JP2006032065A - Device for regenerating secondary battery - Google Patents

Device for regenerating secondary battery Download PDF

Info

Publication number
JP2006032065A
JP2006032065A JP2004207629A JP2004207629A JP2006032065A JP 2006032065 A JP2006032065 A JP 2006032065A JP 2004207629 A JP2004207629 A JP 2004207629A JP 2004207629 A JP2004207629 A JP 2004207629A JP 2006032065 A JP2006032065 A JP 2006032065A
Authority
JP
Japan
Prior art keywords
pulse
secondary battery
circuit
voltage
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004207629A
Other languages
Japanese (ja)
Inventor
Hideo Sugimoto
英雄 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ECO JUST KK
Original Assignee
ECO JUST KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ECO JUST KK filed Critical ECO JUST KK
Priority to JP2004207629A priority Critical patent/JP2006032065A/en
Publication of JP2006032065A publication Critical patent/JP2006032065A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for regenerating different kinds of secondary batteries, which is capable of removing reactive substance on an electrode surely and easily. <P>SOLUTION: The device for regenerating secondary batteries comprises: a pulse generation circuit 1 that outputs a pulse the period and width of which is adjusted by changing resistance values of variable resistances VR1, VR2; and a MOSFET Tr1 that is driven by pulse signals output from the pulse generation circuit 1. A pulse applying circuit 2 is provided so that it applies DC pulses to a secondary battery B at the time of ON of the MOSFET Tr1. Wherein a peak voltage of DC pulses applied to the secondary battery B is adjusted by changing a resistance value of a variable resistance VR3. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、劣化した二次電池を再生するための二次電池再生装置に関するものである。   The present invention relates to a secondary battery regeneration device for regenerating a degraded secondary battery.

従来より、電車や電動フォークリフトなどの車輌向けの電力源として鉛蓄電池が使用されている。図9は鉛蓄電池Bの概略的な構成図であり、正極30に二酸化鉛(PbO)、負極31に鉛(Pb)、電解液32に希硫酸(HSO)を用いている。 Conventionally, lead-acid batteries have been used as power sources for vehicles such as trains and electric forklifts. FIG. 9 is a schematic configuration diagram of the lead storage battery B, in which lead dioxide (PbO 2 ) is used for the positive electrode 30, lead (Pb) is used for the negative electrode 31, and dilute sulfuric acid (H 2 SO 4 ) is used for the electrolytic solution 32.

このような鉛蓄電池を長期間使用すると、充放電の繰り返しによって正極30および負極31の表面にサルフェーションが生成される。このサルフェーションは硫酸鉛(PbSO)が結晶化したもので、電気伝導性およびイオン伝導性を有していないため、鉛蓄電池Bの容量の低下をもたらし、また電極板の格子の腐食も促進されるため、鉛蓄電池Bの寿命が短くなる要因となっていた。そして、数年間使用した鉛蓄電池Bは、サルフェーションの付着によって容量が著しく低下し、寿命と判断されて廃棄されていた。 When such a lead storage battery is used for a long time, sulfation is generated on the surfaces of the positive electrode 30 and the negative electrode 31 by repeated charge and discharge. This sulfation is a crystal of lead sulfate (PbSO 4 ), and since it does not have electrical conductivity and ionic conductivity, it leads to a decrease in the capacity of the lead storage battery B, and also promotes corrosion of the electrode plate lattice. Therefore, the life of the lead storage battery B has become a factor. And the lead storage battery B used for several years has a capacity | capacitance reduced remarkably by adhesion of sulfation, and it was judged that it was the lifetime, and was discarded.

ところで、近年、資源の有効活用やゴミの減量化に対する要求が高まっており、鉛蓄電池Bの電極板に付着したサルフェーションを取り除くことで、鉛蓄電池Bを再生させる装置が提供されている。この種の再生装置では、鉛蓄電池Bの電極板に予め決められた一定電圧の直流パルスを印加することによって、電極板に付着したサルフェーションを分子分解するとともに、炭素懸濁液を鉛蓄電池Bの電解液に用いて直流電圧を印加することにより鉛蓄電池の陽極を電気化学的にドーピングして活性化していた(例えば特許文献1参照)。
特開2000−40537号公報
By the way, in recent years, demands for effective use of resources and reduction of garbage are increasing, and an apparatus for regenerating the lead storage battery B by removing sulfation attached to the electrode plate of the lead storage battery B is provided. In this type of regenerator, the sulfation adhering to the electrode plate is molecularly decomposed by applying a DC pulse of a predetermined voltage to the electrode plate of the lead storage battery B, and the carbon suspension of the lead storage battery B The anode of the lead storage battery was electrochemically doped and activated by applying a DC voltage to the electrolytic solution (see, for example, Patent Document 1).
JP 2000-40537 A

しかしながら、鉛蓄電池Bの電極板に付着するサルフェーションの付き具合は電池の使用状態によって異なり、また鉛蓄電池Bの種類に応じて(容量の違いに応じて)、電極板の大きさが異なり、それによってサルフェーションの付き具合も異なるから、一定電圧の直流パルスを印加する再生装置では、全ての鉛蓄電池に対応できず、再生率が30%程度と低かった。また鉛蓄電池Bの種類の違いによってサルフェーションの付き具合が異なり、それによって印加する直流パルスの電圧値も異なってくるが、直流パルスの電圧値が固定の場合には鉛蓄電池Bの種類毎に最適な電圧値の直流パルスを印加する再生装置を用意する必要があり、再生装置の種類が増えてしまうという問題もあった。また直流パルスを印加する工程とは別に、鉛蓄電池Bの電解液に炭素懸濁液を添加して、直流電圧を印加する工程が必要になり、さらに添加する炭素懸濁液を別途用意する必要があるから、作業が面倒であった。   However, the degree of sulfation attached to the electrode plate of the lead-acid battery B varies depending on the usage state of the battery, and the size of the electrode plate varies depending on the type of the lead-acid battery B (depending on the capacity). Since the degree of sulfation varies depending on the regenerative apparatus, the regenerative apparatus that applies a DC pulse of a constant voltage cannot cope with all lead storage batteries, and the regenerative rate is as low as about 30%. In addition, the degree of sulfation varies depending on the type of lead-acid battery B, and the voltage value of the direct-current pulse to be applied varies accordingly. However, when the voltage value of the direct-current pulse is fixed, it is optimal for each type of lead-acid battery B. Therefore, it is necessary to prepare a reproducing apparatus that applies a DC pulse having a proper voltage value, and there is a problem that the types of reproducing apparatuses increase. In addition to the step of applying a direct current pulse, a step of applying a direct current voltage by adding a carbon suspension to the electrolyte of the lead storage battery B is required, and a carbon suspension to be added is additionally required. The work was troublesome.

本発明は上記問題点に鑑みて為されたものであり、その目的とするところは、種類の異なる二次電池の再生処理を確実且つ簡単に除去することが可能な二次電池再生装置を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a secondary battery regeneration device that can reliably and easily remove the regeneration process of different types of secondary batteries. There is to do.

上記目的を達成するために、本発明は、二次電池の電極間に直流パルスを印加する直流パルス印加手段を具備し、電極間に直流パルスを印加することによって電極に付着した析出物を除去する二次電池再生装置において、直流パルスの周期を調整する周期調整手段と、直流パルスのパルス幅を調整するパルス幅調整手段と、直流パルスの波高値を調整する波高値調整手段とを設けたことを特徴とする。   In order to achieve the above object, the present invention includes a DC pulse applying means for applying a DC pulse between the electrodes of the secondary battery, and removing deposits attached to the electrodes by applying the DC pulse between the electrodes. The secondary battery regeneration device includes a period adjusting unit that adjusts the cycle of the DC pulse, a pulse width adjusting unit that adjusts the pulse width of the DC pulse, and a peak value adjusting unit that adjusts the peak value of the DC pulse. It is characterized by that.

本発明によれば、再生作業を行う作業者が、二次電池の電極間に直流パルスを印加した状態で電極に付着した析出物が除去される様子を見ながら、周期調整手段とパルス幅調整手段と波高値調整手段とを用いて、直流パルスの周期とパルス幅と波高値とを調整することができるから、析出物の付着状態や二次電池の種類の違いに応じた直流パルスを二次電池の電極間に印加することができ、二次電池の再生率を高めることができる。さらに再生対象の二次電池の定格電圧や容量の違いによって、電極自体の大きさや電極に付着する析出物の量が異なるが、直流パルスの周期とパルス幅と波高値とを調整することで、種類の異なる二次電池にも容易に対応できるという効果がある。   According to the present invention, the cycle adjusting means and the pulse width adjustment are performed while the operator performing the regeneration operation removes the deposits attached to the electrodes while the DC pulse is applied between the electrodes of the secondary battery. DC pulse period, pulse width, and peak value can be adjusted by using the means and the peak value adjusting means. The voltage can be applied between the electrodes of the secondary battery, and the regeneration rate of the secondary battery can be increased. Furthermore, the size of the electrode itself and the amount of deposits adhering to the electrode differ depending on the rated voltage and capacity of the secondary battery to be regenerated, but by adjusting the period, pulse width, and peak value of the DC pulse, There is an effect that it can easily cope with different types of secondary batteries.

以下に本発明の実施の形態を図面に基づいて説明する。本実施形態の二次電池再生装置は鉛蓄電池やアルカリ蓄電池のような二次電池Bの再生に用いられるものであり、図1に全体の回路図を、図2に要部の回路図をそれぞれ示す。   Embodiments of the present invention will be described below with reference to the drawings. The secondary battery regeneration device of the present embodiment is used for regeneration of a secondary battery B such as a lead storage battery or an alkaline storage battery. FIG. 1 is an overall circuit diagram, and FIG. 2 is a principal circuit diagram. Show.

本装置は、パルス発生回路1、パルス印加回路2、電流表示回路3、および電源回路4からなる再生回路部Aと、ファン5と、ファン用電源6とを筐体の内部に収納してあり、パルス発生回路1とパルス印加回路2とで直流パルス印加手段が構成される。なお図1では再生回路部Aを1チャンネル分しか図示していないが、本装置に6個の二次電池Bを同時に接続して再生処理が行えるように、筐体の内部には6チャンネル分の再生回路部Aを収納してある。   In this apparatus, a reproduction circuit section A including a pulse generation circuit 1, a pulse application circuit 2, a current display circuit 3, and a power supply circuit 4, a fan 5, and a fan power supply 6 are housed in a housing. The pulse generating circuit 1 and the pulse applying circuit 2 constitute a DC pulse applying means. In FIG. 1, only one channel of the reproduction circuit unit A is shown. However, in order to perform the reproduction process by simultaneously connecting six secondary batteries B to the apparatus, the reproduction circuit unit A has six channels. The reproduction circuit section A is housed.

電源回路4は、パルス発生回路1に電源を供給するDC6V5Aの直流電源4aと、パルス印加回路2に電源を供給するDC24V10Aの直流電源4bとを具備し、各直流電源4a,4bは装置全体の電源スイッチSW0を介して商用電源に接続される。なお電源スイッチSW0と抵抗R0とを介してパイロットランプPLが商用電源に接続されており、電源スイッチSW0のオン/オフに応じて各系統の再生回路部Aへの電源供給がオン/オフされると、パイロットランプPLが点灯/消灯するようになっている。   The power supply circuit 4 includes a DC power supply 4a of DC6V5A that supplies power to the pulse generation circuit 1, and a DC power supply 4b of DC24V10A that supplies power to the pulse application circuit 2, and each of the DC power supplies 4a and 4b It is connected to a commercial power supply via the power switch SW0. The pilot lamp PL is connected to the commercial power supply via the power switch SW0 and the resistor R0, and the power supply to the regeneration circuit unit A of each system is turned on / off according to the on / off of the power switch SW0. The pilot lamp PL is turned on / off.

図2はパルス発生回路1の回路図であり、パルス発生部1aと、パルス幅調整部1bと、電源部1cとで構成される。   FIG. 2 is a circuit diagram of the pulse generation circuit 1, which includes a pulse generation unit 1a, a pulse width adjustment unit 1b, and a power supply unit 1c.

パルス発生部1aは、C−MOSインバータG1,G2,G3と、抵抗R1,R2と、コネクタCN1を介して接続される可変抵抗VR1と、コンデンサC1,C2とを用いた周知の無安定マルチバイブレータであり、その出力端子間(インバータG1,G2の接続点と回路のグランドとの間)にはコンデンサC3及び抵抗R3の直列回路が接続されている。ここで、パルス発生部1aから出力される出力パルスS1の周期Tは、抵抗R2及び可変抵抗VR1の合成抵抗値とコンデンサC2の静電容量値とで決定され、周期調整手段としての可変抵抗VR1の抵抗値を変化させることで周期Tを変化させることができる。図7(a)〜(d)は二次電池Bに印加される直流パルスの波形図を示し、可変抵抗VR1の抵抗値を変化させることによって、直流パルスの周期Tが41μS(同図(a))、57μS(同図(b))、33μS(同図(c))、28μS(同図(d))のように調整される。直流パルスの周波数(つまり周期T)の調整範囲は再生する二次電池Bの種類や容量に応じて適宜設定すれば良く、抵抗R2、可変抵抗VR1、およびコンデンサC2の回路定数の設定により、例えば周波数fを0Hz<f≦300kHzの範囲で調整可能とし、周期Tを3.3μS以上の範囲で調整可能とするのが好ましい。なお周波数の下限値は0よりも大きい適宜の値であり、回路定数の設定により実現可能な範囲でできるだけ小さい値に設定するのが好ましい。   The pulse generator 1a is a known astable multivibrator using C-MOS inverters G1, G2, G3, resistors R1, R2, a variable resistor VR1 connected via a connector CN1, and capacitors C1, C2. A series circuit of a capacitor C3 and a resistor R3 is connected between the output terminals (between the connection point of the inverters G1 and G2 and the circuit ground). Here, the cycle T of the output pulse S1 output from the pulse generator 1a is determined by the combined resistance value of the resistor R2 and the variable resistor VR1 and the capacitance value of the capacitor C2, and the variable resistor VR1 as the cycle adjusting means. The period T can be changed by changing the resistance value. FIGS. 7A to 7D are waveform diagrams of DC pulses applied to the secondary battery B. By changing the resistance value of the variable resistor VR1, the cycle T of the DC pulses is 41 μS (FIG. 7A). )), 57 μS (FIG. (B)), 33 μS (FIG. (C)), and 28 μS (FIG. (D)). The adjustment range of the frequency of the direct current pulse (that is, the period T) may be appropriately set according to the type and capacity of the secondary battery B to be regenerated, and by setting circuit constants of the resistor R2, the variable resistor VR1, and the capacitor C2, for example, It is preferable that the frequency f can be adjusted in the range of 0 Hz <f ≦ 300 kHz, and the period T can be adjusted in the range of 3.3 μS or more. The lower limit value of the frequency is an appropriate value larger than 0, and is preferably set to a value as small as possible within the range that can be realized by setting circuit constants.

またパルス幅調整部1bは、ワンショットマルチバイブレータIC1と、抵抗R4と、コネクタCN2を介して接続される可変抵抗VR2と、コンデンサC4と、ワンショットマルチバイブレータIC1の出力端子に接続されたC−MOSインバータG4と、入力端子間および出力端子間がそれぞれ短絡されるとともに、入力端子がインバータG4の出力端子に接続されたC−MOSインバータG5〜G8と、C−MOSインバータG5〜G8の出力端子と回路のグランドとの間に接続された抵抗R5とを備え、抵抗R5の両端間に発生するパルス信号がコネクタCN3を介してパルス印加回路2に出力される。ここで、パルス発生回路1aからコンデンサC3を介してワンショットマルチバイブレータIC1にパルス信号S1が入力されると、このパルス信号S1の立ち上がりをトリガとして、ワンショットマルチバイブレータIC1の出力端からパルス幅Wが調整されたパルス信号S2が出力される。ここで、パルス信号S2のパルス幅Wは、ワンショットマルチバイブレータIC1の調整端子に接続された抵抗R4および可変抵抗VR2の合成抵抗値とコンデンサC4の静電容量とで決定され、パルス幅調整手段としての可変抵抗VR2の抵抗値を変化させることでパルス幅Wを変化させることができる。図8(a)〜(d)は二次電池Bに印加される直流パルスの波形図であり、可変抵抗VR2の抵抗値を変化させることでパルス幅Wを1μS(同図(a))、2μS(同図(b))、4μS(同図(c))、10μS(同図(d))のように変化させることができる。なお直流パルスS2のパルス幅は、再生する二次電池Bの種類や容量に応じて適宜設定すれば良く、抵抗R4、可変抵抗VR2、およびコンデンサC4の回路定数の設定によって、パルス幅Wを例えば0<W≦15μSの範囲で調整可能とするのが好ましい。なおパルス幅Wの下限値は0よりも大きい適宜の値であり、回路定数の設定により実現可能な範囲でできるだけ小さい値に設定するのが好ましい。   The pulse width adjusting unit 1b includes a one-shot multivibrator IC1, a resistor R4, a variable resistor VR2 connected via a connector CN2, a capacitor C4, and a C- connected to the output terminal of the one-shot multivibrator IC1. The MOS inverter G4 is short-circuited between the input terminals and the output terminals, and the C-MOS inverters G5 to G8 whose input terminals are connected to the output terminals of the inverter G4, and the output terminals of the C-MOS inverters G5 to G8 And a resistor R5 connected to the circuit ground, and a pulse signal generated between both ends of the resistor R5 is output to the pulse applying circuit 2 via the connector CN3. Here, when the pulse signal S1 is input from the pulse generation circuit 1a to the one-shot multivibrator IC1 via the capacitor C3, the pulse width W from the output end of the one-shot multivibrator IC1 is triggered by the rise of the pulse signal S1. Is output as a pulse signal S2. Here, the pulse width W of the pulse signal S2 is determined by the combined resistance value of the resistor R4 and the variable resistor VR2 connected to the adjustment terminal of the one-shot multivibrator IC1 and the capacitance of the capacitor C4, and pulse width adjusting means. The pulse width W can be changed by changing the resistance value of the variable resistor VR2. FIGS. 8A to 8D are waveform diagrams of DC pulses applied to the secondary battery B. By changing the resistance value of the variable resistor VR2, the pulse width W is set to 1 μS (FIG. 8A). It can be changed to 2 μS (FIG. (B)), 4 μS (FIG. (C)), 10 μS (FIG. (D)). Note that the pulse width of the DC pulse S2 may be set as appropriate according to the type and capacity of the secondary battery B to be regenerated, and the pulse width W may be set, for example, by setting the circuit constants of the resistor R4, the variable resistor VR2, and the capacitor C4. It is preferable that adjustment is possible in the range of 0 <W ≦ 15 μS. The lower limit value of the pulse width W is an appropriate value larger than 0, and is preferably set to a value as small as possible within a range that can be realized by setting circuit constants.

また電源部1cは、コネクタCN4を介して直流電源4aから入力される直流電圧を、パルス発生部1aおよびパルス幅調整部1bの動作に必要な直流電圧に変換するDC−DCコンバータIC2を有し、DC−DCコンバータIC2の出力電圧はコネクタCN5を介して電流表示回路3に供給される。なお直流電源4aの出力端子間とコネクタCN4との間には電源スイッチSW1が電気的に接続されており、電源スイッチSW1をオン/オフすることで、電源部1cへの電源供給がオン/オフされる。またコネクタCN4の両端間には抵抗R5を介してパイロットランプPL1が接続されており、電源スイッチSW1のオン/オフに応じてパイロットランプPL1が点灯又は消灯し、電源部1cへの通電状態を表示するようになっている。   The power supply unit 1c also includes a DC-DC converter IC2 that converts a DC voltage input from the DC power supply 4a via the connector CN4 into a DC voltage necessary for the operation of the pulse generation unit 1a and the pulse width adjustment unit 1b. The output voltage of the DC-DC converter IC2 is supplied to the current display circuit 3 via the connector CN5. A power switch SW1 is electrically connected between the output terminals of the DC power supply 4a and the connector CN4. By turning on / off the power switch SW1, the power supply to the power supply unit 1c is turned on / off. Is done. Further, a pilot lamp PL1 is connected between both ends of the connector CN4 via a resistor R5, and the pilot lamp PL1 is turned on or off according to the on / off of the power switch SW1, and the energization state to the power supply unit 1c is displayed. It is supposed to be.

一方、パルス印加回路2は、直流電源4bの正極に入力端子が接続されるとともに、グランド端子が抵抗R7を介して直流電源4bの負極に接続された3端子レギュレータIC3と、抵抗R7の両端間に並列接続された可変抵抗VR3と、3端子レギュレータIC3の出力端子とグランド端子との間に接続された抵抗R6と、3端子レギュレータIC3の出力端子に電流検出用の抵抗R8を介して一端が接続された電界効果トランジスタTrとを備え、電界効果トランジスタTr1の他端側に二次電池Bの正極が接続される端子P1を電気的に接続するとともに、直流電源4bの負極にヒューズFとダイオードD1とを介して二次電池Bの負極が接続される端子P2を電気的に接続してある。ここで、電源スイッチSW0がオンになると、電源スイッチSW0を介して直流電源4bに商用電源が供給され、直流電源4bからパルス印加回路2に電源が供給される。そして、パルス発生回路1のパルス幅調整部1bからトランジスタTr1のゲートにパルス信号S2が入力されると、トランジスタTr1がオン/オフし、トランジスタTr1のオン時に3端子レギュレータIC3→抵抗R8→トランジスタTr1→端子P1→二次電池B→端子P2→ヒューズF→3端子レギュレータIC3の経路でパルス信号S2と周期およびパルス幅が等しい直流パルスS3が印加される。なお直流パルスS3の波高値(電流および電圧)は、3端子レギュレータIC3のグランド端子と回路のグランドとの間に接続された抵抗R7及び可変抵抗VR3の合成抵抗によって決定され、波高値調整手段としての可変抵抗VR3の抵抗値を変化させることで直流パルスS3の波高値(電流および電圧)を変化させることができる。図7(a)(c)(d)は二次電池Bに印加される直流パルスの波形図であり、可変抵抗VR3の抵抗値を変化させることによって直流パルスのピーク電圧Aを150mV(同図(a))、115mV(同図(c))、170mV(同図(d))のように変化させることができる。なお直流パルスS3の波高値Aは、再生する二次電池Bの種類や容量に応じて適宜設定すれば良く、抵抗R7および可変抵抗VR3の回路定数の設定によって、例えば直流パルスのピーク電圧Aを0<A≦2Vの範囲で調整可能とし、ピーク電流を0〜3Aの範囲で調整可能とするのが好ましい。なお直流パルスのピーク電圧Aの下限値およびピーク電流の下限値はそれぞれ0よりも大きい適宜の値であり、回路定数の設定により実現可能な範囲でできるだけ小さい値に設定するのが好ましい。   On the other hand, the pulse application circuit 2 includes a three-terminal regulator IC3 having an input terminal connected to the positive electrode of the DC power supply 4b and a ground terminal connected to the negative electrode of the DC power supply 4b via the resistor R7, and between both ends of the resistor R7. Are connected in parallel to each other, a resistor R6 connected between the output terminal of the three-terminal regulator IC3 and the ground terminal, and one end of the output terminal of the three-terminal regulator IC3 via a resistor R8 for current detection. A terminal P1 to which the positive electrode of the secondary battery B is connected to the other end side of the field effect transistor Tr1, and a fuse F and a diode to the negative electrode of the DC power supply 4b. A terminal P2 to which the negative electrode of the secondary battery B is connected is electrically connected via D1. Here, when the power switch SW0 is turned on, commercial power is supplied to the DC power supply 4b via the power switch SW0, and power is supplied from the DC power supply 4b to the pulse applying circuit 2. When the pulse signal S2 is input to the gate of the transistor Tr1 from the pulse width adjusting unit 1b of the pulse generation circuit 1, the transistor Tr1 is turned on / off. When the transistor Tr1 is turned on, the three-terminal regulator IC3 → the resistor R8 → the transistor Tr1 A DC pulse S3 having a period and a pulse width equal to those of the pulse signal S2 is applied through a path of terminal P1, secondary battery B, terminal P2, fuse F, and three-terminal regulator IC3. The peak value (current and voltage) of the DC pulse S3 is determined by the combined resistance of the resistor R7 and the variable resistor VR3 connected between the ground terminal of the three-terminal regulator IC3 and the circuit ground, and serves as a peak value adjusting means. By changing the resistance value of the variable resistor VR3, the peak value (current and voltage) of the DC pulse S3 can be changed. FIGS. 7A, 7C and 7D are waveform diagrams of DC pulses applied to the secondary battery B, and the peak voltage A of the DC pulse is changed to 150 mV by changing the resistance value of the variable resistor VR3. (A)), 115 mV (FIG. (C)), 170 mV (FIG. (D)). The peak value A of the DC pulse S3 may be appropriately set according to the type and capacity of the secondary battery B to be reproduced. For example, the peak voltage A of the DC pulse is set by setting the circuit constants of the resistor R7 and the variable resistor VR3. It is preferable that adjustment is possible in the range of 0 <A ≦ 2V, and the peak current is adjustable in the range of 0 to 3A. Note that the lower limit value of the peak voltage A and the lower limit value of the peak current of the DC pulse are appropriate values larger than 0, and are preferably set as small as possible within a range that can be realized by setting circuit constants.

また電流表示回路3は、3端子レギュレータIC3の出力端子とトランジスタTr1との間に接続された電流検出用の抵抗R8と、この抵抗R8の両端間にダイオードD2を介して接続された調整用の可変抵抗VR4とコンデンサC5からなる並列回路と、可変抵抗VR4の一端側と中間端子との間の電圧から直流パルスS3の電流値を検出して、LED或いはLCDからなる表示部に表示させるパネルメータ15とを備え、パネルメータ15はパネル発生回路1の電源部1cから電源供給を受けて動作する。   The current display circuit 3 includes a current detection resistor R8 connected between the output terminal of the three-terminal regulator IC3 and the transistor Tr1, and an adjustment resistor connected between both ends of the resistor R8 via a diode D2. A panel meter that detects the current value of the direct current pulse S3 from the voltage between the one end side and the intermediate terminal of the variable resistor VR4, and displays it on the display unit composed of an LED or an LCD, and a parallel circuit composed of the variable resistor VR4 and the capacitor C5. 15, the panel meter 15 operates by receiving power supply from the power supply unit 1 c of the panel generation circuit 1.

次に図3及び図4を参照して二次電池再生装置の構造を説明する。二次電池再生装置の筐体10は横長の直方体状であって、この筐体10の内部には上述の再生回路部Aが複数組(例えば6組分)収納されるとともに、ファン5と、ファン用電源6などが収納されている。そして筐体10の前面パネルには、各組の再生回路部Aに対応してトグルスイッチからなる電源スイッチSW1の摘み11と、回転型の可変抵抗器からなる可変抵抗VR1,VR2,VR3の回転子に被せた回転摘み12,13,14と、電流値を表示するパネルメータ15の表示部とが、左右に並べて6組分配置されている。また筐体10の背面には、各組の再生回路部Aに対応して出力端子P1,P2とヒューズFとが左右に並べて6組分配置されている。また筐体10の側面には把手16が取着されている。尚、図1において点線FPで囲んだ部品が前面パネルに配置される部品を示し、点線RPで囲んだ部品が背面パネルに配置される部品を示している。また、図3及び図4ではパイロットランプPL、PL1を省略して図示しているが、パイロットランプPL,PL1は外部より目視可能な位置に配置してある。   Next, the structure of the secondary battery regeneration device will be described with reference to FIGS. The housing 10 of the secondary battery regenerator has a horizontally long rectangular parallelepiped shape, and a plurality of the regenerative circuit portions A (for example, 6 sets) are housed in the housing 10, and the fan 5, A fan power source 6 and the like are accommodated. On the front panel of the housing 10, the knob 11 of the power switch SW1 made of a toggle switch corresponding to each set of the reproduction circuit unit A and the rotation of the variable resistors VR1, VR2 and VR3 made of rotary variable resistors are provided. The rotary knobs 12, 13, and 14 that are placed on the child and the display unit of the panel meter 15 that displays the current value are arranged in six sets side by side. On the back surface of the housing 10, output terminals P1 and P2 and fuses F are arranged side by side in correspondence with each set of the reproduction circuit portion A for six sets. A handle 16 is attached to the side surface of the housing 10. In FIG. 1, a part surrounded by a dotted line FP indicates a part disposed on the front panel, and a part surrounded by a dotted line RP indicates a part disposed on the back panel. 3 and 4, the pilot lamps PL and PL1 are omitted, but the pilot lamps PL and PL1 are arranged at positions that can be seen from the outside.

また図5は二次電池再生装置を収容するラック20の外観斜視図を示しており、ラック20には3段の棚板21が設けられ、各棚板21に上述の二次電池再生装置や、バッテリBを充電する後述の充電装置(図示せず)が載せられる。またラック20の脚部22にはキャスター23が取り付けられており、キャスター23が転がることによって、ラック20を所望の場所まで移動させて作業を行えるようになっている。   FIG. 5 is an external perspective view of the rack 20 that houses the secondary battery regeneration device. The rack 20 is provided with three-level shelf plates 21, and each of the shelf plates 21 has the above-described secondary battery regeneration device and A charging device (not shown) to be described later for charging the battery B is mounted. A caster 23 is attached to the leg portion 22 of the rack 20, and the work can be performed by moving the rack 20 to a desired location by rolling the caster 23.

次にこの二次電池再生装置を用いて二次電池を再生する手順について図6を参照して説明する。容量の低下した二次電池が持ち込まれると、先ず外観検査を行って機械的な損傷の有無を検査するとともに、使用中に付着した塵埃の清掃処理を行う(ステップS10)。次に、二次電池の現在の状態をチェックするために、充電装置により二次電池を充電して(ステップS11)、各セル毎の比重、電圧、放電可能時間、CCAなどの検査を行う。そして、これらの検査結果をもとに、作業者はどの程度の周期、パルス幅、ピーク電圧の直流パルスを印加するべきかを判断し、二次電池再生装置の出力端子P1,P2に二次電池Bを接続し、筐体10前面の回転摘み12,13,14を用いて直流パルスの周期、パルス幅、ピーク電圧を所望の値に調整した後、直流パルスを印加して電極に付着したサルフェーションを分子分解させる(ステップS12)。その後、二次電池Bを約60分間静置して(ステップS13)、放電させることで(ステップS14)、放電時間率に対する電圧値を測定する(ステップS15)。さらに、二次電池Bを充電して、その時の電圧値と比重とを測定し(ステップS16)、これらの結果をもとに良否判定を行う。そして、結果が良好であれば、二次電池Bの清掃や各種の性能検査を行い(ステップS17)、検査成績表を添付して納品する(ステップS18)。なお、ステップS16の判定結果が不良であれば、ステップS12に戻って上述の処理を繰り返し行い、再度サルフェーションの除去処理を行う。   Next, a procedure for regenerating a secondary battery using the secondary battery regeneration device will be described with reference to FIG. When a secondary battery having a reduced capacity is brought in, first, an appearance inspection is performed to inspect for mechanical damage, and dust attached during use is cleaned (step S10). Next, in order to check the current state of the secondary battery, the secondary battery is charged by the charging device (step S11), and the specific gravity, voltage, dischargeable time, CCA, etc. for each cell are inspected. Then, based on these inspection results, the operator determines what period, pulse width, and peak voltage of the direct current pulse should be applied. After connecting the battery B and adjusting the period, pulse width, and peak voltage of the DC pulse to desired values using the rotary knobs 12, 13, and 14 on the front surface of the casing 10, the DC pulse was applied and adhered to the electrode. The sulfation is molecularly decomposed (step S12). Thereafter, the secondary battery B is allowed to stand for about 60 minutes (step S13) and discharged (step S14), thereby measuring the voltage value with respect to the discharge time rate (step S15). Furthermore, the secondary battery B is charged, the voltage value and specific gravity at that time are measured (step S16), and pass / fail judgment is performed based on these results. If the result is good, the secondary battery B is cleaned and various performance inspections are performed (step S17), and an inspection result table is attached and delivered (step S18). If the determination result in step S16 is bad, the process returns to step S12, the above process is repeated, and the sulfation removal process is performed again.

以上のような方法で二次電池Bの再生処理を行うのであるが、二次電池Bの容量の違いや使用状況の違いによって、サルフェーションの付着状況が異なるため、個々の二次電池B毎に直流パルスの周期とパルス幅と波高値を変化させることが好ましく、本実施形態では周期調整手段とパルス幅調整手段と波高値調整手段とを設けることによって直流パルスの周期とパルス幅と波高値(ピーク電圧、ピーク電流)を所望の値に調整可能とし、個々の二次電池Bに対応できるようにしている。   Although the regeneration process of the secondary battery B is performed by the method as described above, the adherence state of the sulfation differs depending on the difference in capacity and usage of the secondary battery B, so that each secondary battery B is different. The period, pulse width, and peak value of the DC pulse are preferably changed. In this embodiment, the period, pulse width, and peak value of the DC pulse are provided by providing the period adjusting means, the pulse width adjusting means, and the peak value adjusting means. (Peak voltage, peak current) can be adjusted to desired values so that each secondary battery B can be handled.

なお、直流パルスの周期、パルス幅、およびピーク電圧の調整範囲は、二次電池Bの容量によってある程度調整範囲が定まり、例えば12Vの鉛蓄電池の場合、容量が26Aの小型のものでは直流パルスの電圧を350mV〜450mV、周期を20kHz〜22kHz、パルス幅を10μS前後の値とするのが好ましく、容量が85Aの中型のものでは直流パルスの電圧を450mV〜500mV、周期を20kHz〜25kHz、パルス幅を10μS前後の値とするのが好ましく、さらに容量が155Aの大型のものでは直流パルスの電圧を450mV〜500mV、周期を20kHz〜25kHz、パルス幅を10μS前後の値とするのが好ましい。また2Vや6Vの鉛蓄電池の場合は、直流パルスの電圧を400mV〜700mV、周期を20kHz〜25kHz、パルス幅を10μS前後の範囲で調整すれば良く、本実施形態の二次電池再生装置を用いれば、電圧や容量の違う二次電池の再生処理を1台の二次電池再生装置で行うことが可能である。   The adjustment range of the cycle, pulse width, and peak voltage of the DC pulse is determined to some extent by the capacity of the secondary battery B. For example, in the case of a 12V lead-acid battery, the DC pulse has a small capacity of 26A. Preferably, the voltage is 350 mV to 450 mV, the period is 20 kHz to 22 kHz, and the pulse width is about 10 μS. In the case of a medium type with a capacity of 85 A, the DC pulse voltage is 450 mV to 500 mV, the period is 20 kHz to 25 kHz, and the pulse width. Is preferably set to a value of around 10 μS. Further, in the case of a large-sized one having a capacity of 155 A, the DC pulse voltage is preferably set to 450 mV to 500 mV, the period is set to 20 kHz to 25 kHz, and the pulse width is set to a value of about 10 μS. In the case of a 2V or 6V lead-acid battery, the voltage of the DC pulse may be adjusted in the range of 400 mV to 700 mV, the period of 20 kHz to 25 kHz, and the pulse width in the range of about 10 μS. The secondary battery regeneration device of this embodiment is used. For example, it is possible to perform regeneration processing of secondary batteries having different voltages and capacities with a single secondary battery regeneration device.

なお、上記の説明では本実施形態を用いた鉛蓄電池の再生処理について説明を行ったが、本実施形態の二次電池再生装置を用いれば、電解液にアルカリ溶液を用いる二次電池(アルカリ蓄電池)の再生処理を行うことも可能である。例えば負極活物質にFeを、正極活物質にNiOOHをそれぞれ用い、電解液にKOH水溶液を用いた鉄−ニッケル蓄電池の場合、長期間の使用によって電極にFe(OH)及びNi(OH)がそれぞれ析出して、蓄電池の容量が低下するのであるが、このアルカリ蓄電池を再生するために上記の二次電池再生装置を用いて鉛蓄電池の場合と同程度の大電流を流して充電したとしても、短時間で自然放電してしまい、またアルカリ蓄電池が熱を持つために電解液が蒸発してしまうという問題があった。そこで、本発明者らは、充電時にアルカリ蓄電池が熱を持たないように、上記の二次電池再生装置を用いて微電流(約3A)を20時間程度の長時間印加すれば良いことを発見し、上述と同様に直流パルスの周期、パルス幅、およびピーク電圧を適宜調整することで、1台の二次電池再生装置により鉛蓄電池とアルカリ蓄電池の両方の再生処理を行うことができる。 In the above description, the regeneration process of the lead storage battery using the present embodiment has been described. However, if the secondary battery regeneration apparatus of the present embodiment is used, a secondary battery (alkaline storage battery) that uses an alkaline solution as an electrolyte is used. It is also possible to perform the reproduction process. For example, in the case of an iron-nickel storage battery using Fe as the negative electrode active material, NiOOH as the positive electrode active material, and KOH aqueous solution as the electrolyte, Fe (OH) 2 and Ni (OH) 2 are used for the electrode after long-term use. However, the capacity of the storage battery is reduced, and the secondary battery regeneration device is used to regenerate the alkaline storage battery. However, there is a problem that the battery spontaneously discharges in a short time and the electrolyte solution evaporates because the alkaline storage battery has heat. Therefore, the present inventors have found that it is sufficient to apply a small current (about 3 A) for a long time of about 20 hours using the above secondary battery regeneration device so that the alkaline storage battery does not have heat during charging. In the same manner as described above, by appropriately adjusting the cycle, pulse width, and peak voltage of the DC pulse, it is possible to perform regeneration processing of both the lead storage battery and the alkaline storage battery by one secondary battery regeneration device.

本実施形態の二次電池再生装置の全体回路図である。It is a whole circuit diagram of the rechargeable battery reproducing device of this embodiment. 同上の要部回路図である。It is a principal part circuit diagram same as the above. 同上の外観斜視図である。It is an external appearance perspective view same as the above. 同上を示し、(a)は正面図、(b)は背面図である。The same as above, (a) is a front view, (b) is a rear view. 同上を載せるラックの外観斜視図である。It is an external appearance perspective view of the rack which mounts the same. 同上を用いた再生処理方法を説明するフロー図である。It is a flowchart explaining the reproduction | regeneration processing method using the same as the above. (a)〜(d)は直流パルスの波形図である。(A)-(d) is a wave form diagram of a DC pulse. (a)〜(d)は直流パルスの波形図である。(A)-(d) is a wave form diagram of a DC pulse. 鉛蓄電池の概略構成図である。It is a schematic block diagram of a lead storage battery.

符号の説明Explanation of symbols

1 パルス発生回路
2 パルス印加回路
Tr1 電界効果トランジスタ
VR1 可変抵抗
VR2 可変抵抗
VR3 可変抵抗
B 二次電池
DESCRIPTION OF SYMBOLS 1 Pulse generation circuit 2 Pulse application circuit Tr1 Field effect transistor VR1 Variable resistance VR2 Variable resistance VR3 Variable resistance B Secondary battery

Claims (1)

二次電池の電極間に直流パルスを印加する直流パルス印加手段を具備し、前記電極間に直流パルスを印加することによって前記電極に付着した析出物を除去する二次電池再生装置において、前記直流パルスの周期を調整する周期調整手段と、前記直流パルスのパルス幅を調整するパルス幅調整手段と、前記直流パルスの波高値を調整する波高値調整手段とを設けたことを特徴とする二次電池再生装置。
In a secondary battery regeneration apparatus, comprising a DC pulse applying means for applying a DC pulse between electrodes of a secondary battery, and removing deposits attached to the electrodes by applying a DC pulse between the electrodes. A secondary comprising: a period adjusting means for adjusting a pulse period; a pulse width adjusting means for adjusting a pulse width of the DC pulse; and a peak value adjusting means for adjusting a peak value of the DC pulse. Battery regenerator.
JP2004207629A 2004-07-14 2004-07-14 Device for regenerating secondary battery Pending JP2006032065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004207629A JP2006032065A (en) 2004-07-14 2004-07-14 Device for regenerating secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004207629A JP2006032065A (en) 2004-07-14 2004-07-14 Device for regenerating secondary battery

Publications (1)

Publication Number Publication Date
JP2006032065A true JP2006032065A (en) 2006-02-02

Family

ID=35898170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004207629A Pending JP2006032065A (en) 2004-07-14 2004-07-14 Device for regenerating secondary battery

Country Status (1)

Country Link
JP (1) JP2006032065A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008033054A2 (en) * 2006-08-08 2008-03-20 Konstantin Ivanovich Tyukhtin Method and device for a storage battery recovery
DE102010024101A1 (en) 2009-08-07 2011-03-24 Gennady Dmitrevic Platonov Method for reducing an accumulator battery and device for carrying it out
JP2012515414A (en) * 2009-01-12 2012-07-05 マルー エムシーエス コー リミテッド Storage battery regenerator
JP2018022577A (en) * 2016-08-01 2018-02-08 トヨタ自動車株式会社 Method for reproducing nickel-hydrogen battery
CN110767953A (en) * 2018-07-27 2020-02-07 Bgt材料有限公司 Method and apparatus for regenerating battery containing fluid electrolyte
JP2020038798A (en) * 2018-09-04 2020-03-12 ビージーティー マテリアルズ リミテッドBGT Materials Limited Reproduction method for battery containing fluid electrolyte, and reproduction device
WO2020065773A1 (en) * 2018-09-26 2020-04-02 アレクJapan株式会社 Lead battery reconditioning device and lead battery reconditioning method
CN113258159A (en) * 2021-05-06 2021-08-13 哈尔滨工程大学 Device and method for regenerating lithium ion battery electrode material
JP6994208B1 (en) 2020-11-11 2022-01-14 武 鍔田 Lead-acid battery regeneration device
JP7325790B1 (en) * 2022-02-07 2023-08-15 株式会社アルファブライト Lead sulfate coating removal apparatus, method and system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003502994A (en) * 1999-06-15 2003-01-21 ホルギア アクティボラグ Method and apparatus for a battery
JP2004079374A (en) * 2002-08-20 2004-03-11 Osurogureen Kk Battery regeneration method and regeneration apparatus
WO2004030137A1 (en) * 2002-09-24 2004-04-08 Eruma Co., Ltd. Device for removing lead sulfate film formed in lead-acid battery
JP2004134139A (en) * 2002-10-08 2004-04-30 Takeji Nishida Recycling treatment method of storage battery
JP2004516615A (en) * 2000-12-13 2004-06-03 バランド,ダグ,アリルド Method and apparatus for withstanding sulphation in an electric storage battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003502994A (en) * 1999-06-15 2003-01-21 ホルギア アクティボラグ Method and apparatus for a battery
JP2004516615A (en) * 2000-12-13 2004-06-03 バランド,ダグ,アリルド Method and apparatus for withstanding sulphation in an electric storage battery
JP2004079374A (en) * 2002-08-20 2004-03-11 Osurogureen Kk Battery regeneration method and regeneration apparatus
WO2004030137A1 (en) * 2002-09-24 2004-04-08 Eruma Co., Ltd. Device for removing lead sulfate film formed in lead-acid battery
JP2004134139A (en) * 2002-10-08 2004-04-30 Takeji Nishida Recycling treatment method of storage battery

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008033054A2 (en) * 2006-08-08 2008-03-20 Konstantin Ivanovich Tyukhtin Method and device for a storage battery recovery
WO2008033054A3 (en) * 2006-08-08 2008-07-24 Konstantin Ivanovich Tyukhtin Method and device for a storage battery recovery
JP2012515414A (en) * 2009-01-12 2012-07-05 マルー エムシーエス コー リミテッド Storage battery regenerator
DE102010024101A1 (en) 2009-08-07 2011-03-24 Gennady Dmitrevic Platonov Method for reducing an accumulator battery and device for carrying it out
US10819131B2 (en) 2016-08-01 2020-10-27 Toyota Jidosha Kabushiki Kaisha Regeneration method of nickel-hydrogen battery
JP2018022577A (en) * 2016-08-01 2018-02-08 トヨタ自動車株式会社 Method for reproducing nickel-hydrogen battery
CN110767953A (en) * 2018-07-27 2020-02-07 Bgt材料有限公司 Method and apparatus for regenerating battery containing fluid electrolyte
JP2020038798A (en) * 2018-09-04 2020-03-12 ビージーティー マテリアルズ リミテッドBGT Materials Limited Reproduction method for battery containing fluid electrolyte, and reproduction device
WO2020065773A1 (en) * 2018-09-26 2020-04-02 アレクJapan株式会社 Lead battery reconditioning device and lead battery reconditioning method
JPWO2020065773A1 (en) * 2018-09-26 2021-09-02 アレクJapan株式会社 Lead battery regeneration device and lead battery regeneration method
JP6994208B1 (en) 2020-11-11 2022-01-14 武 鍔田 Lead-acid battery regeneration device
WO2022102519A1 (en) * 2020-11-11 2022-05-19 株式会社One Step Lead-acid battery regeneration device
JP2022077467A (en) * 2020-11-11 2022-05-23 武 鍔田 Lead storage battery regeneration device
CN113258159A (en) * 2021-05-06 2021-08-13 哈尔滨工程大学 Device and method for regenerating lithium ion battery electrode material
CN113258159B (en) * 2021-05-06 2022-07-15 哈尔滨工程大学 Device and method for regenerating lithium ion battery electrode material
JP7325790B1 (en) * 2022-02-07 2023-08-15 株式会社アルファブライト Lead sulfate coating removal apparatus, method and system

Similar Documents

Publication Publication Date Title
JP3598873B2 (en) Secondary battery state determination method and state determination device, and secondary battery regeneration method
JP3510795B2 (en) How to recycle lead-acid batteries
JP5407893B2 (en) Secondary battery system and hybrid vehicle
US20100301800A1 (en) Multi-purpose battery jump starter and reconditioner
US20090243547A1 (en) Battery Charging Apparatus and Method
JP3974644B2 (en) Lead sulfate film removal method for lead battery electrode, lead sulfate film removal pulse generator
JP2006032065A (en) Device for regenerating secondary battery
JP3755043B2 (en) Chargeable / dischargeable power supply
CN103490114A (en) Storage battery charging regenerator
US5777453A (en) Method and apparatus for recharging batteries using a step shaped voltage pulse
KR101003881B1 (en) Battery recovery system
US5932991A (en) System and method for battery charging with acoustic excitation
JP3723795B2 (en) Recycling method for lead acid battery
JP2018021837A (en) Device and method for determining deterioration of secondary battery, and device for controlling secondary battery
JP2004079374A (en) Battery regeneration method and regeneration apparatus
KR101004762B1 (en) A bettery restoration unit and restoration method
KR20120039423A (en) Apparatus and method for recycling and charging simultaneously a battery
JPH09117075A (en) Charging method for lithium ion secondary battery
JP2009048870A (en) Secondary battery regeneration method
KR101499816B1 (en) Multi-pulse power charge device to lead storage battery enhancement
JPH1198710A (en) Battery charging device
JP3221455U (en) Charging device for secondary battery
KR101529551B1 (en) Battery protecting device for replaceable secondary battery
JP3484609B1 (en) Cordless equipment system
KR20110094642A (en) Battery regenerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110308