JP2006029652A - Vibration prevention structure of bank of heat transfer tubes and boiler equipped with vibration prevention structure - Google Patents

Vibration prevention structure of bank of heat transfer tubes and boiler equipped with vibration prevention structure Download PDF

Info

Publication number
JP2006029652A
JP2006029652A JP2004207211A JP2004207211A JP2006029652A JP 2006029652 A JP2006029652 A JP 2006029652A JP 2004207211 A JP2004207211 A JP 2004207211A JP 2004207211 A JP2004207211 A JP 2004207211A JP 2006029652 A JP2006029652 A JP 2006029652A
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
tube
vibration
transfer tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004207211A
Other languages
Japanese (ja)
Inventor
Koji Ishizeki
幸二 石関
Takahiro Kayama
隆弘 香山
Takuya Yamahata
拓也 山畑
Takashi Ishiuchi
隆 石内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2004207211A priority Critical patent/JP2006029652A/en
Publication of JP2006029652A publication Critical patent/JP2006029652A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vibration prevention structure of a bank of heat transfer tubes capable of preventing increase of facility cost by preventing vibration of the heat transfer tubes securely for a long time by a simple method and having excellent efficiency of heat transfer and to provide a boiler provided with the vibration prevention structure of the bank of the heat transfer tubes. <P>SOLUTION: In this vibration prevention structure of a plurality of banks 1 of the heat transfer tubes provided in the vertical direction in the boiler, adjacent heat transfer tubes 10 are mutually joined in at least one section or more except a top end part and a bottom end part. In a heat transfer tube 10a to which other heat transfer tubes are adjacent on both sides, a join part of the heat transfer tube 10a with a heat transfer tube 10b adjacent to it on one side and a join part with a heat transfer tube 10c on the other side are provided at positions where directions of height of the heat transfer tubes are different. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ボイラ内における伝熱管列の振動防止構造及びこの伝熱管列の振動防止構造を備えたボイラに関する。   The present invention relates to a vibration preventing structure for a heat transfer tube array in a boiler and a boiler having the vibration preventing structure for the heat transfer tube array.

都市ゴミ、下水汚泥、し尿汚泥、可燃性産業廃棄物等(以下、単に「廃棄物」という。)を処理する廃棄物処理炉には、廃棄物処理炉から排出されるガス、例えば焼却炉から排出される燃焼排ガス又はガス化溶融炉から排出される生成ガス等の排出ガス中の廃熱を回収し有効利用するために廃熱回収ボイラが併設されるのが一般的である。このような廃熱回収ボイラにおいては、排出ガスの流路に伝熱管列を設け、そこで排出ガスの廃熱回収を行い、発生させた蒸気で蒸気タービンを駆動させる等して発電を行っている。   Waste treatment furnaces that treat municipal waste, sewage sludge, human waste sludge, flammable industrial waste, etc. (hereinafter simply referred to as “waste”) include gases discharged from the waste treatment furnace, such as incinerators. In general, a waste heat recovery boiler is provided in order to recover and effectively use waste heat in exhaust gas such as combustion exhaust gas discharged or product gas discharged from a gasification melting furnace. In such a waste heat recovery boiler, a heat transfer tube array is provided in the exhaust gas flow path, where waste heat recovery of the exhaust gas is performed, and power is generated by driving a steam turbine with the generated steam. .

前記廃熱回収ボイラ内の伝熱管表面に排出ガス中の飛灰等が付着(以下、これを「付着灰」という。)すると熱回収の効率が損なわれるため、定期的に伝熱管表面の付着灰の除去が行われる。この付着灰を除去する方法の一つに、ハンマリング装置を用いた付着ダスト除去方法がある。ハンマリング装置を用いた付着ダストの除去方法は、回転式のハンマ等でボイラ外部から伝熱管列に衝撃を与え、その衝撃で伝熱管表面に付着したダストを除去するものである。   If fly ash in the exhaust gas adheres to the surface of the heat transfer tube in the waste heat recovery boiler (hereinafter referred to as “adhesion ash”), the efficiency of heat recovery is impaired. Ashes are removed. One method for removing the adhering ash is a method for removing adhering dust using a hammering device. The method for removing adhering dust using a hammering device is to apply an impact to the heat transfer tube array from the outside of the boiler with a rotary hammer or the like, and to remove the dust adhering to the surface of the heat transfer tube by the impact.

前記ハンマリング装置による付着灰除去は、伝熱管列を鉛直方向に配置し、これを吊り下げる構造とした場合にダスト除去効果が効果的に作用する。そのため、廃熱回収ボイラ、例えば、テールエンド式ボイラにおいて、伝熱管を鉛直方向に配置した構造のものが多く用いられている。なお、前記伝熱管の上端部及び下端部には管寄せを構成する取付管が溶接されている。   Adhesive ash removal by the hammering device has a dust removal effect when the heat transfer tube row is arranged in the vertical direction and is suspended. Therefore, waste heat recovery boilers, for example, tail end type boilers, are often used that have a structure in which heat transfer tubes are arranged in the vertical direction. In addition, the attachment pipe which comprises a header is welded to the upper end part and lower end part of the said heat exchanger tube.

しかし、前記鉛直方向に多数の伝熱管列が設けられているような構造の廃熱回収ボイラにおいては、鉛直方向に設けられる伝熱管は、ダスト除去の効果を考慮してサポート無しで吊り下げられて設置されるが、このような構造の場合、伝熱管列の間を流れる排出ガスによって伝熱管が振動を起こし、ボイラが騒音を発したり、他の機器へ悪影響を与える場合があった。   However, in a waste heat recovery boiler having a structure in which a large number of heat transfer tube rows are provided in the vertical direction, the heat transfer tubes provided in the vertical direction are suspended without support in consideration of the effect of dust removal. However, in such a structure, the heat transfer tubes may vibrate due to the exhaust gas flowing between the heat transfer tube rows, and the boiler may generate noise or adversely affect other equipment.

これは、特に、大型のテールエンド式ボイラにおいて問題となっている。大型のテールエンド式ボイラでは、鉛直方向に設けられる伝熱管の長さが長くなるため、その固有振動数はその長さの自乗に反比例して小さくなる。排出ガスが鉛直方向に設けられた伝熱管の間を流れて熱交換を行う際に、ガスは渦(カルマン渦)や乱れを生じ、これが後段の伝熱管を振動させる。カルマン渦等の発生周波数が、伝熱管の固有振動数と近い場合には、共鳴することにより管の振動が発生する。   This is particularly a problem in large tail end boilers. In a large tail end type boiler, the length of the heat transfer tube provided in the vertical direction becomes long, so that its natural frequency decreases in inverse proportion to the square of the length. When the exhaust gas flows between the heat transfer tubes provided in the vertical direction and performs heat exchange, the gas generates vortices (Karman vortices) and turbulence, which vibrates the subsequent heat transfer tubes. When the generation frequency of the Karman vortex or the like is close to the natural frequency of the heat transfer tube, vibration of the tube occurs due to resonance.

従来のテールエンド式ボイラでは、伝熱管列の振動防止は、通過するガスの流速を制限値より上昇させないことにより行われてきた。つまり、計画時点でのボイラ容量での最大ガス量においてもカルマン渦の発生周波数より、伝熱管の固有振動数が高くなるように管の径や長さを選定し、ガス流速を決定している。しかし、ボイラが大容量になり、伝熱管の長さが長くなると固有振動数が下がってくるため、ガス流速を低めに抑えざるを得ず、このため、テールエンド部の大きさが大きくならざるを得ない状況であった。   In conventional tail-end boilers, vibration prevention of the heat transfer tube rows has been performed by preventing the flow velocity of the passing gas from increasing above the limit value. In other words, the gas flow velocity is determined by selecting the pipe diameter and length so that the natural frequency of the heat transfer pipe is higher than the Karman vortex generation frequency even at the maximum gas volume at the boiler capacity at the time of planning. . However, since the natural frequency decreases as the capacity of the boiler increases and the length of the heat transfer tube increases, the gas flow rate must be kept low, and therefore the size of the tail end must be increased. It was a situation that I did not get.

伝熱管列の振動防止という観点に対し、例えば、特開平11−237001号公報(特許文献1)及び特開2000−18501号公報(特許文献2)には、伝熱管の振動を防止するための伝熱管構造について開示されている。   From the viewpoint of preventing vibration of the heat transfer tube array, for example, Japanese Patent Application Laid-Open No. 11-237001 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2000-18501 (Patent Document 2) are provided for preventing vibration of the heat transfer tube. A heat transfer tube structure is disclosed.

前記特許文献1には、伝熱管の管軸方向に複数カ所伝熱管を束ねるように取り付けられ、かつ、少なくとも一つは管軸直角方向に複数に分割して取り付けられた防振サポートを有する伝熱管構造が開示されている。また、前記特許文献2には、多数の伝熱管を配設してなる排熱回収ボイラの伝熱管に関し、排ガス流通方向と直交するケーシング幅方向両側面を防振板で覆い、該防振板間を、上下方向へ所要間隔をあけて配設される連結部材によってつなぐと共に、前記各ブロックの伝熱管の上下方向所要位置に、各伝熱管の水平方向への動きを規制する管束支持部材を配設した伝熱管構造が開示されている。
特開平11−237001号公報 特開2000−18501号公報
In Patent Document 1, a plurality of heat transfer tubes are attached in the tube axis direction of the heat transfer tube, and at least one of the heat transfer tubes has a vibration isolation support that is divided and attached in a direction perpendicular to the tube axis. A thermal tube structure is disclosed. Further, Patent Document 2 relates to a heat transfer tube of an exhaust heat recovery boiler in which a large number of heat transfer tubes are arranged, and covers both sides of the casing width direction perpendicular to the exhaust gas flow direction with vibration isolation plates, A tube bundle support member for connecting the heat transfer tubes in the horizontal direction at a required position in the vertical direction of the heat transfer tubes of the respective blocks is connected to each other by a connecting member disposed at a predetermined interval in the vertical direction. An arranged heat transfer tube structure is disclosed.
JP-A-11-237001 JP 2000-18501 A

しかし、前記特許文献1に記載の方法は、伝熱管の振動モードが並列管で揃った場合には、振動を抑制することができないという問題がある。また、前記特許文献1及び特許文献2に記載の方法は、伝熱管を束ねるために防振サポート、防振板、連結部材等を用いているが、伝熱管の間を流れるガスが廃棄物燃焼排ガスの場合には、排ガス中の腐食成分と、排ガスにより加熱され温度上昇することにより、防振サポート、防振板、連結部材等は短期間で腐食減肉したり、破損して振動防止が行えなくなるという問題がある。   However, the method described in Patent Document 1 has a problem that vibration cannot be suppressed when the vibration modes of the heat transfer tubes are aligned in parallel tubes. Moreover, although the method of the said patent document 1 and the patent document 2 uses the anti-vibration support, the anti-vibration board, the connection member, etc. in order to bundle a heat exchanger tube, the gas which flows between heat exchanger tubes is waste combustion. In the case of exhaust gas, the corrosion components in the exhaust gas and the temperature rise due to heating by the exhaust gas, the anti-vibration support, anti-vibration plates, connecting members, etc. can be corroded in a short period of time or damaged and prevented from vibration. There is a problem that it can not be done.

本発明は、上記課題を解決するためになされたもので、簡易な方法で確実に、しかも長期間にわたり伝熱管の振動を防止することで、設備費の増大を防止すると共に伝熱効率に優れた伝熱管列の振動防止構造及びこの伝熱管列の振動防止構造を備えたボイラを提供することを目的とする。   The present invention has been made to solve the above-mentioned problems, and it is possible to prevent an increase in equipment cost and excellent heat transfer efficiency by reliably preventing vibration of the heat transfer tube over a long period of time by a simple method. It aims at providing the vibration prevention structure of a heat exchanger tube row | line | column, and the boiler provided with the vibration prevention structure of this heat exchanger tube row | line | column.

上記課題は次の発明により解決される。
[1]ボイラ内における、鉛直方向に設けられた複数の伝熱管列の振動防止構造であって、
隣接する伝熱管どうしが、上端部及び下端部以外の少なくとも1個所以上で接合され、
両側に他の伝熱管が隣接している伝熱管において、該伝熱管とこれに隣接する一方の伝熱管との接合部と、他方の伝熱管との接合部を、伝熱管高さ方向の異なる位置に設けたことを特徴とする伝熱管列の振動防止構造。
[2]上記[1]において、隣接する伝熱管どうしを、耐腐食性を有する部材を介して接合することを特徴とする伝熱管列の振動防止構造。
[3]上記[1]において、隣接する伝熱管どうしを、内部に流体が通過可能な配管を介して接合することを特徴とする伝熱管列の振動防止構造。
[4]上記[1]において、隣接する伝熱管の一方又は両方の一部に屈曲部を設け、隣接する伝熱管を前記屈曲部にて直接又は耐腐食性を有する部材を介して接合することを特徴とする伝熱管列の振動防止構造。
[5]ボイラ内における、鉛直方向に設けられた複数の伝熱管列の振動防止構造であって、
伝熱管列の上端部に設けられた上部取付管と、下端部に設けられた下部取付管との間の少なくとも1個所以上に、中間取付管を設けたことを特徴とする伝熱管列の振動防止構造。
[6]上記[1]乃至[5]のいずれかに記載の伝熱管列の振動防止構造を備えたボイラ。
The above problems are solved by the following invention.
[1] A vibration preventing structure for a plurality of heat transfer tube rows provided in a vertical direction in a boiler,
Adjacent heat transfer tubes are joined at at least one location other than the upper end and the lower end,
In a heat transfer tube in which other heat transfer tubes are adjacent to both sides, the junction between the heat transfer tube and one of the adjacent heat transfer tubes and the junction between the other heat transfer tube are different in the heat transfer tube height direction. A vibration preventing structure for a heat transfer tube array, characterized by being provided at a position.
[2] The vibration preventing structure of a heat transfer tube array according to [1], wherein adjacent heat transfer tubes are joined together through a member having corrosion resistance.
[3] The vibration preventing structure of a heat transfer tube array according to [1], wherein adjacent heat transfer tubes are joined to each other through a pipe through which a fluid can pass.
[4] In the above [1], a bent portion is provided in one or both of the adjacent heat transfer tubes, and the adjacent heat transfer tubes are joined directly or via a member having corrosion resistance at the bent portion. A vibration-preventing structure for heat transfer tube arrays.
[5] A vibration preventing structure of a plurality of heat transfer tube rows provided in the vertical direction in the boiler,
The vibration of the heat transfer tube row, characterized in that an intermediate mounting tube is provided at least at one location between the upper mounting tube provided at the upper end portion of the heat transfer tube row and the lower mounting tube provided at the lower end portion. Prevention structure.
[6] A boiler comprising the heat transfer tube row vibration preventing structure according to any one of [1] to [5].

本発明によれば、簡易な方法で確実に、しかも長期間にわたり伝熱管の振動を防止することで、設備費の増大を防止すると共に伝熱効率に優れた伝熱管列の振動防止構造及びこの伝熱管列の振動防止構造を備えたボイラが提供される。   According to the present invention, it is possible to prevent vibration of the heat transfer tube reliably and simply over a long period of time by using a simple method, thereby preventing an increase in equipment cost and a heat transfer tube row vibration prevention structure excellent in heat transfer efficiency. A boiler having a structure for preventing vibration of a heat tube array is provided.

以下、本発明を実施するための最良の形態の一例を説明する。   Hereinafter, an example of the best mode for carrying out the present invention will be described.

本発明に係る伝熱管列の振動防止構造の一実施形態は、ボイラ内における鉛直方向に設けられた複数の伝熱管列に関し、隣接する伝熱管どうしが、上端部及び下端部以外の少なくとも1個所以上で接合され、両側に他の伝熱管が隣接している伝熱管において、該伝熱管とこれに隣接する一方の伝熱管との接合部と、他方の伝熱管との接合部を、伝熱管高さ方向の異なる位置に設けたものである。   One embodiment of the vibration preventing structure of a heat transfer tube row according to the present invention relates to a plurality of heat transfer tube rows provided in a vertical direction in a boiler, and at least one place where adjacent heat transfer tubes are other than an upper end portion and a lower end portion. In the heat transfer tube which is joined as described above and has other heat transfer tubes adjacent to both sides, the joint between the heat transfer tube and one of the heat transfer tubes adjacent thereto and the joint between the other heat transfer tube are connected to the heat transfer tube. They are provided at different positions in the height direction.

このような構造とすることで、隣接する伝熱管どうしの接合部で伝熱管の振動を拘束し、伝熱管列の固有振動数を上昇させることが可能となる。さらに、両側に他の伝熱管が隣接している伝熱管に関し、この伝熱管と、これに隣接する一方の伝熱管との接合部と、他方の伝熱管との接合部を、伝熱管高さ方向の異なる位置に設けることで、伝熱管列を構成する各伝熱管の固有振動数に違いを持たせることが可能となり、伝熱管列の振動防止効果をより高めることが可能となる。   By adopting such a structure, it is possible to restrain the vibration of the heat transfer tube at the joint between adjacent heat transfer tubes and increase the natural frequency of the heat transfer tube array. Furthermore, regarding the heat transfer tube in which other heat transfer tubes are adjacent on both sides, the junction between the heat transfer tube and one of the heat transfer tubes adjacent to the heat transfer tube and the other heat transfer tube are connected to the heat transfer tube height. By providing at different positions, it is possible to make a difference in the natural frequency of each heat transfer tube constituting the heat transfer tube row, and it is possible to further enhance the vibration prevention effect of the heat transfer tube row.

以下、隣接する伝熱管どうしを、上端部及び下端部以外の少なくとも1個所以上で接合する方法について説明する。   Hereinafter, a method of joining adjacent heat transfer tubes at at least one place other than the upper end and the lower end will be described.

図1は、隣接する伝熱管どうしを、上端部及び下端部以外の少なくとも1個所以上で接合する方法の一例を示す概略構成図である。ここでは、耐腐食性を有する部材5を介して隣接する伝熱管どうしの接合を行うものである。   FIG. 1 is a schematic configuration diagram showing an example of a method of joining adjacent heat transfer tubes at at least one place other than the upper end and the lower end. Here, the adjacent heat transfer tubes are joined together via the member 5 having corrosion resistance.

前記耐腐食性を有する部材5としては、高い耐腐食性を有すると共に高い熱伝導性を有する材質のものを用いることが好ましい。このようなものとして、伝熱管10の材質と同じ材質のものを用いることが好ましく、例えば、SUS310,Alloy625,Alloy825等を用いることができる。   As the member 5 having corrosion resistance, a material having high corrosion resistance and high thermal conductivity is preferably used. As such a thing, it is preferable to use the same material as the material of the heat exchanger tube 10, for example, SUS310, Alloy625, Alloy825, etc. can be used.

ごみを処理する焼却炉或いはガス化溶融炉から排出される排出ガス中には、塩化物等の腐食成分が含まれている。そのため、伝熱管と同様に、前記部材5に関しては、高い耐腐食性が要求される。しかし、高い耐腐食性を有する材質のものであっても、それが高温になると腐食が促進される。つまり、前記部材5に関しては、腐食が促進されるような高温とならないようにする必要がある。   Corrosive components such as chlorides are contained in the exhaust gas discharged from the incinerator or the gasification and melting furnace for treating garbage. Therefore, like the heat transfer tube, the member 5 is required to have high corrosion resistance. However, even if the material has high corrosion resistance, the corrosion is accelerated when the temperature becomes high. That is, it is necessary to prevent the member 5 from having a high temperature at which corrosion is accelerated.

そこで、前記部材5に関しては、高い熱伝導性を有する材質のものを用いることにより、伝熱管からの冷却効果が期待でき、高温化による腐食の促進を防止できる。なお、前記部材5は、伝熱管10への熱伝導を効率よく行えるように、伝熱管10との接触面積を大きくするように溶接等の方法により接合させることが好ましい。   Therefore, with respect to the member 5, by using a material having high thermal conductivity, a cooling effect from the heat transfer tube can be expected, and promotion of corrosion due to high temperature can be prevented. In addition, it is preferable to join the said member 5 by methods, such as welding, so that the contact area with the heat exchanger tube 10 may be enlarged so that the heat conduction to the heat exchanger tube 10 can be performed efficiently.

図1に示す例では、隣接する伝熱管どうしの接合位置が伝熱管列の略対角線上にくるように接合されている。これにより、両側に他の伝熱管が隣接している伝熱管10aに関し、この伝熱管10aと、これに隣接する一方の伝熱管10bとの接合部と、他方の伝熱管10cとの接合部を、伝熱管高さ方向の異なる位置に設けることとなり、隣接する伝熱管との固有振動数を異ならせることができ、振動防止効果が向上する。   In the example shown in FIG. 1, the heat transfer tubes adjacent to each other are joined so that the joining positions are on a substantially diagonal line of the heat transfer tube row. Thereby, regarding the heat transfer tube 10a in which the other heat transfer tubes are adjacent to each other, the joint portion between the heat transfer tube 10a, one heat transfer tube 10b adjacent to the heat transfer tube 10a, and the other heat transfer tube 10c. Thus, the heat transfer tube is provided at a different position in the height direction, and the natural frequency of the adjacent heat transfer tube can be made different, thereby improving the vibration preventing effect.

また、図2及び図3に、隣接する伝熱管どうしの接合位置についての他のパターンの一例を示す。   Moreover, in FIG.2 and FIG.3, an example of the other pattern about the joining position of adjacent heat exchanger tubes is shown.

図2に示す例では、図1に示す接合位置に加え、前記接合位置と略並行となるように、隣接する伝熱管との間を、さらに一箇所、部材5を介して接合したものである。これにより、各伝熱管の固有振動数を、さらに上昇させることができ、振動防止効果をより向上させることが可能となる。   In the example shown in FIG. 2, in addition to the joining position shown in FIG. 1, the adjacent heat transfer tubes are further joined at one place via the member 5 so as to be substantially parallel to the joining position. . As a result, the natural frequency of each heat transfer tube can be further increased, and the vibration preventing effect can be further improved.

図3に示す例では、図1に示す接合位置に加え、さらに、もう一方の略対角線上に接合位置がくるように部材5を介して接合したものである。これにより、図2の場合と同様に、各伝熱管の固有振動数を、さらに上昇させることができ、振動防止効果をより向上させることが可能となる。   In the example shown in FIG. 3, in addition to the joining position shown in FIG. 1, the joining is performed via the member 5 so that the joining position is on the other substantially diagonal line. Thereby, like the case of FIG. 2, the natural frequency of each heat exchanger tube can be further raised, and the vibration preventing effect can be further improved.

なお、隣接する伝熱管どうしの接合位置に関しては、上記の例に限定されないことはいうまでもなく、両側に他の伝熱管が隣接している伝熱管に関し、この伝熱管と、これに隣接する一方の伝熱管との接合部と、他方の伝熱管との接合部を、伝熱管高さ方向の異なる位置に設ける方法であれば本発明の目的を達成できる。   In addition, it cannot be overemphasized that it is not limited to said example regarding the joining position of adjacent heat exchanger tubes, It is adjacent to this heat exchanger tube and this regarding the heat exchanger tube which the other heat exchanger tube adjoins on both sides. The object of the present invention can be achieved by a method in which the joint between one heat transfer tube and the joint between the other heat transfer tube are provided at different positions in the heat transfer tube height direction.

また、図4に、隣接する伝熱管どうしを、上端部及び下端部以外の少なくとも1個所以上で接合する方法の他の一例を示す。ここでは、内部に流体が通過可能な配管6を介して隣接する伝熱管どうしの接合を行うものである。   FIG. 4 shows another example of a method of joining adjacent heat transfer tubes at at least one place other than the upper end and the lower end. Here, adjacent heat transfer tubes are joined together via a pipe 6 through which fluid can pass.

前記配管6としては、耐食性等を考慮していれば必ずしも伝熱管10の材質と同じ材質のものを用いる必要はなく、例えば、STB,STP,STPT,SUS材等を用いることができる。また、前記配管6と伝熱管10との接合は、例えば、溶接、嵌合等の方法を用いることができる。   As the pipe 6, it is not always necessary to use the same material as that of the heat transfer tube 10 in consideration of corrosion resistance and the like, and for example, STB, STP, STPT, SUS material or the like can be used. Moreover, joining of the said piping 6 and the heat exchanger tube 10 can use methods, such as welding and fitting, for example.

なお、前記配管6としては、例えば、蒸発管、過熱器管、節炭器管、再熱器管、或いはボイラとは独立な配管等を用いることができる。また、前記配管6の内部を通過させる流体としては、例えば、ボイラ水、ボイラ給水、蒸気等を用いることができる。前記配管6の内部に流体を通過させることで、この流体による配管6の冷却効果により、配管6と伝熱管との接合部の高温腐食を防止することが可能となる。   As the pipe 6, for example, an evaporation pipe, a superheater pipe, a economizer pipe, a reheater pipe, a pipe independent of a boiler, or the like can be used. Moreover, as a fluid which lets the inside of the said piping 6 pass, boiler water, boiler feed water, a vapor | steam, etc. can be used, for example. By allowing the fluid to pass through the inside of the pipe 6, it is possible to prevent high temperature corrosion of the joint portion between the pipe 6 and the heat transfer pipe due to the cooling effect of the pipe 6 by the fluid.

なお、前記配管6と伝熱管10との接合は、図4に示した例(実線及び点線で示した例)に限定させるものではなく、両側に他の伝熱管が隣接している伝熱管に関し、この伝熱管と、これに隣接する一方の伝熱管との接合部と、他方の伝熱管との接合部を、伝熱管高さ方向の異なる位置に設ける方法であれば本発明の目的を達成できる。   Note that the joining of the pipe 6 and the heat transfer tube 10 is not limited to the example shown in FIG. 4 (examples indicated by solid lines and dotted lines), but relates to heat transfer tubes in which other heat transfer tubes are adjacent on both sides. The present invention achieves the object of the present invention as long as it is a method in which the joint between the heat transfer tube and one of the heat transfer tubes adjacent thereto and the joint between the other heat transfer tube are provided at different positions in the heat transfer tube height direction. it can.

また、図5に、隣接する伝熱管どうしを、上端部及び下端部以外の少なくとも1個所以上で接合する方法の他の一例を示す。ここでは、隣接する伝熱管の一方又は両方の一部に屈曲部7を設け、隣接する伝熱管を前記屈曲部にて直接又は耐腐食性を有する部材5を介して接合を行うものである。   FIG. 5 shows another example of a method of joining adjacent heat transfer tubes at at least one place other than the upper end and the lower end. Here, a bent portion 7 is provided in one or both of the adjacent heat transfer tubes, and the adjacent heat transfer tubes are joined at the bent portion directly or via the member 5 having corrosion resistance.

前記接合方法としては、例えば、溶接、嵌合等の方法を用いることができる。   As the joining method, for example, methods such as welding and fitting can be used.

伝熱管に屈曲部7を設けて、隣接する伝熱管との距離を短くし、その部分で隣接する伝熱管と直接又は耐腐食性を有する部材5を介して接合するようにすることで、接合部に対する伝熱管による冷却効果が向上し、接合部における高温腐食を防止することが可能となる。   By providing a bent portion 7 in the heat transfer tube, shortening the distance from the adjacent heat transfer tube, and joining the heat transfer tube to the adjacent heat transfer tube directly or via the member 5 having corrosion resistance, The cooling effect of the heat transfer tube on the joint is improved, and high temperature corrosion at the joint can be prevented.

なお、前記屈曲部7と伝熱管10との接合位置は、図5に示した例に限定させるものではなく、前記図2或いは図3の部材5と同様の位置に設けることもできる。また、両側に他の伝熱管が隣接している伝熱管に関し、この伝熱管と、これに隣接する一方の伝熱管との接合部と、他方の伝熱管との接合部を、伝熱管高さ方向の異なる位置に設ける方法であれば本発明の目的を達成できる。   The joining position of the bent portion 7 and the heat transfer tube 10 is not limited to the example shown in FIG. 5, and can be provided at the same position as the member 5 of FIG. 2 or FIG. Further, regarding a heat transfer tube in which other heat transfer tubes are adjacent on both sides, a joint portion between the heat transfer tube and one heat transfer tube adjacent to the heat transfer tube is connected to a heat transfer tube height. The object of the present invention can be achieved as long as it is a method provided at different positions.

図6は、本発明に係る伝熱管列の振動防止構造の他の実施形態を示す概略構成図である。   FIG. 6 is a schematic configuration diagram showing another embodiment of the vibration preventing structure for a heat transfer tube array according to the present invention.

図6に示す伝熱管列の振動防止構造は、伝熱管列1の上端部に設けられた上部取付管2と、下端部に設けられた下部取付管3との間の少なくとも1個所以上に、中間取付管4を設けたものである。なお、ボイラ内においては、前記鉛直方向に設けられた伝熱管列1が、ガス流れ方向に対して複数列設けられ、そこで熱交換が行われる。   The vibration prevention structure of the heat transfer tube row shown in FIG. 6 is at least one place between the upper attachment tube 2 provided at the upper end portion of the heat transfer tube row 1 and the lower attachment tube 3 provided at the lower end portion. An intermediate mounting tube 4 is provided. In the boiler, a plurality of heat transfer tube rows 1 provided in the vertical direction are provided in the gas flow direction, and heat exchange is performed there.

前記上部取付管2、下部取付管3、及び、中間取付管4は、管寄せを構成しており、前記伝熱管列1の各伝熱管内を流れる水及び/又は水蒸気が、前記各取付管内で合流される。   The upper mounting tube 2, the lower mounting tube 3, and the intermediate mounting tube 4 constitute a header, and water and / or water vapor flowing in each heat transfer tube of the heat transfer tube row 1 is contained in each mounting tube. Will be joined.

図6に示すように、上部取付管2と、下部取付管3との間に中間取付管4を設けることで、伝熱管の振動を拘束し、伝熱管列1の固有振動数を上昇させることが可能となり、これにより、伝熱管列1の振動防止効果を高めることが可能となる。ここで、前記中間取付管4の取り付け位置及び取り付け数を調整することで、伝熱管列1の固有振動数の調整が可能となり、前記伝熱管列1が取り付けられるボイラの大きさ及び操業条件等を考慮して前記中間取付管4の取り付け位置及び取り付け数が調整される。   As shown in FIG. 6, by providing an intermediate mounting tube 4 between the upper mounting tube 2 and the lower mounting tube 3, the vibration of the heat transfer tube is restrained and the natural frequency of the heat transfer tube array 1 is increased. As a result, the vibration preventing effect of the heat transfer tube array 1 can be enhanced. Here, by adjusting the attachment position and the number of attachments of the intermediate attachment tube 4, the natural frequency of the heat transfer tube row 1 can be adjusted, and the size and operating conditions of the boiler to which the heat transfer tube row 1 is attached, etc. In consideration of the above, the attachment position and the number of attachments of the intermediate attachment pipe 4 are adjusted.

前記中間取付管4を、上部取付管2及び下部取付管3と同様に管寄せを構成させることで、中間取付管4内を流れる水及び/又は水蒸気の冷却効果により、中間取付管4の過熱を防止でき、腐食の促進を防止することが可能となる。   The intermediate mounting tube 4 is overheated by the cooling effect of water and / or steam flowing in the intermediate mounting tube 4 by forming a header like the upper mounting tube 2 and the lower mounting tube 3. It is possible to prevent corrosion and promote corrosion.

なお、図6に示す構成においては、中間取付管4にハンマリング装置を取り付け、この中間取付管4に打撃を与えることで、伝熱管列1の伝熱管表面に付着した付着灰を効果的に除去することが可能となる。   In the configuration shown in FIG. 6, a hammering device is attached to the intermediate mounting pipe 4 and the intermediate mounting pipe 4 is hit to effectively remove the attached ash adhering to the heat transfer pipe surface of the heat transfer pipe array 1. It can be removed.

以上説明したように、本発明に係る伝熱管列の振動防止構造を採用することで、伝熱管列1の固有振動数が上昇し、ボイラ部を通過する排出ガスの通過速度を増加させた場合でも伝熱管の振動が抑えられる。その結果、ボイラ部を通過する排出ガスの通過速度を増加させることが可能となり、伝熱管への伝熱効率が高くなると共に伝熱管列1のサイズを小さくすることも可能となる。これにより、ボイラ部を小型化することが可能となり、設備費の増大を防止することができる。   As described above, when the vibration prevention structure of the heat transfer tube array according to the present invention is adopted, the natural frequency of the heat transfer tube array 1 is increased, and the passage speed of the exhaust gas passing through the boiler section is increased. However, the vibration of the heat transfer tube can be suppressed. As a result, it is possible to increase the passage speed of the exhaust gas that passes through the boiler section, so that the heat transfer efficiency to the heat transfer tubes is increased and the size of the heat transfer tube row 1 can be reduced. Thereby, it becomes possible to reduce a boiler part and to prevent an increase in equipment cost.

以上説明した、本発明に係る伝熱管列の振動防止構造が適用されるボイラには特に制限はなく、例えば、都市ゴミ、下水汚泥、し尿汚泥、可燃性産業廃棄物等の廃棄物を処理する焼却炉から排出される燃焼排ガス又はガス化溶融炉から排出される生成ガス等の排出ガスから廃熱を回収するための廃熱回収ボイラ等に適用できる。   The boiler to which the vibration preventing structure of the heat transfer tube row according to the present invention described above is applied is not particularly limited. For example, waste such as municipal waste, sewage sludge, human waste sludge, and flammable industrial waste is treated. The present invention can be applied to a waste heat recovery boiler for recovering waste heat from exhaust gas such as combustion exhaust gas discharged from an incinerator or product gas discharged from a gasification melting furnace.

本発明に係る伝熱管列の振動防止構造(本発明例1及び2)を適用した伝熱管列に関し、伝熱管の固有振動数及び振動が起こる通過ガス流速の測定を行った結果を以下の表1に示す。   The following table shows the results of measurement of the natural frequency of the heat transfer tube and the flow rate of the passing gas at which vibration occurs with respect to the heat transfer tube row to which the heat transfer tube row vibration preventing structure according to the present invention (Invention Examples 1 and 2) is applied. It is shown in 1.

ここで、本発明例1は、上述の実施形態における図2に示す接合位置で接合した場合、本発明例2は、上述の実施形態における図6に示す接合位置で接合した場合について測定を行った。   Here, Example 1 of the present invention is measured when bonded at the bonding position shown in FIG. 2 in the above-described embodiment, and Example 2 of the present invention is measured when bonded at the bonding position shown in FIG. 6 in the above-described embodiment. It was.

また、伝熱管の長さは、本発明例1及び2、比較例とも、約7mのものを用いて測定を行った。   Further, the length of the heat transfer tube was measured by using about 7 m of both the inventive examples 1 and 2 and the comparative example.

Figure 2006029652
Figure 2006029652

上記表1に示すように、本発明に係る伝熱管列の振動防止構造を適用した伝熱管列に関しては、従来技術(比較例)である伝熱管列の上端部及び下端部以外で接合部の無い場合と比較して、固有振動数で約2倍、振動を起こすまでのガス流速が約2倍から3倍以上となり、本発明の効果が確認できた。   As shown in Table 1 above, with respect to the heat transfer tube row to which the vibration prevention structure of the heat transfer tube row according to the present invention is applied, the joint portion other than the upper end portion and the lower end portion of the heat transfer tube row which is the prior art (comparative example) Compared to the case where there is no gas, the natural frequency is about twice, and the gas flow rate until the vibration occurs is about twice to three times or more, and the effect of the present invention can be confirmed.

本発明に係る、隣接する伝熱管どうしを、上端部及び下端部以外の少なくとも1個所以上で接合する方法の一例を示す概略構成図であり、耐腐食性を有する部材を介して隣接する伝熱管どうしの接合を行う場合を示した図である。It is a schematic block diagram which shows an example of the method which joins the adjacent heat exchanger tubes based on this invention in at least 1 place other than an upper end part and a lower end part, and adjoins through the member which has corrosion resistance It is the figure which showed the case where joining is performed. 本発明に係る、隣接する伝熱管どうしの接合位置についての他のパターンの一例を示す図である。It is a figure which shows an example of the other pattern about the joining position of the adjacent heat exchanger tubes based on this invention. 本発明に係る、隣接する伝熱管どうしの接合位置についての他のパターンの一例を示す図である。It is a figure which shows an example of the other pattern about the joining position of the adjacent heat exchanger tubes based on this invention. 本発明に係る、隣接する伝熱管どうしを、上端部及び下端部以外の少なくとも1個所以上で接合する方法の一例を示す概略構成図であり、内部に流体が通過可能な配管を介して隣接する伝熱管どうしの接合を行う場合を示した図である。It is a schematic block diagram which shows an example of the method which joins the adjacent heat exchanger tubes based on this invention in at least 1 or more places other than an upper end part and a lower end part, and it adjoins through the piping which a fluid can pass inside. It is the figure which showed the case where a heat exchanger tube is joined. 本発明に係る、隣接する伝熱管どうしを、上端部及び下端部以外の少なくとも1個所以上で接合する方法の一例を示す概略構成図であり、隣接する伝熱管の一方又は両方の一部に屈曲部を設け、隣接する伝熱管を前記屈曲部にて直接又は耐腐食性を有する部材を介して接合を行う場合を示した図である。It is a schematic block diagram which shows an example of the method of joining the adjacent heat exchanger tubes based on this invention in at least 1 place other than an upper end part and a lower end part, and bend | folds to one or both part of an adjacent heat exchanger tube It is the figure which showed the case where a part was provided and the adjacent heat exchanger tube was joined in the said bending part directly or via the member which has corrosion resistance. 本発明に係る伝熱管列の振動防止構造の他の実施形態を示す概略構成図である。It is a schematic block diagram which shows other embodiment of the vibration prevention structure of the heat exchanger tube line which concerns on this invention.

符号の説明Explanation of symbols

1 伝熱管列
2 上部取付管
3 下部取付管
4 中間取付管
5 部材
6 配管
7 屈曲部
10 伝熱管
1 Heat Transfer Tube Row 2 Upper Mounting Tube 3 Lower Mounting Tube 4 Intermediate Mounting Tube 5 Member 6 Piping 7 Bent 10 Heat Transfer Tube

Claims (6)

ボイラ内における、鉛直方向に設けられた複数の伝熱管列の振動防止構造であって、
隣接する伝熱管どうしが、上端部及び下端部以外の少なくとも1個所以上で接合され、
両側に他の伝熱管が隣接している伝熱管において、該伝熱管とこれに隣接する一方の伝熱管との接合部と、他方の伝熱管との接合部を、伝熱管高さ方向の異なる位置に設けたことを特徴とする伝熱管列の振動防止構造。
In the boiler, the vibration prevention structure of a plurality of heat transfer tube rows provided in the vertical direction,
Adjacent heat transfer tubes are joined at at least one location other than the upper end and the lower end,
In a heat transfer tube in which other heat transfer tubes are adjacent to both sides, the junction between the heat transfer tube and one of the adjacent heat transfer tubes and the junction between the other heat transfer tube are different in the heat transfer tube height direction. A vibration preventing structure for a heat transfer tube array, characterized by being provided at a position.
隣接する伝熱管どうしを、耐腐食性を有する部材を介して接合することを特徴とする請求項1に記載の伝熱管列の振動防止構造。   The heat transfer tube row vibration preventing structure according to claim 1, wherein adjacent heat transfer tubes are joined together through a member having corrosion resistance. 隣接する伝熱管どうしを、内部に流体が通過可能な配管を介して接合することを特徴とする請求項1に記載の伝熱管列の振動防止構造。   2. The vibration preventing structure for a heat transfer tube array according to claim 1, wherein adjacent heat transfer tubes are joined to each other through a pipe through which a fluid can pass. 隣接する伝熱管の一方又は両方の一部に屈曲部を設け、隣接する伝熱管を前記屈曲部にて直接又は耐腐食性を有する部材を介して接合することを特徴とする請求項1に記載の伝熱管列の振動防止構造。   The bent portion is provided in one or both of the adjacent heat transfer tubes, and the adjacent heat transfer tubes are joined at the bent portion directly or through a member having corrosion resistance. Anti-vibration structure for heat transfer tube rows. ボイラ内における、鉛直方向に設けられた複数の伝熱管列の振動防止構造であって、
伝熱管列の上端部に設けられた上部取付管と、下端部に設けられた下部取付管との間の少なくとも1個所以上に、中間取付管を設けたことを特徴とする伝熱管列の振動防止構造。
In the boiler, the vibration prevention structure of a plurality of heat transfer tube rows provided in the vertical direction,
The vibration of the heat transfer tube row, characterized in that an intermediate mounting tube is provided at least at one place between the upper mounting tube provided at the upper end portion of the heat transfer tube row and the lower mounting tube provided at the lower end portion. Prevention structure.
請求項1乃至請求項5のいずれかに記載の伝熱管列の振動防止構造を備えたボイラ。   The boiler provided with the vibration prevention structure of the heat exchanger tube row in any one of Claims 1 thru | or 5.
JP2004207211A 2004-07-14 2004-07-14 Vibration prevention structure of bank of heat transfer tubes and boiler equipped with vibration prevention structure Pending JP2006029652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004207211A JP2006029652A (en) 2004-07-14 2004-07-14 Vibration prevention structure of bank of heat transfer tubes and boiler equipped with vibration prevention structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004207211A JP2006029652A (en) 2004-07-14 2004-07-14 Vibration prevention structure of bank of heat transfer tubes and boiler equipped with vibration prevention structure

Publications (1)

Publication Number Publication Date
JP2006029652A true JP2006029652A (en) 2006-02-02

Family

ID=35896231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004207211A Pending JP2006029652A (en) 2004-07-14 2004-07-14 Vibration prevention structure of bank of heat transfer tubes and boiler equipped with vibration prevention structure

Country Status (1)

Country Link
JP (1) JP2006029652A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011012866A (en) * 2009-07-01 2011-01-20 Electric Power Dev Co Ltd Burner
JP2011012863A (en) * 2009-06-30 2011-01-20 Electric Power Dev Co Ltd Burner
JP2017053328A (en) * 2015-09-11 2017-03-16 川崎重工業株式会社 Collective structure of exhaust pipes

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011012863A (en) * 2009-06-30 2011-01-20 Electric Power Dev Co Ltd Burner
JP2011012866A (en) * 2009-07-01 2011-01-20 Electric Power Dev Co Ltd Burner
JP2017053328A (en) * 2015-09-11 2017-03-16 川崎重工業株式会社 Collective structure of exhaust pipes

Similar Documents

Publication Publication Date Title
JP5201729B2 (en) Waste heat recovery power plant of lime calcining plant
JP5234948B2 (en) Vertical heat exchanger
JP5964286B2 (en) Heat exchanger
JP2006029652A (en) Vibration prevention structure of bank of heat transfer tubes and boiler equipped with vibration prevention structure
JP6177523B2 (en) Waste heat boiler and heat exchanger with dust removal device
JP2010175152A (en) Protector structure for boiler heat transfer tube
JP2857440B2 (en) Heat transfer tube support device
JP5996597B2 (en) Rotating regenerative air preheater
JP6891860B2 (en) Dust removal device for heat transfer tubes
WO2019208496A1 (en) Heat exchanger
WO2015072190A1 (en) Heat transfer pipe support structure and waste heat recovery boiler
JP6025561B2 (en) Vibration suppression device for heat transfer tube and repair method for the vibration suppression device
JP7427918B2 (en) boiler
JP2009150584A (en) High-dust exhaust gas heat recovery processing device
EP3889501B1 (en) Heat transmission pipe block, waste heat recovery boiler, and method for constructing waste heat recovery boiler
JP2006046757A (en) Anticorrosive heat transfer tube with fin and exhaust gas heater
JP7130569B2 (en) HEAT EXCHANGER, BOILER, AND METHOD FOR ADJUSTING HEAT EXCHANGER
JP2005315439A (en) Heat exchanger and protector for heat transfer pipe
CN216693598U (en) Resonance gun soot blower
JP6407508B2 (en) Waste heat boiler, heat exchanger, dust removing device provided in heat exchanger, and method of manufacturing heat exchanger
JPH08110007A (en) Apparatus for preventing abrasion of loop pipes in heat recovery section
JP2022117579A (en) Heat exchanger and flue gas treatment system
JP4616740B2 (en) Circulating fluidized bed boiler heat exchanger
JP5144447B2 (en) Boiler equipment
WO2019203300A1 (en) Heat-transfer-tube support structure, and method for supporting heat transfer tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060807

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070613

A977 Report on retrieval

Effective date: 20080820

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20080916

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20090217

Free format text: JAPANESE INTERMEDIATE CODE: A02