JP7427918B2 - boiler - Google Patents

boiler Download PDF

Info

Publication number
JP7427918B2
JP7427918B2 JP2019201358A JP2019201358A JP7427918B2 JP 7427918 B2 JP7427918 B2 JP 7427918B2 JP 2019201358 A JP2019201358 A JP 2019201358A JP 2019201358 A JP2019201358 A JP 2019201358A JP 7427918 B2 JP7427918 B2 JP 7427918B2
Authority
JP
Japan
Prior art keywords
superheater
heat transfer
transfer chamber
exhaust gas
hanging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019201358A
Other languages
Japanese (ja)
Other versions
JP2021076274A (en
Inventor
翔太 川崎
尚男 北川
陽平 武山
裕介 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2019201358A priority Critical patent/JP7427918B2/en
Publication of JP2021076274A publication Critical patent/JP2021076274A/en
Application granted granted Critical
Publication of JP7427918B2 publication Critical patent/JP7427918B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Incineration Of Waste (AREA)

Description

本発明は、焼却炉等の炉の廃熱を回収するボイラに関する。 The present invention relates to a boiler that recovers waste heat from a furnace such as an incinerator.

一般に、家庭ごみ等をはじめとする廃棄物を燃焼させて焼却する焼却炉等の炉の後段には、廃熱を回収するボイラが連設される。ボイラには、例えば、テールエンド型のボイラ(特許文献1参照)と縦型のボイラ(特許文献2参照)が存在する。 Generally, a boiler for recovering waste heat is installed downstream of a furnace such as an incinerator that burns waste such as household garbage. Boilers include, for example, tail-end boilers (see Patent Document 1) and vertical boilers (see Patent Document 2).

図4に示すように、テールエンド型のボイラ31は、放射伝熱室32と対流伝熱室33を備える。放射伝熱室32のケーシングは、水冷壁管から構成される。放射伝熱室32は、排ガスからの放射熱を受けて蒸気を発生させる。対流伝熱室33には、排ガスと熱交換して蒸気を過熱する過熱器34が配置される。過熱器34は、対流伝熱室33の天井部から吊り下げられる吊下げ式の過熱器である。対流伝熱室33における排ガスの流れは、地面と実質的に平行である。過熱器34が過熱した蒸気は、蒸気タービン35に送られる。 As shown in FIG. 4, the tail-end boiler 31 includes a radiant heat transfer chamber 32 and a convection heat transfer chamber 33. The casing of the radiant heat transfer chamber 32 is constructed from water-cooled wall tubes. The radiant heat transfer chamber 32 generates steam by receiving radiant heat from the exhaust gas. A superheater 34 that superheats steam by exchanging heat with exhaust gas is arranged in the convection heat transfer chamber 33 . The superheater 34 is a hanging superheater suspended from the ceiling of the convection heat transfer chamber 33. The flow of exhaust gas in the convective heat transfer chamber 33 is substantially parallel to the ground. The steam superheated by the superheater 34 is sent to the steam turbine 35.

テールエンド型のボイラ31には、過熱器34に振動を与えて過熱器34に付着したダストを除去するハンマリング装置36が設けられ、吊下げ式の過熱器34にハンマリング装置36を適用することで効率的にダストを除去することができるというメリットがある。ただし、対流伝熱室33における排ガスの流れが地面と実質的に平行である。このため、ボイラ31の敷地面積が大きくなるというデメリットがある。 The tail-end boiler 31 is provided with a hammering device 36 that vibrates the superheater 34 to remove dust attached to the superheater 34, and the hammering device 36 is applied to the hanging superheater 34. This has the advantage that dust can be removed efficiently. However, the flow of exhaust gas in the convection heat transfer chamber 33 is substantially parallel to the ground. Therefore, there is a disadvantage that the site area of the boiler 31 becomes large.

また、図5に示すように、縦型のボイラ41も、排ガスからの放射熱を受けて蒸気を発生させる放射伝熱室42と、排ガスと熱交換して蒸気を過熱する過熱器44a,44b,44cが配置される対流伝熱室43と、を備える。縦型のボイラ41では、対流伝熱室43における排ガスの流れが地面と実質的に垂直である。このため、ボイラ41の敷地面積を小さくできるというメリットがある。 As shown in FIG. 5, the vertical boiler 41 also includes a radiant heat transfer chamber 42 that receives radiant heat from exhaust gas to generate steam, and superheaters 44a and 44b that superheat the steam by exchanging heat with the exhaust gas. , 44c are arranged in the convection heat transfer chamber 43. In the vertical boiler 41, the flow of exhaust gas in the convection heat transfer chamber 43 is substantially perpendicular to the ground. Therefore, there is an advantage that the site area of the boiler 41 can be reduced.

ところで、特許文献2に記載の縦型のボイラにおいて、過熱器44a,44b,44cは、過熱蒸気を発生させるための蒸気温度が最も低い1次過熱器44aと、過熱蒸気を発生させるための蒸気温度が中間の2次過熱器44bと、過熱蒸気を発生させるための蒸気温度が最も高い3次過熱器44cと、から構成される。ここで、管の腐食速度は管内を流れる蒸気温度と管表面の雰囲気温度に依存するため、過熱蒸気を発生させるための蒸気温度が最も高い3次過熱器44cは最も腐食し易い。したがって、3次過熱器44cを1次過熱器44aの下流に配置することで、3次過熱器44cが高温になるのを防止し、3次過熱器44cの腐食のリスクを低減している。 By the way, in the vertical boiler described in Patent Document 2, the superheaters 44a, 44b, and 44c include a primary superheater 44a with the lowest steam temperature for generating superheated steam, and a steam temperature generator 44a with the lowest steam temperature for generating superheated steam. It is composed of a secondary superheater 44b having an intermediate temperature, and a tertiary superheater 44c having the highest steam temperature for generating superheated steam. Here, since the corrosion rate of the tube depends on the temperature of the steam flowing inside the tube and the ambient temperature on the surface of the tube, the tertiary superheater 44c, which has the highest steam temperature for generating superheated steam, is most likely to corrode. Therefore, by arranging the tertiary superheater 44c downstream of the primary superheater 44a, the tertiary superheater 44c is prevented from becoming high temperature, and the risk of corrosion of the tertiary superheater 44c is reduced.

特開2002-310594号公報Japanese Patent Application Publication No. 2002-310594 特開平7-139706号公報Japanese Unexamined Patent Publication No. 7-139706

しかしながら、特許文献2に記載の縦型のボイラにおいては、1次過熱器の下流に3次過熱器を配置するので、3次過熱器が過熱蒸気を発生させるための蒸気温度をあまり高くできないという課題がある。蒸気温度を高くできないと、発電機の発電効率が低下する。 However, in the vertical boiler described in Patent Document 2, the tertiary superheater is placed downstream of the primary superheater, so the steam temperature for the tertiary superheater to generate superheated steam cannot be raised too high. There are challenges. If the steam temperature cannot be raised, the power generation efficiency of the generator will decrease.

本発明は、このような課題に鑑みてなされたもので、ボイラの敷地面積を小さくすることができると共に、過熱蒸気を発生させるための蒸気温度を高くして、発電機の発電効率を上げることができるボイラを提供することを目的とする。 The present invention was made in view of these problems, and it is possible to reduce the site area of the boiler, and to increase the steam temperature for generating superheated steam, thereby increasing the power generation efficiency of the generator. The purpose is to provide a boiler that can.

上記課題を解決するために、本発明の一態様は、廃棄物焼却炉に連設されるボイラであって、排ガスからの放射熱を受けて蒸気を発生させる放射伝熱室と、排ガスと熱交換して蒸気を過熱する過熱器が配置される対流伝熱室と、を備え、前記対流伝熱室における排ガスの流れが地面と実質的に垂直であり、前記放射伝熱室における排ガスの流路の屈曲部に天井部から吊り下げられる吊下げ式の過熱器を配置し、前記吊下げ式の過熱器の伝熱管は、複数の直管部と、直管部の両端に設けられる複数のベンド部と、送入端部と、送出端部と、を有すると共に、排ガスと直接接触し、前記吊下げ式の過熱器に振動を与えて前記吊下げ式の過熱器の伝熱管に付着するダストを除去するハンマリング装置を設けるボイラである。 In order to solve the above problems, one aspect of the present invention provides a boiler connected to a waste incinerator , which includes a radiant heat transfer chamber that generates steam by receiving radiant heat from exhaust gas, and a radiant heat transfer chamber that generates steam by receiving radiant heat from exhaust gas. a convective heat transfer chamber in which a superheater for exchanging and superheating steam is disposed, the flow of exhaust gas in the convective heat transfer chamber being substantially perpendicular to the ground, and the flow of exhaust gas in the radiant heat transfer chamber A hanging superheater suspended from the ceiling is arranged at a bend in the road, and the heat transfer tubes of the hanging superheater include a plurality of straight pipe sections and a plurality of heat exchanger tubes provided at both ends of the straight pipe section. It has a bend part, an inlet end part, and an outlet end part, and is in direct contact with the exhaust gas , gives vibration to the hanging superheater, and adheres to the heat exchanger tube of the hanging superheater. This boiler is equipped with a hammering device to remove dust.

本発明によれば、ボイラの敷地面積を小さくすることができると共に、過熱蒸気を発生させるための蒸気温度を高くして、発電機の発電効率を上げることができる。 According to the present invention, the site area of the boiler can be reduced, and the steam temperature for generating superheated steam can be increased, thereby increasing the power generation efficiency of the generator.

本発明の一実施形態のボイラの縦断面図である。FIG. 1 is a vertical cross-sectional view of a boiler according to an embodiment of the present invention. 図1のII部拡大図である。2 is an enlarged view of part II in FIG. 1. FIG. 図1のIII部拡大図である。FIG. 2 is an enlarged view of section III in FIG. 1; 従来のテールエンド型のボイラの縦断面図である。FIG. 2 is a vertical cross-sectional view of a conventional tail-end boiler. 従来の縦型のボイラの縦面図である。FIG. 2 is a vertical view of a conventional vertical boiler.

以下、添付図面を参照して、本発明の実施形態のボイラを詳細に説明する。ただし、本発明のボイラは種々の形態で具体化することができ、明細書に記載される実施形態に限定されるものではない。本実施形態は、明細書の開示を十分にすることによって、当業者が発明を理解できるようにする意図をもって提供されるものである。 Hereinafter, a boiler according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. However, the boiler of the present invention can be embodied in various forms and is not limited to the embodiments described in the specification. Rather, this embodiment is provided with the intention that this disclosure will be thorough and thorough, and will fully enable those skilled in the art to understand the invention.

図1は、本発明の一実施形態のボイラ1の縦断面図である。ボイラ1は、炉2の後段に連接される。なお、図1には、炉2の一例として火格子式の廃棄物焼却炉を示す。 FIG. 1 is a longitudinal sectional view of a boiler 1 according to an embodiment of the present invention. The boiler 1 is connected to the rear stage of the furnace 2. Note that FIG. 1 shows a grate-type waste incinerator as an example of the furnace 2. As shown in FIG.

ボイラ1は、排ガスからの放射熱を受けて蒸気を発生させる放射伝熱室3と、排ガスと熱交換して蒸気を過熱する過熱器5b,5cが配置される対流伝熱室4と、を備える。放射伝熱室3のケーシングは、水冷壁管から構成される。 The boiler 1 includes a radiant heat transfer chamber 3 that generates steam by receiving radiant heat from exhaust gas, and a convection heat transfer chamber 4 in which superheaters 5b and 5c that superheat the steam by exchanging heat with the exhaust gas are arranged. Be prepared. The casing of the radiant heat transfer chamber 3 is composed of water-cooled wall tubes.

放射伝熱室3には、排ガス流路を屈曲させる第1屈曲部7と第2屈曲部9が設けられる。第1屈曲部7は、排ガスの流れを上向きから下向きに変える。第2屈曲部9は、排ガスの流れを下向きから上向きに変える。第1屈曲部7と第2屈曲部9とによって、放射伝熱室3には、排ガスが流れる上流側から第1流路6と第2流路8が形成される。炉2から排出される排ガスは、第1流路6を下方から上方へ流れ、第1屈曲部7によって向きを変えられ、第2流路8を上方から下方へ流れ、第2屈曲部9によって向きを変えられ、対流伝熱室4を下方から上方へ(地面と実質的に垂直方向に)流れる。 The radiant heat transfer chamber 3 is provided with a first bending part 7 and a second bending part 9 that bend the exhaust gas flow path. The first bent portion 7 changes the flow of exhaust gas from upward to downward. The second bent portion 9 changes the flow of exhaust gas from downward to upward. The first bent portion 7 and the second bent portion 9 form a first passage 6 and a second passage 8 in the radiant heat transfer chamber 3 from the upstream side through which the exhaust gas flows. The exhaust gas discharged from the furnace 2 flows through the first passage 6 from below to above, is changed direction by the first bending part 7 , flows through the second passage 8 from above to below, and is changed by the second bending part 9 . It is redirected and flows through the convective heat transfer chamber 4 from below to above (substantially perpendicular to the ground).

放射伝熱室3の第1屈曲部(第2流路8又は第1流路6)には、放射伝熱室3の天井部3aから吊り下げられる吊下げ式の過熱器5aが配置される。 A hanging superheater 5a suspended from the ceiling 3a of the radiant heat transfer chamber 3 is arranged at the first bending part (the second flow path 8 or the first flow path 6) of the radiant heat transfer chamber 3. .

吊下げ式の過熱器5aは、1~n(ただし、nは2以上の整数)次の過熱器のうち、過熱蒸気を発生させるための蒸気温度が最大となるn次の過熱器である。1~n-1次の過熱器5b,5cは、対流伝熱室4に配置される。例えばn=3の場合、吊下げ式の過熱器5aは3次の過熱器であり、1~2次の過熱器5b,5cは対流伝熱室4に配置される。 The hanging superheater 5a is an nth-order superheater in which the steam temperature for generating superheated steam is maximum among the superheaters of orders 1 to n (where n is an integer of 2 or more). The 1st to n-1th order superheaters 5b and 5c are arranged in the convection heat transfer chamber 4. For example, when n=3, the hanging superheater 5a is a tertiary superheater, and the first to second order superheaters 5b and 5c are arranged in the convection heat transfer chamber 4.

なお、吊下げ式の過熱器5aは、1~n(ただし、nは3以上の整数)次の過熱器のうち、過熱蒸気を発生させるための蒸気温度が最大となるn次の過熱器と蒸気温度が2番目に高いn-1次の過熱器であってもよい。この場合、1~n-2次の過熱器が対流伝熱室4に配置される。例えばn=5の場合、吊下げ式の過熱器は5次の過熱器と4次の過熱器であり、1~3次の過熱器が対流伝熱室4に配置される。 In addition, the hanging superheater 5a is an n-th superheater that has the maximum steam temperature for generating superheated steam among the superheaters from 1 to n (where n is an integer of 3 or more). It may be an n-1 order superheater with the second highest steam temperature. In this case, 1st to n-2nd order superheaters are arranged in the convection heat transfer chamber 4. For example, when n=5, the hanging superheaters are a 5th order superheater and a 4th order superheater, and the 1st to 3rd order superheaters are arranged in the convection heat transfer chamber 4.

図2は、吊下げ式の過熱器5aの詳細図(図1のII部拡大図)を示す。吊下げ式の過熱器5aは、図2の紙面に直交する方向に配列される複数の伝熱管11(伝熱管群)から構成される。各伝熱管11は、ジグザグ状に曲げられていて、複数の直管部11aと、直管部11aの両端に設けられる複数のベンド部11b,11cと、送入端部11dと、送出端部11eと、を有する。直管部11aは、地面と実質的に垂直である。送入端部11dと送出端部11eは、放射伝熱室3の天井部3aを貫通し、ヘッダ12,13に接続される。送入端部11dと送出端部11eは、図示しない支持梁に支持される。天井部3aを開口することで、クレーンを用いて吊下げ式の過熱器5aを交換可能である。 FIG. 2 shows a detailed view (an enlarged view of section II in FIG. 1) of the hanging superheater 5a. The hanging superheater 5a is composed of a plurality of heat exchanger tubes 11 (heat exchanger tube group) arranged in a direction perpendicular to the paper surface of FIG. Each heat exchanger tube 11 is bent in a zigzag shape, and includes a plurality of straight tube sections 11a, a plurality of bend sections 11b and 11c provided at both ends of the straight tube section 11a, an inlet end section 11d, and an outlet end section. 11e. The straight pipe portion 11a is substantially perpendicular to the ground. The inlet end 11d and the outlet end 11e penetrate the ceiling 3a of the radiant heat transfer chamber 3 and are connected to the headers 12 and 13. The feeding end 11d and the feeding end 11e are supported by a support beam (not shown). By opening the ceiling portion 3a, the suspended superheater 5a can be replaced using a crane.

また、各伝熱管11の直管部11aは、直管部連結部材14で連結される。伝熱管11群は、紙面と直交方向に延びるパネル連結部材15,16によって連結される。パネル連結部材15,16は、ハンマリング装置17(図1参照)による打撃を受ける。ハンマリング装置17の打撃の方向は、図2の紙面と直交方向である。ハンマリング装置17は、例えばエアーノッカーである。エアーノッカーは、内部にピストンを有し、エアーの圧力によってピストンがパネル連結部材15,16を打撃する。若しくは、エアーノッカーの他にハンマーを打ち付けるハンマー式のハンマリング装置を用いてもよい。 Further, the straight pipe portions 11a of each heat exchanger tube 11 are connected by a straight pipe portion connecting member 14. The heat exchanger tubes 11 are connected by panel connecting members 15 and 16 extending in a direction perpendicular to the plane of the drawing. The panel connecting members 15, 16 are hit by a hammering device 17 (see FIG. 1). The direction of impact of the hammering device 17 is perpendicular to the paper plane of FIG. The hammering device 17 is, for example, an air knocker. The air knocker has a piston inside, and the piston strikes the panel connecting members 15 and 16 due to air pressure. Alternatively, in addition to the air knocker, a hammer-type hammering device may be used.

パネル連結部材15,16がハンマリング装置17の打撃を受けた場合、打撃はパネル連結部材15,16を介して各伝熱管11に伝達される。各伝熱管11では、直管部連結部材14を通して全ての直管部11aに力が伝達される。このため、伝熱管11が振動し、伝熱管11に付着する灰等のダストが除去される。 When the panel connecting members 15 and 16 receive a blow from the hammering device 17, the blow is transmitted to each heat transfer tube 11 via the panel connecting members 15 and 16. In each heat exchanger tube 11, force is transmitted to all the straight pipe parts 11a through the straight pipe part connecting member 14. Therefore, the heat exchanger tube 11 vibrates, and dust such as ash adhering to the heat exchanger tube 11 is removed.

図3は、対流伝熱室4に配置される1次過熱器5bの詳細図(図1のIII部拡大図)を示す。1次過熱器5bは、図3の紙面に直交する方向に配列される複数の伝熱管21(伝熱管群)から構成される。各伝熱管21は、ジグザグ状に曲げられていて、複数の直管部21aと、直管部21aの両端に設けられる複数のベンド部21b,21cと、送入端部21dと、送出端部21eと、を有する。直管部21aは、地面と実質的に平行である。送入端部21dと送出端部21eは、対流伝熱室4の壁4aを貫通し、ヘッダ22,23に接続される。 FIG. 3 shows a detailed view (an enlarged view of section III in FIG. 1) of the primary superheater 5b arranged in the convection heat transfer chamber 4. The primary superheater 5b is composed of a plurality of heat exchanger tubes 21 (heat exchanger tube group) arranged in a direction perpendicular to the paper surface of FIG. Each heat exchanger tube 21 is bent in a zigzag shape, and includes a plurality of straight tube sections 21a, a plurality of bend sections 21b and 21c provided at both ends of the straight tube section 21a, an inlet end section 21d, and an outlet end section. 21e. The straight pipe portion 21a is substantially parallel to the ground. The inlet end 21d and the outlet end 21e penetrate the wall 4a of the convection heat transfer chamber 4 and are connected to the headers 22, 23.

1次過熱器5bに付着するダストは、例えば伝熱管21に蒸気を吹き付けるスートブロワ、又は対流伝熱室4内に圧力波を放出する圧力波発生装置によって除去される。なお、2次過熱器5cの構成は、過熱蒸気を発生させるための蒸気温度が1次過熱器5bよりも高い点を除いて1次過熱器5bと略同一であるので、その説明を省略する。 Dust adhering to the primary superheater 5b is removed by, for example, a soot blower that blows steam onto the heat transfer tubes 21, or a pressure wave generator that releases pressure waves into the convection heat transfer chamber 4. The configuration of the secondary superheater 5c is substantially the same as the primary superheater 5b except that the steam temperature for generating superheated steam is higher than that of the primary superheater 5b, so a description thereof will be omitted. .

また、図1に示す対流伝熱室4には、1次過熱器5bと2次過熱器5cの他に、図示しないエコノマイザが設けられる。エコノマイザは、排ガスとの熱交換により水を加熱する。エコノマイザにより加熱された温水は、放射伝熱室3の水冷壁管に供給される。排ガスからの放射熱を受けて水冷壁管で生成された蒸気は、1次過熱器5b、2次過熱器5c、吊下げ式の過熱器5a(3次過熱器)の順に供給される。1次過熱器5bは、放射伝熱室3から供給された蒸気を過熱する。2次過熱器5cは、1次過熱器5bが過熱した蒸気をさらに過熱する。吊下げ式の過熱器5aは、2次過熱器5cが過熱した蒸気をさらに過熱する。吊下げ式の過熱器5aが過熱した蒸気は、最高温度に到達し、蒸気タービンに供給される。 Further, the convection heat transfer chamber 4 shown in FIG. 1 is provided with an economizer (not shown) in addition to the primary superheater 5b and the secondary superheater 5c. Economizers heat water by exchanging heat with exhaust gas. The hot water heated by the economizer is supplied to the water-cooled wall tube of the radiant heat transfer chamber 3. Steam generated in the water-cooled wall tube by receiving radiant heat from the exhaust gas is supplied to a primary superheater 5b, a secondary superheater 5c, and a hanging superheater 5a (tertiary superheater) in this order. The primary superheater 5b superheats the steam supplied from the radiant heat transfer chamber 3. The secondary superheater 5c further superheats the steam superheated by the primary superheater 5b. The hanging superheater 5a further superheats the steam superheated by the secondary superheater 5c. The steam superheated by the hanging superheater 5a reaches the maximum temperature and is supplied to the steam turbine.

以上に、本実施形態のボイラの構成を説明した。本実施形態のボイラによれば、テールエンド型のボイラに使用される吊下げ式の過熱器のメリットと縦型のボイラに使用される過熱器のメリットの両方を実現することができるという効果を奏する。 The configuration of the boiler of this embodiment has been described above. According to the boiler of this embodiment, it is possible to realize both the advantages of a hanging superheater used in a tail-end boiler and the advantages of a superheater used in a vertical boiler. play.

すなわち、対流伝熱室4における排ガスの流れが地面と実質的に垂直であるので、ボイラ1の敷地面積を小さくすることができる。また、排ガス温度が高い放射伝熱室3に吊下げ式の過熱器5aを配置するので、過熱蒸気を発生させるための蒸気温度を高くすることができると共に、吊下げ式の過熱器5aの伝熱面積を小さくすることができる。さらに、排ガス温度が高い放射伝熱室3に過熱器5aを配置すると、過熱器5aが腐食し易くなるが、吊下げ式の過熱器5aとハンマリング装置17という効率的なダスト除去手段を採用するので、過熱器5aの腐食も防止できる。さらに、放射伝熱室3の天井部3aを開口して、吊下げ式の過熱器5aを丸ごと交換できるので、交換の容易性に加えて、過熱器5aの材料コストの低減、メンテナンス費の低減が期待される。 That is, since the flow of exhaust gas in the convection heat transfer chamber 4 is substantially perpendicular to the ground, the site area of the boiler 1 can be reduced. Furthermore, since the hanging superheater 5a is arranged in the radiant heat transfer chamber 3 where the exhaust gas temperature is high, the steam temperature for generating superheated steam can be increased, and the hanging superheater 5a can be Thermal area can be reduced. Furthermore, if the superheater 5a is placed in the radiant heat transfer chamber 3 where the exhaust gas temperature is high, the superheater 5a is likely to corrode. Therefore, corrosion of the superheater 5a can also be prevented. Furthermore, the hanging superheater 5a can be replaced entirely by opening the ceiling 3a of the radiant heat transfer chamber 3, which not only facilitates replacement, but also reduces material costs and maintenance costs for the superheater 5a. There is expected.

吊下げ式の過熱器5aが1~n(ただし、nは2以上の整数)次の過熱器のうち、過熱蒸気を発生させるための蒸気温度が最大となるn次の過熱器5aであり、1~n-1次の過熱器5b,5cが対流伝熱室4に配置されるので、1~n-1次の過熱器5b,5cの腐食を防止した上で、過熱蒸気の最高到達温度を高くすることができる。このため、発電機の発電効率を上げることができる。 The hanging superheater 5a is the n-th superheater 5a that has the maximum steam temperature for generating superheated steam among the superheaters of the order 1 to n (where n is an integer of 2 or more), Since the 1st to n-1st order superheaters 5b and 5c are arranged in the convection heat transfer chamber 4, corrosion of the 1st to n-1st order superheaters 5b and 5c is prevented, and the maximum temperature of superheated steam is maintained. can be made higher. Therefore, the power generation efficiency of the generator can be increased.

また、吊下げ式の過熱器を1~n(ただし、nは3以上の整数)次の過熱器のうち、過熱蒸気を発生させるための蒸気温度が最大となるn次の過熱器と過熱蒸気を発生させるための蒸気温度が2番目に高いn-1次の過熱器とし、1~n-2次の過熱器を対流伝熱室4に配置した場合でも、1~n-2次の過熱器の腐食を防止した上で、過熱蒸気の最高到達温度を高くすることができる。このため、発電機の発電効率を上げることができる。 In addition, among the superheaters of the order 1 to n (where n is an integer of 3 or more), the hanging type superheater is the superheater of the nth order that has the maximum steam temperature for generating superheated steam, and the superheated steam Even if the n-1st order superheater has the second highest steam temperature to generate , and the 1st to n-2nd order superheaters are placed in the convection heat transfer chamber 4, the It is possible to increase the maximum temperature of superheated steam while preventing corrosion of the vessel. Therefore, the power generation efficiency of the generator can be increased.

放射伝熱室3が第1屈曲部7と第2屈曲部9を備えるので、対流伝熱室4に到達する排ガス温度を低くすることができ、対流伝熱室4に配置される1次過熱器5b、2次過熱器5cの腐食を防止することができる。 Since the radiant heat transfer chamber 3 includes the first bending section 7 and the second bending section 9, the temperature of the exhaust gas reaching the convection heat transfer chamber 4 can be lowered, and the primary superheating disposed in the convection heat transfer chamber 4 can be lowered. Corrosion of the container 5b and the secondary superheater 5c can be prevented.

なお、本発明は上記実施形態に具現化されるのに限られることはなく、本発明の要旨を変更しない範囲で他の実施形態に変更可能である。 Note that the present invention is not limited to being embodied in the above-described embodiments, and can be modified to other embodiments without changing the gist of the present invention.

上記実施形態では、放射伝熱室に排ガスの流路を屈曲させる第1屈曲部と第2屈曲部を設けているが、放射伝熱室に1つのみの屈曲部を設けてもよい。この場合、対流伝熱室における排ガスの流れは、上方から下方になる。 In the above embodiment, the radiant heat transfer chamber is provided with the first bending portion and the second bending portion that bend the exhaust gas flow path, but the radiant heat transfer chamber may be provided with only one bending portion. In this case, the flow of exhaust gas in the convection heat transfer chamber is from top to bottom.

上記実施形態では、放射伝熱室に配置される吊下げ式の過熱器をn次の加熱器、又はn次の過熱器とn-1次の過熱器としているが、吊下げ式の過熱器を1次の加熱器及び/又は2次の過熱器としてもよい。 In the above embodiment, the hanging superheater arranged in the radiant heat transfer chamber is an n-th order heater, or an n-th order superheater and an n-1 order superheater. may be used as a primary heater and/or a secondary superheater.

1…ボイラ
3…放射伝熱室
4…対流伝熱室
7…第1屈曲部(屈曲部)
3a…天井部
5a…3次過熱器(吊下げ式の過熱器)
5b…1次過熱器(過熱器)
5c…2次過熱器(過熱器)
17…ハンマリング装置
1... Boiler 3... Radiation heat transfer chamber 4... Convection heat transfer chamber 7... First bending part (bending part)
3a...Ceiling part 5a...Third superheater (hanging type superheater)
5b…Primary superheater (superheater)
5c…Secondary superheater (superheater)
17...Hammering device

Claims (4)

廃棄物焼却炉に連設されるボイラであって、
排ガスからの放射熱を受けて蒸気を発生させる放射伝熱室と、
排ガスと熱交換して蒸気を過熱する過熱器が配置される対流伝熱室と、を備え、
前記対流伝熱室における排ガスの流れが地面と実質的に垂直であり、
前記放射伝熱室における排ガスの流路の屈曲部に天井部から吊り下げられる吊下げ式の過熱器を配置し、
前記吊下げ式の過熱器の伝熱管は、複数の直管部と、直管部の両端に設けられる複数のベンド部と、送入端部と、送出端部と、を有すると共に、排ガスと直接接触し、
前記吊下げ式の過熱器に振動を与えて前記吊下げ式の過熱器の伝熱管に付着するダストを除去するハンマリング装置を設けるボイラ。
A boiler connected to a waste incinerator ,
a radiant heat transfer chamber that generates steam by receiving radiant heat from exhaust gas;
a convection heat transfer chamber in which a superheater for superheating steam by exchanging heat with exhaust gas is arranged;
the flow of exhaust gas in the convection heat transfer chamber is substantially perpendicular to the ground;
A hanging superheater suspended from the ceiling is disposed at a bent part of the exhaust gas flow path in the radiant heat transfer chamber,
The heat exchanger tube of the hanging superheater has a plurality of straight pipe sections, a plurality of bend sections provided at both ends of the straight pipe section, an inlet end, and an outlet end, and has in direct contact with
A boiler provided with a hammering device that applies vibration to the hanging superheater to remove dust adhering to heat transfer tubes of the hanging superheater.
前記吊下げ式の過熱器は、1~n(ただし、nは2以上の整数)次の過熱器のうち、過熱蒸気を発生させるための蒸気温度が最大となるn次の過熱器であり、
1~n-1次の過熱器が前記対流伝熱室に配置されることを特徴とする請求項1に記載のボイラ。
The hanging superheater is an nth-order superheater in which the steam temperature for generating superheated steam is maximum among the superheaters of orders 1 to n (where n is an integer of 2 or more),
The boiler according to claim 1, wherein a 1st to n-1th order superheater is arranged in the convection heat transfer chamber.
前記吊下げ式の過熱器は、1~n(ただし、nは3以上の整数)次の過熱器のうち、過熱蒸気を発生させるための蒸気温度が最大となるn次の過熱器と蒸気温度が2番目に高いn-1次の過熱器であり、
1~n-2次の過熱器が前記対流伝熱室に配置されることを特徴とする請求項1に記載のボイラ。
The hanging superheater is a superheater of the order 1 to n (where n is an integer of 3 or more), which has the maximum steam temperature for generating superheated steam, and the steam temperature. is the second highest n-1 order superheater,
The boiler according to claim 1, wherein a 1st to n-2nd order superheater is arranged in the convection heat transfer chamber.
前記放射伝熱室の前記屈曲部は、
排ガスの流れを上向きから下向きに変える第1屈曲部と、
排ガスの流れを下向きから上向きに変える第2屈曲部と、を備え、
前記第1屈曲部に前記吊下げ式の過熱器が配置されることを特徴とする請求項1ないし3のいずれか一項に記載のボイラ。
The bent portion of the radiant heat transfer chamber is
a first bending portion that changes the flow of exhaust gas from upward to downward;
a second bending portion that changes the flow of exhaust gas from downward to upward;
The boiler according to any one of claims 1 to 3, wherein the hanging superheater is arranged at the first bending part.
JP2019201358A 2019-11-06 2019-11-06 boiler Active JP7427918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019201358A JP7427918B2 (en) 2019-11-06 2019-11-06 boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019201358A JP7427918B2 (en) 2019-11-06 2019-11-06 boiler

Publications (2)

Publication Number Publication Date
JP2021076274A JP2021076274A (en) 2021-05-20
JP7427918B2 true JP7427918B2 (en) 2024-02-06

Family

ID=75897149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019201358A Active JP7427918B2 (en) 2019-11-06 2019-11-06 boiler

Country Status (1)

Country Link
JP (1) JP7427918B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008304178A (en) 2007-05-09 2008-12-18 Hitachi Ltd Coal burning boiler, and combustion method of coal burning boiler
WO2017170661A1 (en) 2016-03-31 2017-10-05 日立造船株式会社 Stoker-type garbage incinerator provided with waste heat recovery boiler
JP2019027672A (en) 2017-07-31 2019-02-21 日立造船株式会社 Processing apparatus for flue gas

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634103A (en) * 1992-07-15 1994-02-08 Babcock Hitachi Kk Erosion preventing device of heat transfer pipes for boiler
JPH09243008A (en) * 1996-03-11 1997-09-16 Ishikawajima Harima Heavy Ind Co Ltd Hanging type superheater for boiler
CN110360569A (en) * 2018-12-30 2019-10-22 上海康恒环境股份有限公司 A kind of high temperature and pressure garbage burning boiler

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008304178A (en) 2007-05-09 2008-12-18 Hitachi Ltd Coal burning boiler, and combustion method of coal burning boiler
WO2017170661A1 (en) 2016-03-31 2017-10-05 日立造船株式会社 Stoker-type garbage incinerator provided with waste heat recovery boiler
JP2019027672A (en) 2017-07-31 2019-02-21 日立造船株式会社 Processing apparatus for flue gas

Also Published As

Publication number Publication date
JP2021076274A (en) 2021-05-20

Similar Documents

Publication Publication Date Title
JP5201729B2 (en) Waste heat recovery power plant of lime calcining plant
US8096268B2 (en) Municipal solid waste fuel steam generator with waterwall furnace platens
US20140261248A1 (en) Steam generator for producing superheated steam in a waste incineration plant
JP5234948B2 (en) Vertical heat exchanger
PT1461567E (en) Steam super heater comprising shield pipes
JP7427918B2 (en) boiler
JP4953506B2 (en) Fossil fuel boiler
RU2067722C1 (en) Water-tube boiler
WO2017170661A1 (en) Stoker-type garbage incinerator provided with waste heat recovery boiler
ES2234765T3 (en) METHOD FOR STEAM GENERATION USING A WASTE INCINERATOR.
JP7259704B2 (en) Dust remover for heat transfer tubes
JP2018096574A (en) Boiler
JP4463825B2 (en) Once-through boiler
JP7130569B2 (en) HEAT EXCHANGER, BOILER, AND METHOD FOR ADJUSTING HEAT EXCHANGER
JPS6047482B2 (en) Coal-fired steam generator
JP6936207B2 (en) Boiler device
JP7316388B2 (en) Boiler heat transfer panel structure
JP2020176760A (en) Boiler device
DK2795189T3 (en) Steam boiler with a radiant element
RU2120082C1 (en) Boiler steam superheater
US4342286A (en) Integral economizer steam generator
US1027815A (en) Superheater for heating purposes.
JP2023532168A (en) Apparatus and method for supporting sidewalls of vertical flue gas passages in thermal steam generators
US1221431A (en) Steam-boiler.
JP2019211156A (en) Dust removing device of heat transfer tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231016

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20231026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240108

R150 Certificate of patent or registration of utility model

Ref document number: 7427918

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150