JP2006032026A - Manufacturing method of expanded grid for lead acid storage battery, grid by this, and lead acid storage battery using this grid - Google Patents

Manufacturing method of expanded grid for lead acid storage battery, grid by this, and lead acid storage battery using this grid Download PDF

Info

Publication number
JP2006032026A
JP2006032026A JP2004206518A JP2004206518A JP2006032026A JP 2006032026 A JP2006032026 A JP 2006032026A JP 2004206518 A JP2004206518 A JP 2004206518A JP 2004206518 A JP2004206518 A JP 2004206518A JP 2006032026 A JP2006032026 A JP 2006032026A
Authority
JP
Japan
Prior art keywords
grid
lead
sheet
state
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004206518A
Other languages
Japanese (ja)
Inventor
Taisuke Takeuchi
泰輔 竹内
Takeshi Kameda
毅 亀田
Yuko Tokutomi
優子 徳冨
Kenji Hirakawa
憲治 平川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP2004206518A priority Critical patent/JP2006032026A/en
Publication of JP2006032026A publication Critical patent/JP2006032026A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem that in the manufacturing method of an expanded type grid for the lead acid storage battery, a complicated processing and equipment are required in the processing before working of the rolled sheet and that it was difficult to obtain a vertically elongated grid. <P>SOLUTION: The sheet obtained by rolling lead alloy is made into a state of overaging and then, by performing an expanding processing, a grid is made. It is desirable that the state of overaging is made by storing the sheet for 1.5-72 hours under 120°C or more and 160°C or less, and that the tensile strength of the sheet is made 6.0 kgf/mm<SP>2</SP>or less. Therefore, a vertically elongated grid of can be made and using the grid obtained and by assembling the electrode plate group under a pressurized state, a lead acid storage battery of high performance is obtained. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、鉛蓄電池用エキスパンド格子体の製造方法、それによる格子体、および該格子体を用いた鉛蓄電池の改良に関する。   The present invention relates to a method for producing an expanded lattice for a lead storage battery, a lattice body thereby, and an improvement in a lead storage battery using the lattice.

従来の鉛蓄電池の格子体のエキスパンド加工ではシートを約75℃、最高温度で約90℃に加熱した後に加工をしている(例えば特許文献1参照。)。   In the conventional process of expanding the grid of a lead storage battery, the sheet is processed after being heated to about 75 ° C. and about 90 ° C. at the maximum temperature (see, for example, Patent Document 1).

特開平5−258752号公報(第2〜4欄)JP-A-5-258752 (columns 2-4)

また、シートを高温保管し、その後、低温保管するものがあるが、高温での保管は40℃である。(例えば特許文献2参照。)。   Moreover, although there exists what stores a sheet | seat at high temperature and stores it at low temperature after that, the storage at high temperature is 40 degreeC. (For example, refer to Patent Document 2).

特開平5−290855号公報(第3〜4頁、[0017]、図1)JP-A-5-290855 (pages 3 to 4, [0017], FIG. 1)

鉛蓄電池はコストパーフォーマンスに優れ信頼性も高く、自動車用の他、通信機器、無停電電源装置など、幅広い分野で用いられている。特に、制御弁式鉛蓄電池は保守が簡素化できるので、近年、大型の電源用にも使用される。この制御弁式鉛蓄電池の極板に使用される格子体は鉛−錫−カルシウム系合金で製造される場合が殆どである。格子体の製造方法は合金を鋳型を用いて鋳造する方式、或いは合金のスラブを圧延したシートをエキスパンド加工する方式がある。エキスパンド方式は生産性が優れているため、元々、自動車用に適用され、その他の用途には鋳造式が適用されることが多かった。しかし最近では、その他の用途の鉛蓄電池用にもエキスパンド式が採用されるようになった。   Lead-acid batteries have excellent cost performance and high reliability, and are used in a wide range of fields such as automobiles, communication equipment, uninterruptible power supplies. In particular, since the control valve type lead-acid battery can simplify the maintenance, it is also used in recent years for large power sources. In most cases, the lattice used for the electrode plate of this control valve type lead-acid battery is made of a lead-tin-calcium alloy. As a method for manufacturing the lattice body, there are a method in which an alloy is cast using a mold, or a method in which a sheet obtained by rolling an alloy slab is expanded. Since the expand method is excellent in productivity, it was originally applied to automobiles and the casting method was often applied to other uses. Recently, however, the expanded type has been adopted for lead-acid batteries for other purposes.

エキスパンド方式では、鉛合金を圧延して得られたシートに細かい切り目を入れ、切り目を開く方向に拡開し、必要な形状の菱形の枡目を得る。そのとき、合金の性状と拡開の程度とによっては枡目が破断することがあった。このため、枡目を形成する小骨(ワイヤー)の立ち上がり角度の大きい格子体、特に、枡目の縦方向の対角線の長さが横方向の対角線のそれよりも長い格子体を得ることは非常に困難であった。ここに、立ち上がり角度とは、エキスパンド格子体の一つの枡目において、切り目を上下方向に開いたことによって該枡目の小骨(ワイヤー)が作る角度のうち、横方向の対角線を含んで形成される角度をいうが、小骨(ワイヤー)は湾曲している場合もあるため、枡目の頂点(頂点に幅がある場合はその中点)間を結んだ直線によって形成される角度でいうものとする。この対策として提案されているものに、圧延したシートを時効硬化の起こる前の柔軟な間にエキスパンド加工をするものがある。そのためには、時効硬化の進行を遅らせるためにシートを低温下で保管する等の手段が必要であった。また、上記の特許文献1及び2に、シートを加熱する提案は見られるが、いずれもシートの柔軟性を得るためのものではなく、時効硬化する前のシートの硬さを調整するためのものであり、加熱温度は低いものである。   In the expanding system, fine cuts are made in a sheet obtained by rolling a lead alloy, and the sheet is expanded in the direction of opening the cuts to obtain a rhombus cell having a required shape. At that time, the mesh may break depending on the properties of the alloy and the degree of expansion. For this reason, it is very difficult to obtain a lattice with a large rise angle of small bones (wires) forming a mesh, particularly a lattice with a longitudinal diagonal length longer than that of a horizontal diagonal. It was difficult. Here, the rising angle is formed so as to include a diagonal line in the horizontal direction among the angles formed by the small bones (wires) of the grid by opening the cut vertically in one grid of the expanded lattice. The angle is formed by a straight line connecting the apexes of the mesh (or the midpoint if the apex has a width) because the small bone (wire) may be curved. To do. As a countermeasure against this, there is a method in which a rolled sheet is subjected to an expanding process before being subjected to age hardening. For that purpose, in order to delay the progress of age hardening, means such as storing the sheet at a low temperature is necessary. Moreover, although the proposal which heats a sheet | seat is seen by said patent document 1 and 2, neither is for obtaining the softness | flexibility of a sheet | seat, but for adjusting the hardness of the sheet | seat before age hardening The heating temperature is low.

上記課題を解決するため、本発明の提供するところは、請求項1では、鉛合金を圧延して得られたシートを、過時効状態とした後エキスパンド加工を行って格子体とすることを特徴とする、鉛蓄電池用エキスパンド格子体の製造方法である。   In order to solve the above-mentioned problems, the present invention provides, in claim 1, characterized in that a sheet obtained by rolling a lead alloy is subjected to an expanding process after being overaged to obtain a lattice body. It is a manufacturing method of the expanded lattice body for lead acid batteries.

請求項2では、過時効状態は、シートを、120℃以上、160℃以下の雰囲気下に1.5時間〜72時間保管した後の状態である、請求項1記載の鉛蓄電池用エキスパンド格子体の製造方法である。   In Claim 2, the overaging state is a state after the sheet is stored in an atmosphere of 120 ° C. or higher and 160 ° C. or lower for 1.5 hours to 72 hours, and the expanded lattice body for a lead storage battery according to claim 1. It is a manufacturing method.

請求項3では、過時効状態は、エキスパンド加工を行う際のシートの引張り強さが6.0kgf/mm2以下の状態である、請求項2記載の鉛蓄電池用エキスパンド格子体の製造方法である。 In claim 3, the overaging state is a method for producing an expanded lattice body for a lead storage battery according to claim 2, wherein the tensile strength of the sheet at the time of expanding is 6.0 kgf / mm 2 or less. .

請求項4では、エキスパンド加工を行った格子体は、格子体の枡目を形成するワイヤーの立ち上がり角度を90度以上、120度以下である列が少なくとも一列以上ある、請求項1〜3のいずれかに記載の鉛蓄電池用エキスパンド格子体の製造方法である。   The grid body according to claim 4, wherein the expanded lattice has at least one or more rows where the rising angle of the wire forming the grid of the lattice body is 90 degrees or more and 120 degrees or less. It is a manufacturing method of the expanded grid | lattice body for lead storage batteries as described in a crab.

請求項5では、請求項1の製造方法によって得られた、鉛蓄電池用格子体である。   In Claim 5, it is the grid for lead acid batteries obtained by the manufacturing method of Claim 1.

請求項6では、請求項2の製造方法によって得られた、鉛蓄電池用格子体である。   According to a sixth aspect of the present invention, there is provided a lead-acid battery grid obtained by the manufacturing method of the second aspect.

請求項7では、請求項3の製造方法によって得られた、鉛蓄電池用格子体である。   In Claim 7, it is the grid for lead acid batteries obtained by the manufacturing method of Claim 3.

請求項8では、請求項4の製造方法によって得られた、鉛蓄電池用格子体である。   In Claim 8, it is the grid for lead acid batteries obtained by the manufacturing method of Claim 4.

請求項9では、請求項5〜8のいずれかの格子体を、正極または負極の少なくとも一方の極板に使用し、この極板を圧縮可能な隔離板と共に極群に組み立て、極板面に垂直に圧迫を加えた状態で電槽に挿入した鉛蓄電池である。   In Claim 9, the grid body according to any one of Claims 5 to 8 is used for at least one of a positive electrode and a negative electrode, and the electrode plate is assembled into a group of electrodes together with a compressible separator, on the surface of the electrode plate. It is a lead-acid battery inserted into the battery case with pressure applied vertically.

請求項1によれば、鉛または鉛合金を圧延して得られたシートを低温下で保管して時効硬化を遅らせるための設備、またはエキスパンド機に直結した精密な加温処理設備を必要とせず、シートの保管条件や期間に関係なく、枡目の破断といった欠陥のない鉛蓄電池用エキスパンド格子体を安定して製造することができる。   According to claim 1, there is no need for a facility for delaying age hardening by storing a sheet obtained by rolling lead or a lead alloy at a low temperature, or a precise heating treatment facility directly connected to an expanding machine. Regardless of the storage conditions and period of the sheet, it is possible to stably produce an expanded lattice for a lead storage battery free from defects such as fracture of the mesh.

請求項2および請求項3によれば、請求項1記載の効果を確実に得るための具体的な条件が提供され、短時間で欠陥のない鉛蓄電池用エキスパンド格子体を製造することができる。   According to the second and third aspects, specific conditions for reliably obtaining the effect of the first aspect are provided, and an expanded lattice body for a lead storage battery having no defects can be manufactured in a short time.

請求項4によれば、請求項1〜3の効果に加え、特に大電流密度放電の性能に優れた鉛蓄電池用エキスパンド格子体を効率よく製造することができる。すなわち、この格子体は、同じ幅や厚さのシートを用いても縦長にすることができるから、格子体の軽量化と導電性向上に寄与し、出力特性の優れた鉛蓄電池の生産に有用である。   According to the fourth aspect, in addition to the effects of the first to third aspects, it is possible to efficiently produce an expanded lattice for a lead storage battery that is particularly excellent in performance of large current density discharge. In other words, since this grid can be made vertically long even if sheets of the same width and thickness are used, it contributes to the weight reduction and conductivity improvement of the grid and is useful for the production of lead storage batteries with excellent output characteristics. It is.

請求項5、請求項6、請求項7および請求項8によれば、それぞれ請求項1、請求項2、請求項3および請求項4の製造方法による効果を有する格子体が提供できる。   According to the fifth, sixth, seventh and eighth aspects, it is possible to provide a lattice body having an effect by the manufacturing method according to the first, second, third and fourth aspects, respectively.

請求項9によれば、請求項5から請求項8までのいずれかの格子体の有する効果を発揮した上、充分な実用寿命を有する鉛蓄電池を提供することができる。特に請求項8の格子体を備えた場合には、エンジン始動用や短時間保持の無停電電源用に有用(大電流放電が可能)な鉛蓄電池を提供できる。   According to the ninth aspect, it is possible to provide a lead-acid battery having a sufficient practical life while exhibiting the effect of any one of the fifth to eighth aspects. In particular, when the grid body according to claim 8 is provided, it is possible to provide a lead-acid battery useful for engine start-up and an uninterruptible power supply for a short time (capable of large current discharge).

本発明の格子体製造に用いられるシートは、一般には、鉛合金を鋳型に鋳造して得られる断面角形の棒状のスラブを多段ロールで順次に圧延して作られる。熔融した鉛合金を溝付きドラムとベルト等とからなる連続鋳造機を用いてスラブを鋳造しつつ、これを多段ロールに供給してもよい。   The sheet used for the production of the grid of the present invention is generally produced by rolling a bar-shaped slab having a square cross section obtained by casting a lead alloy into a mold in succession with a multistage roll. You may supply this to a multistage roll, casting a slab from the melted lead alloy using the continuous casting machine which consists of a grooved drum and a belt.

鉛合金は一般に鉛(Pb)、カルシウム(Ca)、錫(Sn)の三元合金が用いられ、Caを0.02〜0.11重量%、Snを0.3〜2.5重量%含み、残余がPbよりなるものが普通である。性能改善のため、これに銀(Ag)などが添加されることもある。   Lead alloys are generally ternary alloys of lead (Pb), calcium (Ca), and tin (Sn), and contain 0.02 to 0.11% by weight of Ca and 0.3 to 2.5% by weight of Sn. In general, the remainder is made of Pb. In order to improve performance, silver (Ag) or the like may be added thereto.

(評価試験1)
Pb−0.07%Ca−1.5%Snの鉛合金を電気炉中で熔融し、550℃で鋳型に鋳造し、幅が100mmで、厚さが10mmのスラブを作製した。これらのスラブを直径450mmの2本ロール式の圧延ロールを用いて、表1に示すような各種の圧延率と圧延回数(方法A〜C)で圧延し、厚さが0.9mmのシートを作製した。圧延速度は412mm/秒である。これらのシートは、圧延直後はその圧延方法に拘わらず4.4〜4.7kgf/mm2の引張り強さを示した。
(Evaluation Test 1)
A lead alloy of Pb-0.07% Ca-1.5% Sn was melted in an electric furnace and cast into a mold at 550 ° C. to produce a slab having a width of 100 mm and a thickness of 10 mm. These slabs are rolled using a two-roll type rolling roll having a diameter of 450 mm at various rolling rates and rolling times (methods A to C) as shown in Table 1, and a sheet having a thickness of 0.9 mm is obtained. Produced. The rolling speed is 412 mm / sec. These sheets exhibited a tensile strength of 4.4 to 4.7 kgf / mm 2 immediately after rolling, regardless of the rolling method.

次に、方法A〜Cで圧延したシートを150℃の雰囲気下で1.5時間、5時間、11時間保管して過時効状態とした後のシートの引張り強さを表2に示す。なお、引張り強さは得られたシートから圧延方向に10片のダンベル型試料を採取し、引張り速度30mm/分で測定し、最大値および最小値を示したものを除いた8片の値の平均値をとった。   Next, Table 2 shows the tensile strength of the sheet after the sheet rolled by the methods A to C is stored in an atmosphere of 150 ° C. for 1.5 hours, 5 hours, and 11 hours to be in an overaged state. Tensile strength was obtained by taking 10 pieces of dumbbell-shaped samples from the obtained sheet in the rolling direction, measuring at a pulling speed of 30 mm / min, and excluding those showing the maximum and minimum values. Average values were taken.

Figure 2006032026
Figure 2006032026

Figure 2006032026
Figure 2006032026

上記のそれぞれの条件で過時効状態にしたシートを25℃の雰囲気下で87日間放置したときの引張り強さの推移を図1に示す。いずれの条件で過時効状態にしたものも、過時効状態にした直後の引張り強さに対して±0.5kgf/mm2の範囲にあって安定していることがわかる。また、スラブを圧延する際の圧延率や圧延回数によっても、ほとんど差異がないことがわかる。 FIG. 1 shows the transition of the tensile strength when a sheet that has been overaged under each of the above conditions is left in an atmosphere at 25 ° C. for 87 days. It can be seen that the overaged condition under any condition is stable in the range of ± 0.5 kgf / mm 2 with respect to the tensile strength immediately after the overaged condition. Moreover, it turns out that there is almost no difference also by the rolling rate at the time of rolling a slab, and the frequency | count of rolling.

次に、上記の150℃の雰囲気下で1.5時間、5時間、11時間保管して過時効状態にしたシートを、レシプロ式のエキスパンド加工機によって、格子体の枡目を形成するワイヤーの立ち上がり角度が60度、90度および120度であるように拡開したが、いずれも枡目の破断は生じなかった。   Next, the sheet that has been stored in the above-described atmosphere at 150 ° C. for 1.5 hours, 5 hours, and 11 hours to be over-aged is subjected to re-propulsion type expansion processing machine. Although it was expanded so that the rising angles were 60 degrees, 90 degrees, and 120 degrees, none of the meshes broke.

このことから、150℃の雰囲気下であれば、1.5時間以上保管することによって、引張り強さが6.0kgf/mm2以下の過時効状態にできることがわかる。その結果、格子体の枡目を形成するワイヤーの立ち上がり角度を120度まで拡開しても枡目の破断が生じない格子体を得ることができる。 From this, it can be seen that, under an atmosphere of 150 ° C., an overaged state having a tensile strength of 6.0 kgf / mm 2 or less can be obtained by storing for 1.5 hours or longer. As a result, it is possible to obtain a grid body that does not break the grid even if the rising angle of the wire forming the grid of the grid body is expanded to 120 degrees.

(評価試験2)
次に、方法Aで圧延したシートを、100℃、120℃、140℃および160℃の各雰囲気下で保管し、時効硬化から過時効に至る状況を、100℃と120℃の雰囲気下で保管したものは24時間ごとに、140℃と160℃の雰囲気下で保管したものは30分ごとに、その引張り強さを測定し、それが4.0〜6.0kgf/mm2の範囲の過時効状態になるまでの時間(過時効処理時間)を測定し、結果を図2に示す。なお、引張り強さを4.0〜6.0kgf/mm2の範囲にしたのは、評価試験1で、ワイヤーの立ち上がり角度を120度にしても枡目の破断が生じなかったことによる。そして、上記の各雰囲気下で保管して、引張り強さが4.0〜6.0kgf/mm2の範囲になったシートを、レシプロ式のエキスパンド加工機によって、格子体の枡目を形成するワイヤーの立ち上がり角度が60度、90度および120度であるように拡開したが、いずれも枡目の破断は生じなかった。
(Evaluation test 2)
Next, the sheet rolled by the method A is stored in each atmosphere of 100 ° C., 120 ° C., 140 ° C. and 160 ° C., and the situation from age hardening to overaging is stored in the atmosphere of 100 ° C. and 120 ° C. The tensile strength was measured every 24 hours and stored at 140 ° C. and 160 ° C. every 30 minutes, and the tensile strength was in the range of 4.0 to 6.0 kgf / mm 2. The time until the aging state is reached (over-aging treatment time) is measured, and the result is shown in FIG. The reason why the tensile strength is in the range of 4.0 to 6.0 kgf / mm 2 is that, in Evaluation Test 1, even when the rising angle of the wire is 120 degrees, the mesh does not break. And the sheet | seat of the grid | lattice body is formed with the reciprocating type expansion processing machine by storing in each said atmosphere, and the sheet | seat in which the tensile strength became the range of 4.0-6.0kgf / mm < 2 >. The wire was expanded so that the rising angle was 60 degrees, 90 degrees, and 120 degrees, but none of the breaks occurred in the mesh.

図2から、過時効処理時間は、温度が160℃の雰囲気であれば1.5時間程度、好ましくは1〜2時間程度、温度が140℃の雰囲気であれば9.5時間程度、好ましくは9〜10時間程度、温度が120℃の雰囲気であれば60時間程度、好ましくは48〜72時間程度、温度が100℃の雰囲気であれば240時間程度、好ましくは1〜2週間程度の保管とするのがよい。なお、このように保管期間に幅をもたせたのは、各雰囲気温度における保管期間の経過と引張り強さとの関係から、引張り強さが4.0〜6.0kgf/mm2の範囲になると考えられる期間を推定した。 From FIG. 2, the overaging treatment time is about 1.5 hours, preferably about 1-2 hours if the temperature is 160 ° C., and about 9.5 hours if the temperature is 140 ° C., preferably Storage for about 9 to 10 hours, about 60 hours if the temperature is 120 ° C, preferably about 48 to 72 hours, about 240 hours if the temperature is 100 ° C, preferably about 1 to 2 weeks It is good to do. In addition, it is considered that the reason why the storage period is thus widened is that the tensile strength is in the range of 4.0 to 6.0 kgf / mm 2 from the relationship between the passage of the storage period at each ambient temperature and the tensile strength. Estimated period.

一方、上記した雰囲気下で保管した後の放置期間は、シートは、その引張り強さがピークを過ぎた後の過時効状態になっているので、その後、たとえば室温(25℃)で放置しても、引張り強さは大きく変わることがなく、その値も、図1からわかるように、長期にわたってエキスパンド加工に適した範囲に安定しているので、在庫期間を考慮することなく、エキスパンド加工に供することができて、工業的に有利である。   On the other hand, since the sheet is in an overaged state after its tensile strength has passed the peak, the sheet is left at room temperature (25 ° C.) after the storage in the atmosphere described above. However, the tensile strength does not change greatly, and the value is stable in a range suitable for expanding over a long period of time, as can be seen from FIG. 1, so that it is used for expanding without considering the inventory period. This is industrially advantageous.

上記した評価試験1では、方法A〜Cに示したように、いずれも厚さが10mmのスラブを、その圧延条件を変化させて厚さが0.9mmのシートにしたもの、すなわち、スラブの各回の圧延率を23%〜55%とし、圧延回数を変化させたもので、その結果は、方法A〜Cのいずれの場合も同様であった。そこで、上記した評価試験2では、スラブの各回の圧延率を約33%、圧延回数を6回にしたもので行ったが、どのような圧延条件を選択するかは、圧延ロールの組数、作製できるスラブの厚さ、シートの厚さに応じて適宜定めればよい。   In the above-described evaluation test 1, as shown in the methods A to C, the slab having a thickness of 10 mm was changed to a sheet having a thickness of 0.9 mm by changing the rolling conditions. The rolling rate of each round was 23% to 55%, and the number of rolling was changed. The results were the same in any of the methods A to C. Therefore, in the evaluation test 2 described above, the rolling rate of each slab was about 33% and the number of rollings was 6 times, but what kind of rolling conditions were selected depends on the number of rolling roll sets, What is necessary is just to determine suitably according to the thickness of the slab which can be produced, and the thickness of a sheet | seat.

(評価試験3)
次に、Pb−Ca−Snの鉛合金について、Snの重量%を1.5%にして、Caの重量%を0.02%、0.04%、0.07%とした鉛合金を評価試験1と同様に電気炉中で熔融し、550℃で鋳型に鋳造し、幅が100mmで、厚さが10mmのスラブを作成した。これらのスラブを直径450mmの2本ロール式の圧延ロールを用いて表1に示すような各種の圧延率と圧延回数(方法A〜C)で圧延し、厚さが0.9mmのシートを作成した。圧延速度は412mm/秒である。これらのシートについて、圧延直後の引張り強さを、評価試験1で測定したのと同じ方法で測定したところ、方法A〜Cのいずれの場合も4.4〜4.8kgf/mm2であった。
(Evaluation Test 3)
Next, for lead alloys of Pb—Ca—Sn, lead alloys having Sn weight percentages of 1.5% and Ca weight percentages of 0.02%, 0.04%, and 0.07% were evaluated. As in Test 1, it was melted in an electric furnace, cast into a mold at 550 ° C., and a slab having a width of 100 mm and a thickness of 10 mm was prepared. These slabs are rolled using a two-roll type rolling roll having a diameter of 450 mm at various rolling rates and the number of rolling operations (methods A to C) as shown in Table 1 to produce a sheet having a thickness of 0.9 mm. did. The rolling speed is 412 mm / sec. About these sheets, when the tensile strength immediately after rolling was measured by the same method as that measured in Evaluation Test 1, it was 4.4 to 4.8 kgf / mm 2 in any of the methods A to C. .

次に、上記した各シートを、そのまま25℃の雰囲気下で放置し、時効硬化から過時効状態になる過程における引張り強さの推移を調査し、結果を図3に示す。   Next, each of the above-described sheets is left as it is in an atmosphere of 25 ° C., and the transition of the tensile strength in the process from the age hardening to the overaging state is investigated, and the results are shown in FIG.

図3から、Caの重量%が多くなるほど引張り強さのピーク値が高く、そのピーク値に達するまでの時間も短いことがわかる。また、ピーク値も、評価試験1のように過時効状態にした場合は6.0kgf/mm2以下であったのに対し、このように時効硬化から過時効状態にした場合は、成分比が評価試験1に供したものと同じものでは8.0kgf/mm2程度になっていることがわかる。また、このように時効硬化から過時効状態になった後は、ほぼその引張り強さの値を維持していることがわかる。 From FIG. 3, it can be seen that the peak value of the tensile strength increases as the weight percentage of Ca increases, and the time to reach the peak value is shorter. In addition, the peak value was 6.0 kgf / mm 2 or less when overaged as in Evaluation Test 1, whereas the component ratio was as follows when overaged from age hardening as described above. It turns out that it is about 8.0 kgf / mm < 2 > in the same thing used for the evaluation test 1. FIG. Moreover, it turns out that the value of the tensile strength is substantially maintained after going from an age hardening to an overaging state in this way.

(評価試験4)
次に、Pb−Ca−Snの鉛合金について、Caの重量%を0.07%にして、Snの重量%を0%、0.3%、0.5%、0.7%、1.0%、1.5%とした鉛合金を評価試験1と同様に電気炉中で熔融し、550℃で鋳型に鋳造し、幅が100mmで、厚さが10mmのスラブを作成した。これらのスラブを直径450mmの2本ロール式の圧延ロールを用いて表1に示すような各種の圧延率と圧延回数(方法A〜C)で圧延し、厚さが0.9mmのシートを作成した。圧延速度は412mm/秒である。これらのシートについて、圧延直後の引張り強さを、評価試験1で測定したのと同じ方法で測定したところ、方法A〜Cのいずれの場合も4.3〜4.9kgf/mm2であった。
(Evaluation Test 4)
Next, regarding the lead alloy of Pb—Ca—Sn, the Ca wt% is set to 0.07%, and the Sn wt% is set to 0%, 0.3%, 0.5%, 0.7%, and 1. The lead alloys with 0% and 1.5% were melted in an electric furnace in the same manner as in the evaluation test 1 and cast into a mold at 550 ° C. to produce a slab having a width of 100 mm and a thickness of 10 mm. These slabs are rolled using a two-roll type rolling roll having a diameter of 450 mm at various rolling rates and the number of rolling operations (methods A to C) as shown in Table 1 to produce a sheet having a thickness of 0.9 mm. did. The rolling speed is 412 mm / sec. About these sheets, when the tensile strength immediately after rolling was measured by the same method as that measured in Evaluation Test 1, it was 4.3 to 4.9 kgf / mm 2 in any of the methods A to C. .

次に、上記した各シートを、そのまま25℃の雰囲気下で放置したときの引張り強さの推移を調査し、結果を図4に示す。   Next, the transition of the tensile strength when each of the above-mentioned sheets is left as it is in an atmosphere of 25 ° C. is investigated, and the results are shown in FIG.

図4から、Snの重量%が多くなるほど引張り強さのピーク値が高く、そのピーク値に達するまでの時間も短いことがわかる。また、ピーク値も、評価試験1のように過時効状態にした場合は6.0kgf/mm2以下であったのに対し、このように時効硬化から過時効状態にした場合は、成分比が評価試験1に供したものと同じものでは8.0kgf/mm2程度になっていることがわかる。また、このように時効硬化から過時効状態になった後は、ほぼその引張り強さの値を維持していることがわかる。 FIG. 4 shows that the peak value of the tensile strength increases as the weight percentage of Sn increases, and the time to reach the peak value is shorter. In addition, the peak value was 6.0 kgf / mm 2 or less when overaged as in Evaluation Test 1, whereas the component ratio was as follows when overaged from age hardening as described above. It turns out that it is about 8.0 kgf / mm < 2 > in the same thing used for the evaluation test 1. FIG. Moreover, it turns out that the value of the tensile strength is substantially maintained after going from an age hardening to an overaging state in this way.

次に、上記した評価試験3、4で作製し、25℃の雰囲気下で10日間放置した、Pb−0.07%Ca−1.5%Snの鉛合金からなるシートを、レシプロ式のエキスパンド加工機によって、格子体の枡目を形成するワイヤーの立ち上がり角度が60度、90度および120度であるように拡開したところ、立ち上がり角度が90度になると一部に目切れが発生し、120度にすると連続してエキスパンド加工ができなくなるほどの目切れや枡目の破断が生じることがわかった。   Next, a sheet made of a lead alloy of Pb-0.07% Ca-1.5% Sn prepared in the above-described evaluation tests 3 and 4 and allowed to stand for 10 days in an atmosphere at 25 ° C. is used as a reciprocating type expander. When the rising angle of the wire forming the grid of the lattice body is expanded by the processing machine so that it is 60 degrees, 90 degrees and 120 degrees, when the rising angle becomes 90 degrees, some breaks occur, It was found that when the angle was 120 degrees, the cuts and the meshes were broken to such an extent that continuous expansion could not be performed.

このことから、本発明のエキスパンド格子体の製造方法によれば、Pb−0.07%Ca−1.5%Snの鉛合金からなるシートをエキスパンド加工する場合において、ワイヤーの立ち上がり角度を120度まで拡開しても枡目の破断が生じない格子体が得られる。なお、ここで、ワイヤーの立ち上がり角度を120度まで拡開するのは、格子体の枡目のすべてを対象としてもよいし、このような横方向の列が一列以上であってもよい。特に、横方向の列のうち、上部親骨と下部親骨に近い列をワイヤーの立ち上がり角度が120度より小さくなるように拡開し、残余の列のワイヤーの立ち上がり角度が120度になるように拡開すれば、上部親骨と下部親骨に近い列のワイヤーの立ち上がり角度に合わせた均一な厚さの極板を得ることができる。   From this, according to the manufacturing method of the expanded lattice body of the present invention, when a sheet made of a lead alloy of Pb-0.07% Ca-1.5% Sn is expanded, the rising angle of the wire is 120 degrees. A lattice body that does not cause breakage of the mesh even when it is expanded to a maximum is obtained. Here, the expansion angle of the wire to 120 degrees may be applied to all the grids of the lattice, or one or more such horizontal rows may be provided. In particular, among the horizontal rows, the rows close to the upper and lower master bones are expanded so that the rising angle of the wires is smaller than 120 degrees, and the rising angles of the wires in the remaining rows are expanded so as to be 120 degrees. If opened, it is possible to obtain an electrode plate having a uniform thickness according to the rising angle of the wires in the rows close to the upper and lower master bones.

すなわち、上記した評価試験3、4の結果から、Caの重量%やSnの重量%を変化させても、一旦、上記した温度下、たとえば150℃の雰囲気下で1.5時間以上保管し、シートの引張り強さがピーク値を過ぎた後の過時効状態にした後であれば、その後の放置期間の長さ、あるいはその際の放置温度に差があっても、引張り強さは長期にわたってエキスパンド加工に適した範囲に安定しているので、在庫期間を考慮することなく、エキスパンド加工に供することができて、工業的に有利である。   That is, from the results of the above-described evaluation tests 3 and 4, even if the weight percent of Ca and the weight percent of Sn are changed, they are once stored at the above temperature, for example, at 150 ° C. for 1.5 hours or more, If the sheet is in an over-aged state after the peak tensile strength has passed the peak value, the tensile strength will be maintained over a long period of time even if there is a difference in the length of the subsequent standing period or the standing temperature at that time. Since it is stable in a range suitable for expanding, it can be used for expanding without considering the inventory period, which is industrially advantageous.

以上の評価試験1〜4の結果から、エキスパンド加工によって得られた格子体の合金組成と、該格子体をどのようなスラブからどのように圧延して作製したシートかという条件とによって、その引張り強さの水準が決まることがわかる。すなわち、鉛蓄電池を解体して得た格子体の合金組成がわかれば、圧延直後の柔軟なシートをエキスパンド加工して得た格子体であるか、該シートを、たとえば150℃の雰囲気下で1.5時間以上保管した後でエキスパンド加工して得た格子体であるか、また、該シートを、そのまま常温(25℃)下に長期間放置した後でエキスパンド加工して得た格子体であるかは、その引張り強さの水準から判別することができる。   From the results of the above evaluation tests 1 to 4, the tensile strength of the lattice body obtained by the expanding process and the conditions of the sheet produced by rolling the lattice body from what slab were determined. It can be seen that the level of strength is determined. That is, if the alloy composition of the lattice body obtained by disassembling the lead storage battery is known, it is a lattice body obtained by expanding a flexible sheet immediately after rolling, or the sheet is, for example, 1 in an atmosphere at 150 ° C. A grid obtained by expanding after storage for 5 hours or more, or a grid obtained by expanding the sheet after leaving it at room temperature (25 ° C.) for a long period of time. It can be determined from the level of tensile strength.

上記した各評価試験では、レシプロ式のエキスパンド加工機を使用したが、ロータリー式を使用する場合でも、本発明による適度の引張り強さをもつシートを使用すれば、枡目の形状の安定した、欠陥のない格子体を製造することができる。   In each of the above evaluation tests, a reciprocating type expand processing machine was used, but even when using a rotary type, if a sheet having an appropriate tensile strength according to the present invention is used, the shape of the mesh is stable, A lattice body without defects can be manufactured.

本発明による格子体は鉛蓄電池として使用されて、部分的な腐食や伸びが少なく、従来品と同等以上の効果を発揮する特徴を有する。これは、シートの引張り強さが小さい、柔軟な状態でエキスパンド加工に供するため、加工に伴う変形による内部応力が少ないことによると考えられる。   The lattice body according to the present invention is used as a lead-acid battery, and has a feature of exhibiting effects equivalent to or higher than those of conventional products with little partial corrosion and elongation. This is presumably because the tensile strength of the sheet is small and it is subjected to the expanding process in a flexible state, so that the internal stress due to deformation accompanying the process is small.

次に、上記評価試験1の、方法Aで作製したシートをエキスパンド加工して得た格子体に、定法により活物質となるペーストを充填し、両面に薄紙を添付し乾燥、打ち抜き、切断の後、数十枚単位に平積みして熟成を行なって未化成極板とする。このようにして得た正、負極板をガラスマットや隔離板と共に積み重ねて極板群(正極板5枚、負極板6枚、微孔隔離板5枚)に構成する場合は、極板を水平、またはこれに近い状態で扱う積み重ね機が好適に使用できる。また、極板は表面の薄紙と、熟成ペーストのセメント効果により補強されており、その他の積み重ね機も使用することができる。このようにして得られた極板群に固定、集電のためのストラップや所要の端子を付けて極群とし、該極群を極板の面に垂直な方向に圧迫を加えて所定の電槽に収納する。このようにして得られた未化成の鉛蓄電池に電解液を注入して通電して化成を行い、要すれば排気弁の取付けなどを行い、完成品の鉛蓄電池とする。こうして得られた本発明の鉛蓄電池は、格子体の引張り強度が4.0〜6.0kgf/mm2であり、低温下で保管した後のシートをエキスパンド加工して得た格子体を用いた鉛蓄電池の格子体の引張り強度(7.0kgf/mm2)より低いが、極群の隔離板に微細ガラス繊維マットを使用し、極板に対して20〜60kgf/dm2の圧迫を加え、電解液量を制限して微細ガラス繊維マットに吸収せしめた制御弁式鉛蓄電池に好適である。この場合、圧延後のシートの厚さが、上記した如く1mm程度(0.9mm)の薄いものであっても、活物質は充分に格子体に保持され、電池の耐久性を向上を期待することができる。勿論、通常のガラス繊維マットと微孔隔離板を使用して充分な量の電解液を使用する鉛蓄電池にも使用することができる。また、耐振動性、耐衝撃性を向上するための公知の極群の固定法を併用することもできる。 Next, after the sheet produced by Method A in the above Evaluation Test 1 is expanded, the paste as an active material is filled by a conventional method, thin paper is attached to both sides, and after drying, punching, and cutting Then, lay out in units of several tens of sheets and age them to make unformed electrode plates. When the positive and negative electrode plates thus obtained are stacked together with a glass mat and a separator plate to form an electrode plate group (five positive electrode plates, six negative electrode plates, and five micro-hole separator plates), the electrode plates are horizontal. A stacker that handles in a state close to this can be preferably used. Moreover, the electrode plate is reinforced by the thin paper on the surface and the cement effect of the aging paste, and other stacking machines can be used. The electrode plate group thus obtained is fixed and attached with a strap for collecting current and necessary terminals to form a pole group, and the electrode group is pressed in a direction perpendicular to the surface of the electrode plate to obtain a predetermined current. Store in the tank. The unformed lead-acid battery thus obtained is injected with an electrolyte and energized to carry out formation, and if necessary, an exhaust valve is attached to obtain a finished lead-acid battery. The lead storage battery of the present invention thus obtained has a lattice body having a tensile strength of 4.0 to 6.0 kgf / mm 2 and a lattice body obtained by expanding a sheet after being stored at a low temperature. Although it is lower than the tensile strength (7.0 kgf / mm 2 ) of the grid of the lead storage battery, a fine glass fiber mat is used for the separator of the pole group, and a pressure of 20 to 60 kgf / dm 2 is applied to the pole plate, It is suitable for a control valve type lead storage battery in which the amount of electrolyte is limited and absorbed by a fine glass fiber mat. In this case, even if the thickness of the sheet after rolling is as thin as about 1 mm (0.9 mm) as described above, the active material is sufficiently held in the lattice, and the durability of the battery is expected to be improved. be able to. Of course, it can also be used for a lead-acid battery that uses a sufficient amount of electrolyte using a normal glass fiber mat and a microporous separator. Moreover, the well-known fixing method of the pole group for improving vibration resistance and impact resistance can be used in combination.

本発明は、鉛合金を圧延して得られたシートを、過時効の状態とした後エキスパンド加工を行て格子体とすることにより、縦長の枡目の格子体が製造可能で、得られた格子体を使用し、極群を圧迫状態で組み立てれば、高性能の鉛蓄電池を得ることができるので、産業上の利用可能性が大である。   According to the present invention, a sheet obtained by rolling a lead alloy is made into an over-aged state and then subjected to expansion processing to form a lattice body, whereby a vertically long lattice body can be produced and obtained. If a grid body is used and the pole group is assembled in a compressed state, a high-performance lead-acid battery can be obtained, so the industrial applicability is great.

Pb−0.07%Ca−1.5%Sn合金シートの過時効処理後の引張り強さに及ぼす放置日数の影響を示す図。The figure which shows the influence of the days to leave on the tensile strength after the overaging process of a Pb-0.07% Ca-1.5% Sn alloy sheet. Pb−0.07%Ca−1.5%Sn合金シートの引張り強さと保管温度の関係の一例を示す図。The figure which shows an example of the relationship between the tensile strength and storage temperature of a Pb-0.07% Ca-1.5% Sn alloy sheet. Caの組成を変化させた場合のPb−Ca−Sn合金シートの時効硬化の状況を示す図。The figure which shows the condition of the age hardening of the Pb-Ca-Sn alloy sheet at the time of changing the composition of Ca. Snの組成を変化させた場合のPb−Ca−Sn合金シートの時効硬化の状況を示す図。The figure which shows the condition of age hardening of the Pb-Ca-Sn alloy sheet at the time of changing the composition of Sn.

Claims (9)

鉛合金を圧延して得られたシートを、過時効状態とした後エキスパンド加工を行って格子体とすることを特徴とする、鉛蓄電池用エキスパンド格子体の製造方法。 A method for producing an expanded lattice for a lead storage battery, wherein a sheet obtained by rolling a lead alloy is made into an over-aged state and then subjected to expansion processing to form a lattice. 過時効状態は、シートを、120℃以上、160℃以下の雰囲気下に1.5時間〜72時間保管した後の状態である、請求項1記載の鉛蓄電池用エキスパンド格子体の製造方法。 The method for producing an expanded lattice for a lead-acid battery according to claim 1, wherein the overaging state is a state after the sheet is stored in an atmosphere of 120 ° C or higher and 160 ° C or lower for 1.5 hours to 72 hours. 過時効状態は、エキスパンド加工を行う際のシートの引張り強さが6.0kgf/mm2以下の状態である、請求項2記載の鉛蓄電池用エキスパンド格子体の製造方法。 The method for producing an expanded lattice body for a lead-acid battery according to claim 2, wherein the overaging state is a state in which the tensile strength of the sheet when performing the expanding process is 6.0 kgf / mm 2 or less. エキスパンド加工を行った格子体は、格子体の枡目を形成するワイヤーの立ち上がり角度が90度以上、120度以下である列が一列以上ある、請求項1〜3のいずれかに記載の鉛蓄電池用エキスパンド格子体の製造方法。 The lead-acid battery according to any one of claims 1 to 3, wherein the expanded lattice has one or more rows in which the rising angles of the wires forming the grid of the lattice are not less than 90 degrees and not more than 120 degrees. For producing an expanded lattice for use. 請求項1の製造方法によって得られた鉛蓄電池用格子体。 The grid for lead acid batteries obtained by the manufacturing method of Claim 1. 請求項2の製造方法によって得られた鉛蓄電池用格子体。 The grid for lead-acid batteries obtained by the manufacturing method according to claim 2. 請求項3の製造方法によって得られた鉛蓄電池用格子体。 The grid for lead acid batteries obtained by the manufacturing method of Claim 3. 請求項4の製造方法によって得られた鉛蓄電池用格子体。 The grid for lead acid batteries obtained by the manufacturing method of Claim 4. 請求項5〜8のいずれかの格子体を、正極または負極の少なくとも一方の極板に使用し、この極板を圧縮可能な隔離板と共に極群に組み立て、極板面に垂直に圧迫を加えた状態で電槽に挿入した鉛蓄電池。 The grid body according to any one of claims 5 to 8 is used for at least one of a positive electrode plate and a negative electrode plate, the electrode plate is assembled into a group of electrodes together with a compressible separator, and pressure is applied perpendicularly to the electrode plate surface. Lead-acid battery inserted into the battery case in a live state.
JP2004206518A 2004-07-13 2004-07-13 Manufacturing method of expanded grid for lead acid storage battery, grid by this, and lead acid storage battery using this grid Pending JP2006032026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004206518A JP2006032026A (en) 2004-07-13 2004-07-13 Manufacturing method of expanded grid for lead acid storage battery, grid by this, and lead acid storage battery using this grid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004206518A JP2006032026A (en) 2004-07-13 2004-07-13 Manufacturing method of expanded grid for lead acid storage battery, grid by this, and lead acid storage battery using this grid

Publications (1)

Publication Number Publication Date
JP2006032026A true JP2006032026A (en) 2006-02-02

Family

ID=35898133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004206518A Pending JP2006032026A (en) 2004-07-13 2004-07-13 Manufacturing method of expanded grid for lead acid storage battery, grid by this, and lead acid storage battery using this grid

Country Status (1)

Country Link
JP (1) JP2006032026A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009113166A1 (en) * 2008-03-12 2009-09-17 新神戸電機株式会社 Lead storage battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009113166A1 (en) * 2008-03-12 2009-09-17 新神戸電機株式会社 Lead storage battery
JPWO2009113166A1 (en) * 2008-03-12 2011-07-21 新神戸電機株式会社 Lead acid battery

Similar Documents

Publication Publication Date Title
US6833218B2 (en) Direct cast lead alloy strip for expanded metal battery plate grids
JP6572918B2 (en) Lead storage battery and electrode current collector for lead storage battery
US6802917B1 (en) Perforated current collectors for storage batteries and electrochemical cells, having improved resistance to corrosion
JP4599940B2 (en) Lead acid battery
JP5935069B2 (en) Lead-acid battery grid and lead-acid battery
JP4288730B2 (en) Lead storage battery manufacturing method and lead storage battery grid manufacturing apparatus
JP2006032026A (en) Manufacturing method of expanded grid for lead acid storage battery, grid by this, and lead acid storage battery using this grid
JP5521503B2 (en) Lead acid battery
JP5313633B2 (en) Manufacturing method of lead acid battery substrate
KR20240025712A (en) Rolled copper foil for secondary battery negative electrode current collectors, secondary battery negative electrode current collector and secondary battery each using same, and method for manufacturing rolled copper foil for secondary battery negative electrode current collectors
JP2005056622A (en) Manufacturing method of lattice for lead acid storage battery, and lead acid storage battery
JP4062817B2 (en) Lead acid battery and manufacturing method thereof
JP4239303B2 (en) Lead acid battery
JP4006888B2 (en) Manufacturing method of lead acid battery
JP4263465B2 (en) Electrode current collector, manufacturing method thereof, and sealed lead-acid battery
JP4774297B2 (en) Method for manufacturing grid for lead-acid battery and lead-acid battery
JPH0146995B2 (en)
JP5070850B2 (en) Rolled sheet for lead-acid battery grid, lead-acid battery grid and lead-acid battery
JP2006032027A (en) Manufacturing method of expanded grid for lead acid storage battery, grid by this, and lead acid storage battery using this grid
JP2010108680A (en) Methods of manufacturing rolled lead alloy sheet for lead storage battery, positive electrode plate for lead storage battery and lead storage battery
JP4069674B2 (en) Manufacturing method of expanded grid for lead-acid battery
JP2002100365A (en) Rolling lead alloy sheet for storage battery and lead storage battery using it
JP4904632B2 (en) Lead acid battery
JP2004273308A (en) Process of manufacturing grid for lead-acid battery, and lead-acid battery
JP2001135318A (en) Lattice for sealed lead battery and method for producing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051115