JP2006030105A - Thermal method mass flowmeter - Google Patents

Thermal method mass flowmeter Download PDF

Info

Publication number
JP2006030105A
JP2006030105A JP2004212525A JP2004212525A JP2006030105A JP 2006030105 A JP2006030105 A JP 2006030105A JP 2004212525 A JP2004212525 A JP 2004212525A JP 2004212525 A JP2004212525 A JP 2004212525A JP 2006030105 A JP2006030105 A JP 2006030105A
Authority
JP
Japan
Prior art keywords
temperature sensor
sensor
heating temperature
platinum wire
thermal mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004212525A
Other languages
Japanese (ja)
Other versions
JP3907645B2 (en
Inventor
Kenichi Nakane
健一 中根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oval Corp
Original Assignee
Oval Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oval Corp filed Critical Oval Corp
Priority to JP2004212525A priority Critical patent/JP3907645B2/en
Publication of JP2006030105A publication Critical patent/JP2006030105A/en
Application granted granted Critical
Publication of JP3907645B2 publication Critical patent/JP3907645B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermal method mass flowmeter with a thermosensitive heating sensor capable of attempting to amplify outputs and to reduce dispersion of outputs. <P>SOLUTION: The present thermal method mass flowmeter is configured such that the thermosensitive heating sensor 5 forms an element body 5d by winding and fixing the platinum wire 5b connected to sensor lead wire 5a to a core, the element body 5 is inserted into a sensor case 5e so as to arrange the platinum wire 5b near the inner face 5f of the sensor case 5e, and additionally mold toner 5g is stuffed to the space between the platinum wire 5b and the inner face 5f so as to fix the element body in the sensor case 5e. The thermosensitive heating sensor 5 has a structure where the platinum wire 5b approaches to the test fluid. Also, the thermosensitive heating sensor 5 has a structure where any air layers do not exist around the platinum wire 5b. Moreover, the thermosensitive heating sensor 5 has a structure where the platinum wire 5b is fixed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、感温センサと加熱感温センサとを備えるとともに、加熱感温センサの加熱に係る電力供給量から質量流量を算出する熱式質量流量計に関する。   The present invention relates to a thermal mass flowmeter that includes a temperature sensor and a heating temperature sensor and calculates a mass flow rate from the amount of power supplied for heating of the heating temperature sensor.

熱式質量流量計は、温度センサと加熱センサの機能を有する加熱感温センサ(流速センサ(ヒータ))と、感温センサとを備えており、加熱感温センサの温度が感温センサで計測される流体温度に対して一定の温度差になるように制御されている。これは、被測定流体を流した時にヒータから奪われる熱量が質量流量と相関があるからであって、ヒータに対する電力供給量から質量流量が算出されるようになっている。   The thermal mass flowmeter has a heating temperature sensor (flow velocity sensor (heater)) that functions as a temperature sensor and a heating sensor, and a temperature sensor, and the temperature of the heating temperature sensor is measured by the temperature sensor. It is controlled so as to have a constant temperature difference with respect to the fluid temperature. This is because the amount of heat taken away from the heater when the fluid to be measured flows is correlated with the mass flow rate, and the mass flow rate is calculated from the amount of power supplied to the heater.

従来の熱式質量流量計としては、下記特許文献1に開示されたものが知られている。下記特許文献1に開示された熱式質量流量計は、感温センサと加熱感温センサとがセンサホルダの中心軸上に配置されている。センサホルダは、流量計本体の一構成部品であって、そのセンサホルダの前記中心軸は、被測定流体が流れる流管の軸に平行に配置されている。すなわち、感温センサと加熱感温センサは、流管の軸に沿って並んで配置されている。感温センサは上流側で加熱感温センサは下流側に配置されている。   As a conventional thermal mass flow meter, the one disclosed in Patent Document 1 below is known. In the thermal mass flow meter disclosed in Patent Document 1 below, a temperature sensor and a heating temperature sensor are arranged on the center axis of the sensor holder. The sensor holder is a component of the flow meter body, and the central axis of the sensor holder is arranged in parallel to the axis of the flow tube through which the fluid to be measured flows. That is, the temperature sensor and the heating temperature sensor are arranged side by side along the axis of the flow tube. The temperature sensor is arranged on the upstream side, and the heating temperature sensor is arranged on the downstream side.

下記特許文献1の熱式質量流量計は、水平軸方向に伸びる流管に取り付けられており、その流管の流路を流れる被測定流体の質量流量を算出するようになっている。下記特許文献1の熱式質量流量計は、水平軸方向に伸びる流管のみならず、鉛直方向やその他の方向に伸びる流管に対しても取り付けることができるように構成されている。
特開2004−12220号公報 (第6頁、第4図)
The thermal mass flow meter of the following Patent Document 1 is attached to a flow tube extending in the horizontal axis direction, and calculates the mass flow rate of the fluid to be measured flowing through the flow channel of the flow tube. The thermal mass flow meter of the following Patent Document 1 is configured not only to flow tubes extending in the horizontal axis direction but also to flow tubes extending in the vertical direction and other directions.
JP 2004-12220 A (page 6, FIG. 4)

ところで、上記従来の熱式質量流量計にあっては、次のような構造の加熱感温センサを用いている。すなわち、従来の加熱感温センサは、センサケースに収容固定される素子本体を備え、その素子本体は、センサリード線に接続される白金線を螺旋状にして、螺旋状になった白金線をセラミックス製のケース内に収容し、そして、螺旋状になった白金線の隙間にセラミックパウダーを充填することにより形成されている。螺旋状になった白金線は、センサケースの内面から離れた位置に配置されている(どちらかというと、中心に近い位置に配置されている)。白金線の隙間に充填されたセラミックパウダーは固められておらず、白金線の周囲には空気層が存在する状態になっている。   By the way, in the said conventional thermal mass flowmeter, the heating temperature sensor of the following structures is used. That is, a conventional heating temperature sensor includes an element body that is housed and fixed in a sensor case, and the element body is formed by spiraling a platinum wire connected to a sensor lead wire and forming a spiral platinum wire. The ceramic powder is housed in a ceramic case and filled with ceramic powder in a spiral platinum wire gap. The spiral platinum wire is disposed at a position away from the inner surface of the sensor case (rather, it is disposed at a position closer to the center). The ceramic powder filled in the gap between the platinum wires is not hardened, and there is an air layer around the platinum wires.

このような構造の加熱感温センサを用いる従来の熱式質量流量計は、図6のグラフからも分かるように、流量による出力の変化量が小さいという問題点を有している。また、まれに出力の変化量が大きいものもあることから、扱いが難しいという問題点を有している。さらに、上記の「まれに出力の変化量が大きいもの」を含めて考えると、加熱感温センサ毎の出力のバラツキが大きいという問題点を有している。これらの問題点は、加熱感温センサの構造が原因になっているものと本願発明者は考えている(構造上、放熱、熱伝達にバラツキが出て、上記問題点が生じると考えている)。   The conventional thermal mass flowmeter using the heating temperature sensor having such a structure has a problem that the amount of change in output due to the flow rate is small, as can be seen from the graph of FIG. In addition, since there are rare cases where the amount of change in output is large, there is a problem that it is difficult to handle. Further, when considering the above-mentioned “rarely a large amount of change in output”, there is a problem that the variation in output for each heating temperature sensor is large. The present inventor considers that these problems are caused by the structure of the heating temperature sensor (the structure is considered to cause the above-mentioned problems due to variations in heat dissipation and heat transfer). ).

本発明は、上述した事情に鑑みてなされたもので、出力の増大と出力のバラツキ縮小とを図ることが可能な加熱感温センサを有する熱式質量流量計を提供することを課題とする。   This invention is made | formed in view of the situation mentioned above, and makes it a subject to provide the thermal mass flowmeter which has a heating temperature sensor which can aim at the increase in an output and reduction in the dispersion | variation in an output.

上記課題を解決するためになされた請求項1記載の本発明の熱式質量流量計は、感温センサと加熱感温センサを流管の流路に突出させ、前記感温センサと前記加熱感温センサの温度差を一定とするために前記加熱感温センサを加熱し、該加熱に係る電力供給量制御を行いその電力量から質量流量を算出する熱式質量流量計において、前記加熱感温センサは、センサリード線に接続される白金線を芯材に巻回固定して素子本体を形成し、該素子本体をセンサケース内に挿入して前記白金線を前記センサケースの内面近傍に配置するとともに、前記白金線と前記内面との間隙にモールド剤を介在させて前記素子本体を前記センサケース内に固定してなることを特徴としている。   The thermal mass flowmeter of the present invention according to claim 1, which has been made to solve the above-mentioned problems, has a temperature sensor and a heating temperature sensor projecting into a flow channel of a flow tube, and the temperature sensor and the heating feeling are projected. In a thermal mass flow meter that heats the heating temperature sensor to make the temperature difference of the temperature sensor constant, controls a power supply amount related to the heating, and calculates a mass flow rate from the power amount, the heating temperature sensor The sensor is formed by winding a platinum wire connected to a sensor lead wire around a core material to form an element body, inserting the element body into the sensor case, and placing the platinum wire near the inner surface of the sensor case. In addition, the element main body is fixed in the sensor case with a molding agent interposed in the gap between the platinum wire and the inner surface.

請求項1に記載された本発明によれば、従来と異なる構造の加熱感温センサ、すなわち、センサリード線に接続される白金線を芯材に固定し、また、芯材に固定した白金線をセンサケースの内面近傍に配置し、さらには、白金線とセンサケースの内面との間にモールド剤を介在させる構造の加熱感温センサを熱式質量流量計に用いることから、構造上、放熱や熱伝達にバラツキが出なくなり、従来よりも流量による出力の変化量を大きくすることができる。また、従来よりもセンサ出力のバラツキを縮小することができる。   According to the present invention described in claim 1, a heating temperature sensor having a structure different from the conventional one, that is, a platinum wire connected to the sensor lead wire is fixed to the core material, and the platinum wire fixed to the core material Is used near the inner surface of the sensor case, and a heating temperature sensor with a structure in which a molding agent is interposed between the platinum wire and the inner surface of the sensor case is used for the thermal mass flow meter. As a result, there is no variation in heat transfer, and the amount of change in output due to the flow rate can be made larger than in the past. In addition, variations in sensor output can be reduced as compared with the prior art.

従って、本発明の熱式質量流量計によれば、出力増大を図ることができるという効果を奏する。また、本発明の熱式質量流量計によれば、品質の安定した加熱感温センサによって流量計測をすることができるという効果を奏する。その他、本発明の熱式質量流量計によれば、温度による出力の変化量を小さくして、直線性、流体温度の影響を改善することができるという効果を奏する。   Therefore, according to the thermal mass flow meter of the present invention, there is an effect that the output can be increased. Further, according to the thermal mass flow meter of the present invention, there is an effect that the flow rate can be measured by the heating temperature sensor having a stable quality. In addition, according to the thermal mass flowmeter of the present invention, the effect of linearity and influence of fluid temperature can be improved by reducing the amount of change in output due to temperature.

以下、図面を参照しながら説明する。
図1は本発明の熱式質量流量計の一実施の形態を示す図であり、(a)は流管が鉛直方向に伸びる場合においての上流側から見た概略図、(b)は(a)のA−A線断面図、(c)は(b)のB−B線断面図、(d)は加熱感温センサの要部断面図である。また、図2は流量による出力の変化を示すグラフである。
Hereinafter, description will be given with reference to the drawings.
FIG. 1 is a diagram showing an embodiment of a thermal mass flow meter of the present invention, where (a) is a schematic view seen from the upstream side when the flow tube extends in the vertical direction, and (b) is (a) ) Is a cross-sectional view taken along the line A-A in FIG. 6C, FIG. 5C is a cross-sectional view taken along the line BB in FIG. 5B, and FIG. Moreover, FIG. 2 is a graph which shows the change of the output by flow volume.

図1において、本発明の熱式質量流量計1は、流管2の流路3に突出する感温センサ4と加熱感温センサ5とを備えて構成されている。図1における流管2は、その流管軸6が鉛直方向(図示省略)に略一致するように配管されている。流管2には、被測定流体(図示省略)が矢印で示される流体方向7に流れるように、すなわち図1(b)、(c)を見た場合には上から下へ流れるように設定されている。   In FIG. 1, a thermal mass flow meter 1 of the present invention is configured to include a temperature sensor 4 and a heating temperature sensor 5 that protrude into a flow path 3 of a flow tube 2. The flow tube 2 in FIG. 1 is piped so that the flow tube axis 6 substantially coincides with the vertical direction (not shown). The flow tube 2 is set so that the fluid to be measured (not shown) flows in the fluid direction 7 indicated by the arrow, that is, flows from top to bottom when viewing FIGS. Has been.

感温センサ4は、既知のものが用いられている。ここでは、感温センサ4の具体的な構成について、その説明を省略する。本形態の感温センサ4は、棒状の温度センサであり、同じく棒状の加熱感温センサ5は、温度センサと加熱センサの機能を有する流速センサ(ヒータ)である。   A known sensor is used for the temperature sensor 4. Here, the description of the specific configuration of the temperature sensor 4 is omitted. The temperature sensor 4 of this embodiment is a rod-shaped temperature sensor, and the rod-shaped heating temperature sensor 5 is a flow rate sensor (heater) having functions of a temperature sensor and a heating sensor.

図1(d)において、加熱感温センサ5は、センサリード線5aに接続される白金線5bを芯材5cに巻回固定して素子本体5dを形成し、その素子本体5dをセンサケース5e内に挿入して白金線5bをセンサケース5eの内面5f近傍に配置するとともに、白金線5bと内面5fとの間隙にモールド剤5gを介在させて素子本体5dをセンサケース5e内に固定してなる構造になっている。加熱感温センサ5は、白金線5bが被測定流体(図示省略)に対して近づく構造になっている。また、加熱感温センサ5は、白金線5bの周りに空気層が存在しない構造になっている。さらに、加熱感温センサ5は、白金線5bが固定される構造になっている。   In FIG. 1D, a heating temperature sensor 5 is formed by winding and fixing a platinum wire 5b connected to a sensor lead wire 5a around a core material 5c to form an element body 5d, and the element body 5d is attached to a sensor case 5e. The platinum wire 5b is inserted near the inner surface 5f of the sensor case 5e and the element body 5d is fixed in the sensor case 5e with a molding agent 5g interposed between the platinum wire 5b and the inner surface 5f. It becomes the structure which becomes. The heating temperature sensor 5 has a structure in which the platinum wire 5b approaches a fluid to be measured (not shown). The heating temperature sensor 5 has a structure in which no air layer exists around the platinum wire 5b. Furthermore, the heating temperature sensor 5 has a structure in which the platinum wire 5b is fixed.

芯材5cは、ガラス製であって略円柱状に形成されている。白金線5bは、このような芯材5cの外周側面に巻回されている(芯材5cを巻回した後、接着剤等を塗布して芯材5cを固定してもよい)。白金線5bの端部は、例えば芯材5cの上端面でセンサリード線5aと接続されている。引用符号5hは、白金線5bとセンサリード線5aとの接続部分を覆う保護部を示している。センサケース5eは、例えばステンレス製となる有底のパイプが用いられている。モールド剤5gは、エポキシ樹脂等であって、芯材5cの上方にも充填されている。   The core material 5c is made of glass and has a substantially cylindrical shape. The platinum wire 5b is wound around the outer peripheral side surface of such a core material 5c (after winding the core material 5c, an adhesive or the like may be applied to fix the core material 5c). The end of the platinum wire 5b is connected to the sensor lead wire 5a at the upper end surface of the core material 5c, for example. Reference numeral 5h indicates a protective portion that covers a connection portion between the platinum wire 5b and the sensor lead wire 5a. For the sensor case 5e, for example, a bottomed pipe made of stainless steel is used. The molding agent 5g is an epoxy resin or the like, and is also filled above the core material 5c.

感温センサ4及び加熱感温センサ5は、その先端側が感温部分8、後端側が固定部分9として構成されている。感温センサ4及び加熱感温センサ5は、各固定部分9をセンサホルダ10に差し込むような状態にした上で固定されている。感温センサ4及び加熱感温センサ5は、共に同じセンサホルダ10に固定されている(これに限らないものとする。すなわち、感温センサ4及び加熱感温センサ5の配置の仕方によっては別々のセンサホルダに固定してもよいものとする)。   The temperature sensor 4 and the heating temperature sensor 5 are configured as a temperature-sensitive portion 8 on the front end side and a fixed portion 9 on the rear end side. The temperature sensor 4 and the heating temperature sensor 5 are fixed after the respective fixed portions 9 are inserted into the sensor holder 10. The temperature sensor 4 and the heating temperature sensor 5 are both fixed to the same sensor holder 10 (not limited to this. That is, depending on the arrangement of the temperature sensor 4 and the heating temperature sensor 5, they are different. To the sensor holder).

感温センサ4及び加熱感温センサ5は、流管2の外周面にセンサホルダ10を取り付けると、流管2の壁に形成した貫通孔を介して各感温部分8が流路3に突出するようになっている。各感温部分8は、流管軸6に対して略直交する方向に突出するようになっている。感温センサ4及び加熱感温センサ5の各先端は、流管2の中央又は中央周辺部分に配置されている(一例であるものとする)。感温センサ4及び加熱感温センサ5の各感温部分8には、仮に外部から流管2の壁に熱が伝わったとしてもその熱が作用しないように配慮されている。感温センサ4及び加熱感温センサ5は、流管軸6に沿って並ぶように配置されている。また、感温センサ4及び加熱感温センサ5は、所定の間隔をあけて配置されている。   When the sensor holder 10 is attached to the outer peripheral surface of the flow tube 2, each of the temperature sensor 4 and the heating temperature sensor 5 protrudes into the flow path 3 through a through hole formed in the wall of the flow tube 2. It is supposed to be. Each temperature-sensitive portion 8 protrudes in a direction substantially orthogonal to the flow tube axis 6. The tips of the temperature sensor 4 and the heating temperature sensor 5 are arranged at the center or the center peripheral portion of the flow tube 2 (assumed as an example). Even if heat is transmitted from the outside to the wall of the flow tube 2 in each temperature sensing portion 8 of the temperature sensor 4 and the heating temperature sensor 5, consideration is given so that the heat does not act. The temperature sensor 4 and the heating temperature sensor 5 are arranged along the flow tube axis 6. Moreover, the temperature sensor 4 and the heating temperature sensor 5 are arrange | positioned at predetermined intervals.

次に、熱式質量流量計1の図示していない部分について簡単に説明する(その図示していない部分は、基本的に、背景技術の欄で挙げた特許文献1、すなわち特開2004−12220号公報の第6頁、第4図に開示された構成と同じである)。   Next, a part (not shown) of the thermal mass flow meter 1 will be briefly described (the part not shown is basically Japanese Patent Application Laid-Open No. 2004-12220 described in the background art section). This is the same as the configuration disclosed in page 6 of FIG.

図示していない部分として、感温センサ4及び加熱感温センサ5の上流側には、被測定流体を安定した流れに整える整流器が取り付けられている。センサホルダ10の上方には、感温センサ4のセンサリード線及び加熱感温センサ5のセンサリード線線5aが接続されるアンプボードが取り付けられている。感温センサ4及び加熱感温センサ5とアンプボードは、流量計測部及び流量演算部としての機能を有している。センサホルダ10及びアンプボードの周囲には、変換器ケースが取り付けられている。変換器ケースは、流管2に取り付けられている。変換器ケースの開口部分には、スイッチボードやディスプレイボードを有する本体カバーがパッキンを挟んだ状態で取り付けられている。変換器ケースの一側壁には、伝送ケーブルが接続されている。   As a portion not shown, a rectifier for adjusting the fluid to be measured to a stable flow is attached upstream of the temperature sensor 4 and the heating temperature sensor 5. Above the sensor holder 10, an amplifier board to which the sensor lead wire of the temperature sensor 4 and the sensor lead wire 5a of the heating temperature sensor 5 are connected is attached. The temperature sensor 4 and the heating temperature sensor 5 and the amplifier board have functions as a flow rate measurement unit and a flow rate calculation unit. A converter case is attached around the sensor holder 10 and the amplifier board. The converter case is attached to the flow tube 2. A body cover having a switch board and a display board is attached to the opening of the converter case with a packing interposed therebetween. A transmission cable is connected to one side wall of the converter case.

上記構成において、加熱感温センサ5は、感温センサ4で検出された温度に基づいて流量計測を行う。すなわち、本発明の熱式質量流量計1の流量計測部及び流量演算部では、感温センサ4と加熱感温センサ5との温度差が一定(例えば+30℃)になるように、加熱感温センサ5を加熱する(電流を流す)とともに、その加熱に係る電力値から質量流量を算出する。算出された質量流量は、表示装置(図示省略)に表示される。   In the above configuration, the heating temperature sensor 5 measures the flow rate based on the temperature detected by the temperature sensor 4. That is, in the flow measurement unit and the flow calculation unit of the thermal mass flowmeter 1 of the present invention, the heating temperature sensitivity is set so that the temperature difference between the temperature sensor 4 and the heating temperature sensor 5 is constant (for example, + 30 ° C.). The sensor 5 is heated (current is supplied), and the mass flow rate is calculated from the power value related to the heating. The calculated mass flow rate is displayed on a display device (not shown).

質量流量の算出について補足説明すると、被測定流体(図示省略)を流体方向7に流したときに、加熱感温センサ5は被測定流体によって冷やされる。感温センサ4との温度差を一定に制御するためには、さらに加熱感温センサ5に電流を流す必要がある。この時、加熱感温センサ5に流れる電流は、質量流量の関数であり、これを利用して質量流量を演算算出する。   To supplement the calculation of the mass flow rate, the heating temperature sensor 5 is cooled by the fluid to be measured when the fluid to be measured (not shown) is flowed in the fluid direction 7. In order to control the temperature difference with the temperature sensor 4 to be constant, it is necessary to further pass a current through the heating temperature sensor 5. At this time, the current flowing through the heating temperature sensor 5 is a function of the mass flow rate, and the mass flow rate is calculated and calculated using this.

以上、図1を参照しながら説明してきたように、本発明の熱式質量流量計1は、上記構造の加熱感温センサ5を用いることから、構造上、放熱や熱伝達にバラツキが出ないようにすることができる。従って、図2のグラフからも分かるように、従来よりも流量による出力の変化量を大きくすることができる。また、従来よりもセンサ出力のバラツキを縮小することができる。   As described above with reference to FIG. 1, the thermal mass flowmeter 1 of the present invention uses the heating temperature sensor 5 having the above-described structure, so that there is no variation in heat dissipation and heat transfer due to the structure. Can be. Therefore, as can be seen from the graph of FIG. 2, the amount of change in output due to the flow rate can be made larger than in the prior art. In addition, variations in sensor output can be reduced as compared with the prior art.

続いて、図3及び図4を参照しながら本発明の熱式質量流量計の他の一実施の形態を説明する。図3は他の一実施の形態を示す図であり、(a)は流管が鉛直方向に伸びる場合においての上流側から見た概略図、(b)は(a)のA−A線断面図、(c)は(b)のB−B線断面図、(d)は加熱感温センサの要部断面図である。また、図4は感温センサ及び加熱感温センサの配置と自然対流の方向の説明図である。   Subsequently, another embodiment of the thermal mass flowmeter of the present invention will be described with reference to FIGS. 3 and 4. 3A and 3B are diagrams showing another embodiment, in which FIG. 3A is a schematic view viewed from the upstream side when the flow tube extends in the vertical direction, and FIG. 3B is a cross-sectional view taken along line AA in FIG. (C) is a BB line sectional view of (b), (d) is a principal section sectional view of a heating temperature sensor. FIG. 4 is an explanatory view of the arrangement of the temperature sensor and the heating temperature sensor and the direction of natural convection.

図3において、他の一実施の形態における熱式質量流量計1は、上述した図1の熱式質量流量計1に対して感温センサ4及び加熱感温センサ5の配置が異なっている。加熱感温センサ5は、上述同様、センサリード線5aに接続される白金線5bを芯材5cに固定し、また、芯材5cに固定した白金線5bをセンサケース5eの内面5f近傍に配置し、さらには、白金線5bとセンサケース5eの内面5fとの間にモールド剤5gを介在させる構造のセンサが用いられている。   In FIG. 3, the thermal mass flow meter 1 according to another embodiment is different from the above-described thermal mass flow meter 1 of FIG. 1 in the arrangement of the temperature sensor 4 and the heating temperature sensor 5. As described above, the heating temperature sensor 5 fixes the platinum wire 5b connected to the sensor lead wire 5a to the core material 5c, and arranges the platinum wire 5b fixed to the core material 5c near the inner surface 5f of the sensor case 5e. Furthermore, a sensor having a structure in which a molding agent 5g is interposed between the platinum wire 5b and the inner surface 5f of the sensor case 5e is used.

感温センサ4及び加熱感温センサ5の配置について、図3及び図4を参照しながら説明すると、感温センサ4及び加熱感温センサ5は、これらを結ぶ直線(仮想線11)が加熱感温センサ5に生じる自然対流の方向12に対して不一致となるように配置されている。言い換えれば、感温センサ4は、加熱感温センサ5に生じる自然対流の方向12に対してずれた位置に配置されている。   The arrangement of the temperature sensor 4 and the heating temperature sensor 5 will be described with reference to FIG. 3 and FIG. 4. The temperature sensor 4 and the heating temperature sensor 5 have a straight line (virtual line 11) connecting them. The temperature sensor 5 is arranged so as to be inconsistent with the direction 12 of natural convection generated in the temperature sensor 5. In other words, the temperature sensor 4 is disposed at a position shifted from the natural convection direction 12 generated in the heating temperature sensor 5.

感温センサ4及び加熱感温センサ5は、所定の間隔をあけて配置されている。また、感温センサ4及び加熱感温センサ5は、センサホルダ10の対角線方向に合わせて配置されている。他の一実施の形態において、上記仮想線11は、上記対角線方向(図示省略)に一致している。   The temperature sensor 4 and the heating temperature sensor 5 are arranged at a predetermined interval. Further, the temperature sensor 4 and the heating temperature sensor 5 are arranged according to the diagonal direction of the sensor holder 10. In another embodiment, the imaginary line 11 coincides with the diagonal direction (not shown).

感温センサ4及び加熱感温センサ5の配置は、他の一実施の形態において、上記仮想線11が上記自然対流の方向12に対して不一致となればよく、加熱感温センサ5が感温センサ4よりも上流側に配置されないことがより好ましいものとする。図3に示されるように、感温センサ4を上流側、加熱感温センサ5を下流側に配置する他には、感温センサ4及び加熱感温センサ5を流管軸6に対して直交方向に並べて配置することも挙げられる。   In another embodiment, the temperature sensor 4 and the heating temperature sensor 5 may be arranged so that the virtual line 11 does not coincide with the natural convection direction 12. It is more preferable that the sensor 4 is not disposed upstream of the sensor 4. As shown in FIG. 3, the temperature sensor 4 and the heating temperature sensor 5 are orthogonal to the flow tube axis 6 in addition to arranging the temperature sensor 4 on the upstream side and the heating temperature sensor 5 on the downstream side. It is also possible to arrange them side by side.

続いて更に、図5を参照しながら上述の図3の熱式質量流量計1の他の取り付け例を説明する。図5は流管2が水平方向に伸びる場合においての熱式質量流量計1の取り付け状態を示す断面図である。   Subsequently, another example of attachment of the thermal mass flow meter 1 of FIG. 3 will be described with reference to FIG. FIG. 5 is a cross-sectional view showing a mounting state of the thermal mass flow meter 1 when the flow tube 2 extends in the horizontal direction.

図5において、流管2は、その流管軸6が水平方向に略一致するように配管されている。熱式質量流量計1の取り付けは、流管2の向きが変わっただけで上述と同じになっている。感温センサ4及び加熱感温センサ5は、センサホルダ10の対角線方向に合わせて配置されている。センサホルダ10は、その軸が流管軸6に平行となるように流管2に取り付けられている。センサホルダ10の対角線方向に合わせて配置された感温センサ4及び加熱感温センサ5は、これらを結ぶ直線(上記仮想線11と同じ)が図5の状態において右下がりとなるように配置されている。感温センサ4は上流側、加熱感温センサ5は下流側に配置されている。また、加熱感温センサ5は、感温センサ4よりも上方に配置されている。加熱感温センサ5によって生じる対流熱は、図3の配置と同様、感温センサ4に伝わらないようになっている。   In FIG. 5, the flow tube 2 is piped so that the flow tube axis 6 substantially coincides with the horizontal direction. The attachment of the thermal mass flow meter 1 is the same as that described above except that the direction of the flow tube 2 is changed. The temperature sensor 4 and the heating temperature sensor 5 are arranged according to the diagonal direction of the sensor holder 10. The sensor holder 10 is attached to the flow tube 2 so that its axis is parallel to the flow tube axis 6. The temperature sensor 4 and the heating temperature sensor 5 arranged according to the diagonal direction of the sensor holder 10 are arranged so that a straight line (same as the imaginary line 11) connecting them is downwardly inclined in the state of FIG. ing. The temperature sensor 4 is disposed on the upstream side, and the heating temperature sensor 5 is disposed on the downstream side. Further, the heating temperature sensor 5 is disposed above the temperature sensor 4. Convection heat generated by the heating temperature sensor 5 is not transmitted to the temperature sensor 4 as in the arrangement of FIG.

その他、本発明は本発明の主旨を変えない範囲で種々変更実施可能なことは勿論である。   In addition, it goes without saying that the present invention can be variously modified without departing from the spirit of the present invention.

本発明の熱式質量流量計の一実施の形態を示す図であり、(a)は流管が鉛直方向に伸びる場合においての上流側から見た概略図、(b)は(a)のA−A線断面図、(c)は(b)のB−B線断面図、(d)は加熱感温センサの要部断面図である。It is a figure which shows one Embodiment of the thermal mass flowmeter of this invention, (a) is the schematic seen from the upstream in the case where a flow tube is extended in a perpendicular direction, (b) is A of (a). -A sectional view, (c) is a BB sectional view of (b), (d) is a principal sectional view of the heating temperature sensor. 流量による出力の変化を示すグラフである。It is a graph which shows the change of the output by flow volume. 本発明の熱式質量流量計の他の一実施の形態を示す図であり、(a)は流管が鉛直方向に伸びる場合においての上流側から見た概略図、(b)は(a)のA−A線断面図、(c)は(b)のB−B線断面図、(d)は加熱感温センサの要部断面図である。It is a figure which shows other one Embodiment of the thermal mass flowmeter of this invention, (a) is the schematic seen from the upstream in the case where a flow tube is extended in a perpendicular direction, (b) is (a). A sectional view taken along the line A-A in FIG. 4C, a sectional view taken along the line BB in FIG. 4B, and FIG. 感温センサ及び加熱感温センサの配置と自然対流の方向の説明図である。It is explanatory drawing of the arrangement | positioning of a temperature sensor and a heating temperature sensor, and the direction of a natural convection. 流管が水平方向に伸びる場合においての熱式質量流量計の取り付け状態を示す断面図である。It is sectional drawing which shows the attachment state of the thermal mass flowmeter in the case where a flow tube is extended in a horizontal direction. 従来例の熱式質量流量計における流量による出力の変化を示すグラフである。It is a graph which shows the change of the output by the flow volume in the thermal mass flowmeter of a prior art example.

符号の説明Explanation of symbols

1 熱式質量流量計
2 流管
3 流路
4 感温センサ
5 加熱感温センサ
5a センサリード線
5b 白金線
5c 芯材
5d 素子本体
5e センサケース
5f 内面
5g モールド剤
5h 保護部
6 流管軸
7 流体方向
8 感温部分
9 固定部分
10 センサホルダ
11 仮想線(感温センサ及び加熱感温センサを結ぶ直線)
12 自然対流の方向
DESCRIPTION OF SYMBOLS 1 Thermal mass flowmeter 2 Flow pipe 3 Flow path 4 Temperature sensor 5 Heating temperature sensor 5a Sensor lead wire 5b Platinum wire 5c Core material 5d Element main body 5e Sensor case 5f Inner surface 5g Molding agent 5h Protection part 6 Flow tube shaft 7 Fluid direction 8 Temperature sensitive part 9 Fixed part 10 Sensor holder 11 Virtual line (straight line connecting temperature sensor and heating temperature sensor)
12 Direction of natural convection

Claims (1)

感温センサと加熱感温センサを流管の流路に突出させ、前記感温センサと前記加熱感温センサの温度差を一定とするために前記加熱感温センサを加熱し、該加熱に係る電力供給量制御を行いその電力量から質量流量を算出する熱式質量流量計において、
前記加熱感温センサは、センサリード線に接続される白金線を芯材に巻回固定して素子本体を形成し、該素子本体をセンサケース内に挿入して前記白金線を前記センサケースの内面近傍に配置するとともに、前記白金線と前記内面との間隙にモールド剤を介在させて前記素子本体を前記センサケース内に固定してなる
ことを特徴とする熱式質量流量計。

A temperature sensor and a heating temperature sensor are projected into a flow channel of the flow tube, the heating temperature sensor is heated to make the temperature difference between the temperature sensor and the heating temperature sensor constant, and the heating In a thermal mass flowmeter that performs power supply amount control and calculates the mass flow rate from the amount of power,
The heating temperature sensor is formed by winding and fixing a platinum wire connected to a sensor lead wire around a core material to form an element main body, and inserting the element main body into a sensor case to attach the platinum wire to the sensor case. A thermal mass flow meter, wherein the element main body is fixed in the sensor case with a molding agent interposed in the gap between the platinum wire and the inner surface while being disposed in the vicinity of the inner surface.

JP2004212525A 2004-07-21 2004-07-21 Thermal mass flow meter Active JP3907645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004212525A JP3907645B2 (en) 2004-07-21 2004-07-21 Thermal mass flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004212525A JP3907645B2 (en) 2004-07-21 2004-07-21 Thermal mass flow meter

Publications (2)

Publication Number Publication Date
JP2006030105A true JP2006030105A (en) 2006-02-02
JP3907645B2 JP3907645B2 (en) 2007-04-18

Family

ID=35896632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004212525A Active JP3907645B2 (en) 2004-07-21 2004-07-21 Thermal mass flow meter

Country Status (1)

Country Link
JP (1) JP3907645B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160053131A (en) * 2014-10-31 2016-05-13 주식회사 골든룰 Thermal type mass flow meter
KR20200106444A (en) * 2019-03-04 2020-09-14 아즈빌주식회사 Thermal flowmeter and flow compensating method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160053131A (en) * 2014-10-31 2016-05-13 주식회사 골든룰 Thermal type mass flow meter
KR101660226B1 (en) * 2014-10-31 2016-09-28 주식회사 골든룰 Thermal type mass flow meter
KR20200106444A (en) * 2019-03-04 2020-09-14 아즈빌주식회사 Thermal flowmeter and flow compensating method
KR102256904B1 (en) 2019-03-04 2021-05-28 아즈빌주식회사 Thermal flowmeter and flow compensating method

Also Published As

Publication number Publication date
JP3907645B2 (en) 2007-04-18

Similar Documents

Publication Publication Date Title
CN102483339B (en) Fluid dram flow regulator
EP2482050B1 (en) Intake air temperature sensor and thermal airflow meter including the same
CN102985802B (en) Flow-meter probe
JP2008026153A (en) Mass flowmeter
JP4158980B2 (en) Multi vortex flowmeter
JP2007333460A (en) Manometer integration type multi-vortex flowmeter
JP2007333735A (en) Flow sensor of thermal type
JP4752472B2 (en) Air flow measurement device
US7469583B2 (en) Flow sensor
JP3907645B2 (en) Thermal mass flow meter
JP2005315724A (en) Air flow rate measuring instrument
JP5024272B2 (en) Air flow measurement device
US7418859B2 (en) Device for measuring a volume flow with inductive coupling
JP2005172526A (en) Flow measuring instrument and its manufacturing method
JP4037723B2 (en) Thermal flow meter
US20240044723A1 (en) Noninvasive thermometer
JP4097088B2 (en) Sensor support type thermal mass flow meter
JPS587173B2 (en) Temperature measurement device for electrical transformers
JP4174321B2 (en) Heating resistor type flow measuring device
JP2007322320A (en) Flow sensor and manufacturing method
JP2005338015A (en) Thermal mass flowmeter
JP5292201B2 (en) RTD
JP5492802B2 (en) Vortex flow meter and method for manufacturing the same
JP3537060B2 (en) Liquid flow meter
JP6372296B2 (en) Flow sensor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070116

R150 Certificate of patent or registration of utility model

Ref document number: 3907645

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140126

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250