JP2018021837A - Device and method for determining deterioration of secondary battery, and device for controlling secondary battery - Google Patents

Device and method for determining deterioration of secondary battery, and device for controlling secondary battery Download PDF

Info

Publication number
JP2018021837A
JP2018021837A JP2016153525A JP2016153525A JP2018021837A JP 2018021837 A JP2018021837 A JP 2018021837A JP 2016153525 A JP2016153525 A JP 2016153525A JP 2016153525 A JP2016153525 A JP 2016153525A JP 2018021837 A JP2018021837 A JP 2018021837A
Authority
JP
Japan
Prior art keywords
deterioration
secondary battery
amount
battery
alkaline secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016153525A
Other languages
Japanese (ja)
Other versions
JP6647986B2 (en
Inventor
大輔 木庭
Daisuke Kiba
大輔 木庭
康司 中桐
Yasushi Nakagiri
康司 中桐
保 福間
Tamotsu Fukuma
保 福間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primearth EV Energy Co Ltd
Original Assignee
Primearth EV Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Primearth EV Energy Co Ltd filed Critical Primearth EV Energy Co Ltd
Priority to JP2016153525A priority Critical patent/JP6647986B2/en
Publication of JP2018021837A publication Critical patent/JP2018021837A/en
Application granted granted Critical
Publication of JP6647986B2 publication Critical patent/JP6647986B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: a device for determining the deterioration of a secondary battery, capable of determining the deterioration of an alkaline secondary battery even when non-quantitative charge and discharge are repeated; a method for determining the deterioration of the secondary battery used for the device; and a device for controlling the secondary battery used for the device.SOLUTION: A determination device 30 for determining the deterioration of a battery 10 repeating non-quantitative charge and discharge comprises: a dSOC calculation part 44 for calculating a dSOC being the variation of SOC for each increase or decrease about increase or decrease generated in the SOC of the battery 10; a deterioration amount calculation part 45 for calculating the amount of deterioration of the battery 10 on the basis of the dSOC and information showing the amount of deterioration of the battery 10 corresponding to the dSOC; and a deterioration determining output part 46 for accumulating the calculated amount of deterioration and determining the deterioration of the battery 10 on the basis of the accumulated amount of deterioration. Information showing that the amount of deterioration of the battery 10 is larger as the dSOC is larger is set as the information showing the amount of deterioration of the battery 10 corresponding to the variation.SELECTED DRAWING: Figure 1

Description

本発明は、二次電池の劣化を判定する二次電池の劣化判定装置、及び該装置に用いられる二次電池の劣化判定方法、及び該装置を用いる二次電池の制御装置に関する。   The present invention relates to a deterioration determination device for a secondary battery for determining deterioration of a secondary battery, a method for determining deterioration of a secondary battery used in the device, and a control device for a secondary battery using the device.

電気自動車やハイブリッド自動車等の車載用電源としては、エネルギー密度の高さからニッケル水素二次電池やリチウムイオン二次電池が用いられている。これらの二次電池は通常、複数の単電池から構成される電池モジュールを複数組み合わせた組電池として電池パックを構成している。   As power sources for vehicles such as electric vehicles and hybrid vehicles, nickel hydride secondary batteries and lithium ion secondary batteries are used because of their high energy density. These secondary batteries normally constitute a battery pack as an assembled battery obtained by combining a plurality of battery modules composed of a plurality of single cells.

ところで二次電池は、電池の種類によって異なる充電特性及び放電特性に適した充電や放電が行われる。例えば、ニッケル水素二次電池等のアルカリ二次電池の充電特性として、急速充電すると、分極が大きくなって充電電圧が高くなり、二次電池の劣化を引き起こすことが知られている。よって、アルカリ二次電池の電池寿命を延ばすためには、充電による二次電池の劣化を低減することが重要である。例えば、ニッケル水素二次電池の充電時における劣化を低減しつつ、急速充電を可能にする技術が特許文献1に記載されている。   By the way, the secondary battery is charged and discharged in accordance with the charge characteristics and discharge characteristics that differ depending on the type of battery. For example, as a charging characteristic of an alkaline secondary battery such as a nickel metal hydride secondary battery, it is known that rapid charging increases polarization and increases a charging voltage, thereby causing deterioration of the secondary battery. Therefore, in order to extend the battery life of the alkaline secondary battery, it is important to reduce the deterioration of the secondary battery due to charging. For example, Patent Document 1 discloses a technique that enables rapid charging while reducing deterioration during charging of a nickel-hydrogen secondary battery.

特許文献1に記載の技術は、ニッケル水素二次電池を間欠充電動作にて充電する技術である。間欠充電動作では、充電動作の休止時ごとに、ニッケル水素二次電池の端子電圧から求めたニッケル水素二次電池の充電状態を示すパラメータに応じて、充電電流が下げられる。ここで、充電状態を示すパラメータは分極電圧であり、分極電圧の経時的変化が初めて極小点を通過したことに応じて充電電流を下げてその後の充電を行う。   The technique described in Patent Document 1 is a technique for charging a nickel-hydrogen secondary battery by an intermittent charging operation. In the intermittent charging operation, the charging current is lowered according to a parameter indicating the charging state of the nickel hydride secondary battery obtained from the terminal voltage of the nickel hydride secondary battery every time the charging operation is stopped. Here, the parameter indicating the state of charge is the polarization voltage, and the subsequent charge is performed by reducing the charge current in response to the change of the polarization voltage with time passing through the minimum point for the first time.

特開2015−104139号公報Japanese Patent Laying-Open No. 2015-104139

特許文献1に記載の技術によれば、ニッケル水素二次電池の劣化を低減しつつ急速充電ができるようになる。
ところで、アルカリ二次電池は、上述した車載用電源等であるとすると、放電と充電とが不定期、かつ、不定間隔で短周期に繰り返されることも少なくないため、分極電圧の経時的変化から劣化の防止に必要な情報を得られないおそれがある。もし、劣化の防止に必要な情報が得られないこととなると、アルカリ二次電池の劣化を判定することもできない。
According to the technique described in Patent Document 1, rapid charging can be performed while reducing deterioration of the nickel-hydrogen secondary battery.
By the way, if the alkaline secondary battery is the above-described on-vehicle power source or the like, discharge and charge are often repeated irregularly and in a short cycle at irregular intervals. There is a risk that information necessary for prevention of deterioration cannot be obtained. If the information necessary for preventing the deterioration cannot be obtained, the deterioration of the alkaline secondary battery cannot be determined.

本発明は、このような実情に鑑みてなされたものであり、その目的は、不定量の充放電が繰り返される場合でもアルカリ二次電池の劣化を判定することのできる二次電池の劣化判定装置、及び、該装置に用いられる二次電池の劣化判定方法、及び、該装置の用いられる二次電池の制御装置を提供することにある。   The present invention has been made in view of such circumstances, and the purpose thereof is a secondary battery deterioration determination device capable of determining deterioration of an alkaline secondary battery even when indefinite amount of charge and discharge is repeated. Another object of the present invention is to provide a method for determining deterioration of a secondary battery used in the device, and a control device for a secondary battery used in the device.

上記課題を解決する二次電池の劣化判定装置は、不定量の充放電が繰り返されるアルカリ二次電池の劣化を判定する二次電池の劣化判定装置であって、前記アルカリ二次電池の充電状態に生じた増加又は減少について、前記増加毎又は減少毎での充電状態の変化量を算出する変化量算出部と、前記変化量と、前記変化量に対応するアルカリ二次電池の劣化量を示す情報とに基づいて前記アルカリ二次電池の劣化量を算出する劣化量算出部と、前記算出した劣化量を累積する劣化量累積部と、前記累積した劣化量に基づいて前記アルカリ二次電池の劣化を判定する劣化判定部とを備え、前記変化量に対応するアルカリ二次電池の劣化量を示す情報として、充電状態の変化量が大きいほど前記アルカリ二次電池の劣化量が大きいことを示す情報が設定されていることを特徴とする。   A secondary battery deterioration determination device that solves the above problem is a secondary battery deterioration determination device that determines deterioration of an alkaline secondary battery that is repeatedly charged and discharged indefinitely, wherein the state of charge of the alkaline secondary battery is determined. A change amount calculation unit that calculates a change amount of a charging state at each increase or decrease, an increase amount, and a decrease amount of the alkaline secondary battery corresponding to the change amount A deterioration amount calculation unit that calculates the deterioration amount of the alkaline secondary battery based on the information, a deterioration amount accumulation unit that accumulates the calculated deterioration amount, and the alkaline secondary battery based on the accumulated deterioration amount. A deterioration determination unit for determining deterioration, and as information indicating the deterioration amount of the alkaline secondary battery corresponding to the change amount, the deterioration amount of the alkaline secondary battery is larger as the change amount of the state of charge is larger. Information Characterized in that it is a constant.

上記課題を解決する二次電池の劣化判定方法は、不定量の充放電が繰り返されるアルカリ二次電池の劣化を判定する二次電池の劣化判定装置に用いられる方法であって、前記アルカリ二次電池の充電状態に生じた増加又は減少について、前記増加毎又は減少毎での充電状態の変化量を算出する変化量算出工程と、前記変化量と、前記変化量に対応するアルカリ二次電池の劣化量を示す情報とに基づいて前記アルカリ二次電池の劣化量を算出する劣化量算出工程と、前記算出した劣化量を累積する劣化量累積工程と、前記累積した劣化量に基づいて前記アルカリ二次電池の劣化を判定する劣化判定工程とを有し、前記変化量に対応するアルカリ二次電池の劣化量を示す情報として、充電状態の変化量が大きいほど前記アルカリ二次電池の劣化量が大きいことを示す情報が設定されていることを特徴とする。   A secondary battery deterioration determination method that solves the above-described problem is a method used in a secondary battery deterioration determination device that determines deterioration of an alkaline secondary battery that is repeatedly charged and discharged indefinitely. For the increase or decrease that occurs in the state of charge of the battery, a change amount calculating step for calculating the amount of change in the charge state at each increase or decrease, the change amount, and an alkaline secondary battery corresponding to the change amount A deterioration amount calculating step of calculating a deterioration amount of the alkaline secondary battery based on information indicating the deterioration amount, a deterioration amount accumulating step of accumulating the calculated deterioration amount, and the alkali based on the accumulated deterioration amount. A deterioration determination step for determining deterioration of the secondary battery, and as information indicating the deterioration amount of the alkaline secondary battery corresponding to the change amount, the deterioration amount of the alkaline secondary battery as the change amount of the charge state increases. Characterized in that it is set information indicating that large.

上記課題を解決する二次電池の制御装置は、駆動装置にモータを含んでいる車両に搭載され、前記モータの電源として用いられるアルカリ二次電池の充電及び放電を制御する二次電池の制御装置であって、前記アルカリ二次電池の劣化を判定する劣化判定装置と、前記劣化判定装置の判定結果に応じて、前記アルカリ二次電池の充電状態が増加又は減少したときの充電状態の変化量が小さくなるように前記アルカリ二次電池の充電及び放電を制御する充放電制御部とを備え、前記劣化判定装置は、上記記載の二次電池の劣化判定装置であることを特徴とする。   A control device for a secondary battery that solves the above problem is mounted on a vehicle that includes a motor in a drive device, and controls the charge and discharge of an alkaline secondary battery that is used as a power source for the motor. A deterioration determination device that determines deterioration of the alkaline secondary battery, and a change amount of the charge state when the charge state of the alkaline secondary battery increases or decreases according to the determination result of the deterioration determination device. And a charge / discharge control unit that controls charging and discharging of the alkaline secondary battery so that the battery is small, and the deterioration determination device is the deterioration determination device of the secondary battery described above.

このような構成または方法によれば、使用中のアルカリ二次電池について、充電毎又は放電毎の劣化量を、充電された電力の残存量を示す充電状態(SOC:State Of Charge)の変化量に基づいて算出するとともに、これを累積する。よって、充放電が不定量で繰り返されたとしても、算出された劣化量に基づいてアルカリ二次電池の劣化が判定されるようになる。これにより、アルカリ二次電池の過充電や過放電が避けられ、管理が好適になされるようになる。   According to such a configuration or method, with respect to the alkaline secondary battery in use, the amount of change in the state of charge (SOC) indicating the amount of deterioration for each charge or discharge, and the remaining amount of charged electric power (SOC: State Of Charge) Is calculated based on the above and accumulated. Therefore, even if charging / discharging is repeated indefinitely, the deterioration of the alkaline secondary battery is determined based on the calculated deterioration amount. Thereby, overcharge and overdischarge of the alkaline secondary battery can be avoided, and management can be suitably performed.

また、アルカリ二次電池の使用中に劣化の判定ができることにより、アルカリ二次電池の劣化が小さい使用法を選択することができるようになる。よって、アルカリ二次電池の寿命を延ばすための情報を提示したり、充放電となるように制御したりすることができるようになりアルカリ二次電池の利用の利便性が向上する。   In addition, since it is possible to determine the deterioration during use of the alkaline secondary battery, it is possible to select a usage method in which the deterioration of the alkaline secondary battery is small. Therefore, it is possible to present information for extending the life of the alkaline secondary battery, or to control charging / discharging, and the convenience of using the alkaline secondary battery is improved.

好ましい構成として、前記劣化判定部は、前記累積した劣化量が規定の判定値よりも大きいとき、前記アルカリ二次電池が劣化している旨を判定する。
このような構成によれば、アルカリ二次電池の劣化が、累積した劣化量が規定の判定値よりも大きくなることで判定されるようになる。
As a preferred configuration, the deterioration determination unit determines that the alkaline secondary battery is deteriorated when the accumulated deterioration amount is larger than a predetermined determination value.
According to such a configuration, the deterioration of the alkaline secondary battery is determined when the accumulated amount of deterioration becomes larger than a predetermined determination value.

好ましい構成として、前記劣化判定部はさらに、前記アルカリ二次電池の劣化を判定した結果を外部へ通知する通知部を備える。
このような構成によれば、外部にアルカリ二次電池の劣化の判定結果が通知されるので、劣化が考慮されたアルカリ二次電池の利用がなされるようになる。
As a preferable configuration, the deterioration determination unit further includes a notification unit that notifies the outside of a result of determining the deterioration of the alkaline secondary battery.
According to such a configuration, since the determination result of the deterioration of the alkaline secondary battery is notified to the outside, the use of the alkaline secondary battery in consideration of the deterioration is made.

この二次電池の劣化判定装置、二次電池の劣化判定方法、及び二次電池の制御装置によれば、不定量の充放電が繰り返される場合でもアルカリ二次電池の劣化を判定することができる。   According to the secondary battery deterioration determination device, the secondary battery deterioration determination method, and the secondary battery control device, it is possible to determine the deterioration of the alkaline secondary battery even when indefinite charge / discharge is repeated. .

二次電池の劣化判定装置を具体化した一実施形態について、その概略構成を示すブロック図。The block diagram which shows the schematic structure about one Embodiment which actualized the deterioration determination apparatus of the secondary battery. 同実施形態における充電毎及び放電毎において充電状態(SOC)が変化した変化量(dSOC)と絶縁抵抗の低下量との関係を示すグラフ。The graph which shows the relationship between the variation | change_quantity (dSOC) which the charge condition (SOC) changed for every charge and every discharge in the embodiment, and the fall amount of insulation resistance. 同実施形態における使用中の二次電池の充電状態(SOC)が変化の一例、及び、そのとき充電毎及び放電毎に変化した変化量(dSOC)の一例を示すグラフ。The graph which shows an example of the change in the charge condition (SOC) of the secondary battery in use in the embodiment, and an example of the change amount (dSOC) changed at each charge and every discharge at that time. 同実施形態における劣化量を計算する手順を示すフローチャート。The flowchart which shows the procedure which calculates the deterioration amount in the embodiment.

図1〜図4に従って、二次電池の劣化判定装置を具体化した一実施形態について説明する。電池10は、アルカリ二次電池としてのニッケル水素二次電池である。ここで電池10は、例えば、複数の電池モジュールが接続された組電池として構成されている。電池モジュールは6個の単電池から構成される。単電池は、正極板と負極板とがセパレータを介して複数枚積層された極板群とアルカリ電解液とから構成されている。   An embodiment embodying a secondary battery deterioration determination device will be described with reference to FIGS. The battery 10 is a nickel metal hydride secondary battery as an alkaline secondary battery. Here, the battery 10 is configured as, for example, an assembled battery to which a plurality of battery modules are connected. The battery module is composed of six single cells. The unit cell is composed of an electrode plate group in which a plurality of positive and negative electrode plates are laminated via a separator, and an alkaline electrolyte.

図1に示すように、電池10は、電気自動車もしくはハイブリッド自動車に搭載され、電動モータ12等に電力を供給する。電池10は、駆動装置11に電源として接続されている。駆動装置11は、走行に必要な量の電力を電池10に放電させ、この放電させた電力を使用して電動モータ12を駆動することで車両の駆動輪13を回転させる。また、駆動装置11は、駆動輪13の回転に従動する電動モータ12から出力される電力を回生して電池10に充電する。よって、電池10は、車両の走行状態に応じて不定量の電力の充放電が、不定期かつ不定間隔に、また変化が短周期であることも含めて繰り返される傾向にある。   As shown in FIG. 1, the battery 10 is mounted on an electric vehicle or a hybrid vehicle and supplies power to the electric motor 12 and the like. The battery 10 is connected to the driving device 11 as a power source. The drive device 11 causes the battery 10 to discharge an amount of electric power necessary for traveling, and drives the electric motor 12 using the discharged electric power to rotate the drive wheels 13 of the vehicle. Further, the drive device 11 regenerates electric power output from the electric motor 12 that is driven by the rotation of the drive wheel 13 and charges the battery 10. Therefore, the battery 10 tends to be repeatedly charged and discharged with an indefinite amount of power according to the running state of the vehicle at irregular and irregular intervals and including a short period of change.

また、電池10には、電池10の端子間電圧を測定する電圧測定器21と、電池10の充放電電流を測定する電流測定器22と、電池10の劣化を判定する二次電池の劣化判定装置としての判定装置30が接続されている。   Further, the battery 10 includes a voltage measuring device 21 that measures the voltage across the terminals of the battery 10, a current measuring device 22 that measures the charge / discharge current of the battery 10, and a deterioration determination of the secondary battery that determines the deterioration of the battery 10. A determination device 30 as a device is connected.

電圧測定器21は、測定した電池10の端子間電圧に対応する電圧信号を判定装置30に出力する。
電流測定器22は、測定した電池10の放電電流及び充電電流に対応する電流信号を判定装置30に出力する。
The voltage measuring device 21 outputs a voltage signal corresponding to the measured inter-terminal voltage of the battery 10 to the determination device 30.
The current measuring device 22 outputs a current signal corresponding to the measured discharge current and charge current of the battery 10 to the determination device 30.

判定装置30は、電池10の劣化を判定するとともに、この判定の結果を表示させたり、外部に出力させたりすることができる。判定装置30は、電圧測定器21から入力される電圧信号から電池10の端子間電圧を取得し、電流測定器22から入力される電流信号から電池10の充放電電流を取得する。   The determination device 30 can determine whether the battery 10 has deteriorated, and can display the result of the determination or output the result to the outside. The determination device 30 acquires the voltage between the terminals of the battery 10 from the voltage signal input from the voltage measuring device 21, and acquires the charge / discharge current of the battery 10 from the current signal input from the current measuring device 22.

また、判定装置30は、電池10の劣化を判定する処理である劣化判定処理を行う処理部40と、電池10の劣化判定処理の算出に用いられるデータ等を保持する記憶部50とを備える。処理部40は、コンピュータを含み構成されており、演算装置、揮発性メモリ、不揮発性メモリなどを備える。また処理部40は、記憶部50との間でデータの授受が可能である。記憶部50は、ハードディスクやフラッシュメモリなどの不揮発性の記憶装置であり、各種データを保持する。   In addition, the determination device 30 includes a processing unit 40 that performs a deterioration determination process that is a process of determining the deterioration of the battery 10, and a storage unit 50 that holds data used for calculation of the deterioration determination process of the battery 10. The processing unit 40 includes a computer and includes an arithmetic device, a volatile memory, a nonvolatile memory, and the like. The processing unit 40 can exchange data with the storage unit 50. The storage unit 50 is a non-volatile storage device such as a hard disk or a flash memory, and holds various data.

記憶部50には、電池10の各種充電状態(SOC:State Of Charge)を含むSOC値51と、SOCの算出に要するSOC算出用データ52とが記憶されている。SOC値51には、電池10の初期のSOCや、現在のSOCなどの値が含まれている。SOC算出用データ52には、電池10に充電可能な電気量等のパラメータが記憶されている。   The storage unit 50 stores an SOC value 51 including various state of charge (SOC) of the battery 10 and SOC calculation data 52 required for calculating the SOC. The SOC value 51 includes values such as the initial SOC of the battery 10 and the current SOC. The SOC calculation data 52 stores parameters such as the amount of electricity that can be charged to the battery 10.

また記憶部50には、電池10の充電毎及び放電毎におけるSOCの変化量(dSOC)を含むdSOC値53と、dSOCの算出に要するdSOC算出用データ54とが記憶されている。ここで、dSOCは、一回の充電や放電で変化したSOCの量であり、2つの放電の間に挟まれた一回の充電で増加したSOCの量や、2つの充電の間に挟まれた一回の放電で減少したSOCの量のことである。換言すると、dSOCは、電池10のSOCに生じた増加又は減少について、その増加又は減少でのSOCの変化量のことである。dSOC値53には、最新のdSOCや、必要に応じてそれより以前のdSOCが記憶されている。dSOC算出用データ54には、現在の電池10の絶縁抵抗値と、電池10の初期の絶縁抵抗値と、dSOCと絶縁抵抗低下量との関係を示す情報等が記憶されている。ここで、絶縁抵抗とは、電池10の正極と負極との間の絶縁抵抗であり、例えば、セパレータの絶縁抵抗のことであるが、その他の要因を含むかたちで検出される絶縁抵抗でもよい。   The storage unit 50 also stores a dSOC value 53 including the SOC change amount (dSOC) for each charging and discharging of the battery 10 and dSOC calculation data 54 required for calculating dSOC. Here, dSOC is the amount of SOC changed by one charge or discharge, the amount of SOC increased by one charge sandwiched between two discharges, or sandwiched between two charges. It is the amount of SOC reduced by a single discharge. In other words, dSOC refers to the amount of change in SOC with respect to an increase or decrease in the SOC of battery 10. The dSOC value 53 stores the latest dSOC and, if necessary, an earlier dSOC. The dSOC calculation data 54 stores information such as the current insulation resistance value of the battery 10, the initial insulation resistance value of the battery 10, and information indicating the relationship between dSOC and the amount of decrease in insulation resistance. Here, the insulation resistance is an insulation resistance between the positive electrode and the negative electrode of the battery 10, for example, an insulation resistance of the separator, but may be an insulation resistance detected in a form including other factors.

ところで発明者らは、電池10の絶縁抵抗低下量がdSOCと相関性があることを見出した。
すなわち、図2に示すように、dSOCと絶縁抵抗低下量との関係を示す情報は、dSOCに対応する絶縁抵抗の低下量を右下がりのグラフL1として示すことのできるデータであることを見出した。なお同情報は、グラフL1を示す情報であれば、マッピングデータや関数式等からなる情報であってもよい。ここでグラフL1は、dSOCの大きさに応じて絶縁抵抗の低下量が増加、すなわち負に大きくなる関係を示している。絶縁抵抗の低下量は、例えば、経年劣化としてセパレータに生じる化学的微短の進行度合いを絶縁抵抗の低下として示すものであると考えられている。例えば、セパレータは、活物質から溶解した金属の析出等が生じることや、電極活物質が移動すること等で絶縁抵抗の低下が生じる。そして、こうした絶縁抵抗の低下が進行すると、電池10は微小短絡を生じるおそれが高まるものと考えられる。そこで、絶縁抵抗の低下量に基づいて電池10の劣化量を算出し、この算出した劣化量から劣化を判定することができることが見出された。逆に、図2に示す関係から、電池10の充放電の条件を好ましい範囲に限定することで、微小短絡を抑制し電池10の劣化を抑制することができることも見出された。
Incidentally, the inventors have found that the amount of decrease in insulation resistance of the battery 10 is correlated with dSOC.
That is, as shown in FIG. 2, it was found that the information indicating the relationship between dSOC and the amount of decrease in insulation resistance is data that can indicate the amount of decrease in insulation resistance corresponding to dSOC as a downward-sloping graph L1. . Note that the information may be information including mapping data or a function expression as long as the information indicates the graph L1. Here, the graph L1 shows a relationship in which the amount of decrease in insulation resistance increases, that is, becomes negative in accordance with the magnitude of dSOC. The amount of decrease in insulation resistance is considered to indicate, for example, the degree of progress of chemical shortness that occurs in the separator as aged deterioration as a decrease in insulation resistance. For example, in the separator, the insulation resistance is lowered due to the precipitation of the dissolved metal from the active material or the movement of the electrode active material. And when the fall of such insulation resistance advances, it is thought that the possibility that the battery 10 will produce a micro short circuit increases. Therefore, it has been found that the amount of deterioration of the battery 10 can be calculated based on the amount of decrease in insulation resistance, and the deterioration can be determined from the calculated amount of deterioration. Conversely, it has also been found from the relationship shown in FIG. 2 that by limiting the charging / discharging conditions of the battery 10 to a preferable range, a minute short circuit can be suppressed and deterioration of the battery 10 can be suppressed.

図2のグラフL1は、例えば、dSOCが「0.1%」のときの絶縁抵抗低下量に比べて、dSOCが「1%」のときの絶縁抵抗低下量が2倍になり、同じく比べて、dSOCが「10%」のときの絶縁抵抗低下量が3倍になることを示している。グラフL1に、充放電の都度算出されるdSOCを適用することで、算出される都度のdSOCに起因する絶縁抵抗低下量、いわゆる充放電毎の劣化量が算出できる。そして充放電毎の劣化量を累積することで電池10の劣化量が得られる。なお、セパレータに関連する絶縁抵抗の低下であれば、セパレータの厚みを増したり、繊維の密度を上げたりすることでその絶縁抵抗の低下を抑制することもできるが、厚みの増加や繊維密度の増加はイオン伝導度の減少を招いたり、コスト増加を招くおそれがある。   The graph L1 in FIG. 2 shows, for example, that the amount of decrease in insulation resistance when dSOC is “1%” is doubled compared to the amount of decrease in insulation resistance when dSOC is “0.1%”. , DSOC is “10%”, indicating that the amount of decrease in insulation resistance is tripled. By applying dSOC calculated each time charging / discharging to the graph L1, it is possible to calculate the amount of insulation resistance decrease due to each calculated dSOC, that is, the so-called deterioration amount for each charging / discharging. And the deterioration amount of the battery 10 is obtained by accumulating the deterioration amount for every charging / discharging. In addition, if the insulation resistance related to the separator is reduced, the increase in the thickness of the separator or the increase in the fiber density can suppress the decrease in the insulation resistance. An increase may cause a decrease in ionic conductivity or an increase in cost.

そこで、劣化判定処理を行う判定装置30について説明する。
図1に示すように、処理部40は、電圧測定器21から入力される電圧信号から電池10の端子間電圧を取得する電圧測定部41と、電流測定器22から入力される電流信号から電池10の充放電電流を取得する電流測定部42とを備える。
Therefore, the determination device 30 that performs the deterioration determination process will be described.
As shown in FIG. 1, the processing unit 40 includes a voltage measurement unit 41 that acquires a voltage between terminals of the battery 10 from a voltage signal input from the voltage measurement device 21, and a battery from the current signal input from the current measurement device 22. And a current measuring unit 42 for acquiring 10 charging / discharging currents.

また、処理部40は、電池10のSOCを算出するSOC算出部43と、SOCに増加又は減少が生じたとき増加又は減少でのSOCの変化量であるdSOCを算出する変化量算出部としてのdSOC算出部44とを備える。SOC算出部43は、電池10のSOCを、例えば、端子間電圧から算出したり、充放電量の累積から算出したり、複素インピーダンスから算出したり、その他の公知の方法で算出することができる。   Further, the processing unit 40 serves as an SOC calculation unit 43 that calculates the SOC of the battery 10, and a change amount calculation unit that calculates dSOC, which is the change amount of the SOC when the SOC increases or decreases. a dSOC calculation unit 44. The SOC calculation unit 43 can calculate the SOC of the battery 10 by, for example, calculating from the voltage between terminals, calculating from the accumulated charge / discharge amount, calculating from the complex impedance, or other known methods. .

さらに、処理部40は、各dSOCに基づいて電池10の劣化量を算出する劣化量算出部45と、算出された劣化量の累積に基づいて電池10の劣化を判定するとともに、判定結果を出力する劣化累積部及び劣化判定部としての劣化判定出力部46とを備える。   Further, the processing unit 40 determines the deterioration amount of the battery 10 based on each dSOC, determines the deterioration of the battery 10 based on the accumulated amount of deterioration, and outputs the determination result. And a deterioration determination output unit 46 as a deterioration determination unit.

図3及び図4を参照して、本実施形態の劣化判定装置の動作について説明する。
図3は、車両の走行に応じて電池10に生じるSOCの変化の一例を示す。ここで、「1cyc」は、任意に区切られた時間区間であって、例えば、イグニッションを「ON」してから「OFF」するまでの時間区間である。「ΔSOC」は、「1cyc」の間に変化したSOCの最大幅であり、充電量が最大になったときと、充電量が最低になったときとの差である。なお、電池10がSOC「80%」以下、かつ「20%」以上の間で使用されるように制御されている場合、ΔSOCは、多くの場合「60%」以下の値になる。電池10は、「1cyc」の中での走行状況に応じて不定量の充放電が繰り返されるので、SOCは増減を繰り返し、SOCの変化が例えばグラフL21,L22のように示される。グラフL21は、電池10が充電される区間cd11,cd13,・・・,cd1nと、電池10が放電される区間cd12,cd14,・・・,cd1m(但し、m=n−1)とを有している。そして区間cd11〜cd1n毎のSOCの変化量が充電毎又は放電毎のdSOCである。例えば、区間cd11のdSOCは「ds11」であり、区間cd12のdSOCは「ds12」であり、区間cd13のdSOCは「ds13」である。同様に、区間cd1mのdSOCは「ds1m」であり、区間cd1nのdSOCは「ds1n」である。こうして算出された各区間のdSOCである「ds11」〜「ds1n」に基づいて、「1cyc」での劣化量が得られるとともに、電池10が初めて使用されてからの各「1cyc」における劣化量の累積が現時点での電池10の劣化量として得られる。また、次の「1cyc」でのSOCの変化を示すグラフL22は、電池10が充電される区間cd21,cd23,・・・,cd2nと、電池10が放電される区間cd22,cd24,・・・とを有している。この場合、例えば、区間cd21のdSOCは「ds21」として得られ、区間cd22のdSOCは「ds22」として得られる。
With reference to FIG.3 and FIG.4, operation | movement of the deterioration determination apparatus of this embodiment is demonstrated.
FIG. 3 shows an example of a change in SOC that occurs in the battery 10 in accordance with the traveling of the vehicle. Here, “1 cyc” is an arbitrarily divided time interval, for example, a time interval from “ON” to “OFF” of the ignition. “ΔSOC” is the maximum width of the SOC changed during “1 cyc”, and is the difference between when the charge amount becomes maximum and when the charge amount becomes minimum. When the battery 10 is controlled to be used between SOC “80%” or less and “20%” or more, ΔSOC often has a value of “60%” or less. Since the battery 10 is repeatedly charged and discharged indefinitely according to the traveling state in “1cyc”, the SOC repeatedly increases and decreases, and the change in the SOC is shown as graphs L21 and L22, for example. The graph L21 includes sections cd11, cd13,..., Cd1n where the battery 10 is charged, and sections cd12, cd14,..., Cd1m (where m = n−1) where the battery 10 is discharged. doing. The amount of change in SOC for each of the sections cd11 to cd1n is dSOC for each charge or discharge. For example, the dSOC of the section cd11 is “ds11”, the dSOC of the section cd12 is “ds12”, and the dSOC of the section cd13 is “ds13”. Similarly, the dSOC of the section cd1m is “ds1m”, and the dSOC of the section cd1n is “ds1n”. Based on the dSOCs “ds11” to “ds1n” calculated in this way, the deterioration amount at “1 cyc” is obtained, and the deterioration amount at each “1 cyc” after the battery 10 is used for the first time is obtained. The accumulation is obtained as the amount of deterioration of the battery 10 at the present time. Further, a graph L22 showing the change in SOC at the next “1cyc” is a section cd21, cd23,..., Cd2n in which the battery 10 is charged, and a section cd22, cd24,. And have. In this case, for example, the dSOC of the section cd21 is obtained as “ds21”, and the dSOC of the section cd22 is obtained as “ds22”.

図4は、電池10の劣化判定処理の処理手順を示す。劣化判定処理は、判定装置30の処理部40で車両のイグニッションがONされると開始されるものとする。
判定処理が開始されると、処理部40は、電流を測定する(ステップS10)。電流は、規定の測定期間における電流量であってもよい。例えば、電流は、充電と放電とでの向きの違いが「+/−」の極性の違いで示される。処理部40は、充電と放電とが切り替わったか否かを判定する(ステップS11)。充電と放電とが切り替わったことは、前回測定した電流の向きと今回測定した電流の向きとが相違することに基づいて判定される。電流量に基づく電流の向きを充放電の判定に用いれば、電流に生じる一時的な変動の影響が抑えられる。
FIG. 4 shows the procedure of the battery 10 deterioration determination process. The deterioration determination process is started when the ignition of the vehicle is turned on by the processing unit 40 of the determination device 30.
When the determination process is started, the processing unit 40 measures the current (step S10). The current may be the amount of current in a specified measurement period. For example, in the current, the difference in direction between charging and discharging is indicated by the difference in polarity of “+/−”. The processing unit 40 determines whether charging and discharging are switched (Step S11). Switching between charging and discharging is determined based on the difference between the current direction measured last time and the current direction measured this time. If the direction of the current based on the amount of current is used for the determination of charge / discharge, the influence of temporary fluctuations that occur in the current can be suppressed.

充電と放電とが切り替わっていないと判定した場合(ステップS11でNO)、処理部40は、終了条件が成立したか否かを判定し(ステップS18)、終了条件が成立していない場合(ステップS18でNO)、処理をステップS10に戻す一方、終了条件が成立した場合(ステップS18でYES)、劣化判定処理を終了する。終了条件が成立したことは、車両のイグニッションがOFFされたことや、駐停車が長時間に及んだこと等に基づいて判定される。   When it is determined that charging and discharging are not switched (NO in step S11), the processing unit 40 determines whether or not an end condition is satisfied (step S18), and when the end condition is not satisfied (step S18). If NO in S18, the process returns to Step S10, while if the end condition is satisfied (YES in Step S18), the deterioration determination process ends. Whether or not the end condition is satisfied is determined based on the fact that the ignition of the vehicle has been turned off, or that the vehicle has been parked or stopped for a long time.

逆に、充電と放電とが切り替わったと判定した場合(ステップS11でYES)、処理部40のdSOC算出部44は、切り替わったときのSOCである「現在SOC」を取得する(ステップS12)。現在SOCは、SOC算出部43で逐次算出されるSOCを取得してもよいし、このときSOC算出部43で算出してもよい。また、処理部40のdSOC算出部44は、dSOCを算出する(ステップS13:変化量算出工程)。dSOCは、dSOC算出部44で、前回の処理で設定された「開始SOC」と「現在SOC」との間の差として算出される。「開始SOC」は、記憶部50のdSOC値53に含まれて記憶されている。次に、処理部40のdSOC算出部44は、「開始SOC」に「現在SOC」を設定する開始SOC設定を行う(ステップS14)。なお、「開始SOC」が設定されていないことがステップS13で判明したとき、ステップS14を行った後、ステップS18に進むようにすれば、次回のdSOC算出処理(ステップS13)ではdSOCが算出できるようになる。   Conversely, when it is determined that charging and discharging have been switched (YES in step S11), the dSOC calculation unit 44 of the processing unit 40 acquires “current SOC” which is the SOC at the time of switching (step S12). The current SOC may be obtained as SOC calculated sequentially by the SOC calculation unit 43, or may be calculated by the SOC calculation unit 43 at this time. Further, the dSOC calculation unit 44 of the processing unit 40 calculates dSOC (step S13: change amount calculation step). The dSOC is calculated by the dSOC calculation unit 44 as a difference between the “start SOC” and the “current SOC” set in the previous process. “Start SOC” is included in the dSOC value 53 of the storage unit 50 and stored. Next, the dSOC calculation unit 44 of the processing unit 40 performs start SOC setting for setting “current SOC” to “start SOC” (step S14). When it is determined in step S13 that “start SOC” is not set, if step S14 is performed and then the process proceeds to step S18, dSOC can be calculated in the next dSOC calculation process (step S13). It becomes like this.

続いて、処理部40は、劣化量算出部45で劣化量を算出する(ステップS15:劣化量算出工程)。本実施形態では、絶縁抵抗の低下量が劣化量として算出される。よって、絶縁抵抗の低下量は、算出した充電毎又は放電毎のdSOCをdSOCと絶縁抵抗の低下量との関係を示す情報、つまりグラフL1に適用することで算出される。なお、充電毎であれ、放電毎であれ、dSOCは、その絶対値がグラフL1に適用され、絶縁抵抗の低下量は、いつでも同符号の値、ここではいつでも負の値として算出される。そして、処理部40の劣化判定出力部46は、算出した劣化量で、累積の劣化量を更新する(ステップS16:劣化量累積工程)。本実施形態では、累積の劣化量は、充電毎であれ、放電毎であれ、負の値(絶対値)が大きくなる。電池10は、充放電のいずれにおいても劣化が進行することから、累積の劣化量が大きくなることは妥当である。   Subsequently, the processing unit 40 calculates a deterioration amount by the deterioration amount calculation unit 45 (step S15: deterioration amount calculation step). In the present embodiment, the amount of decrease in insulation resistance is calculated as the amount of deterioration. Therefore, the amount of decrease in insulation resistance is calculated by applying the calculated dSOC for each charge or discharge to information indicating the relationship between dSOC and the amount of decrease in insulation resistance, that is, the graph L1. Note that the absolute value of dSOC is applied to the graph L1 regardless of whether it is charged or discharged, and the amount of decrease in insulation resistance is always calculated as a value with the same sign, and here, as a negative value. Then, the degradation determination output unit 46 of the processing unit 40 updates the accumulated degradation amount with the calculated degradation amount (step S16: degradation amount accumulation step). In the present embodiment, the cumulative deterioration amount has a large negative value (absolute value) regardless of whether it is charged or discharged. Since the battery 10 deteriorates in both charging and discharging, it is appropriate that the cumulative deterioration amount increases.

累積の劣化量が更新されると、処理部40は、劣化判定出力部46で電池10の劣化を判定する(劣化判定工程)とともに、判定結果を出力する(ステップS17)。電池10の劣化は、規定の判定値よりも累積の劣化量が大きいこと、ここでは負の値が大きいことに基づいて判定する。つまり処理部40は、累積の劣化量が規定の判定値以下であれば、「劣化していない」との判定結果を出力し、逆に累積の劣化量が規定の判定値よりも大きければ、「劣化している」との判定結果を出力する。なお、規定の判定値は、予め定められた値が記憶部50等に記憶されている。そして、電池10の劣化が判定されると、劣化の判定結果が車載LANの通信装置等からなる通知部を介して車両の他の制御機器等に対して出力される。   When the accumulated deterioration amount is updated, the processing unit 40 determines the deterioration of the battery 10 by the deterioration determination output unit 46 (deterioration determination step) and outputs the determination result (step S17). The deterioration of the battery 10 is determined based on the fact that the cumulative deterioration amount is larger than the prescribed determination value, and here the negative value is large. In other words, the processing unit 40 outputs a determination result of “not deteriorated” if the cumulative deterioration amount is equal to or less than the predetermined determination value, and conversely if the cumulative deterioration amount is larger than the predetermined determination value, Outputs the judgment result of “Deteriorated”. Note that the predetermined determination value is stored in the storage unit 50 or the like as a predetermined value. When the deterioration of the battery 10 is determined, the deterioration determination result is output to other control devices of the vehicle via a notification unit including a communication device of the in-vehicle LAN.

判定結果が出力されると、判定装置30は、終了条件が成立したか否かを判定し(ステップS18)、終了条件が成立していない場合(ステップS18でNO)、処理をステップS10に戻す一方、終了条件が成立した場合(ステップS18でYES)、劣化判定処理を終了する。   When the determination result is output, determination device 30 determines whether or not the end condition is satisfied (step S18). If the end condition is not satisfied (NO in step S18), the process returns to step S10. On the other hand, when the termination condition is satisfied (YES in step S18), the deterioration determination process is terminated.

そして、判定装置30から出力された判定結果が車両で利用される。
車両では、判定装置30から出力された電池10の「劣化している」との判定結果に基づいて、運転者に電池10の寿命を延ばすための情報として電池10の充放電の抑制を促す通知をしてもよい。
And the determination result output from the determination apparatus 30 is utilized with a vehicle.
In the vehicle, based on the determination result “deteriorated” of the battery 10 output from the determination device 30, a notification that prompts the driver to suppress charging / discharging of the battery 10 as information for extending the life of the battery 10. You may do.

また、車両では、判定装置30から出力された電池10の劣化の判定結果に基づいて、電池10の寿命を延ばすように電池10の充放電を制御してもよい。例えば、車両に二次電池の制御装置(図示略)を設け、該制御装置の充放電制御部(図示略)で駆動装置11における充放電を管理するようにしてもよい。充放電制御部は、「劣化している」との判定結果に基づいて、電池10の放電量や充電量が少なくなるように電動モータ12を制御させてもよい。例えば、放電量を減らすために出力を低下させたり、充電量を減らすために回生量を抑えたりすることができる。ハイブリッド車の場合、エンジン側の負荷を高くすることで電動モータ12への放電量を減らすこともできるし、エンジンによる発電量を減らすこと充電量を減らすこともできる。また、一回の充電又は放電における、充電量や放電量を制限するようにしてもよい。こうした制限は、電流量で規定してもよいし、簡便に時間で規定してもよい。時間が短く設定されれば、電流量が減ることになる。   Further, in the vehicle, charging / discharging of the battery 10 may be controlled so as to extend the life of the battery 10 based on the determination result of the deterioration of the battery 10 output from the determination device 30. For example, a secondary battery control device (not shown) may be provided in the vehicle, and charge / discharge in the driving device 11 may be managed by a charge / discharge control unit (not shown) of the control device. The charge / discharge control unit may control the electric motor 12 based on the determination result “deteriorated” so that the discharge amount and the charge amount of the battery 10 are reduced. For example, the output can be reduced to reduce the discharge amount, or the regeneration amount can be suppressed to reduce the charge amount. In the case of a hybrid vehicle, the amount of discharge to the electric motor 12 can be reduced by increasing the load on the engine side, and the amount of power generated by the engine can be reduced to reduce the amount of charge. Moreover, you may make it restrict | limit the charge amount and discharge amount in one charge or discharge. Such a restriction may be defined by the amount of current or simply by time. If the time is set short, the amount of current decreases.

以上説明したように、本実施形態の二次電池の劣化判定装置によれば、以下に記載するような効果が得られるようになる。
(1)使用中の電池10について、充電毎又は放電毎の劣化量を、SOCの変化量に基づいて算出するとともに、これを累積する。よって、充放電が不定量で繰り返されたとしても、算出された劣化量に基づいて電池10の劣化が判定されるようになる。これにより、電池10の過充電や過放電が避けられ、管理が好適になされるようになる。
As described above, according to the secondary battery deterioration determination device of the present embodiment, the following effects can be obtained.
(1) About the battery 10 in use, while calculating the deterioration amount for every charge or every discharge based on the variation | change_quantity of SOC, this is accumulated. Therefore, even if charging / discharging is repeated indefinitely, the deterioration of the battery 10 is determined based on the calculated deterioration amount. Thereby, overcharge and overdischarge of the battery 10 can be avoided, and management can be suitably performed.

また、電池10の使用中に劣化の判定ができることにより、電池10の劣化が小さい使用法を選択することができるようになる。よって、電池10の寿命を延ばすための情報を提示したり、充放電となるように制御したりすることができるようになり電池10の利用の利便性が向上する。   In addition, since the deterioration can be determined while the battery 10 is in use, it is possible to select a usage method in which the deterioration of the battery 10 is small. Therefore, it is possible to present information for extending the life of the battery 10 and to control charging and discharging, and the convenience of using the battery 10 is improved.

(2)劣化量をセパレータの絶縁抵抗の低下とすることで、活物質から溶解した金属の析出等で生じるセパレータの絶縁抵抗の低下に基づいて電池10の劣化を判定することができる。   (2) By setting the deterioration amount as a decrease in the insulation resistance of the separator, it is possible to determine the deterioration of the battery 10 based on the decrease in the insulation resistance of the separator caused by the deposition of a metal dissolved from the active material.

(3)電池10の劣化が、累積した劣化量が規定の判定値よりも大きくなることで判定されるようになる。
(4)判定装置30の外部に電池10の劣化の判定結果が通知されるので、劣化が考慮された電池10の利用がなされるようになる。
(3) The deterioration of the battery 10 is determined when the accumulated deterioration amount becomes larger than a predetermined determination value.
(4) Since the determination result of the deterioration of the battery 10 is notified to the outside of the determination device 30, the battery 10 is used in consideration of the deterioration.

(その他の実施形態)
なお、上記実施形態は以下の形態にて実施することもできる。
・上記実施形態では、処理部40の劣化判定出力部46が劣化の判定結果を出力する場合について例示した。しかしこれに限らず、劣化の判定結果を出力できるのであれば、劣化判定出力部は表示装置や音声出力装置等の出力部を介して劣化の判定結果を外部に出力してもよい。
(Other embodiments)
In addition, the said embodiment can also be implemented with the following forms.
In the above embodiment, the case where the deterioration determination output unit 46 of the processing unit 40 outputs the determination result of deterioration is illustrated. However, the present invention is not limited to this, and if the deterioration determination result can be output, the deterioration determination output unit may output the deterioration determination result to the outside via an output unit such as a display device or an audio output device.

・上記実施形態では、dSOCが、SOCに生じた増加又は減少について、その増加又は減少でのSOCの変化量である場合について例示した。しかしこれに限らず、途中で増加や減少が一時中断された場合、中断前後の増加や減少を、一の増加や減少として取り扱ってもよい。例えば、充放電の中断中に電池は自己放電するが、中断中の自己放電量によるSOCの変化が閾値「1%」以下である場合は、中断前後の増加や減少を、一の増加や減少として取り扱う。なお、閾値は時間や研究、理論に基づいて任意の適切な数値に変更してもよい。   In the above-described embodiment, the case where the dSOC is the amount of change in the SOC due to the increase or decrease in the increase or decrease that occurs in the SOC has been illustrated. However, the present invention is not limited to this, and when an increase or decrease is interrupted halfway, an increase or decrease before and after the interruption may be treated as one increase or decrease. For example, if the battery self-discharges while charging / discharging is interrupted, but the change in SOC due to the amount of self-discharging during the interruption is less than or equal to the threshold “1%”, the increase or decrease before and after the interruption is increased or decreased by one. Treat as. The threshold value may be changed to any appropriate value based on time, research, or theory.

・上記実施形態では、電池10はニッケル水素二次電池である場合について例示したが、これに限らず、ニッケルカドミウム電池等その他のアルカリ二次電池であってもよい。
・上記実施形態では、電池10が電気自動車もしくはハイブリッド自動車に搭載される場合について例示したが、これに限らず、二次電池は、ガソリン自動車やディーゼル自動車等の車両に搭載されてもよい。また二次電池は、移動体や固定設置の電源として用いられてもよい。例えば、電源の適用先としては、鉄道、船舶、航空機やロボット等の移動体や、情報処理装置等の電気製品等が挙げられる。
-In above-mentioned embodiment, although illustrated about the case where the battery 10 is a nickel-hydrogen secondary battery, not only this but other alkaline secondary batteries, such as a nickel cadmium battery, may be sufficient.
In the above embodiment, the case where the battery 10 is mounted on an electric vehicle or a hybrid vehicle has been illustrated, but the present invention is not limited thereto, and the secondary battery may be mounted on a vehicle such as a gasoline vehicle or a diesel vehicle. The secondary battery may be used as a power source for a moving body or a fixed installation. For example, the application destination of the power source includes a moving body such as a railroad, a ship, an aircraft, a robot, or the like, an electrical product such as an information processing apparatus, or the like.

10…電池、11…駆動装置、12…電動モータ、13…駆動輪、21…電圧測定器、22…電流測定器、30…判定装置、40…処理部、41…電圧測定部、42…電流測定部、43…SOC算出部、44…dSOC算出部、45…劣化量算出部、46…劣化判定出力部、50…記憶部、51…SOC値、52…SOC算出用データ、53…dSOC値、54…dSOC算出用データ。   DESCRIPTION OF SYMBOLS 10 ... Battery, 11 ... Drive apparatus, 12 ... Electric motor, 13 ... Drive wheel, 21 ... Voltage measuring device, 22 ... Current measuring device, 30 ... Judgment device, 40 ... Processing part, 41 ... Voltage measuring part, 42 ... Current Measurement unit, 43 ... SOC calculation unit, 44 ... dSOC calculation unit, 45 ... degradation amount calculation unit, 46 ... degradation determination output unit, 50 ... storage unit, 51 ... SOC value, 52 ... SOC calculation data, 53 ... dSOC value 54 dSOC calculation data.

Claims (5)

不定量の充放電が繰り返されるアルカリ二次電池の劣化を判定する二次電池の劣化判定装置であって、
前記アルカリ二次電池の充電状態に生じた増加又は減少について、前記増加毎又は減少毎での充電状態の変化量を算出する変化量算出部と、
前記変化量と、前記変化量に対応するアルカリ二次電池の劣化量を示す情報とに基づいて前記アルカリ二次電池の劣化量を算出する劣化量算出部と、
前記算出した劣化量を累積する劣化量累積部と、
前記累積した劣化量に基づいて前記アルカリ二次電池の劣化を判定する劣化判定部とを備え、
前記変化量に対応するアルカリ二次電池の劣化量を示す情報として、充電状態の変化量が大きいほど前記アルカリ二次電池の劣化量が大きいことを示す情報が設定されている
ことを特徴とする二次電池の劣化判定装置。
A secondary battery deterioration determination device that determines deterioration of an alkaline secondary battery that is repeatedly charged and discharged indefinitely,
For the increase or decrease that occurred in the state of charge of the alkaline secondary battery, a change amount calculation unit that calculates the amount of change in the state of charge at every increase or decrease, and
A deterioration amount calculating unit that calculates the deterioration amount of the alkaline secondary battery based on the change amount and information indicating the deterioration amount of the alkaline secondary battery corresponding to the change amount;
A deterioration amount accumulating unit for accumulating the calculated deterioration amount;
A deterioration determining unit that determines deterioration of the alkaline secondary battery based on the accumulated deterioration amount;
As information indicating the deterioration amount of the alkaline secondary battery corresponding to the change amount, information indicating that the deterioration amount of the alkaline secondary battery is larger as the change amount of the charge state is larger is set. Secondary battery deterioration determination device.
前記劣化判定部は、前記累積した劣化量が規定の判定値よりも大きいとき、前記アルカリ二次電池が劣化している旨を判定する
請求項1に記載の二次電池の劣化判定装置。
The secondary battery deterioration determination device according to claim 1, wherein the deterioration determination unit determines that the alkaline secondary battery is deteriorated when the accumulated amount of deterioration is larger than a predetermined determination value.
前記劣化判定部はさらに、前記アルカリ二次電池の劣化を判定した結果を外部へ通知する通知部を備える
請求項1又は2に記載の二次電池の劣化判定装置。
The secondary battery deterioration determination apparatus according to claim 1, wherein the deterioration determination unit further includes a notification unit that notifies a result of determining the deterioration of the alkaline secondary battery to the outside.
不定量の充放電が繰り返されるアルカリ二次電池の劣化を判定する二次電池の劣化判定装置に用いられる方法であって、
前記アルカリ二次電池の充電状態に生じた増加又は減少について、前記増加毎又は減少毎での充電状態の変化量を算出する変化量算出工程と、
前記変化量と、前記変化量に対応するアルカリ二次電池の劣化量を示す情報とに基づいて前記アルカリ二次電池の劣化量を算出する劣化量算出工程と、
前記算出した劣化量を累積する劣化量累積工程と、
前記累積した劣化量に基づいて前記アルカリ二次電池の劣化を判定する劣化判定工程とを有し、
前記変化量に対応するアルカリ二次電池の劣化量を示す情報として、充電状態の変化量が大きいほど前記アルカリ二次電池の劣化量が大きいことを示す情報が設定されている
ことを特徴とする二次電池の劣化判定方法。
It is a method used in a secondary battery deterioration determination device that determines deterioration of an alkaline secondary battery that is repeatedly charged and discharged indefinitely,
A change amount calculating step for calculating a change amount of the charge state at every increase or decrease for the increase or decrease caused in the charge state of the alkaline secondary battery,
A deterioration amount calculating step of calculating a deterioration amount of the alkaline secondary battery based on the change amount and information indicating the deterioration amount of the alkaline secondary battery corresponding to the change amount;
A deterioration amount accumulation step of accumulating the calculated deterioration amount;
A deterioration determination step of determining deterioration of the alkaline secondary battery based on the accumulated deterioration amount,
As information indicating the deterioration amount of the alkaline secondary battery corresponding to the change amount, information indicating that the deterioration amount of the alkaline secondary battery is larger as the change amount of the charge state is larger is set. Secondary battery deterioration judgment method.
駆動装置にモータを含んでいる車両に搭載され、前記モータの電源として用いられるアルカリ二次電池の充電及び放電を制御する二次電池の制御装置であって、
前記アルカリ二次電池の劣化を判定する劣化判定装置と、
前記劣化判定装置の判定結果に応じて、前記アルカリ二次電池の充電状態が増加又は減少したときの充電状態の変化量が小さくなるように前記アルカリ二次電池の充電及び放電を制御する充放電制御部とを備え、
前記劣化判定装置は、請求項1〜3のいずれか一項に記載の二次電池の劣化判定装置である
ことを特徴とする二次電池の制御装置。
A control device for a secondary battery that is mounted on a vehicle including a motor in a drive device and controls charging and discharging of an alkaline secondary battery used as a power source of the motor,
A deterioration determination device for determining deterioration of the alkaline secondary battery;
Charging / discharging for controlling charging and discharging of the alkaline secondary battery so that a change amount of the charging state when the charging state of the alkaline secondary battery increases or decreases according to the determination result of the deterioration determination device is reduced. A control unit,
The secondary battery control device, wherein the deterioration determination device is a secondary battery deterioration determination device according to any one of claims 1 to 3.
JP2016153525A 2016-08-04 2016-08-04 Secondary battery deterioration determination device, secondary battery deterioration determination method, and secondary battery control device Active JP6647986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016153525A JP6647986B2 (en) 2016-08-04 2016-08-04 Secondary battery deterioration determination device, secondary battery deterioration determination method, and secondary battery control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016153525A JP6647986B2 (en) 2016-08-04 2016-08-04 Secondary battery deterioration determination device, secondary battery deterioration determination method, and secondary battery control device

Publications (2)

Publication Number Publication Date
JP2018021837A true JP2018021837A (en) 2018-02-08
JP6647986B2 JP6647986B2 (en) 2020-02-14

Family

ID=61165490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016153525A Active JP6647986B2 (en) 2016-08-04 2016-08-04 Secondary battery deterioration determination device, secondary battery deterioration determination method, and secondary battery control device

Country Status (1)

Country Link
JP (1) JP6647986B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019184386A1 (en) * 2018-03-29 2019-10-03 深圳市道通智能航空技术有限公司 Safety protection method for battery of unmanned aerial vehicle and device thereof
CN110690739A (en) * 2018-07-06 2020-01-14 东芝泰格有限公司 Charging device, control method, computer-readable storage medium, and electronic apparatus
JP2023020089A (en) * 2021-07-30 2023-02-09 プライムアースEvエナジー株式会社 Secondary battery degradation determination method, degradation determination program and degradation determination device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012058028A (en) * 2010-09-07 2012-03-22 Calsonic Kansei Corp Battery capacity calculation apparatus and battery capacity calculation method
JP2013210340A (en) * 2012-03-30 2013-10-10 Panasonic Corp Charge control device, charge control method and power storage system
JP2015081823A (en) * 2013-10-22 2015-04-27 三菱重工業株式会社 Degradation amount calculation device, degradation amount calculation method, and program
US20160169975A1 (en) * 2014-12-10 2016-06-16 Tatung Company Battery capacity estimating apparatus and battery capacity estimating method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012058028A (en) * 2010-09-07 2012-03-22 Calsonic Kansei Corp Battery capacity calculation apparatus and battery capacity calculation method
JP2013210340A (en) * 2012-03-30 2013-10-10 Panasonic Corp Charge control device, charge control method and power storage system
JP2015081823A (en) * 2013-10-22 2015-04-27 三菱重工業株式会社 Degradation amount calculation device, degradation amount calculation method, and program
US20160169975A1 (en) * 2014-12-10 2016-06-16 Tatung Company Battery capacity estimating apparatus and battery capacity estimating method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019184386A1 (en) * 2018-03-29 2019-10-03 深圳市道通智能航空技术有限公司 Safety protection method for battery of unmanned aerial vehicle and device thereof
CN110690739A (en) * 2018-07-06 2020-01-14 东芝泰格有限公司 Charging device, control method, computer-readable storage medium, and electronic apparatus
JP2023020089A (en) * 2021-07-30 2023-02-09 プライムアースEvエナジー株式会社 Secondary battery degradation determination method, degradation determination program and degradation determination device

Also Published As

Publication number Publication date
JP6647986B2 (en) 2020-02-14

Similar Documents

Publication Publication Date Title
JP5504126B2 (en) Control device for lithium-ion battery
JP3964635B2 (en) Memory effect detection method and solution
JP5660003B2 (en) A secondary battery deterioration state determination system and a deterioration state determination method.
CN110679056B (en) Battery charge management apparatus and method
EP3605127B1 (en) Device and method for estimating battery resistance
JP2019146302A (en) Charging state estimation device for secondary battery, abnormality detection device, and management system for secondary battery
JP2002369391A (en) Method and device for controlling residual capacity of secondary battery
EP3982507A1 (en) Device and method for balancing battery packs connected in parallel to each other
JP2010218900A (en) Battery system and hybrid automobile
KR101632005B1 (en) Cell balancing device connected by alternating current and control method thereof
JP2013134962A (en) Lithium ion secondary battery system
WO2015019875A1 (en) Battery control system and vehicle control system
JP2019187027A (en) Power storage device
US12000900B2 (en) Apparatus and method for controlling turn-on operation of switch units included in parallel multi-battery pack
JP6647986B2 (en) Secondary battery deterioration determination device, secondary battery deterioration determination method, and secondary battery control device
JP6421986B2 (en) Secondary battery charging rate estimation method, charging rate estimation device, and soundness estimation device
KR101147168B1 (en) System for control cell balance of battery pack using eq cell and method thereof
JP6229674B2 (en) Secondary battery control device
JP2016164851A (en) Lithium ion secondary battery charging system
JP5609807B2 (en) Hysteresis reduction system for battery device
JP2015185501A (en) Excitation device
JP2018182866A (en) Battery system and electrical powered vehicle
CN113884893A (en) Power map switching method and device for power battery and electronic equipment
JP2018085278A (en) Control system
JP2012165580A (en) Control device of power storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190227

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191225

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200115

R150 Certificate of patent or registration of utility model

Ref document number: 6647986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250