JP2006034215A - 薬物代謝能力を有する微生物由来の生体試料画分による薬物代謝体の製造方法 - Google Patents

薬物代謝能力を有する微生物由来の生体試料画分による薬物代謝体の製造方法 Download PDF

Info

Publication number
JP2006034215A
JP2006034215A JP2004221436A JP2004221436A JP2006034215A JP 2006034215 A JP2006034215 A JP 2006034215A JP 2004221436 A JP2004221436 A JP 2004221436A JP 2004221436 A JP2004221436 A JP 2004221436A JP 2006034215 A JP2006034215 A JP 2006034215A
Authority
JP
Japan
Prior art keywords
drug
derived
yeast
cytochrome
human
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004221436A
Other languages
English (en)
Inventor
Takashi Suzuki
隆 鈴木
Masahiro Tsutsumi
正弘 堤
Maki Kumagai
真希 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumika Chemical Analysis Service Ltd
Original Assignee
Sumika Chemical Analysis Service Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumika Chemical Analysis Service Ltd filed Critical Sumika Chemical Analysis Service Ltd
Priority to JP2004221436A priority Critical patent/JP2006034215A/ja
Publication of JP2006034215A publication Critical patent/JP2006034215A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Epoxy Compounds (AREA)
  • Saccharide Compounds (AREA)
  • Steroid Compounds (AREA)

Abstract

【課題】薬物代謝能力を有する微生物由来の生体試料画分が薬物代謝体を常に安定して製造することが可能となる方法を提供すること。
【解決手段】薬物代謝能力を有する微生物由来の生体試料画分による薬物代謝体の製造方法において、(1)哺乳動物由来の薬物代謝酵素を産生する微生物由来のスフェロプラストが破砕されてなる破砕物を、遠心力として5000×g〜15000×gが与られる遠心分離処理に供することによって得られる上清画分を回収する第一工程、(2)第一工程により回収された上清画分と、前記薬物代謝酵素の基質と成り得る被験薬物とを接触させながら、前記上清画分による前記被験薬物の代謝体を生成させる第二工程を有することを特徴とする方法等。
【選択図】 なし

Description

本発明は、薬物代謝能力を有する微生物由来の生体試料画分による薬物代謝体の製造方法等に関する。
生物は、生体内に取り込まれた薬物を異物として認識し、極性を高めて体外に排泄するシステムを持っており、当該システムを薬物代謝と呼ぶことがある。薬物代謝において中心的な役割を担っているのが、例えば、チトクロームP450と呼ばれる一群の酸化還元酵素であり、薬物(特に医薬化合物)の薬理効果や毒性を決定する重要な因子の一つとして位置づけられている。
そのため、薬物の代謝に関わるチトクロームP450分子種の特定、またチトクロームP450の作用により産生した薬物代謝体の同定及び当該薬物代謝体の特性評価は、医薬用化合物の開発段階において必須となっており、特に、薬物代謝能力を有する微生物は、上記のような開発研究において非常に有用で、薬物代謝体の大量製造に有効な手段であると考えられている(非特許文献1参照。)。
P450の分子生物学、大村 恒雄、藤井 義明、石村 巽、出版社:講談社;ISBN 406153677X、発行日:2003/10
薬物代謝学−医療薬学・毒性学の基礎として、出版社: 東京化学同人;ISBN 4807905279、第2版、発行日:2000/10
ところが、基質である薬物の種類や反応系内の環境等によって、薬物代謝能力を有する微生物が当該薬剤を代謝することができる能力を有する薬物代謝酵素を保有しているにも係わらず、実際には当該微生物により薬物代謝体が十分に製造されない場合がみられた。このため、基質である薬物の種類や反応系内の環境等によって影響を受けることなく、常に安定して薬物代謝体を製造することができる方法が求められていた。
本発明者らは、かかる状況のもと薬物代謝能力を有する微生物の調製方法に係る実験を積み重ねながら鋭意検討した結果、特定の調製方法により得られる当該微生物由来の生体試料画分を用いることにより、薬物代謝能力を有する微生物由来の特定な生体試料画分が薬物代謝体を常に安定して製造可能であることを見出し、本発明に至った。
本発明は、
1.薬物代謝能力を有する微生物由来の生体試料画分による薬物代謝体の製造方法において、
(1)哺乳動物由来の薬物代謝酵素を産生する微生物由来のスフェロプラストが破砕されてなる破砕物を、遠心力として5000×g〜15000×gが与られる遠心分離処理に供することによって得られる上清画分を回収する第一工程、
(2)第一工程により回収された上清画分と、前記薬物代謝酵素の基質と成り得る被験薬物とを接触させながら、前記上清画分による前記被験薬物の代謝体を生成させる第二工程
を有することを特徴とする方法(以下、本発明製造方法と記すこともある。);
2.前記微生物由来のスフェロプラストが、ヒト由来チトクロムP450産生酵母由来のスフェロプラストであることを特徴とする前項1記載の方法。
3.前項1又は2記載の方法により製造された薬物代謝体を反応系内から回収する工程を有することを特徴とする薬物代謝体の取得方法;
4.反応系内から回収して得られる、前項1又は2記載の方法により製造された薬物代謝体;
等を提供するものである。
本発明により、薬物代謝能力を有する微生物由来の生体試料画分が薬物代謝体を常に安定して製造することが可能になった。
以下に本発明を詳細に説明する。
本発明における「薬物代謝能力を有する微生物」とは、例えば、哺乳動物由来の薬物代謝酵素(以下、本酵素と記すこともある。)を産生する微生物(以下、本微生物と記すこともある。)を意味している。
本発明における「薬物の代謝体」又は「薬物代謝体」とは、本微生物の生育にリンクしない生産物(non-growth liked product)であって、本微生物が産生する哺乳動物由来の薬物代謝酵素(即ち、本酵素)の基質と成り得る被験薬物を当該薬物代謝酵素に基づく異化作用により分解して得られる化合物を意味し、具体的には、例えば、本微生物がヒト由来のチトクロムP450産生酵母の場合には、ヒト由来のチトクロムP450の基質となる各種の脂溶性化合物を当該チトクロムP450に基づく酸素添加等の異化作用(即ち、モノオキシゲナーゼ反応)により分解して得られる化合物等をあげることができる。
本発明製造方法における第一工程について説明する。
第一工程では、哺乳動物由来の薬物代謝酵素を産生する微生物由来のスフェロプラストが破砕されてなる破砕物を、遠心力として5000×g〜15000×g(好ましくは、8000×g〜10000×g)が与られる遠心分離処理に供することによって得られる上清画分(以下、微生物スフェロプラスト由来の上清画分と記すこともある。)を回収する。さらに、第一工程における前記微生物由来のスフェロプラストが、ヒト由来チトクロムP450産生酵母由来のスフェロプラストであることが好ましい。
好ましい微生物スフェロプラスト由来の上清画分としては、例えば、ミトコンドリア画分を除去してなるものを挙げることができる。ミトコンドリア画分を除去するには、例えば、「生物化学実験のてびき1 生物試料調製法」編集:泉 美治、中川 八郎、三輪谷俊夫、発行所:(株)化学同人、ISBN:4-7598-0124-3、発行日:1985/10/10、「実験生物学講座6 細胞分画法」、編集:毛利秀雄、香川靖雄、発行所:丸善株式会社、ISBN:4-621-02950-9 C3345、発行日:1984/12/25 等に記載されるような通常の方法を用いればよい。
次いで、本発明製造方法における第ニ工程について説明する。
第ニ工程では、第一工程により回収された上清画分(以下、本上清画分と記すこともある。)と、前記薬物代謝酵素の基質と成り得る被験薬物とを接触させながら、前記上清画分による前記被験薬物の代謝体を生成させる。
薬物代謝体の生成は、例えば、当該上清画分を含む反応液に被験薬物を添加する操作、又は被験薬物を含む反応液に当該上清画分を添加する操作等により開始される。
反応は、第一工程により回収された上清画分(即ち、本上清画分)を含む培養液等の溶液に被験薬物を添加し、当該混合物を例えば約10℃〜約40℃で、約0.1時間〜約2日間インキュベートすることにより行うことができる。
当該反応液中の本上清画分及び被験薬物の存在量は、反応温度、反応時間、被験薬物の種類等の各種条件によって異なるが、本上清画分の存在量としては、例えば、本上清画分がヒト由来チトクロムP450産生酵母由来の上清画分の場合には、溶液1mlあたり約1010〜約1015程度のチトクロムP450分子数(酵母菌体として溶液1mlあたり約105 〜約1010程度の菌体数)、好ましくは溶液1mlあたり約1012〜約1013のチトクロムP450分子数(酵母菌体として溶液あたり約107 〜約108 の菌体数)であり、また被験薬物の存在量としては、例えば、溶液1mlあたり約0.01μmol 〜約10μmol 程度の範囲を望ましいものとして挙げることができる。尚、上記の範囲にかかることなく適宜増加させたり、減少させることができることは言うまでもない。
さらにまた、分子量として約400ダルトン〜約1000ダルトン程度である化合物を、本発明方法が効果的に利用できる被験薬物として挙げることができる。
当該反応に際しては、被験薬物を反応系内に連続又は逐次加えてもよい。尚、当該反応中は、本上清画分と被験薬物とがよく混合するように、攪拌又は振とう等の操作を用いることがよい。
反応の終点は、例えば、反応液中の被験薬物の存在量を液体クロマトグラフィー、ガスクロマトグラフィー等により追跡することにより決定することができる。
尚、反応中、反応液中に存在する薬物代謝体を分析する方法としては、監修 塩川二郎ら機器分析のてびき(2) (増補改訂版)第1刷,化学同人発行(1985年)、R. M. SILVERSTEIN ら,有機化合物のスペクトルによる同定法 第4版 第3刷,東京化学同人発行(1984年)等に記載される通常の分析方法を用いることができる。
このような本発明製造方法により製造された薬物代謝体を反応液中から回収することにより、薬物代謝体を取得すればよい。
反応液中から薬物代謝体を回収するには、触媒として微生物又は微生物由来の生体試料画分を使用して化合物を製造する方法において通常用いられる化合物の回収方法(例えば、溶媒抽出、カラムクロマトグラフィ−、分別蒸留等)により目的物を採取すればよい。例えば、まず反応液をヘキサン、ヘプタン、tert−ブチルメチルエーテル、酢酸エチル、トルエン等の有機溶媒及びそれらの混合物で抽出する。必要に応じて反応液を濾過したり、又は遠心分離等の処理により不溶物を除去した後に前記抽出操作を行えばよい。次に抽出された有機層を乾燥した後、濃縮物として目的物を回収することができる。目的物は、必要によりカラムクロマトグラフィー等によりさらに精製することができる。
本発明における「哺乳動物由来の薬物代謝酵素を産生する微生物」(即ち、本微生物)としては、具体的には例えば、ヒト由来チトクロムP450産生酵母等をあげることができる。尚、ヒト由来チトクロムP450産生酵母において、2種以上のヒト由来のチトクロムP450分子種を組み合せて使用するには、例えば、ヒト肝臓における各種チトクロムP450分子種への存在量に相当する割合で、ヒト由来のチトクロムP450分子種をおのおの単独又は混合した状態で組み合せて使用すればよい。尚、この組み合せ割合を適宜変えることにより、ヒトにおける人種差、個人差に対応することもできる。ここで、「おのおの単独又は混合した状態」とは、上記の2種以上の分子種をおのおの別々の反応系で並列的に存在させる状態又は上記の2種以上の分子種を混合し、1つの反応系で同時に存在させる状態を意味する。
人為的に作製される、哺乳動物由来の薬物代謝酵素を産生する微生物は、突然変異処理により作製される微生物であってもよいし、遺伝子工学的な手法を用いて作製させる微生物(以下、本形質転換体と記すこともある。)であってもよい。尚、本形質転換体を作製する際に用いられる哺乳動物由来の薬物代謝酵素(即ち、本酵素)のアミノ酸配列をコードする塩基配列を有する遺伝子(以下、本遺伝子と記すこともある。)は、(1)天然に存在する遺伝子の中からクローニングされたものであってもよいし、(2)天然に存在する遺伝子であっても、このクローニングされた遺伝子の塩基配列において、その一部の塩基の欠失、置換又は付加が人為的に導入されてなる遺伝子(即ち、天然に存在する遺伝子を変異処理(部分変異導入法、突然変異処理等)を行ったものであってもよいし、(3)人為的に合成されたものであってもよい。
本遺伝子は、例えば、下記のような調製方法に準じて調製すればよい。
薬物代謝能力を有する哺乳動物由来の細胞等から通常の遺伝子工学的手法に準じて染色体DNAを調製し、調製された染色体DNAを鋳型として、かつ適切なプライマーを用いてPCRを行うことにより、本酵素のアミノ酸配列をコードする塩基配列からなるDNA、本酵素のアミノ酸配列において1若しくは複数のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列をコードする塩基配列からなるDNA等を増幅して本遺伝子を調製する。
当該PCRの条件としては、例えば、4種類のdNTPを各々20μM、2種類のオリゴヌクレオチドプライマーを各々15pmol、Taqpolymeraseを1.3U及び鋳型となるcDNAライブラリーを混合した反応液を97℃(2分間)に加熱した後、97℃(0.25分間)‐50℃(0.5分間)‐72℃(1.5分間)のサイクルを10回、次いで97℃(0.25分間)‐55℃(0.5分間)‐72℃(2.5分間)のサイクルを20回行い、さらに72℃で7分間保持する条件が挙げられる。
尚、当該PCRに用いるプライマーの5’末端側には、制限酵素認識配列等を付加していてもよい。
上記のようにして増幅されたDNAを、Sambrook J., Frisch E. F., Maniatis T.著「Molecular Cloning: A Laboratory Manual 2nd edition」(1989), Cold Spring Harbor Laboratory Press、「Current Protocols in Molecular Biology」(1987), John Wiley & Sons, Inc. ISBNO-471-50338-X等に記載されている方法に準じてベクターにクローニングして組換ベクターを得ることができる。用いられるベクターとしては、具体的には、例えば、pUC119(宝酒造社製)、pTV118N(宝酒造社製)、pBluescriptII (東洋紡社製)、pCR2.1-TOPO(Invitrogen社製)、pTrc99A(Pharmacia社製)、pKK223-3(Pharmacia社製)等が挙げられる。このようにしてベクターに組み込んだ形態で本遺伝子を調製すれば、後の遺伝子工学的手法における使用において便利である。
本酵素が依存する補酵素を再生する能力を有する酵素(以下、本補酵素再生酵素遺伝子と記すこともある。)は、例えば、本補酵素再生酵素遺伝子が本酵素とは異なる酵素である場合には、下記のような調製方法に準じて調製すればよい。
本酵素が依存する補酵素を再生する能力を有する哺乳動物由来の細胞又は微生物等から通常の遺伝子工学的手法に準じて染色体DNAを調製し、調製された染色体DNAを鋳型として、かつ適切なプライマーを用いてPCRを行うことにより、本補酵素再生酵素のアミノ酸配列をコードする塩基配列からなるDNA、本補酵素再生酵素のアミノ酸配列において1若しくは複数のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列をコードする塩基配列からなるDNA等を増幅して本補酵素再生酵素遺伝子を調製する。
当該PCRの条件としては、例えば、4種類のdNTPを各々20μM、2種類のオリゴヌクレオチドプライマーを各々15pmol、Taqpolymeraseを1.3U及び鋳型となるcDNAライブラリーを混合した反応液を97℃(2分間)に加熱した後、97℃(0.25分間)‐50℃(0.5分間)‐72℃(1.5分間)のサイクルを10回、次いで97℃(0.25分間)‐55℃(0.5分間)‐72℃(2.5分間)のサイクルを20回行い、さらに72℃で7分間保持する条件が挙げられる。
尚、当該PCRに用いるプライマーの5’末端側には、制限酵素認識配列等を付加していてもよい。
上記のようにして増幅されたDNAを、Sambrook J., Frisch E. F., Maniatis T.著「Molecular Cloning: A Laboratory Manual 2nd edition」(1989), Cold Spring Harbor Laboratory Press、「Current Protocols in Molecular Biology」(1987), John Wiley & Sons, Inc. ISBNO-471-50338-X等に記載されている方法に準じてベクターにクローニングして組換ベクターを得ることができる。用いられるベクターとしては、具体的には、例えば、pUC119(宝酒造社製)、pTV118N(宝酒造社製)、pBluescriptII (東洋紡社製)、pCR2.1-TOPO(Invitrogen社製)、pTrc99A(Pharmacia社製)、pKK223-3(Pharmacia社製)等が挙げられる。このようにしてベクターに組み込んだ形態で本補酵素再生酵素遺伝子を調製すれば、後の遺伝子工学的手法における使用において便利である。具体的には、たとえば、特開昭62-19085号公報に記載される方法等により単離することができる。
本形質転換体を調製する方法としては、例えば、(1)本遺伝子と本補酵素再生酵素遺伝子との両遺伝子及び宿主微生物で機能可能なプロモーターが機能可能な形で接続されてなるDNAのような遺伝子が宿主微生物中で発現できるような単一な組換プラスミドを作製し、これを宿主微生物に導入することにより作製する方法、(2)本遺伝子と本補酵素再生酵素遺伝子との両遺伝子のうちの一方の遺伝子及び宿主微生物で機能可能なプロモーターが機能可能な形で接続されてなるDNAのような遺伝子のうちの一方の遺伝子が宿主微生物中で発現できるような組換プラスミドを上記遺伝子毎に別々に作製し、これらを宿主微生物に導入することにより作製する方法等があげられる。さらに、一方の遺伝子又は両遺伝子を宿主微生物の染色体中に導入する方法も利用することができる。
尚、上記単一な組換プラスミドを宿主微生物に導入することにより作製する方法としては、例えば、プロモーター、ターミネーター等の発現制御に関わる領域をそれぞれの両遺伝子に連結して組換プラスミドを構築したり、ラクトースオペロンのような複数のシストロンを含むオペロンとして発現させるような組換プラスミドを構築する方法等をあげることができる。
ここで上記の組換プラスミドとしては、例えば、宿主微生物中で複製可能な遺伝情報を含み、自立的に増殖できるものであって、宿主微生物からの単離・精製が容易であり、宿主微生物中で機能可能なプロモーターを有し、検出可能なマーカーを持つ発現ベクターに、本酵素をコードする遺伝子が機能可能な形で導入されたものを好ましく挙げることができる。尚、発現ベクターとしては、各種のものが市販されている。
ここで、「機能可能な形で」とは、上記の組換プラスミドを宿主微生物に導入することにより宿主微生物を形質転換させた際に、本還元遺伝子等が、プロモーターの制御下に発現するようにプロモーターと結合された状態にあることを意味する。
また発現ベクターとしては、選択マーカー遺伝子(例えば、カナマイシン耐性遺伝子、ネオマイシン耐性遺伝子等の抗生物質耐性付与遺伝子等)を含むベクターを用いると、当該ベクターが導入された形質転換体を当該選択マーカー遺伝子の表現型等を指標にして容易に選択することができる。
さらなる高発現を導くことが必要な場合には、本酵素及び/又は本補酵素再生酵素のアミノ酸配列をコードする塩基配列を有する遺伝子の上流にリボゾーム結合領域を連結してもよい。用いられるリボゾーム結合領域としては、Guarente L.ら(Cell 20, p543)や谷口ら(Genetics of Industrial Microorganisms, p202, 講談社)による報告に記載されたものを挙げることができる。
宿主微生物としては、例えば、原核生物(例えば、Escherichia属、Bacillus属、Corynebacterium属、Staphylococcus属、Streptomyces属)若しくは真核生物(例えば、Saccharomyces属、Kluyveromyces属、Aspergillus属)である微生物等を挙げることができる。例えば、本形質転換体の大量調製が容易になるという観点では、大腸菌、酵母等を好ましく挙げることができる。
本酵素及び/又は本補酵素再生酵素が宿主微生物中で発現できるようなプラスミドを宿主微生物に導入する方法としては、用いられる宿主微生物に応じて通常使われる導入方法であればよく、例えば、「Molecular Cloning: A Laboratory Manual 2nd edition」(1989), Cold Spring Harbor Laboratory Press、「Current Protocols in Molecular Biology」(1987), John Wiley & Sons, Inc. ISBNO-471-50338-X等に記載される塩化カルシウム法や、「Methods in Electroporation:Gene Pulser /E.coli Pulser System」 Bio-Rad Laboratories, (1993)等に記載されるエレクトロポレーション法、プロトプラスミド法、アルカリ金属(LiCl)法等をあげることができる。
宿主微生物において本遺伝子及び/又は本補酵素再生酵素遺伝子が宿主微生物中で発現できるようなプラスミドが導入された形質転換体を選抜するには、前記の如く、例えば、ベクターに含まれる選択マーカー遺伝子の表現型を指標にして選抜すればよい。
プラスミドが導入された宿主微生物(即ち、形質転換体)が本遺伝子及び本補酵素再生酵素遺伝子を保有していることは、例えば、「Molecular Cloning: A Laboratory Manual 2nd edition」(1989), Cold Spring Harbor Laboratory Press等に記載される通常の方法に準じて、制限酵素部位の確認、塩基配列の解析、サザンハイブリダイゼーション、ウエスタンハイブリダイゼーション等を行うことにより、確認することができる。
このような形質転換体がヒト由来チトクロムP450産生酵母の場合には、用いられるヒト由来のチトクロムP450分子種としては、例えば、P450 1A1、P450 1A2、P450 2A6、P450 2B6、P450 2C8、P450 2C9、P450 2C18、P450 2C19、P450 2D6、P4502E1及びP450 3A4をあげることができる。ヒト肝臓における各種チトクロムP450分子種の存在量は人種差、個人差があるが、しかしながらいずれのヒトの場合においても、上記の10種類のチトクロムP450分子種を用いることにより、ほとんどすべての場合を網羅することがてきる。さらに上記の11種類のチトクロムP450分子種のうち、P450 1A2、P450 2A6、P450 2C8、P450 2C9、P450 2E1及びP450 3A4が重要であり、その中でもP450 1A2、P450 2C9、P450 2E1及びP450 3A4が特に重要である。
上記のヒト由来のチトクロムP450分子種をコードする塩基配列は、例えば、特開平08-56695号公報等に開示されている。なお、これらのヒト由来のチトクロムP450分子種をコードするcDNAは、たとえば、(1)(a)該遺伝子のmRNAを含むmRNA画分を調製し、逆転写酵素を用いてcDNAを作製後、該cDNAをファージベクター及びプラスミドベクターに挿入して得たcDNAライブラリー、又は(b) 市販のヒト肝由来のcDNAライブラリー、から目的とする遺伝子を、(i) その遺伝子と相同性を有するDNA断片や、(ii)その遺伝子により産生されるタンパク質を認識する抗体、を用いるような通常の方法に従いクローニングする方法、或いは(2) 上記(1) 記載のcDNAライブラリーからPCR 法を用いてクローニングする方法、等の通常の方法により調製することができる。
前記形質転換体において利用される酵母内で発現させるためのプロモーターとしては、通常の酵母発現系において用いられるプロモーターであれば特に制限されるものではないが、たとえば酵母アルコール脱水素酵素遺伝子のプロモーター(以下、ADHプロモーターと記す。)、グリセルアルデヒド−3リン酸脱水素酵素(以下、GAPDHプロモーターと記す。)、フォスフォグリセリン酸キナーゼ(以下、PGKプロモーターと記す。)等をあげることができる。なお、ADHプロモーターは、たとえば酵母ADH1プロモーター及び同ターミネーターを保持する酵母発現ベクターpAAH5(Washington Research Fundation から入手可能、Ammerer ら、Method in Enzymology,101 part(p.192-201)から通常の遺伝子操作方法により調製することができる。
上記の酵母内で発現させるためのプロモーター及び前記のヒト由来のチトクロムP450分子種をコードする塩基配列を有する遺伝子を含む酵母内発現プラスミドは通常の遺伝子組み換え方法を用いて構築することができる。たとえば、ヒト由来のチトクロムP450分子種をコードするcDNAを特開平2-211880等に記載されるADHプロモーターとADHターミネーターを保有する酵母発現ベクターpAAH5NのHind III 部位に挿入することにより構築する方法等をあげることができる。また必要に応じてpAAH5NベクターのHindIII部位を別な制限酵素用の部位に交換したベクターを利用して構築する方法もあげられる。
上記の酵母内発現プラスミドが酵母NADPH−P450還元酵素をコードする塩基配列を有する遺伝子を含む場合も通常の遺伝子組み換え方法を用いて構築することができる。たとえば、特開平2-21180 等に記載されるADHプロモーターとターミネーターを保有する酵母発現ベクターpAAH5Nから調製したNotI断片を特開平2-211880等に記載される酵母還元酵素遺伝子を保有するプラスミドpARRNのNotI部位に挿入し、得られたプラスミドpAHRRのHind III部位にヒト由来のチトクロムP450分子種をコードするcDNAを挿入することにより構築する方法等をあげることができる。こうして得られた酵母内発現プラスミドが導入された酵母においては大量に発現した酵母NADPH−P450還元酵素によりヒト由来のチトクロムP450分子種への電子伝達効率が上昇し、より高い代謝活性が検出される。このために大量の代謝産物が短時間で得られ、精密な分析が可能になる。また、ヒト由来のチトクロムP450分子種と酵母NADPH−P450還元酵素のキメラ人工融合酵素を用いても同様の効果が得られる。
酵母内でヒト由来のチトクロムP450分子種を発現させる酵母菌体は、構築された酵母内発現プラスミドを、たとえば、プロトプラスト法、アルカリ金属(LiCl)法等の通常の方法によって酵母に導入することで得ることができる。
前記形質転換体において利用される酵母菌株としては、たとえばサッカロミセス・セレビシェー(Saccharomyces cerevisiae)等をあげることができる。好ましくはサッカロミセス・セレビシェーAH22株(ATCC38626)があげられる。
本微生物の培養は、基本的には、微生物の培養において通常使用される方法によって行うことができる。好ましくは、本微生物が容易に資化する炭素源を含有する液体培地を用いることがよい。例えば大腸菌の場合、前記の炭素源、適当な窒素源、有機塩、無機塩及びビタミン等の微量栄養物を適宜含む培地中で培養を行う。培養方法としては、試験管振盪式培養、往復式振盪培養、ジャーファーメンター(Jar Fermenter)培養、タンク培養等の液体培養のいずれの方法でもよく、好ましくは、通気撹拌培養法等の液体培養を挙げることができる。
培養温度は、本微生物が生育可能な範囲で適宜変更できるが、通常約10〜50℃、好ましくは約20〜40℃である。培地のpHは、本微生物に接触させる被験薬物によっても変わるが、例えば、約5〜8の範囲が好ましい。
炭素源としては、例えば、グルコース、デキストリン、シュークロース等の糖類、グリセロール等の糖アルコール、フマル酸、クエン酸、ピルビン酸等の有機酸、動物油、植物油及び糖蜜が挙げられる。これらの炭素源の培地への添加量は培養液に対して通常0.1〜30%(w/v)程度である。
窒素源としては、例えば、肉エキス、ペプトン、酵母エキス、麦芽エキス、大豆粉、コーン・スティープ・リカー(Corn Steep Liquor)、綿実粉、乾燥酵母、カザミノ酸等の天然有機窒素源、アミノ酸類、硝酸ナトリウム等の無機酸のアンモニウム塩、塩化アンモニウム、硫酸アンモニウム、リン酸アンモニウム等の無機酸のアンモニウム塩、フマル酸アンモニウム、クエン酸アンモニウム等の有機酸のアンモニウム塩及び尿素が挙げられる。これらのうち有機酸のアンモニウム塩、天然有機窒素源、アミノ酸類等は多くの場合には炭素源としても使用されることもあるが、本発明では便宜上炭素源としては取り扱わない。これらの窒素源の培地への添加量は培養液に対して通常0.1〜30%(w/v)程度である。
有機塩や無機塩としては、例えば、カリウム、ナトリウム、マグネシウム、鉄、マンガン、コバルト、亜鉛等の塩化物、硫酸塩、酢酸塩、炭酸塩及びリン酸塩を挙げることができる。具体的には、例えば、塩化ナトリウム、塩化カリウム、硫酸マグネシウム、硫酸第一鉄、硫酸マンガン、塩化コバルト、硫酸亜鉛、硫酸銅、酢酸ナトリウム、炭酸カルシウム、リン酸水素一カリウム及びリン酸水素二カリウムが挙げられる。これらの有機塩及び/又は無機塩の培地への添加量は培養液に対して通常0.0001〜5%(w/v)程度である。
以下に、実施例により、本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。
実施例1 (ヒト由来のチトクロムP450分子種をコードするcDNA)
市販のヒト肝臓由来のcDNAライブラリー(Clontech社)から、ヒト由来チトクロムP450遺伝子クローニング用プライマーを用いるPCR法およびヒト由来チトクロムP450遺伝子クローニング用合成リンカー等を用いることによりヒト由来のチトクロムP450分子種をコードするcDNAを得た。
実施例2 (ヒト由来のチトクロムP450 1A1の酵母内発現プラスミドの構築:p1A1、p1A1R)
プライマーを用いて、PCR法により、ヒト由来のチトクロムP450 1A1遺伝子のタンパク質コーディング領域を、約1.0kbと約0.5kbの2つの断片に分けて増幅した。得られた約1.0kbの断片は、XbaIとSacIにより切断し、pUCAベクター(pUC19 が有するEcoRI 部位をHindIII 部位に改変し、形成されたHindIII とHindIII 部位の間のクローニングサイトを下記のクローニングサイト(HindIII,XbaI,EcoRI,SpeI,SphI,PstI,SalI,BamHI,SmaI,KpnI,SacI,HindIII)に交換することにより作製されたサブクローン用のプラスミド)にサブクローンした。増幅した約0.5kb断片は、一旦pUC 19ベクターをHincIIで切断したものにサブクローン化し、SacIで切断後、1.0kb断片を持つベクターと連結した。こうして得られた1A1遺伝子のコーディング領域をHind IIIで切り出した後、ADHプロモーターおよびターミネーター領域を有する酵母発現用ベクターpAAH5N、及びその上流に酵母NADPH−P450還元酵素遺伝子を有するチトクロムP450と酵母NADPH−P450還元酵素同時発現用ベクターpAHRRのHind III部位に挿入し、ヒト由来のチトクロムP4501A1の酵母内発現プラスミドp1A1、及びヒト由来のチトクロムP4501A1と酵母NADPH−P450還元酵素の同時酵母内発現プラスミドp1A1Rを構築した。
さらに、ごく一部の塩基配列のみが異なる2種のヒト由来のチトクロムP450 1A1遺伝子断片を上記と同様に得て、2種のヒト由来のチトクロムP450 1A1の酵母内発現プラスミドp1A1 Variant1、p1A1 Variant2、及び2種のヒト由来のチトクロムP450 1A1と酵母NADPH−P450還元酵素の同時酵母内発現プラスミドp1A1R Variant1、p1A1R Variant2を構築した。
実施例3 (ヒト由来のチトクロムP450 1A2の酵母内発現プラスミドの構築:p1A2、p1A2R)
PCR法により、ヒト由来のチトクロムP450 1A2遺伝子のタンパク質コーディング領域のN末端約40bpを除く約1.5kbを増幅した。得られた約1.5kb断片は、SacIで切断し、pUC118ベクターにサブクローン化した。N末端約40bpは図4で示す合成リンカーを用い、pUC118ベクターのHind III、SacI部位にサブクローン化した。1.5kb断片を持つベクターは、Hind IIIで処理後、平滑化し、EcoRIリンカーを挿入した。これをEcoRIとSacIで切り出し、N末端40bpを含むベクターと連結した後、EcoRIで処理、平滑化し、Hind IIIリンカーを挿入、さらにHind IIIで切り出し、pAAH5N、及びpAHRRに挿入し、ヒト由来のチトクロムP450 1A2酵母内発現プラスミドp1A2、及びヒト由来のチトクロムP450 1A2酵母NADPH−P450還元酵素同時酵母内発現プラスミドp1A2Rを構築した。
実施例4 (ヒト由来のチトクロムP450 2A6の酵母内発現プラスミドの構築:p2A6、p2A6R)
PCR法により、ヒト由来のチトクロムP450 2A6遺伝子のタンパク質コーディング領域を、約0.6kbと約0.9kbの2つの断片に分けて増幅した。その結果、ごく一部の塩基配列のみが異なる2種のヒト由来のチトクロムP450 2A6遺伝子断片が得られた。得られた約0.6kbの断片は、XbaIとHincIIで切断してpUC Aベクターにサブクローン化し、さらに0.9kb断片をHincII、KpnI部位に組み込んで2つの断片を連結させた。これをHind IIIで切り出し、pAAH5N及び、pAHRRに挿入し、2種のヒト由来のチトクロムP450 2A6の酵母内発現プラスミドp2A6、p2A6 Variant1及び2種のヒト由来のチトクロムP4502A6酵母NADPH−P450還元酵素同時酵母内発現プラスミドp2A6R、p2A6R Variant1を構築した。
実施例5 (ヒト由来のチトクロムP450 2B6の酵母内発現プラスミドの構築:p2B6、p2B6R)
PCR法により、ヒト由来のチトクロムP450 2B6遺伝子全タンパク質コーディング領域を増幅した。得られた断片は、XbaIとBamHIで切断してpUC Aにサブクローン化した。これをHind IIIで部分消化し、pAAH5N及び、pAHRRベクターに挿入し、ヒト由来のチトクロムP450 2B6酵母内発現プラスミドp2B6及び、ヒト由来のチトクロムP450 2B6酵母NADPH−P450還元酵素同時酵母内発現プラスミドp2B6Rを構築した。
実施例6 (ヒト由来のチトクロムP450 2C8の酵母内発現プラスミドの構築:p2C8、p2C8R)
PCR法により、P450 2C8遺伝子全タンパク質コーディング領域を増幅した。その結果、ごく一部の塩基配列のみが異なる3種のヒト由来のチトクロムP450 2C8遺伝子が得られた。得られた断片は、XbaIで部分消化して、一旦pUC Aにサブクローン化した。これをHind IIIで切り出し、pAAH5N及び、pAHRRベクターに挿入し、3種のヒト由来のチトクロムP450 2C8酵母内発現プラスミドp2C8、p2C8 Variant1、p2C8 Variant2、及び3種のヒト由来のチトクロムP450 2C8酵母NADPH−P450還元酵素同時酵母内発現プラスミドp2C8R、p2C8R Variant1、p2C8R Variant2を構築した。
実施例7 (ヒト由来のチトクロムP450 2C9の酵母内発現プラスミドの構築:p2C9、p2C9R)
PCR法により、ヒト由来のチトクロムP450 2C9遺伝子のタンパク質コーディング領域を約0.9kbと約0.6kbの2つの断片に分けて増幅した。得られた約0.9kb断片はPstIで切断してpUC Bベクター(pUC19 が有するEcoRI 部位をHindIII 部位に改変し、形成されたHindIII とHindIII 部位の間のクローニングサイトを下記のクローニングサイト(HindIII,EcoRI,XbaI,SpeI,,SphI,PstI,SalI,BamHI,SmaI,KpnI,SacI,HindIII)に交換することにより作製されたサブクローン用のプラスミド)にサブクローン化し、さらに約0.6kb断片をXbaI、PstI部位に組み込んで、2つの断片を連結させた。このプラスミドのKpnI部位を平滑化し、XbaIリンカーを挿入したものからコーディング領域を含むXbaI断片を切り出し、pUCベクター中にADHプロモーター、ターミネーター領域を持つpUCANベクター(市販されるpUC19 ベクターが有するEcoRI 部位とHindIII部位をそれぞれNotI部位に改変し、形成されたNotI部位とNotI部位の間にpAAH5Nから調製したNotI断片を組み込んで得たベクター)のHind III部位を平滑化、XbaIリンカーを導入したpUCANXに挿入した。これをNotIで切り出し、同様にNotI処理したpAAH5N、及びpAHRRに挿入し、ヒト由来のチトクロムP450 2C9の酵母内発現プラスミドp2C9及び、ヒト由来のチトクロムP450 2C9と酵母NADPH−P450還元酵素の同時酵母内発現プラスミドp2C9Rを構築した。
実施例8 (ヒト由来のチトクロムP450 2C18の酵母内発現プラスミドの構築:p2C18、p2C18R)
PCR法により、ヒト由来のチトクロムP450 2C18遺伝子のタンパク質コーディング領域を約1.4kbと約0.9kbの2つの断片に分けて増幅した。得られた約1.4kb断片はPstIで切断してpUC Aベクターにサブクローン化し、さらに約0.9kb断片をXbaI、PstI部位に組み込んで、2つの断片を連結させた。このプラスミドをSmaIで切断後、XbaIリンカーを導入したものからXbaI断片を切り出し、pUCANXのXbaIサイトに挿入した。これをNotIで切り出し、同様にNotI処理したpAAH5N、及びpAHRRに挿入し、ヒト由来のチトクロムP450 2C18酵母内発現プラスミドp2C18及び、ヒト由来のチトクロムP450 2C18酵母NADPH−P450還元酵素同時酵母内発現プラスミドp2C18Rを構築した。
実施例9 (ヒト由来のチトクロムP450 2C19の酵母内発現プラスミドの構築:p2C19、p2C19R)
PCR法により、ヒト由来のチトクロムP450 2C19遺伝子のタンパク質コーディング領域の一部を増幅した(断片a,b,c)。他の領域については、PCR法によってヒト由来のチトクロムP450 2C9遺伝子に変異を導入しながらヒト由来のチトクロムP450 2C19遺伝子のタンパク質コーディング領域の一部を増幅(断片e,f)し、さらに残りの領域については、直接的にDNAを合成することによって2種類のリンカーを得た(断片d)。このようにして、ヒト由来のチトクロムP450 2C19遺伝子のタンパク質コーディング領域全体をカバーする断片を調製した。
つぎに、XhoIとBamHIで処理された断片aおよびBamHIとPstIで処理された断片bを同時にBlue Script(+)のXhoI、PstI部位に挿入し、さらにXbaIとXhoIで処理された断片eを得られたプラスミドのXbaI、XhoI部位に挿入することによって断片a,b,eを含むプラスミドを得た。さらに、PstIとKpnIで処理された断片cおよびリンカーである断片dを同時にBlue Script(+)のPstI、EcoRI部位に挿入後、再びPstI/EcoRIで切り出すことによって得られた断片(断片c,d含む断片)およびEcoRIで処理された断片fを同時に前記のプラスミド(断片a,b,eを含むプラスミド)のPstI、HincII部位に挿入した。このようにしてヒト由来のチトクロムP450 2C19遺伝子のタンパク質コーディング領域全体を含むプラスミドを構築した。構築されたプラスミドをHindIIIで切り出し、同様にHindIII処理したpAAH5N、及びpAHRRに挿入し、ヒト由来のチトクロムP450 2C19の酵母内発現プラスミドp2C19及び、ヒト由来のチトクロムP450 2C19と酵母NADPH−P450還元酵素の同時酵母内発現プラスミドp2C19Rを構築した。
実施例10 (ヒト由来のチトクロムP450 2D6酵母内発現プラスミドの構築:p2D6、p2D6R)
PCR法により、ヒト由来のチトクロムP450 2D6遺伝子のタンパク質コーディング領域のN末端約200bpを除くを1.3kbを約0.4kbと約0.9kbの2つの断片に分けて増幅した。得られた約0.9kb断片はKpnIで切断してpUC Aにサブクローン化した。N末端200bpは、3本の合成リンカーを用い、まずN末端側の2本のリンカーをBlue Script (+)ベクターのXbaI、PstI部位に組み込み、その後もう一本のリンカーをそのSmaI、PstI部位に組み込んだ。さらにこのプラスミドのPstI、HincII部位にPCR法で得られた約0.4kb断片を組み込み、その後NspV、XbaIで切断し、0.9kb断片を含むプラスミドに挿入してコーディング領域を連結させた。これをHind IIIで切り出し、pAAH5N、及びpAHRRベクターに挿入し、ヒト由来のチトクロムP450 2D6酵母内発現プラスミドp2D6、及びヒト由来のチトクロムP450 2D6酵母NADPH−P450還元酵素同時酵母内発現プラスミドp2D6Rを構築した。
さらに、ごく一部の塩基配列のみが異なる2種のヒト由来のチトクロムP450 2D6遺伝子断片を上記と同様に得て、2種のヒト由来のチトクロムP450 2D6酵母内発現プラスミドp2D6 Variant1、p2D6 Variant2、及び2種のヒト由来のチトクロムP450 2D6酵母NADPH−P450還元酵素同時酵母内発現プラスミドp2D6R Variant1、p2D6R Variant2を構築した。
実施例11 (ヒト由来のチトクロムP450の酵母内発現プラスミドの構築:p2E1、p2E1R)
PCR法により、ヒト由来のチトクロムP450 2E1遺伝子のタンパク質コーディング領域を約0.5kbと約1.0kbの2つの断片に分けて増幅した。得られた約0.5kb断片はEcoRI、BamHIで切断してpUC118ベクターにサブクローン化し、さらに約1.0kbの断片をBamHI、SphI部位に組み込んで2つの断片を連結させた。これをEcoRI、SphIで切断し、一旦pUC Bに挿入後、Hind IIIで切り出し、pAAH5N、及びpAHRRベクターに挿入し、ヒト由来のチトクロムP450 2E1酵母内発現プラスミドp2E1、及びヒト由来のチトクロムP450 2E1酵母NADPH−P450還元酵素同時酵母内発現プラスミドp2E1Rを構築した。
実施例12 (ヒト由来のチトクロムP450 3A4の酵母内発現プラスミドの構築:p3A4、p3A4R)
PCR法により、ヒト由来のチトクロムP450 3A4遺伝子のタンパク質コーディング領域を約0.6kbと約0.9kbの2つの断片に分けて増幅した。得られた約0.6kb断片はSacIで切断してpUC118ベクターにサブクローン化した。その後、EcoRIで切断、平滑化し、XbaIリンカーを導入したものに、XbaI、SacIで切断した0.9kb断片を組み込み、2つの断片を連結させた。このプラスミドをSphIで切断後、平滑化し、XbaIリンカーを導入したものからXbaI断片を切り出し、pUCANXのXbaI部位に挿入した。これをNotIで切り出し、同様にNotI処理したpAAH5N、及びpAHRRに挿入し、ヒト由来のチトクロムP450 3A4酵母内発現プラスミドp3A4、及びヒト由来のチトクロムP450 3A4酵母NADPH−P450還元酵素同時酵母内発現プラスミドp3A4Rを構築した。
実施例13 (人工融合酵素遺伝子を含む酵母内発現プラスミドの構築)
実施例12で構築されたプラスミドp3A4を鋳型としXbaI-XhoI 断片を得た。また、プラスミドpBFCR1 (特願平4-209226) から得た約2.1kb のXhoI-HindIII断片を市販のベクターBlue Script(+)のXhoI、HindIII 部位に挿入した後、制限酵素XhoIおよびXbaIで同時消化し、断片を得た。これら両断片を同時に、ベクターpUCAN のXbaI部位に挿入することにより得られたプラスミドを制限酵素NotIにより消化して約5.6kbの断片を得た。この断片とベクターpAAH5Nから得た約10.5kbのNotI断片を連結することにより目的とする人工融合酵素遺伝子を含む酵母内発現プラスミドpF3A4 を得た。該人工融合酵素は1156アミノ酸残基から成り、その構造はN末端からヒト肝チトクロムP450 3A4をコードする全アミノ酸配列(503残基) 、リンカーに由来する配列 (Ala-Arg-Ala)、酵母NADPH-チトクロムP450還元酵素N末端42番目からC末端と続いている。
実施例14 (形質転換酵母菌体の作製)
YPD培地(1%酵母エキス、2%ポリペプトン、2%グルコース)1.0mlにサッカロミセス・セレビシェーAH22株を植菌し、30℃で18時間振盪した後、遠心分離(5000Xg、10分間)により集菌した。得られた菌体を1.0mlの0.2M LiC1溶液に懸濁した後、再度遠心分離(5000Xg、10分間) し、得られたペレットに20μlの1M LiC1溶液、30μlの70%ポリエチレングリコール4000溶液、約1.0μgの実施例2から13によって構築された各種の酵母内発現プラスミドをおのおの単独で含む10μlの溶液を添加した。これを十分に混合した後、30℃で1時間インキュベートし、さらに140μlの滅菌水を加えて攪拌した。この溶液をSD合成培地プレート(2.0%グルコース、0.67%窒素源アミノ酸不含(Nitrogen base w/o amino acids, Difco製)、20μg/mlヒスチジン2.0%寒天)上に蒔き、30℃で3日間インキュベートし、上記の酵母内発現プラスミドを保有する形質転換酵母菌体を選抜した。このようにして、酵母内でヒト由来のP450分子種を発現させる各種の酵母菌体を作製した。
実施例15 (ヒト由来のチトクロムP450の定量)
実施例14によって作製されたヒト由来のチトクロムP450分子種を発現させる各種の酵母菌体おのおのの培養液(SD合成培地、菌体濃度約1.5×107 菌体/ml)200mlを集菌し、当該菌体を10mlの100mMリン酸カリウム緩衝液(pH7.4)に懸濁した後、遠心分離(3000×g、10分間)した。得られたペレットを新たに5.0mlの100mMリン酸カリウム緩衝液(pH7.4 )に懸濁した後、当該懸濁液を2mL分取し、これにジチオナイト5−10mgを添加し撹拌した。これを2本のキュベットに1.0mlずつ分注し、サンプル側のキュベットに一酸化炭素を吹き込んだ後、400−500nmの差スペクトルを測定し、酵母内に存在するチトクロムP450濃度を下記の計算式を用いて算出した。各種の形質転換酵母菌体における各種のヒト由来のチトクロムP450の発現量はすべて約105 −約106 分子/菌体のレベルであった。
また実施例17によって調製された酵母スフェロプラスト由来の上清画分(SF画分)内に存在するチトクロムP450濃度は、当該画分2mLを分取した後、上記と同様な方法に従って測定された。
(計算式)
P450濃度 (nmol/mL) =(Δε450-490 nm / 91)×10,000
(尚、吸光係数 = 91 cm-1・mM-1 を用いている。)
実施例16 (GAPDHプロモーターを用いる酵母内発現プラスミドの構築および酵母内発現)
GAPDHプロモーターを用いる酵母内発現プラスミドの構築法を示す。pUC19をEcoRIで切断し平滑化した後、NotIリンカーを挿入して得たプラスミドpUNのHindIII部位にpARRN(特開平2-211880に記載)から得たHindIII断片(約3.0Kb)を挿入し、pURを得た。一方、プラスミドpAAH5のXhoI部位を平滑化し、XbaIリンカーを挿入した後、制限酵素XbaIおよびSalIにより切断し、得られた断片(約2.2Kb)をpUC19のXbaI、SaII部位に挿入した。得られたプラスミドをXbaIおよびPstIにより切断して得た断片(約2.2Kb)、サッカロミセス・セレビシェーAH22株から調製した2μmDNAから切り出したXbaI−PstI断片(約1.3Kb)、およびpURをPstIで切断して得た断片、の3断片を連結することによりpURLを得た。さらに、pURLをHindIIIで切断し平滑化した後連結することによりHindIII部位を消失させた。次に、GAPDHプロモーターおよびターミネーターを含むNotI断片(約1.6Kb)〔Agric. Biol. Chem.,51,1641-1647(1987), J. Biol. Chem.,267,16497-16502(1992) に記載される方法により得る〕をpURLのNotI部位に挿入することによりpURLGを得た。pURLGのHindIII部位に、実施例1に準じて得られた各種のヒト由来のチトクロムP450分子種をコードするcDNA又は実施例2〜13に準じて得られた各種のヒト由来のチトクロムP450分子種酵母NADPH−P450還元酵素若しくは人工融合酵素をコードするDNAを挿入することにより、各種のヒト由来のチトクロムP450分子種酵母NADPH−P450還元酵素同時酵母内発現プラスミド若しくは人工融合酵素遺伝子を含む酵母内発現プラスミドを得た。このプラスミドをサッカロミセス・セレビシェーAH22株に実施例14に準じて導入したところ、各種のヒト由来のチトクロムP450分子種の産生が認められた。
実施例17 (形質転換酵母スフェロプラスト由来の上清画分を用いる薬物代謝体の製造及び当該製造における薬物代謝能力を有する微生物由来の生体試料画分の調製方法)
哺乳動物由来の薬物代謝酵素を産生する微生物として、実施例16で作製された人工融合酵素遺伝子を含む酵母内発現プラスミドが実施例14に準じて導入されてなる形質転換酵母菌体(即ち、GAPDHプロモーター制御下にある人工融合酵素遺伝子を含む形質転換酵母菌体)を用いた。
液体培地として、下記の調製方法により調製された液体培地(以下、SDH液体培地と記すこともある。)を用いた。
(SDH液体培地の調製方法)
まず、微量成分ストック溶液を調製するために、16微量成分[(1)ビオチン:1.5mg(ナカライテスク製)、(2)D-パントテン酸カルシウム:300mg(ナカライテスク製)、(3)イノシトール:1500mg(ナカライテスク製)、(4)ニコチン酸:300mg(ナカライテスク製)、(5)p-アミノ安息香酸:150mg(ナカライテスク製)、(6)ピリドキシン塩酸塩:300mg(ナカライテスク製)、(7)チアミン:300mg(ナカライテスク製)、(8)ホウ酸:375mg(和光純薬製)、(9)モリブデン酸ナトリウム:150mg(ナカライテスク製)、(10)硫酸銅(II):30mg(ナカライテスク製)、(11)ヨウ化カリウム:75mg(ナカライテスク製)、(12)塩化鉄:150mg(和光純薬製)、(13)硫酸マンガン:300mg(ナカライテスク製)、(14)硫酸亜鉛:300mg(ナカライテスク製)、(15)リボフラビン:150mg(ナカライテスク製)、(16)葉酸:1.5mg(ナカライテスク製)]を個別に計り取り、それぞれ100mLの蒸留水を加えて溶解した。溶解後、微量成分(1)〜(14)の水溶液を0.22μmのPVDFフィルターで滅菌処理し、また(15)及び(16) の水溶液をオートクレーブ(121℃,20min)で滅菌処理した。このようにして各微量成分ストック溶液を調製した。
また、微量成分混合液を調製するために、上記で作製された各微量成分ストック溶液を等量づつ混合した。
次いで、主成分溶液(1L)を調製するために、(1)硫酸アンモニウム:47g(ナカライテスク製)、(2)リン酸一カリウム:9.4g(和光純薬製)、(3)硫酸マグネシウム:4.7g(ナカライテスク製)、(4)塩化ナトリウム:0.9g(和光純薬製)、(5)塩化カルシウム溶液(60g/160mL stock solution):2.5mL(和光純薬製)、(6)微量成分混合液:20mL/1Lを計り取り、1000mLの蒸留水を加えて溶解した。溶解後、これをオートクレーブ(121℃,20min)で滅菌処理した。このようにして主成分溶液を調製した。
次に、SDH液体培地を調製するために、上記で調製された主成分溶液(1L)に、250mL の40%グルコース溶液(和光純薬製、オートクレーブ滅菌、終濃度8%)及び2.5mL の80mg/mLヒスチジン溶液(和光純薬製、オートクレーブ滅菌、終濃度160μg/mL)を添加することにより、SDH液体培地を調製した。
予め凍結保存によりストックされていた上記の形質転換酵母菌体(0.5mL)を5mLのSDH液体培地に加え、約24hr培養することにより前々培養液を得た。得られた前々培養液から2×108相当分の菌体液(約5mL)を採取し、これを250mLのSDH液体培地に加え、約24hr培養(培養条件:30℃,200rpm)することにより前培養液を得た。得られた前培養液から6.6×109相当分の菌体液(約100〜140mL)を採取し、これを1.6LのSDH液体培地に加え、MDL3L型ミニ培養ジャーで培養(培養条件:30℃、pH5.5)した。
菌体濃度が 1.5×10 菌体/mL で培養を終了し、次いで得られた培養液を遠心分離(5,000rpm、4℃、6分間)することにより、上清(培地)と沈渣(菌体)とに分離した。分離された沈渣(菌体)に、純水(170 mL)を添加して沈渣(菌体)を懸濁した後、当該懸濁液を再度遠心分離(5,000rpm、4℃、6分間)することにより、上清(培地)と沈渣(菌体)とに分離した。分離された沈渣(菌体)を、2M ソルビトール、0.1 mM ジチオスレイトール及び 0.1 mM EDTAを含む 10 mM トリス塩酸緩衝液(pH 7.5)に懸濁した後、当該懸濁液を遠心分離(5,000rpm、4℃、6分間)することにより、上清(培地)と沈渣(菌体)とに分離した。
次に当該酵母菌体に、再度同緩衝液を添加して沈渣(菌体)を懸濁した後、当該懸濁液に終濃度0.5 mg/mLとなるようにザイモリアーゼを添加し、当該混合物をウォーターバスインキュベーターを用いて緩やかに振とう(50rpm、35℃、1.5 時間)した。このようにして得られた混合物を遠心分離(5,000rpm、4℃、10分間)することにより、沈渣(スフェロプラスト)を回収した。回収されたスフェロプラストを、2M ソルビトール、0.1 mM ジチオスレイトール及び 0.1 mM EDTAを含む 10 mM トリス塩酸緩衝液(pH 7.5)に懸濁した後、当該懸濁液を遠心分離(5,000rpm、4℃、10 分間)することにより、沈渣(スフェロプラスト)を回収し、さらに当該操作を1回繰り返した。
次に当該スフェロプラストに、0.65 M ソルビトール、0.1 mM ジチオスレイトール及び0.1 mM EDTAを含む 10 mM トリス塩酸緩衝液(pH 7.5)を 90 mLを添加して懸濁した後、当該懸濁液にフェニルメタンスルホニルフルオリド(PMSF)を終濃度約 1 mMとなるように添加した。得られた懸濁物を氷浴しながら超音波破砕(50 W、2分間)した後、当該破砕物を遠心分離(9,000×g、4℃,10分間)することにより、上清を回収した。回収された上清を再度遠心分離(9,000×g、4℃、10分間)することにより、上清を酵母スフェロプラスト由来の上清画分(以下、SF画分と記すこともある。)として回収した。このようにして回収された画分を本発明試験(本発明区)で用いた。尚、当該画分に含まれるチトクロムP450の定量は、実施例15記載の方法に準じて実施された。
回収された酵母スフェロプラスト由来の上清画分(SF画分)は、10μgのチトクロムP4502C8を含むもの(CYP2C8SF:ロットNo.:040305)及び0.7μgのチトクロムP4503A4を含むもの(CYP3A4SF:ロットNo.040217)であった。
被験薬物としては、表1に示されるものを用いた。
Figure 2006034215
反応は以下のように実施された。
13mL容の2ポジションチューブに、酵母スフェロプラスト由来の上清画分890μlとNADPH産生系I液(グルコース6−リン酸 425 mg+β-NADP 105 mg/2ml 水)とNADPH産生系III液(MgCl・6H2O 50 mg/2.5 ml 水)とを90μl入れ、次いでこれに被験薬物(10mM溶液)を10μl加えた後、さらにNADPH産生系II液(グルコース6−リン酸脱水素酵素 0.25 mg/0.5 ml 水)を添加することにより反応を開始した。当該反応は37℃、1時間の反応条件下で行われた。
反応終了後、チューブを速やかに氷冷し、反応系内に塩化ナトリウムを約360mg添加し、さらに抽出用有機溶媒(メチルt-ブチルエーテル(MTBE):イソプロパノール(IPA)=3:1(v/v))3mlを添加した。得られた混合物を、ボルテックスミキサーを用いて30秒間攪拌した後、これを遠心分離(3000rpm,室温,5min)することにより、薬物代謝体を抽出した。当該抽出操作を3回繰り返した(尚、初回の抽出操作に際してのみ、塩化ナトリウムが添加された。)。回収された全ての有機溶媒を集めて、これを窒素気流下で乾固した。
得られた残渣に100μlのメタノールを加え、当該残渣を溶解した。このようにして得られた抽出物を下記の分析条件を用いてHPLCで分析した。
尚、比較区として、酵母菌体の場合には、予め凍結保存によりストックされていた上記の形質転換酵母菌体(0.5mL)を4.5mLのSDH液体培地に加え、これに10 mMの被験薬物の溶液を0.05 mLを添加(終濃度0.1 mM)することにより反応を開始した。当該反応はpH制御無しで、30℃、48時間の反応条件下で行われた。尚、当該反応を開始してから24時間目に40%グルコース溶液を1 mLを添加した。
(分析条件)
(1)ヒト由来のチトクロムP450 2C8の場合
被験薬物:パクリタキセル(Paclitaxel)
薬物代謝体:6α-ヒドロキシパクリタキセル(Hydroxypaclitaxel)、P3’−ヒドロキシパクリタキセル(P3’−Hydroxypaclitaxel)
カラム:SUMIPAX ODS A-217(4.6 mmID×250 mm,5μm)
ガードカラム:SUMIPAX Filter PG-ODS
温度:40℃、検出波長:UV235nm、流速:1.0mL/min、注入量:10μL
移動相:アイソクラティック法、水/メタノール=60/40
(2) ヒト由来のチトクロムP450 3A4の場合
被験薬物:エリスロマイシンA(Erythromycin A)
薬物代謝体:N−デメチルエリスロマイシンA(N-demethylerythromycin)
カラム:L-column ODS(4.6mm×250mm,5μm)(財)化学物質評価研究機構
ガードカラム:SUMIPAX Filter PG-ODS
温度:50℃、検出波長:UV215nm、流速:1.0mL/min、注入量:10μL
移動相:アイソクラティック法、アセトニトリル/0.2Mリン酸塩緩衝液(pH7.0)/水=35/5/60
(3)ヒト由来のチトクロムP450 3A4の場合
被験薬物:テストステロン(Testosterone)
薬物代謝体:6β−ヒドロキシテストステロン(6β-Hydroxytestosterone)
カラム:SUMIPAX ODS A-217(4.6 mmID×250 mm,5μm)
ガードカラム:SUMIPAX Filter PG-ODS
温度:40℃、検出波長:UV235nm、流速:1.0mL/min、注入量:10μL
移動相:アイソクラティック法、水/メタノール=45/55
以下に、当該試験の結果を表2に示した。尚、チトクロムP450の濃度は、1.6×107cells/mL反応液における濃度として算出された。
Figure 2006034215
表2から明らかなように、酵母スフェロプラスト由来の上清画分(本発明区)を用いた場合には、他の生体試料を用いた場合に対して、極めて良好な薬物代謝活性が得られることが判明した。
実施例18 (形質転換酵母スフェロプラスト由来の上清画分を用いる薬物代謝体の製造及び当該製造における薬物代謝能力を有する微生物由来の生体試料画分の調製方法(その2))
形質転換酵母スフェロプラスト由来の上清画分は、実施例17記載の方法と同様な方法に準じて調製されたもの(4.2μMのチトクロムP450 2C8を含むもの。チトクロム 2C8 SF:ロットNo.040624及び7.6μMのチトクロムP450 2C8を含むもの。チトクロム 2C8 SF:ロットNo.040701)を用いた。
反応は以下のように実施された。
13mL容の2ポジションチューブに、1Mリン酸カリウム緩衝液(pH7.4)100μlを入れた。尚、当該リン酸カリウム緩衝液として、pHメーターによりpHをモニターしながら、A液(1Mリン酸水素ニカリウム(K2HPO4 = 174.18)17.4 g/100 mL純水)にB液(1Mリン酸ニ水素カリウム(KH2PO4 = 136.09)6.8 g/50 mL純水)を加え、pH 7.4に調整した後、これをオートクレーブ(121℃,20分)処理することにより加圧滅菌したものを用いた。これを37℃でプレインキュベーションした後、当該チューブ内に、酵母スフェロプラスト画分由来の上清画分(本発明区)760μl(ロットNo.040624)若しくは415μl(ロットNo.040701)又は酵母ミクロソーム画分(対照区)173μlと、NADPH産生系I液(250mMのグルコース6−リン酸+25mMのβ-NADP +水)とNADPH産生系III液(50mMのMgCl・6H2O+水)とを90μl入れ、これに蒸留水を加えることにより、各反応試料の全量が1000μlになるように調整した。
次いで、これに被験薬物であるパクリタキセル(10mMのパクリタキセル溶液)を10μl加えた後、さらにNADPH産生系II液(10U/mlのグルコース6−リン酸脱水素酵素+水)を10μlを添加することにより反応を開始した。当該反応は37℃及び10分間、20分間、40分間、80分間又は120分間の反応条件下で行われた。尚、このように、反応溶液中のチトクロムP450の濃度が3.2μMとなるように反応試料は調製された。
反応終了後、チューブを速やかに氷冷し、反応系内に塩化ナトリウムを約360mg添加し、さらに抽出用有機溶媒(メチルt-ブチルエーテル(MTBE):イソプロパノール(IPA)=3:1(v/v))2mlを添加した。得られた混合物を、ボルテックスミキサーを用いて1分間攪拌した後、これを遠心分離(3000rpm,室温,5min)することにより、薬物代謝体を抽出した。当該抽出操作を2回繰り返した(尚、初回の抽出操作に際してのみ、塩化ナトリウムが添加された。)。回収された全ての有機溶媒を集めて、これを窒素気流下で乾固した。
得られた残渣に100μlのメタノールを加え、当該残渣を溶解した。当該溶解物をマイクロチューブに移し、これを遠心分離(10,000rpm、4℃、4分間)することにより、上清を回収した。このようにして得られた上清を下記の分析条件を用いてHPLCで分析した。
(分析条件)
ヒト由来のチトクロムP450 2C8の場合
被験薬物:パクリタキセル(Paclitaxel)
薬物代謝体:6α-ヒドロキシパクリタキセル(Hydroxypaclitaxel)、P3’−ヒドロキシパクリタキセル(P3’−Hydroxypaclitaxel)
カラム:SUMIPAX ODS A-217(4.6 mmID×250 mm,5μm)
ガードカラム:SUMIPAX Filter PG-ODS
温度:40℃、検出波長:UV235nm、流速:1.0mL/min、注入量:10μL
移動相:アイソクラティック法、水/メタノール=60/40
比較のために、実施例17のようにして調製された酵母スフェロプラスト由来の上清画分(本発明区に使用された試料)を超遠心分離(148,000×g,80分,4℃)し、沈渣を回収した後、当該沈渣1gに対し、冷却したミクロソーム懸濁バッファー(0.5mM EDTAを含む 0.1 Mリン酸カリウム緩衝液(pH 7.4))1mLを加え、酵母ミクロソーム画分(比較区に使用された試料)を調製した。このようにして調製された酵母ミクロソーム画分(18.46μMのチトクロムP450 2C8を含む。チトクロムP450 2C8ミクロソーム:ロットNo.8)を用いて上記のように同様な試験を実施した(対照区)。
当該試験の結果(薬物代謝体の生成率(%))を表3に示した。尚、薬物代謝体の生成率比とは、反応時間が120分間における酵母スフェロプラスト由来の上清画分、ロットNo.040624(本発明区)の薬物代謝体の生成率(%)(=代謝体ピークのエリア値÷標準基質ピークのエリア値×100)を100とした場合の各反応時間における薬物代謝体の生成率(%)を比率(%)で表したものである。
Figure 2006034215
表3から明らかなように、酵母スフェロプラスト由来の上清画分(本発明区)を用いた場合と、酵母ミクロソーム画分(対照区)を用いた場合とも、
反応10分後までは薬物代謝体の生成率が急激に増加した.それ以降は酵母スフェロプラスト由来の上清画分、ロットNo.040624及びロットNo.040701(本発明区)では、反応時間120分後まで薬物代謝体の生成率が漸増したが、酵母ミクロソーム画分、ロットNo.8(対照区)では反応時間20分後には薬物代謝体の生成率の増加速度が酵母スフェロプラスト由来の上清画分(本発明区)に比べて減少しており、反応時間40分以降では生成率がほぼ横ばいとなった。反応時間120分では、酵母スフェロプラスト由来の上清画分(本発明区)の薬物代謝体の生成率は、酵母ミクロソーム画分(対照区)に対して2倍程度になった。
このように、酵母スフェロプラスト由来の上清画分(本発明区)は、反応持続性の面から標準的な方法(酵母ミクロソーム画分(対照区))との比較により、薬物代謝体の生成率において優れていることが確認された。
因みに薬物によっては、酵母菌体を用いた場合には薬物代謝体が得られないことも認められていたが、その点において標準的な方法である酵母ミクロソーム画分を用いた場合には当該問題は発生せずに有利性が認められる。しかしながら、その一方で酵母ミクロソーム画分の調製には多大な時間とコストとを要する。このために、短い時間でかつ低いコストで調製が可能となる酵母スフェロプラスト由来の上清画分(本発明区)を用いた薬物代謝体の製造が極めて有利である。
本発明により、薬物代謝能力を有する微生物由来の生体試料画分が薬物代謝体を常に安定して製造することが可能になった。
図1は、酵母スフェロプラスト由来の上清画分(SF画分)及び酵母ミクロソーム画分によるパクリタキセル代謝体の生成率における経時変化を示す図である。図中の黒丸及び黒三角シンボルは、酵母スフェロプラスト由来の上清画分を用いた場合の薬物代謝体の生成率(%)(本発明区)を表し、図中の黒四角シンボルは、酵母ミクロソーム画分を用いた場合の薬物代謝体の生成率(%)(対照区)を表している。

Claims (4)

  1. 薬物代謝能力を有する微生物由来の生体試料画分による薬物代謝体の製造方法において、
    (1)哺乳動物由来の薬物代謝酵素を産生する微生物由来のスフェロプラストが破砕されてなる破砕物を、遠心力として5000×g〜15000×gが与られる遠心分離処理に供することによって得られる上清画分を回収する第一工程、
    (2)第一工程により回収された上清画分と、前記薬物代謝酵素の基質と成り得る被験薬物とを接触させながら、前記上清画分による前記被験薬物の代謝体を生成させる第二工程
    を有することを特徴とする方法
  2. 前記微生物由来のスフェロプラストが、ヒト由来チトクロムP450産生酵母由来のスフェロプラストであることを特徴とする請求項1記載の方法。
  3. 請求項1又は2記載の方法により製造された薬物代謝体を反応系内から回収する工程を有することを特徴とする薬物代謝体の取得方法。
  4. 反応系内から回収して得られる、請求項1又は2記載の方法により製造された薬物代謝体。
JP2004221436A 2004-07-29 2004-07-29 薬物代謝能力を有する微生物由来の生体試料画分による薬物代謝体の製造方法 Pending JP2006034215A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004221436A JP2006034215A (ja) 2004-07-29 2004-07-29 薬物代謝能力を有する微生物由来の生体試料画分による薬物代謝体の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004221436A JP2006034215A (ja) 2004-07-29 2004-07-29 薬物代謝能力を有する微生物由来の生体試料画分による薬物代謝体の製造方法

Publications (1)

Publication Number Publication Date
JP2006034215A true JP2006034215A (ja) 2006-02-09

Family

ID=35899867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004221436A Pending JP2006034215A (ja) 2004-07-29 2004-07-29 薬物代謝能力を有する微生物由来の生体試料画分による薬物代謝体の製造方法

Country Status (1)

Country Link
JP (1) JP2006034215A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8030018B2 (en) 2007-05-28 2011-10-04 Sony Corporation Method for measuring enzymatic activity in vivo by use of laser

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0856695A (ja) * 1993-07-20 1996-03-05 Sumitomo Chem Co Ltd 安全性評価方法
JP2001008681A (ja) * 1999-04-27 2001-01-16 Masayoshi Nanba チトクロームp450を安定に発現するヒト細胞株

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0856695A (ja) * 1993-07-20 1996-03-05 Sumitomo Chem Co Ltd 安全性評価方法
JP2001008681A (ja) * 1999-04-27 2001-01-16 Masayoshi Nanba チトクロームp450を安定に発現するヒト細胞株

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8030018B2 (en) 2007-05-28 2011-10-04 Sony Corporation Method for measuring enzymatic activity in vivo by use of laser

Similar Documents

Publication Publication Date Title
US9957512B2 (en) Biological methods for preparing a fatty dicarboxylic acid
Goetz et al. Continuous production of (R)‐phenylacetylcarbinol in an enzyme‐membrane reactor using a potent mutant of pyruvate decarboxylase from Zymomonas mobilis
Galanie et al. Optimization of yeast-based production of medicinal protoberberine alkaloids
CN102066552B (zh) 细胞法产生葡糖二酸
US9850493B2 (en) Biological methods for preparing a fatty dicarboxylic acid
US11884948B2 (en) Genetically modified organisms for production of polyketides
US8071357B2 (en) Yeast and method of producing L-lactic acid
Gao et al. Efficient biosynthesis of (2 S)-eriodictyol from (2 S)-naringenin in Saccharomyces cerevisiae through a combination of promoter adjustment and directed evolution
SG176970A1 (en) Biological methods for preparing adipic acid
Johanson et al. Strain engineering for stereoselective bioreduction of dicarbonyl compounds by yeast reductases
Zheng et al. Ustethylin biosynthesis implies phenethyl derivative formation in Aspergillus ustus
EP4247955A1 (en) Cannabidiolic acid synthase variants with improved activity for use in production of phytocannabinoids
Ban et al. Identification of a vitamin D3-specific hydroxylase genes through actinomycetes genome mining
JP4668176B2 (ja) トリテルペン水酸化酵素
JP2006034215A (ja) 薬物代謝能力を有する微生物由来の生体試料画分による薬物代謝体の製造方法
JP4424928B2 (ja) 微生物により製造された薬物代謝体の取得方法において効果的に利用され得る薬物・薬物代謝体の選択方法
CA2706424A1 (en) Nucleotide sequence encoding artemisinic aldehyde double bond reductase, artemisinic aldehyde double bond reductase and uses thereof
JP2006034214A (ja) 薬物代謝能力を有する微生物による薬物代謝体の製造方法
JP2008043325A (ja) 温度感受性アルコール脱水素酵素を有する酵母及び有機酸の製造方法
Hassing et al. Elimination of aromatic fusel alcohols as by-products of Saccharomyces cerevisiae strains engineered for phenylpropanoid production by 2-oxo-acid decarboxylase replacement
US20110045550A1 (en) Fission Yeast Expressing Cytochrome P450 Reductase
JP2005021104A (ja) 薬物代謝能力を有する微生物による薬物代謝体の製造方法
JP2005021106A (ja) 微生物により製造された薬物代謝体の取得方法
JP3890359B2 (ja) チトクロームP450nor遺伝子
JP2011024534A (ja) 22位水酸化酵素

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070712

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080122

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080428

A131 Notification of reasons for refusal

Effective date: 20100525

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101026