JP2006030164A - 高温体の距離測定装置、形状測定装置、耐火構造物の健全性評価装置、高温体の距離測定方法、形状測定方法及び耐火構造物の健全性評価方法 - Google Patents

高温体の距離測定装置、形状測定装置、耐火構造物の健全性評価装置、高温体の距離測定方法、形状測定方法及び耐火構造物の健全性評価方法 Download PDF

Info

Publication number
JP2006030164A
JP2006030164A JP2005081630A JP2005081630A JP2006030164A JP 2006030164 A JP2006030164 A JP 2006030164A JP 2005081630 A JP2005081630 A JP 2005081630A JP 2005081630 A JP2005081630 A JP 2005081630A JP 2006030164 A JP2006030164 A JP 2006030164A
Authority
JP
Japan
Prior art keywords
temperature body
laser
distance
high temperature
brick
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005081630A
Other languages
English (en)
Other versions
JP4842551B2 (ja
Inventor
Chihiro Uematsu
千尋 植松
Tatsuro Honda
達朗 本田
Yasushi Kato
靖史 加藤
Hiroshi Yamazaki
比呂志 山崎
Tadashi Kobayashi
正 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2005081630A priority Critical patent/JP4842551B2/ja
Publication of JP2006030164A publication Critical patent/JP2006030164A/ja
Application granted granted Critical
Publication of JP4842551B2 publication Critical patent/JP4842551B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

【課題】 高炉に熱風を供給するための熱風管の内壁面に施工された耐火煉瓦の他、高炉、熱風炉、転炉等の測定対象内部に存在する高温体までの距離や形状を精度良く測定できる小型・軽量で可搬性に優れた装置及び当該装置を用いた測定方法を提供する。
【解決手段】 測定対象C内部に存在する高温体Bに向けて測定対象Cに設けられた開口部を介してレーザ光を投光し、高温体Bで反射したレーザ光を受光することにより、高温体Bまでの距離を計測するレーザ距離計11と、レーザ距離計11から出射したレーザ光を偏向するための耐熱性固定ミラー12と、固定ミラー12で反射したレーザ光を高温体Bに向けて偏向走査するための耐熱性可動ミラー機構13とを備え、固定ミラー12及び可動ミラー機構13は、レーザ距離計11からのレーザ光の出射方向に沿ってレーザ距離計11から離間して配置されている。
【選択図】 図1

Description

本発明は、高炉に熱風を供給するための熱風管の内壁面に施工された耐火煉瓦の他、高炉、熱風炉、転炉等の測定対象内部に存在する高温体までの距離や形状を測定する装置及び方法に関する。
高炉の炉寿命は、年々延長され20年を越えるまでになっている。そのため、高炉に熱風を供給する熱風炉、熱風管、熱風環状管等の設備についても長期間安定して使用できることが必要になっている。
ここで、熱風管は、鋼管内面全周に耐火定型煉瓦を施工した構造であり、熱風炉で作成した熱風を高炉まで導くための100m以上の長い管である。このような熱風管内の耐火定型煉瓦が脱落すると熱風管が破損し、高炉を停止する事態となる危険性がある。そのため、熱風管の健全性を評価することが重要になっている。
図9は、高炉に熱風を供給するための設備の概略構成を示す。図9(a)は設備の概略構成を示す平面図であり、(b)は熱風管の概略構成を示す縦断面図である。図9(a)に示すように、高炉100の側壁部には、熱風を炉内に吹き込むための羽口101が放射状に取り付けられている。熱風を作成し送風するための熱風炉102は、内部に珪石煉瓦を格子状に組んだ蓄熱室を有する円筒状の炉であり、燃料ガスを燃焼させて得た熱を蓄熱室に蓄えた後、燃焼を停止して空気を送ることにより高温の空気を得る一種の熱交換器である。熱風炉102は、高炉100へ熱風を絶え間無く供給するために、2本以上を交互に操業している。
図9に示すように、熱風管103は、鋼管103aの内面全周に断熱煉瓦103bを介して耐火定型煉瓦103cを施工した構造であり、熱風炉102で作成した熱風を高炉100まで導くための長い配管である。熱風管103の外径は3000mm程度であり、内面には厚み500mm程度の煉瓦が隙間無く施工されている。耐火煉瓦103c内を1200℃程度の熱風が流れるため、耐火煉瓦103cはその熱負荷を絶えず受けていると共に、熱風炉102の操業状態によって温度変動負荷も受ける。このため、図9(b)に示すように、熱風管103の天井部に配設された煉瓦(以下、適宜「天井煉瓦」という)103cは、高温での温度変動と天井煉瓦103c自重との相互作用によってクリープ変形が発生し、天井煉瓦103c脱落の危険性が増している。従って、熱風管103内部の天井煉瓦103cの脱落を未然に検知し、適切に対処することが、高炉の寿命延長と安定操業のための重要な課題の一つになっている。
熱風管103内面に配設された煉瓦103cの脱落を未然に検知するには、煉瓦103c表面の位置を測定することが必要である。ここで、煉瓦103c表面の位置を測定するには、以下の(1)〜(3)の条件を満足する距離測定装置が必要であると考えられる。
(1)高炉100と熱風管103とは離間しており、前述のように熱風管103の長さは100m程度と非常に長い。従って、煉瓦103cの脱落が生じる場所を予め特定できないので、任意の場所を測定する必要がある。また、測定作業スペースが十分に取れない場合が多い。さらに、熱風管103は、管状であり側面に開口部を有しない。そのため、熱風管103内の天井煉瓦103c表面の位置を測定するには、熱風管103の下部側面に孔を開け、当該孔から距離測定装置を内部に挿入することになる。ここで、距離測定のために孔を開けると煉瓦103cの温度を低下させる要因となる。特に、測定を容易にするべく孔を大きくすると煉瓦103cの温度が急激に低下することになる。また、場合によっては、保持すべき下限温度以下に低下する可能性もある。そのため、煉瓦103cの剥離などの劣化が生じたり、煉瓦103cの熱収縮によって煉瓦間の目地が拡がり煉瓦103cの垂れ下がりを促進することになってしまうおそれがある。従って、熱風管103内面に配設された耐火煉瓦103cの表面位置を測定するための孔は、極力小さな孔(従来の知見からすれば、煉瓦一個のサイズと同等であるφ200mm程度の孔が限度)とすることが望ましい。以上の観点より、距離測定装置としては、小型・軽量で可搬性に優れたものが必要である。
(2)煉瓦103c表面位置の測定は、熱風を停止した状態で行えばよいものの、熱風管103内部の温度は、熱風停止後24時間経過しても1000℃前後の高温である。そのため、距離測定装置としては、このような高温雰囲気下で高温体に対する距離測定のできることが必要である。
(3)上記(1)及び(2)の条件を勘案すると、用いることのできる距離測定装置としてレーザ距離計を考えることができる。レーザ距離計は、測定対象に向けてレーザ光を投光し、当該測定対象で反射したレーザ光を受光して、投光したレーザ光と受光したレーザ光との時間差又は位相差を測定して距離を求めることを測定原理とするものや、三角測量法を測定原理とするものが知られている。いずれの測定原理のレーザ距離計であっても、測定対象で反射するレーザ光の光量が低いと距離を計測することができない。そこで、本発明の発明者らは、熱風管103内部で欠落した煉瓦103cを回収し、当該回収した煉瓦103c表面にレーザ光を照射してその反射光量を測定した。なお、反射光量を測定するに際し、煉瓦103c表面の法線方向からスポット径φ3mmのレーザ光(レーザ光の波長はレーザ距離計で一般的に用いられている0.6μm帯とした)を照射し、その反射光を煉瓦103c表面から3m離間した位置に配設した受光径φ30mmの光検出器で受光した。レーザ光を照射する対象を煉瓦103cから白色拡散面に替えたときの反射光量に対する煉瓦103cの反射光量の比を反射率と定義すると、煉瓦103c表面の反射率は、4%程度と非常に低い値となった。従って、距離測定装置としては、このような低い反射率の表面であっても精度良く距離を測定できることが必要である。
ここで、熱風管103の内壁面に施工された耐火煉瓦103cと同様に、測定対象の内部に存在する高温体までの距離を測定する乃至高温体の形状を測定する従来の技術としては、以下のようなものが提案されている。
第1の提案は、測定対象が高炉であり、その内壁面に施工された高温体としての耐火物表面の形状を測定する方法である(例えば、特許文献1参照)。より具体的に説明すれば、特許文献1に記載の方法は、高炉炉内壁面の耐火物損耗量を測定するに際し、炉頂部からパイプ状ランスを旋回及び昇降自在に鉛直に降下させ、このパイプ状ランスの上端部に設けたレーザ距離計から、パイプ状ランスの下端部に設けた反射器でレーザ光の光路を直角に曲げて炉内壁面に照射し、炉内壁面から反射されるレーザ光をレーザ距離計で受光して、ランス投射位置から炉内壁面までの距離を測定し、この距離測定値とパイプ状ランスおよび高炉炉体の幾何学的な位置関係とから炉内壁面の耐火物損耗量を測定する方法である。
しかしながら、斯かる特許文献1に記載の方法を熱風管に適用することを考えた場合、ランスを熱風管の下部開口から挿入しても、レーザ距離計と対向する部分の形状が測定できないため、最も重要な天井煉瓦の形状を測定できないことになってしまう。また、熱風管の外径を3000mmとし、内部の煉瓦の厚みを500mmとすると、特許文献1に記載の反射器の昇降距離は2500mmに装置駆動設備の寸法を加算した値が必要となるため、熱風管の下方に広い作業スペースを確保する必要が生じる他、装置重量も重くなるため可搬性が極めて悪くなってしまう。また、特許文献1に記載の通りに高炉炉内壁面の耐火物の形状を測定する場合についても、長尺なランスの熱変形等によって測定誤差が生じるため好ましい方法とはいえない。
また、第2の提案は、測定対象が溶銑樋であり、その内壁面に張られた高温体としての耐火物表面の形状を測定する装置である(例えば、特許文献2参照)。より具体的に説明すれば、特許文献2に記載の装置は、出銑樋内壁面の耐火物の形状を測定するに際し、出銑樋上方の作業床から光学ミラーを鉛直に降下させるためのミラーガイドを設け、ミラーガイドの上端部に設けたレーザ距離計から、ミラーガイドの下端部に設けた光学ミラーでレーザ光の光路を曲げて或いはその一部を拡散板に設けた開口を通じて透過させて耐火物に照射し、当該耐火物から反射されるレーザ光をレーザ距離計で受光して、レーザ距離計から耐火物までの距離を測定し、この距離測定値とレーザ距離計及び光学ミラー等の幾何学的な位置関係とから溶銑樋内壁面の耐火物損耗量を測定する装置である。
斯かる特許文献2に記載の装置を熱風管に適用することを考えた場合、レーザ距離計と対向する部分の形状が測定できるという利点を有するものの、特許文献1に記載の方法と同様の問題が生じることになる。すなわち、ミラーガイドを具備するために極めて長尺な装置となってしまい、熱風管の下方に広い作業スペースを確保する必要が生じる他、装置重量も重くなるため可搬性が極めて悪くなってしまう。また、熱風管内面のような閉ざされた高温雰囲気中に適用した場合は特に顕著であるが、特許文献2に記載の通りに溶銑樋内壁面の耐火物の形状を測定する場合であっても、ミラーガイドが常時高温環境下に配置されるため、ミラーガイドが熱変形して測定誤差が生じたり、場合によってはミラーの昇降ができなくなるおそれもある。
さらに、第3の提案は、測定対象が転炉等であり、その内壁面に張られた高温体としての耐火物表面の形状を測定する装置である(例えば、特許文献3参照)。より具体的に説明すれば、特許文献3に記載の装置は、転炉等の内壁面の耐火物形状を測定するに際し、レーザ距離計やレンズ等の光学系を水冷された容器内に収納し、当該容器をランスと同様な構造の支持装置の下端に固定して転炉内に挿入し、支持装置を回転させることにより、耐火物表面の形状を測定する装置である。
斯かる特許文献3に記載の装置は、レーザ距離計やレンズ等の光学系を高温の転炉内に挿入する構成であるため、水冷容器内を計測器が正常動作する低温に保持する必要がある。このため、水冷容器の冷却能力を高めるべく必然的に大型の容器(特許文献3の実施例では一辺が約300mmの立方体)が必要となる。従って、斯かる特許文献3に記載の装置を熱風管に適用することを考えた場合、前述のように測定用の孔としてはφ200mm程度が限度であることからして、水冷容器が大きすぎることになり適用することは困難である。また、長尺な支持装置を具備することに伴い、熱風管の下方に広い作業スペースを確保する必要が生じる他、装置重量も重くなるため可搬性が極めて悪くなってしまう。さらに、水冷容器の側面にはレーザ光透過用の耐熱光学窓を配置して高温雰囲気から内部を遮断する必要もある。測定対象の反射率が高い場合には、光学窓で反射されるレーザ光の影響は少ないものの、前述のように熱風管内壁面に施工された耐火煉瓦のように反射率が4%と低い場合には、光学窓でのレーザ光の反射が距離測定への誤差要因となり、正確な距離測定ができなくなるおそれがある。また、特許文献3に記載の通りに転炉内壁面の耐火物の形状を測定する場合についても、長尺なランスの熱変形等によって測定誤差が生じることが考えられる。
以上に説明したように、測定対象の内部に存在する高温体までの距離を測定する乃至高温体の形状を測定する従来の技術には、熱風管の内壁面に施工された耐火煉瓦表面までの距離を測定するに際し必要とされる条件(段落0007〜0009に記載の条件(1)〜(3))を全て満足するものが存在しないのが現状である。また、熱風管の耐火煉瓦に限らず、高炉、熱風炉、転炉等の測定対象内部に存在する高温体までの距離や形状を精度良く測定できる小型・軽量で可搬性に優れた装置は提案されていないのが現状である。
特開平9−176712号公報 特開2003−207321号公報 特開昭60−138407号公報
本発明は、斯かる従来技術の問題を解決するべくなされたものであり、高炉に熱風を供給するための熱風管の内壁面に施工された耐火煉瓦の他、高炉、熱風炉、転炉等の測定対象内部に存在する高温体までの距離や形状を精度良く測定できる小型・軽量で可搬性に優れた装置及び当該装置を用いた測定方法を提供することを課題とする。
前記課題を解決するべく、本発明の発明者らは鋭意検討した結果、レーザ距離計に耐熱性固定ミラー及び耐熱性可動ミラー機構を組み合わせることにより、小型・軽量で可搬性に優れると共に測定精度の良い装置が得られることを見出した。本発明は、斯かる本発明の発明者らの知見に基づき完成されたものである。
すなわち、本発明は、測定対象内部に存在する高温体に向けて当該測定対象に設けられた開口部を介してレーザ光を投光し、当該高温体で反射したレーザ光を受光することにより、当該高温体までの距離を計測するレーザ距離計と、前記レーザ距離計から出射したレーザ光を偏向するための耐熱性固定ミラーと、前記固定ミラーで反射したレーザ光を前記高温体に向けて偏向走査するための耐熱性可動ミラー機構とを備え、前記固定ミラー及び前記可動ミラー機構は、前記レーザ距離計からのレーザ光の出射方向に沿って前記レーザ距離計から離間して配置されていることを特徴とする高温体の距離測定装置を提供するものである。
なお、本発明におけるレーザ距離計としては、測定対象に向けてレーザ光を投光し、当該測定対象で反射したレーザ光を受光して、投光したレーザ光と受光したレーザ光との時間差又は位相差を測定して距離を求めることを測定原理とするものを好適に用いることができる。また、本発明における可動ミラー機構とは、反射ミラーと、当該反射ミラーの法線方向や光の反射方向が変化するように当該反射ミラーの角度を変更する駆動機構とを備えた構成を意味し、例えば、反射ミラーと、当該反射ミラーを取り付けた回転軸と、回転運動を前記回転軸に伝達するための歯車機構とからなるものを例示することができる。反射ミラー、回転軸及び歯車機構のそれぞれを耐熱性を有する材料から形成することにより、耐熱性を有する可動ミラー機構を実現することが可能である。
前記固定ミラー及び前記可動ミラー機構の耐熱性に万全を期すには、前記固定ミラー及び前記可動ミラー機構を、過熱を防止するための冷却手段を具備する筐体内に配設するのが好ましい。
また、前記固定ミラー及び前記可動ミラー機構を冷却手段を具備する筐体内に配設するに際し、レーザ光の光路が通る筐体の側壁に耐熱用の光学窓を配置したとすれば、当該光学窓によってレーザ距離計に受光されるレーザ光の光量低下を招いたり、或いは、当該光学窓で反射したレーザー光が出射されるレーザ光と干渉することも考えられるため、測定精度の点で好ましくない。従って、前記筐体の前記可動ミラー機構で反射したレーザ光が通過する位置に開口部を設け、当該開口部には光学窓を配置しないことが好ましい。
また、本発明は、前記距離測定装置と、前記距離測定装置で測定された前記レーザ距離計と前記高温体との距離、及び、前記レーザ距離計と前記固定ミラーと前記可動ミラー機構との幾何学的位置関係に基づいて、前記高温体の表面形状を演算する演算装置とを備えることを特徴とする高温体の形状測定装置としても提供される。
ここで、前記測定対象が熱風管や横型円筒形状炉等の横設された管状の耐火構造物であり、前記高温体が前記耐火構造物内部に環状に配設された耐火煉瓦である場合、耐火煉瓦の天井部は、使用期間が長くなるにつれ、初期形状から徐々に乖離し、垂れ下がり状の変形を引き起こす。より具体的に説明すれば、まず、耐火構造物内部に流れる熱風によって耐火煉瓦が熱膨張するため、耐火構造物の稼働初期段階より、互いに隣接する耐火煉瓦の接合面全体に継続的な応力を生じることになる。従って、耐火煉瓦には、耐火構造物の使用期間(上記応力の作用する時間)と周囲温度(熱風温度)とに比例した変形量を有するクリープ変形が生じることになる。そして、上記クリープ変形の変形量は、熱風の影響を受け易い耐火煉瓦の内周側の方が外周側に比べて大きいため、耐火構造物の使用期間が長くなるにつれ、天井部においては、互いに隣接する耐火煉瓦の接合面の内周側が離反し外周側のみが接触した状態となるように推移していく。これにより、天井部にある耐火煉瓦の自重に起因して生じる応力が上記外周側の接合面に集中することになり、当該外周側の接合面が圧迫される結果、最終的には、外周側及び内周側の接合面の双方が離反する方向に変形し、垂れ下がり状の変形を生じることになる。そして、垂れ下がり状の変形が進行して安定性を失うと、耐火煉瓦の天井部が脱落するに至ることになる。
耐火煉瓦の天井部が垂れ下がり状の変形を引き起こした場合、耐火煉瓦の縦断面(耐火構造物の軸方向に垂直な断面)について、耐火煉瓦の天井部と側壁部との境目付近において内面形状の曲率が変化する箇所(変曲点)が生じる。そして、上記変曲点より上部に位置する耐火煉瓦の天井部は、側壁部間に架橋されたアーチ状の構造物と近似することができる。一般的に、アーチ状構造物の安定性は、その高さ(ライズ)とアーチ両端部の離間距離である幅(スパン)との比によって決定され、この比が例えば8%以上25%以下の範囲内であれば安定した状態であるといえる。従って、このような耐火構造物内部に配設された耐火煉瓦の安定性(健全性)は、耐火煉瓦の天井部の頂点位置の変位(垂れ下がり量)を把握するのみならず、上記変曲点の位置を把握して、当該変曲点を基準とした天井部(天井部の頂点)の高さ(ライズ)と変曲点間の距離(スパン)との比を算出し、当該比の大きさに基づいて評価することが有効であると考えられる。
本発明は、以上に説明した本発明の発明者らの知見に基づき完成された耐火構造物の健全性評価装置としても提供される。すなわち、本発明は、前記形状測定装置と、前記形状測定装置による測定結果に応じて、前記測定対象内部に存在する高温体の健全性を判定する判定装置とを備え、前記測定対象は横設された管状の耐火構造物であり、前記高温体は前記耐火構造物内部に環状に配設された耐火煉瓦とされ、前記演算装置は、前記耐火煉瓦の縦断面について天井部を含む内面形状を演算し、前記演算した内面形状の変曲点を算出し、前記算出した変曲点の位置を基準とした前記天井部の高さと前記変曲点間の距離とを演算して、両者の比を算出し、前記判定装置は、前記演算装置によって算出された比が予め定めた範囲外となった場合に、前記耐火煉瓦が不良であると判定することを特徴とする耐火構造物の健全性評価装置としても提供される。
また、本発明は、測定対象内部に存在する高温体までの距離を測定する方法であって、レーザ距離計を前記測定対象の外部に配置する一方、耐熱性固定ミラー及び耐熱性可動ミラー機構を前記測定対象の内部に配置し、前記レーザ距離計から出射したレーザ光を前記固定ミラーによって前記可動ミラー機構に向けて偏向し、前記可動ミラー機構によって前記高温体に向けてレーザ光を偏向走査し、前記高温体で反射したレーザ光を前記可動ミラー機構及び前記固定ミラーを順次介して前記レーザ距離計で受光することにより、前記高温体までの距離を測定することを特徴とする高温体の距離測定方法としても提供される。
また、本発明は、前記方法で測定された前記レーザ距離計と前記高温体との距離、及び、前記レーザ距離計と前記固定ミラーと前記可動ミラー機構との幾何学的位置関係に基づいて、前記高温体の表面形状を演算することを特徴とする高温体の形状測定方法としても提供される。
また、本発明は、前記方法で、横設された管状の耐火構造物内部に環状に配設された耐火煉瓦の縦断面について天井部を含む内面形状を演算し、前記演算した内面形状の変曲点を算出し、前記算出した変曲点の位置を基準とした前記天井部の高さと前記変曲点間の距離とを演算して、両者の比を算出し、前記算出した比が予め定めた範囲外となった場合に、前記耐火煉瓦が不良であると判定することを特徴とする耐火構造物の健全性評価方法としても提供される。
本発明によれば、レーザ光を偏向するための固定ミラー及びレーザ光を偏向走査するための可動ミラー機構が、それぞれ耐熱性を有するものから構成されていると共に、レーザ距離計からのレーザ光の出射方向に沿ってレーザ距離計から離間して配置されている。従って、本発明に係る装置によって高温体までの距離を測定するに際し、測定対象内部には耐熱性を有する固定ミラー及び可動ミラー機構を挿入する一方、高温雰囲気に弱いレーザ距離計は測定対象外部に配置することが可能であるため、例えば、熱風管内部のような高温雰囲気下であっても、大掛かりな冷却手段を必要とすることなく精度良く距離を測定することが可能である。また、レーザ距離計を測定対象内部に挿入する必要がなく、これに伴い従来のようにレーザ光の光路に耐熱用の光学窓を配置する必要もないため、例えば、熱風管内壁面に施工された耐火煉瓦のように反射率の低い高温体であっても、レーザ距離計により精度良く距離を測定することが可能である。さらに、可動ミラー機構によって高温体の任意の位置にレーザ光を偏向することができるため、固体ミラーや可動ミラー機構を測定対象内部に深く挿入する必要が無く、これに伴い従来のように長尺のランスやミラーガイドを必要としないので、装置を小型・軽量化することができ、可搬性に優れた装置が提供される。以上のように、本発明によれば、測定対象内部に存在する高温体までの距離を精度良く測定できる小型・軽量で可搬性に優れた装置が提供されるものである。
以下、添付図面を適宜参照しつつ、本発明の一実施形態について説明する。なお、本実施形態では、高炉に熱風を供給するための熱風管を測定対象とし、当該測定対象の内部に存在する高温体が、熱風管の内壁面に環状に施工された耐火煉瓦である場合を例に挙げて説明する。
図1は、本発明の一実施形態に係る形状測定装置を熱風管の下部に設けた測定用の孔に取り付けた状態を示す概略構成図(縦断面図)である。図2は、図1に示す形状測定装置を構成する計測セルを含んだ要部の概略構成を示す図であり、それぞれ(a)が正面図を、(b)が側面図を示す。図1又は図2に示すように、本実施形態に係る形状測定装置Mは、計測セル1と、計測セル1の一部を収納する冷却手段を具備した筐体としての水冷管2とを備えている。また、形状測定装置Mは、演算装置3と、位置制御装置4とを備えている。
計測セル1は、レーザ距離計11と、耐熱性固定ミラー12と、耐熱性可動ミラー機構13とを備えている。また、計測セル1は、中空の円筒状筐体14と、モータ15と、回転計16とを備えている。
本実施形態に係るレーザ距離計11は、測定対象に向けてレーザ光を投光し、当該測定対象で反射したレーザ光を受光して、投光したレーザ光と受光したレーザ光との位相差を測定して距離を求めることを測定原理としている。レーザ距離計11は、中空の円筒状筐体14の底面に取り付けられており、筐体14の頂面及び底面には、レーザ距離計11から出射するレーザ光の光路が通る所定の領域に開口部が設けられている。
固定ミラー12は、適宜の支持体(図示せず)を介して筐体14の頂面に取り付けられており、レーザ距離計11から出射したレーザ光を可動ミラー機構13を構成する反射ミラー131に向けて偏向するように配置されている。
固定ミラー12は、レーザ距離計11から出射したレーザ光を可動ミラー機構13を構成する反射ミラー131に向けて偏向すると共に、測定対象内部で反射したレーザ光をレーザ距離計11に向けて偏向する機能を奏する。ここで、固定ミラー12及び後述する反射ミラー131として、一般的に用いられているアルミミラー(アルミニウムをガラス基板にコーティングしたミラー)を適用したとすれば、当該アルミミラーの反射率は90%程度であり、固定ミラー12と反射ミラー131とで2回反射するので、測定対象内部で反射したレーザ光の反射光量の約80%をレーザ距離計11が受光することになる。すなわち、固定ミラー12及び反射ミラー131での反射によって20%の光量損失が発生することになる。また、高温に曝されると、アルミニウム表面が酸化するために反射率が低下し、レーザ光量が低下して測定不能に陥ることも考えられる。
そこで、本実施形態に係る固定ミラー12及び反射ミラー131としては、耐熱性を有する母材(例えば、光学ガラスBK7)上に多層の誘電体膜をコーティングし、その干渉現象によって高い反射率を得ることができる干渉ミラーを用いた。コーティングする誘電体膜としては、酸化による反射率変化が少ない酸化チタンと酸化シリコンを用い、これら酸化チタン膜と酸化シリコン膜を交互に積層して、特定の波長帯域の光のみを反射させるようにした。なお、前記母材は、耐熱温度350℃以上であり、酸化チタンや酸化シリコンと熱膨張率が同程度のものを用いるのが好ましい。また、干渉ミラーの反射波長帯域は、温度によって変化するので、レーザ距離計11から出射されるレーザ光の波長帯域より±20nm程度広い帯域で高い反射率となるように設計したものを用いるのが好ましい。
図3は、アルミミラーと、酸化チタン膜と酸化シリコン膜を多層に積層した干渉ミラーとについて、温度による反射率の変化を調査した結果を示す。図3に示すように、干渉ミラーは、反射率が98%と非常に高いと共に、800℃の高温でも反射率の劣化が生じないため、本実施形態に係る固定ミラー12及び反射ミラー131として用いるのに好適であることが分かる。
可動ミラー機構13は、反射ミラー131と、反射ミラー131を取り付けた回転軸132と、回転軸132を支持する一対の軸受133、134と、回転軸132を軸周りに回転させるための一対の傘歯車135、136とを備えている。回転軸132は、反射ミラー131で反射されるレーザ光の光路が通る部分に開口部が設けられた中空の円筒体であり、反射ミラー131は、前記円筒体の内部に当該円筒体の軸方向に対して略45°傾けた状態で取り付けられている。軸受133、134は、それぞれ支持体137、138を介して筐体14の頂面に取り付けられている。傘歯車135は、軸受133と軸受134との間において回転軸132に固定されている。一方、傘歯車136は、傘歯車135と噛み合った状態でモータ15の回転軸151に取り付けられている。モータ15の回転運動は、傘歯車136及び傘歯車135を介して、回転軸132に伝達し、これにより、回転軸132に取り付けられた反射ミラー131が回転軸132の軸周りに回転することになる。なお、反射ミラー131は、その回転中心が、レーザ距離計11から出射したレーザ光のスポットが投光される位置と略一致するように位置決めされている。また、一般的に傘歯車には所謂バックラッシュが存在するため、これを低減するべく、本実施形態に係る可動ミラー機構13には、傘歯車135に対して傘歯車136と噛み合う方向に張力を付与するバネ139を設けて、傘歯車135、136の同じ歯面位置が接触するように構成している。特に、モータ15の負荷を軽減するためには、バネ139として、傘歯車135の回転位置によって張力が変化しない定トルクバネを用いることが好ましい。
可動ミラー機構13を構成する反射ミラー131、回転軸132、軸受133、134、傘歯車135、136は、それぞれ耐熱温度350℃以上で、熱膨張率が同等の材料から形成するのが好ましい。なお、反射ミラー131を形成する材料の具体的構成については、前述した通りであるので、ここでは説明を省略する。
軸受133、134としては、耐熱温度が350℃以上であるセラミックで構成された転がり軸受や、軸受母材中に微細な黒鉛を均一に分散させた所謂ドライベアリングで耐熱温度が350℃以上のものを好適に用いることができる。なお、軸受133、134としてドライベアリングを用い、1000℃の雰囲気下で回転軸132の回転試験を行ったところ、冷間で必要な回転トルクと大差ないトルクで回転できることが分かった。また、前述のように、軸受133、134と同程度の熱膨張率を有する材料から回転軸132を形成することが好ましいものの、熱膨張による寸法変化を考慮しつつ、回転軸132の外面と軸受133、134の内面とを嵌合させるように設計すれば、必ずしも両者の熱膨張率を同等にする必要はない。反射ミラー131の回転機構は、本実施形態のように傘歯車に限るものではなく、例えば、ラックピニオンなどでも良い。また、反射ミラー131は±90°以上回転できることが望ましい。
以上に説明した構成を有する計測セル1において、レーザ距離計11から出射したレーザ光は、固定ミラー12によって直角に反射し、反射ミラー131に投光される。反射ミラー131に投光されたレーザ光は、当該反射ミラー131で反射し、測定対象内部に向けて偏向される。この際、前述のように、反射ミラー131が回転軸132の軸周りに回転するため、反射ミラー131の位置に応じて(回転軸132の回転角に応じて)、反射したレーザ光は測定対象内部の高温体表面で走査されることになる。高温体表面で反射したレーザ光は、反射ミラー131及び固定ミラー12を介して、レーザ距離計11で受光される。レーザ距離計11は、高温体表面に投光したレーザ光と高温体表面で反射したレーザ光との位相差を検出し、これにより各走査位置におけるレーザ距離計11から高温体までの距離を算出する。
なお、モータ15は、位置制御装置4から計測セル1のモータ15に対して制御信号が送信されることにより回転駆動され、前記制御信号に応じた回転量だけモータ15の回転軸151が回転する。回転軸151の回転運動は、傘歯車136、135を介して、反射ミラー131が取り付けられた回転軸132に伝達され、これにより回転軸132が所定角度だけ回転することになる。なお、傘歯車135には、回転原点(図示せず)が設けられている。位置制御装置4は、まず最初に傘歯車135を前記回転原点に復帰させるための制御信号を送信し、前記回転原点に復帰したことを検出した後に正規の回転駆動を開始するように構成されているため、良好な回転位置再現性を得ることができる。回転計16は、モータ15の回転量を検出し、これを演算装置3に出力する。
本実施形態に係る演算装置3は、レーザ距離計11と高温体との距離、及び、レーザ距離計11と固定ミラー12と可動ミラー機構13(具体的には、反射ミラー131)との幾何学的位置関係に基づいて高温体の表面形状を演算するプログラムが内蔵されたパーソナルコンピュータで構成されている。以下、演算装置3における演算処理について、より具体的に説明する。
演算装置3には、位置制御装置4の制御信号と、レーザ距離計11の出力と、回転計16の出力とが入力される。また、演算装置3には、レーザ距離計11と固定ミラー12との距離(レーザ距離計11のレーザ光出射面と、固定ミラー12上のレーザスポット投光位置との距離)L2、固定ミラー12と反射ミラー131との距離(固定ミラー12上のレーザスポット投光位置と反射ミラー131上のレーザスポット投光位置との距離)L3、及び、回転計16の出力(モータ回転軸151の回転量)と回転軸132の回転角度φとの関係が予め入力され記憶されている。演算装置3は、入力されたレーザ距離計11の出力、すなわち、レーザ距離計11と高温体との距離L1と、前記記憶された距離L2及びL3とに基づき、下記の式(1)によって、反射ミラー131と高温体との距離Lを算出する。
L=L1−(L2+L3) ・・・(1)
また、演算装置3は、位置制御装置4の制御信号に基づいて、正規の回転駆動が開始されたタイミングを検知し、当該タイミングをトリガとして、入力された回転計16の出力(モータ回転軸151の回転量)を逐次カウントする一方、予め記憶された回転計16の出力と回転軸132の回転角度φとの関係に基づき、前記カウントした回転計16の出力を回転軸132の回転角度φに変換する。そして、所定の回転角度φと、当該回転角度φとした時に算出された距離Lとに基づき、下記の式(2)及び(3)によって、反射ミラー131の位置(回転軸132に垂直な面内の反射ミラー131上のレーザスポット投光位置)を原点とした高温体表面のXY座標を算出する。
X=L・sinφ ・・・(2)
Y=L・cosφ ・・・(3)
なお、上記式(2)及び(3)において、回転角度φは反射ミラー131によってレーザ光が鉛直上方に反射するときを原点(すなわち、φ=0)としている。また、Xは、回転軸132に垂直な面内における水平方向の座標であり、Yは鉛直方向の座標である。
なお、詳細な説明は省略するが、計測セル1を鉛直方向に設置できない(レーザ距離計11からのレーザ光出射方向を鉛直方向に設定することができない)環境下にある場合も考慮すれば、計測セル内に傾斜計を設置し、演算装置3において、上記算出した距離Lを前記傾斜計によって測定した傾斜角度に基づいて補正可能とすることが好ましい。
次に、形状測定装置Mを構成する水冷管2は、高温雰囲気から計測セル1を保護して過熱を防止するべく、計測セル1の一部(少なくとも固定ミラー12及び可動ミラー機構13を含む部分)を覆った状態で計測セル1に固定されている。本実施形態に係る水冷管2は、寸法を小型化するべく、一般的な三重管ではなく二重管を利用した冷却手段を具備するように構成している。
図10は、本実施形態に係る水冷管2の概略構成を示す。図10(a)は水冷管2の上面図であり、(b)は(a)のAA線に沿った断面図である。なお、図10(a)では、後述する水出口2d及び水入口2eを便宜上図示省略している。図10に示すように、水冷管2は、外管2aと内管2bとを備えた二重管構造であり、外管2aと内管2bとの隙間に挿入パイプ2cが挿入された構成となっている。本実施形態に係る挿入パイプ2cは、外管2aの周方向に沿って計6本配設されており(本数が多いほど、水冷管2上部の空気抜きを行い易く、冷却能が向上する)、各挿入パイプ2cの先端部が外管2aの略先端まで挿入されている。各挿入パイプ2cの後端部は水出口2dと接続されている。また、外管2aの後端部は水入口2eと接続されている。以上に説明した構成において、水入口2eから水を供給することにより、外管2aと内管2bとの隙間に水が充満し、さらには当該充満した水が挿入パイプ2c、水出口2dを介して外部に排出することになる。これにより、高温雰囲気から計測セル1を保護して過熱を防止することが可能である。
また、水冷管2の先端には、可動ミラー機構13(反射ミラー131)で反射したレーザ光が通過する位置(レーザ光の走査範囲)にスリット状の開口部21が設けられている。開口部21は、耐熱用の光学窓で密閉しない構造としている。これは、レーザ光の光路中に耐熱用光学窓を配置したとすれば、高温体で反射したレーザ光の一部が当該光学窓によって反射され(一般的な光学窓は反射率が3%程度に達する)、レーザ距離計11に受光されるレーザ光の光量低下を招く結果、測定精度が低下するおそれがあるからである。また、レーザ距離計11から出射したレーザ光が光学窓で反射し、これが出射されるレーザ光と干渉することによって測定精度が低下するおそれもあるからである。さらには、レーザ距離計11が高温体までの距離ではなく、光学窓までの距離を測定してしまうおそれもあるからである。なお、測定対象の反射率が高く、レーザ光の一部が耐熱用光学窓で反射されたとしても十分に受光量を確保できるような場合には、熱輻射の影響を低減するべく耐熱用光学窓を配置することが好ましい。
ここで、水冷管2に計測セル1の一部を収納した状態(図1に示すような状態)で炉内に設置し、1000℃の雰囲気温度条件にしたときの各部材(反射ミラー131、傘歯車135、136、軸受133、134)の温度変化を測定した。図4に測定結果を示す。高温雰囲気からの熱幅射が、開口部21から入射することになるが、図4に示すように、水冷管2内部温度の上昇は最大で350℃程度であった。従って、前述のように、水冷管2内に配置する各部材の耐熱温度を350℃以上とすれば、1000℃の雰囲気下であっても、簡易な冷却手段を用いて且つ耐熱用光学窓を必要とすることなく、安定した形状測定が可能であることが分かる。
以上に説明した形状測定装置Mによって熱風管Cの耐火煉瓦Bの表面形状を測定するに際しては、図1に示すように、熱風管Cの下部に水冷管2を挿入可能な測定用の孔C1を設け、測定用孔C1の中心と同軸となるように、水冷管2を固定するための筒状の固定用治具5を熱風管Cの外壁に溶接等によって取り付ける。そして、測定用孔C1から水冷管2を挿入し、反射ミラー131が熱風管C内面の煉瓦表面C2に対して所定の長さだけ上方に突出する位置に位置決めした後、ベアリング6を介して水冷管2と固定用治具5を固定する。なお、水冷管5は、固定用治具5に対して鉛直方向並びに水平方向の変位は阻止されるが、ベアリング6の作用によって旋回することは可能である。水冷管5を旋回すれば、これに固定された計測セル1も同時に旋回(従って、反射ミラー131も旋回)することになる。従って、本実施形態では、反射ミラー131が回転軸132の軸周りに回転することのみならず、固定用治具5の軸周りに旋回することも可能であり、耐火煉瓦B表面の3次元形状を測定することが可能である。なお、本実施形態では、水冷管2ひいては計測セル1の反射ミラー131が旋回可能な構成について説明したが、回転軸132が水平方向(図1の紙面左右方向)に変位可能な構成とすることによっても、高温体の3次元形状を測定することができる。
以下、前述した反射ミラー131の突出長を決定する指針について説明する。まず、レーザ距離計11から出射したレーザ光を煉瓦B表面の法線に対して傾けて投光した場合の計測値に対する影響を調査したところ、図5に示すように、煉瓦B表面の法線から60°傾斜するまでは殆ど影響の無いことが分かった。ここで、測定対象である熱風管C内の煉瓦Bは円筒形状であるため、熱風管Cの軸中心を基点とする(すなわち、反射ミラー131を熱風管Cの軸中心まで挿入する)と共に、レーザ光の走査方向が熱風管Cの周方向に沿うように水冷管2の旋回位置を調整して(すなわち、図1に示す状態から90°旋回させて)レーザ光を煉瓦B表面に投光すれば、全ての煉瓦B表面に対して法線方向から投光可能であるため、測定精度を高めることができる。
しかしながら、熱風管Cの軸中心に到達するまで深く反射ミラー131を挿入するためには、自ずと装置が長尺にならざるを得ず、可搬性が劣化する要因となる。熱風管C内部の煉瓦Bの脱落は、天井部に配設された部分のみで生じる現象であるため、天井部の頂点を0°として熱風管Cの周方向に±90°の範囲の煉瓦形状を測定できれば、煉瓦Bの状態監視としては十分であると考えられる。そこで、煉瓦Bの内面径を1800mmとして、上記突出長を種々変更した場合における、レーザ光が投光される煉瓦Bの位置(図6に示す角度θ1)と、当該煉瓦B表面へのレーザ光の投光角度θ(図5の傾斜角度θに相当)との関係を数値計算によって算出したところ、図6に示すように、天井部の頂点を基準として熱風管の周方向に±120°の範囲内であれば、反射ミラー131の突出長(熱風管Cの下部内面に配設された煉瓦B表面から回転軸132の軸中心までの距離)が10mmの場合であっても煉瓦B表面へのレーザ光の投光角度が60°以内となることが分かった。従って、10mm程度の突出長であっても精度の良い測定が可能であると言える。
なお、熱風管Cの健全性(煉瓦Bの健全性)をより一層適切に評価する上では、本実施形態に係る形状測定装置Mの演算内容を追加すると共に、形状測定装置Mによる測定結果に応じて煉瓦Bの健全性を判定する判定装置を設けることが好ましい。より具体的に説明すれば、形状測定装置Mの演算装置3が、耐火煉瓦Bの縦断面について天井部を含む内面形状を演算し、前記演算した内面形状の変曲点を算出し、前記算出した変曲点の位置を基準とした前記天井部の高さと前記変曲点間の距離とを演算して、両者の比を算出するように構成する。一方、前記判定装置が、演算装置3によって算出された比が予め定めた範囲外となった場合に、耐火煉瓦Bが不良であると判定するように構成すればよい。なお、前記判定装置は、形状測定装置Mと独立別個に設けることも可能であるが、形状測定装置Mの演算装置3に内蔵するプログラムによって、演算装置3によって算出された比が予め定めた範囲外であるか否かを判定する構成(すなわち、演算装置3が前記判定装置を兼ねる構成)を採用することも可能である。
以下、演算装置3において煉瓦Bの内面形状の変曲点を算出する具体的手順の一例について説明する。図11は、本発明の一実施形態に係る演算装置における演算処理内容(変曲点算出手順)の一例を説明するための説明図である。図11に示すように、先ず最初に、演算装置3は、煉瓦Bの縦断面について演算した内面形状データ(前述した式(2)及び(3)で表されるデータ)の内、下部に位置する煉瓦Bの内面形状データを用いて最小自乗法等により円近似し、算出した近似円CI1の中心を原点OとするXY座標に変換する。ここで、下部に位置する煉瓦Bには垂れ下がり状の変形が生じないため、下部に位置する煉瓦Bの内面形状データを用いて算出した近似円CI1は、初期の煉瓦内面形状に相当することになる。従って、環状に配設された煉瓦Bの内径を仮に1800mmとすれば、近似円CI1は、X+Y=900で表されることになる。
次に、煉瓦Bの縦断面について演算した内面形状データの内、煉瓦Bの天井部近辺(例えば、天井部の頂点においてレーザ光の照射角度(回転軸132の回転角度)φ=0°であるとして、−30°<φ<30°の範囲)の内面形状データを用いて最小自乗法等により円近似し、算出した近似円CI2を前記原点Oを原点とするXY座標に変換する。ここで、煉瓦Bの天井部に垂れ下がり状の変形が生じていない場合には、近似円CI2は近似円CI1とほぼ一致することになる。しかしながら、煉瓦Bの天井部に垂れ下がり状の変形が生じた場合には、近似円CI2は、近似円CI1よりも径が大きくなると共に、その中心が原点Oよりも下方に位置することになる。換言すれば、近似円CI2は、X+(Y+α)=R(α>0、R>900)で表されることになる。従って、近似円CI1と近似円CI2とは、Y座標が一致する2箇所の交点P1、P2を有することになり、これら交点P1、P2が煉瓦内面形状の変曲点に相当する。
演算装置3は、算出した近似円CI1及びCI2の式に基づいて交点P1、P2の座標を算出し、P1、P2のY座標を基準とした天井部の高さBHと交点P1、P2間の距離BLとを演算して、両者の比であるBH/BLを算出する。前記判定装置は、演算装置3によって算出された比BH/BLが予め定めた範囲外(例えば、8%以上25%以下の範囲外)となった場合に、耐火煉瓦Bが不良であると判定する。以上の好ましい構成により、熱風管Cの健全性(煉瓦Bの健全性)をより一層適切に評価することが可能である。
以下、実施例を示すことにより、本発明の特徴とするところをより一層明らかにする。
図1に示す形状測定装置Mによって(図1に示す状態から計測セル1を固定治具5に対して90°旋回させた後)、外径2700mmの熱風管C内部に配設された厚み450mmの煉瓦Bの表面形状を測定した。なお、反射ミラー131の突出長は、前述した指針に基づいて50mmに設定した。また、水冷管2の長さは980mm、外径は170mmであり、その外側に厚み10mmの断熱材を被覆した。
図7は、測定結果の一例を示す図である。図7の横軸は熱風管Cの軸中心を原点とする水平方向の位置を、縦軸は熱風管Cの軸中心を原点とする鉛直方向の位置を示す。図7に示すように、耐火煉瓦の天井部は、初期形状(図7に破線で示す)から徐々に乖離し、天井部の頂点で約200mmの垂れ下がりの生じていることを測定できることが分かった。なお、図7に破線で示した初期形状は、計測セル1の取付位置や熱風管C・煉瓦Bの寸法等によって幾何学的に計算される推定値である。
また、図8は、測定結果の他の例を示す図である。図8に示す例は、形状測定装置Mの据え付け誤差等に起因して、測定値(図8の「●」で示す点)と、推定される初期形状とが対応しない場合を示すものである。このような場合には、煉瓦下部(A部)の測定値を用いて最小自乗法等により円近似(楕円近似でも良い)し、算出した近似円の中心と半径とによって初期形状を算出すればよい。この際、初期の煉瓦内面直径は既知の値として設定し、近似円中心のみを算出することも可能である。このように、形状測定装置Mの据え付け誤差等が存在しても、近似円を算出することにより煉瓦の初期形状を推定すれば、測定値との乖離から煉瓦天井部の垂れ下がり量を把握することができる。
煉瓦の垂れ下がり量の限界値を予め設定しておき、定期的に煉瓦垂れ下がり量を測定して、前記限界値を超える状態になったときに煉瓦を積み替える作業を行えば、煉瓦脱落の操業に対する影響を未然に防止することが可能である。また、前述のようにBH/BLを定期的に算出して、その値が予め定めた範囲外となった場合に、煉瓦を積み替える作業を行えば、煉瓦脱落の操業に対する影響をより一層確実に防止することが可能である。
図1は、本発明の一実施形態に係る形状測定装置を熱風管の下部に設けた測定用の孔に取り付けた状態を示す概略構成図である。 図2は、図1に示す形状測定装置を構成する計測セルを含んだ要部の概略構成を示す図である。 図3は、アルミミラーと干渉ミラーとについて温度による反射率の変化を調査した結果を示す図である。 図4は、図1に示す計測セルを構成する各部材の温度変化を測定した結果を示す図である。 図5は、煉瓦の傾斜角度が距離計測値に及ぼす影響を調査した結果を示す図である。 図6は、レーザ光が投光される煉瓦の位置と、当該煉瓦表面へのレーザ光の投光角度との関係を示す図である。 図7は、本発明の一実施例に係る測定結果を示す図である。 図8は、本発明の他の実施例に係る測定結果を示す図である。 図9は、高炉に熱風を供給するための設備の概略構成を示す図である。 図10は、本発明の一実施形態に係る水冷管の概略構成を示す図である。 図11は、本発明の一実施形態に係る演算装置における演算処理内容(変曲点算出手順)の一例を説明するための説明図である。
符号の説明
1・・・計測セル
2・・・水冷管
3・・・演算装置
11・・・レーザ距離計
12・・・耐熱性固定ミラー
13・・・耐熱性可動ミラー機構
M・・・形状測定装置
C・・・熱風管
B・・・耐火煉瓦

Claims (8)

  1. 測定対象内部に存在する高温体に向けて当該測定対象に設けられた開口部を介してレーザ光を投光し、当該高温体で反射したレーザ光を受光することにより、当該高温体までの距離を計測するレーザ距離計と、
    前記レーザ距離計から出射したレーザ光を偏向するための耐熱性固定ミラーと、
    前記固定ミラーで反射したレーザ光を前記高温体に向けて偏向走査するための耐熱性可動ミラー機構とを備え、
    前記固定ミラー及び前記可動ミラー機構は、前記レーザ距離計からのレーザ光の出射方向に沿って前記レーザ距離計から離間して配置されていることを特徴とする高温体の距離測定装置。
  2. 前記固定ミラー及び前記可動ミラー機構は、過熱を防止するための冷却手段を具備する筐体内に配設されることを特徴とする請求項1に記載の高温体の距離測定装置。
  3. 前記筐体の前記可動ミラー機構で反射したレーザ光が通過する位置に開口部が設けられ、当該開口部には光学窓が配置されないことを特徴とする請求項2に記載の高温体の距離測定装置。
  4. 請求項1から3のいずれかに記載の距離測定装置と、
    前記距離測定装置で測定された前記レーザ距離計と前記高温体との距離、及び、前記レーザ距離計と前記固定ミラーと前記可動ミラー機構との幾何学的位置関係に基づいて、前記高温体の表面形状を演算する演算装置とを備えることを特徴とする高温体の形状測定装置。
  5. 請求項4に記載の形状測定装置と、
    前記形状測定装置による測定結果に応じて、前記測定対象内部に存在する高温体の健全性を判定する判定装置とを備え、
    前記測定対象は横設された管状の耐火構造物であり、前記高温体は前記耐火構造物内部に環状に配設された耐火煉瓦とされ、
    前記演算装置は、前記耐火煉瓦の縦断面について天井部を含む内面形状を演算し、前記演算した内面形状の変曲点を算出し、前記算出した変曲点の位置を基準とした前記天井部の高さと前記変曲点間の距離とを演算して、両者の比を算出し、
    前記判定装置は、前記演算装置によって算出された比が予め定めた範囲外となった場合に、前記耐火煉瓦が不良であると判定することを特徴とする耐火構造物の健全性評価装置。
  6. 測定対象内部に存在する高温体までの距離を測定する方法であって、
    レーザ距離計を前記測定対象の外部に配置する一方、耐熱性固定ミラー及び耐熱性可動ミラー機構を前記測定対象の内部に配置し、
    前記レーザ距離計から出射したレーザ光を前記固定ミラーによって前記可動ミラー機構に向けて偏向し、
    前記可動ミラー機構によって前記高温体に向けてレーザ光を偏向走査し、
    前記高温体で反射したレーザ光を前記可動ミラー機構及び前記固定ミラーを順次介して前記レーザ距離計で受光することにより、前記高温体までの距離を測定することを特徴とする高温体の距離測定方法。
  7. 請求項6に記載の方法で測定された前記レーザ距離計と前記高温体との距離、及び、前記レーザ距離計と前記固定ミラーと前記可動ミラー機構との幾何学的位置関係に基づいて、前記高温体の表面形状を演算することを特徴とする高温体の形状測定方法。
  8. 請求項7に記載の方法で、横設された管状の耐火構造物内部に環状に配設された耐火煉瓦の縦断面について天井部を含む内面形状を演算し、
    前記演算した内面形状の変曲点を算出し、
    前記算出した変曲点の位置を基準とした前記天井部の高さと前記変曲点間の距離とを演算して、両者の比を算出し、
    前記算出した比が予め定めた範囲外となった場合に、前記耐火煉瓦が不良であると判定することを特徴とする耐火構造物の健全性評価方法。
JP2005081630A 2004-06-15 2005-03-22 高温体の距離測定装置、形状測定装置、耐火構造物の健全性評価装置及び耐火構造物の健全性評価方法 Active JP4842551B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005081630A JP4842551B2 (ja) 2004-06-15 2005-03-22 高温体の距離測定装置、形状測定装置、耐火構造物の健全性評価装置及び耐火構造物の健全性評価方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004176575 2004-06-15
JP2004176575 2004-06-15
JP2005081630A JP4842551B2 (ja) 2004-06-15 2005-03-22 高温体の距離測定装置、形状測定装置、耐火構造物の健全性評価装置及び耐火構造物の健全性評価方法

Publications (2)

Publication Number Publication Date
JP2006030164A true JP2006030164A (ja) 2006-02-02
JP4842551B2 JP4842551B2 (ja) 2011-12-21

Family

ID=35896682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005081630A Active JP4842551B2 (ja) 2004-06-15 2005-03-22 高温体の距離測定装置、形状測定装置、耐火構造物の健全性評価装置及び耐火構造物の健全性評価方法

Country Status (1)

Country Link
JP (1) JP4842551B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101314288B1 (ko) 2011-04-11 2013-10-02 김언주 코크스로 탄화실용 레벨측정 장치
CN107941172A (zh) * 2017-12-29 2018-04-20 常州大地测绘科技有限公司 烟道截面积在线检测方法及装置
CN111238417A (zh) * 2020-02-19 2020-06-05 南京市计量监督检测院 一种管径高温烟道截面积在线测量装置
CN111961777A (zh) * 2020-08-17 2020-11-20 石家庄锦荣电子科技有限公司 高炉料面形状在线监测系统
WO2021200847A1 (ja) * 2020-03-31 2021-10-07 三菱パワー株式会社 フィン先端位置の計測方法、フィン先端位置の計測システム、及びフィン先端位置の計測用冶具

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101314288B1 (ko) 2011-04-11 2013-10-02 김언주 코크스로 탄화실용 레벨측정 장치
CN107941172A (zh) * 2017-12-29 2018-04-20 常州大地测绘科技有限公司 烟道截面积在线检测方法及装置
CN111238417A (zh) * 2020-02-19 2020-06-05 南京市计量监督检测院 一种管径高温烟道截面积在线测量装置
WO2021200847A1 (ja) * 2020-03-31 2021-10-07 三菱パワー株式会社 フィン先端位置の計測方法、フィン先端位置の計測システム、及びフィン先端位置の計測用冶具
JP2021161961A (ja) * 2020-03-31 2021-10-11 三菱パワー株式会社 フィン先端位置の計測方法、フィン先端位置の計測システム、及びフィン先端位置の計測用冶具
JP7445496B2 (ja) 2020-03-31 2024-03-07 三菱重工業株式会社 フィン先端位置の計測方法、フィン先端位置の計測システム、及びフィン先端位置の計測用冶具
CN111961777A (zh) * 2020-08-17 2020-11-20 石家庄锦荣电子科技有限公司 高炉料面形状在线监测系统
CN111961777B (zh) * 2020-08-17 2021-10-12 石家庄锦荣电子科技有限公司 高炉料面形状在线监测系统

Also Published As

Publication number Publication date
JP4842551B2 (ja) 2011-12-21

Similar Documents

Publication Publication Date Title
JP4842551B2 (ja) 高温体の距離測定装置、形状測定装置、耐火構造物の健全性評価装置及び耐火構造物の健全性評価方法
US6922252B2 (en) Automated positioning method for contouring measurements using a mobile range measurement system
JP4531057B2 (ja) 目標とする空間を記録するための装置
ES2662906T3 (es) Proceso para monitorizar la integridad de contenedores
JP2799291B2 (ja) 炉内検査装置
JPH01114705A (ja) 検査装置およびその方法
WO2016059974A1 (ja) ガス分析装置
JPH11281331A (ja) 内壁測定装置
US7006216B2 (en) Device for the chemical analysis of material samples and metallurgical vessel therefor
EP3987247B1 (en) System, device and method for measuring the interior refractory lining of a vessel
JP4023988B2 (ja) コークス炉の炉壁診断方法および診断装置
CN110186374B (zh) 转炉炉口开口度大于炉膛半径时炉膛尺寸的测量方法
JP2009210537A (ja) 炉内壁減肉量測定装置
JP4954688B2 (ja) コークス炉炭化室の炉壁変位測定システム、及びコークス炉炭化室の炉壁変位測定方法
JPH0743119A (ja) 管体の寸法測定装置
JP2003207321A (ja) 高温物体の形状計測装置
JPS5987329A (ja) 鋼板の温度測定方法
JPS62291505A (ja) 容器の内面形状測定方法
JP4155229B2 (ja) 混銑車のライニング煉瓦厚測定方法、測定装置並びに混銑車の運用方法
US5549472A (en) Control of protective layer thickness in kilns by utilizing two laser beams
TWI840568B (zh) 用以測量容器內部耐火襯料之系統、裝置及方法
RU2810030C2 (ru) Система, устройство и способ измерения внутренней огнеупорной футеровки сосуда
CN110174053B (zh) 转炉炉口开口度小于炉膛半径时炉膛尺寸的测量方法
JP7348114B2 (ja) 鞘管測定用治具
JP2000088654A (ja) 放射温度計による燃焼ガス温度の計測方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090908

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100125

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100205

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111006

R150 Certificate of patent or registration of utility model

Ref document number: 4842551

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350