe to the first gas flow path. In the spouting pipe, the spouting pipe is provided with a gas flow path including a second gas flow path having a second gas flow path that is different from the first discharge port and is provided in communication with the waste liquid flow path. a step of taking in from the bottom side of the pipe and discharging from the top side of the spouting pipe;
Introducing air from outside the storage tank into an air chamber that stores air introduced from outside the storage tank and is provided with an inlet that communicates with the gas flow path and through which the stored air is sent. and simultaneously performing the step of releasing air from the first discharge port and the second discharge port to circulate the waste liquid within the storage tank ,
A difference in distance between the first discharge port and the second discharge port from the bottom surface of the jet pipe is set to 5 mm or more and 10 mm or less.
How to improve water quality.
前記第1放出口及び前記第2放出口から放出される空気はそれぞれ螺旋状の軌道に沿って旋回上昇し、前記空気と前記廃液が気液混合した旋回上昇流を生成する
請求項に記載の水質改善方法。
According to claim 3 , the air discharged from the first discharge port and the second discharge port swirls upward along respective spiral trajectories, and the air and the waste liquid generate a swirling upward flow in which gas and liquid are mixed. How to improve water quality.
JP2020007071A 2020-01-20 2020-01-20 Water quality improvement equipment and water quality improvement method Active JP7441453B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020007071A JP7441453B2 (en) 2020-01-20 2020-01-20 Water quality improvement equipment and water quality improvement method
PCT/JP2020/045183 WO2021149369A1 (en) 2020-01-20 2020-12-04 Water quality improving apparatus and water quality improving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020007071A JP7441453B2 (en) 2020-01-20 2020-01-20 Water quality improvement equipment and water quality improvement method

Publications (2)

Publication Number Publication Date
JP2021112719A JP2021112719A (en) 2021-08-05
JP7441453B2 true JP7441453B2 (en) 2024-03-01

Family

ID=76992177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020007071A Active JP7441453B2 (en) 2020-01-20 2020-01-20 Water quality improvement equipment and water quality improvement method

Country Status (2)

Country Link
JP (1) JP7441453B2 (en)
WO (1) WO2021149369A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7362045B2 (en) 2022-01-12 2023-10-17 ウォーターナビ株式会社 bubble generator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001314888A (en) 2000-05-10 2001-11-13 Suzuki Sangyo Kk Wastewater treatment system
JP2002045667A (en) 2000-08-04 2002-02-12 Fukuoka Prefecture Device for generating circulating flow
JP2006034235A (en) 2004-07-29 2006-02-09 Fukuoka Prefecture Shoyu Jozo Kyodo Kumiai Culture apparatus of polymer compound-producing microorganism and culture method
JP2011183328A (en) 2010-03-10 2011-09-22 Blue Aqua Industry Kk Aerator
US8871090B2 (en) 2007-09-25 2014-10-28 Turbulent Energy, Llc Foaming of liquids
JP2016083630A (en) 2014-10-28 2016-05-19 株式会社キャビテックビルコミュニティ Odor suppressing system
JP2018187558A (en) 2017-05-01 2018-11-29 株式会社ワカイダ・エンジニアリング Water quality improvement method with activation of water microorganism and water quality improvement apparatus with activation of water microorganism

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5895293U (en) * 1981-12-21 1983-06-28 斉藤 晃四郎 Intermittent swirl flow air pumping device
JPH05161899A (en) * 1991-12-16 1993-06-29 Takashi Yamamoto Aerating apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001314888A (en) 2000-05-10 2001-11-13 Suzuki Sangyo Kk Wastewater treatment system
JP2002045667A (en) 2000-08-04 2002-02-12 Fukuoka Prefecture Device for generating circulating flow
JP2006034235A (en) 2004-07-29 2006-02-09 Fukuoka Prefecture Shoyu Jozo Kyodo Kumiai Culture apparatus of polymer compound-producing microorganism and culture method
US8871090B2 (en) 2007-09-25 2014-10-28 Turbulent Energy, Llc Foaming of liquids
JP2011183328A (en) 2010-03-10 2011-09-22 Blue Aqua Industry Kk Aerator
JP2016083630A (en) 2014-10-28 2016-05-19 株式会社キャビテックビルコミュニティ Odor suppressing system
JP2018187558A (en) 2017-05-01 2018-11-29 株式会社ワカイダ・エンジニアリング Water quality improvement method with activation of water microorganism and water quality improvement apparatus with activation of water microorganism

Also Published As

Publication number Publication date
JP2021112719A (en) 2021-08-05
WO2021149369A1 (en) 2021-07-29

Similar Documents

Publication Publication Date Title
US7374675B2 (en) Mixer for use in wastewater treatment processes
WO2018203381A1 (en) Method for improving water quality through activation of water microorganisms, and device for improving water quality through activation of water microorganisms
JP5425992B2 (en) Water treatment equipment
JP2010000498A (en) Screen treatment apparatus
US6200470B1 (en) Sub-soil domestic wastewater treatment apparatus having multiple aeration chambers
JP7441453B2 (en) Water quality improvement equipment and water quality improvement method
KR100925531B1 (en) Micro Bubble Reactor for Treatment of Wastewater
JP5167447B2 (en) Water treatment equipment
US9457327B2 (en) Method and apparatus for treatment and purification of liquid through aeration
KR101304329B1 (en) Micro Bubble Reactor for Treatment of Wastewater Using Micro Bubble Diffuser With Cleaning Function
JP2011025200A5 (en)
US10961140B2 (en) Bioreactor with moving carriers
KR101539290B1 (en) An aerator for air supply and stirring, nitrogen-removing apparatus using an aerator from wastewater, sewage, river, lake and nitrogen-removing process by using the apparatus
KR100882818B1 (en) An aeration apparatus
KR20030071099A (en) Submersible Aerator with the Function of Air Priming, Intermittent Aeration, Deoderization and Mixing
JP2006320777A (en) Waste water treatment apparatus
KR102234444B1 (en) Solid-liquid separation device using micro bubbles
KR100617018B1 (en) Deep aeration tank with upward aeration facilities
JP7406265B2 (en) wastewater treatment equipment
KR100314747B1 (en) Waste Water Treatment Equipment with the Function of Air Priming, Intermittent Aeration, Deoderization, Agitating and Horizontal Mixing
KR102315897B1 (en) Apparatus for treatmenting of Wastewater using semi-batchand
KR102355498B1 (en) Wastewater treatment system using microbubble aeration process
CN212832910U (en) Novel regulating tank for treating wastewater
JP2019135043A (en) Wastewater treatment apparatus and wastewater treatment method
US8740193B2 (en) System for forming mini microbubbles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240207

R150 Certificate of patent or registration of utility model

Ref document number: 7441453

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150