JP2006028575A - Method for producing high sulfur-containing steel - Google Patents

Method for producing high sulfur-containing steel Download PDF

Info

Publication number
JP2006028575A
JP2006028575A JP2004208335A JP2004208335A JP2006028575A JP 2006028575 A JP2006028575 A JP 2006028575A JP 2004208335 A JP2004208335 A JP 2004208335A JP 2004208335 A JP2004208335 A JP 2004208335A JP 2006028575 A JP2006028575 A JP 2006028575A
Authority
JP
Japan
Prior art keywords
steel
content
molten steel
slag
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004208335A
Other languages
Japanese (ja)
Other versions
JP4285349B2 (en
Inventor
Takayuki Nishi
隆之 西
Naoki Matsui
直樹 松井
Atsushi Okayama
敦 岡山
Toru Kato
徹 加藤
Tatsuya Hasegawa
達也 長谷川
Masayuki Aizawa
正幸 相澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2004208335A priority Critical patent/JP4285349B2/en
Publication of JP2006028575A publication Critical patent/JP2006028575A/en
Application granted granted Critical
Publication of JP4285349B2 publication Critical patent/JP4285349B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a high sulfur-containing steel containing no lead at the high stable sulfur content and at low cost, and a method for producing the high sulfur-containing steel containing Te at high yield. <P>SOLUTION: (1) The producing method for high sulfur-containing steel is performed, in which this steel contains 0.01-0.15% C, ≤0.03% Si, 0.9-2.0% Mn, 0.40-0.70% S, 0.01-0.2% P, 0.003-0.03% N and 0.008-0.020% O, and Mn content in the molten steel at the slag refining in a ladle is controlled to ≤1.5% and MnO content in the slag is controlled to 25-40%, and in the above refining, a stirring index of the molten steel is adjusted to 10-100 (J/kg of molten steel). (2) In the above steel, further, Te is contained at 0.001-0.07% and after adding Te, the stirring index of the molten steel is adjusted to ≥10 (J/kg of molten steel). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、環境に負荷が大きい元素である鉛を実質的に含まない高硫黄含有快削鋼の製造に際して、硫黄およびMn含有率が高く、かつ、酸素含有率を0.008〜0.020質量%の範囲に確実かつ安定に制御し、さらに製鋼段階での硫黄歩留まりを高位かつ安定に制御することにより、安価で確実な高硫黄含有鋼を溶製する方法に関する。   The present invention has a high sulfur and Mn content and an oxygen content of 0.008 to 0.020 in the production of a high-sulfur-containing free-cutting steel that does not substantially contain lead, which is an element with a large environmental load. The present invention relates to a method for producing low-cost and reliable high-sulfur-containing steel by reliably and stably controlling the mass% range and further controlling the sulfur yield at the steelmaking stage at a high level and stably.

さらに、より被削性を向上させるTeを含有する高硫黄含有快削鋼の製造に際して、高価なTeを可及的少量で有効に添加できる溶製方法にも関する。   Furthermore, the present invention relates to a melting method in which expensive Te can be effectively added in as small a quantity as possible in the production of high sulfur content free-cutting steel containing Te that further improves machinability.

従来の低炭素硫黄系快削鋼においては、その合金成分組成範囲は、一般に質量%でC:0.01〜0.15%、Si:≦0.03%、Mn:0.6〜1.2%、S:0.15〜0.40%、P:0.01〜0.2%、N:0.003〜0.03%の範囲にあり、また、さらに被削性を高めるため、Pb:0.05〜0.4%を含有し、残部が鉄からなるものも用いられていた。また、このような鋼成分組成を基本として、被削性を安定させるためにMnS系介在物を粗大化させることが有効とされており、そのためには、O(酸素)を0.008〜0.020%の範囲で含有させることがよいとされてきた。   In conventional low-carbon sulfur-based free-cutting steel, the alloy component composition ranges are generally C: 0.01 to 0.15%, Si: ≦ 0.03%, Mn: 0.6 to 1.% by mass. 2%, S: 0.15 to 0.40%, P: 0.01 to 0.2%, N: 0.003 to 0.03%, and in order to further improve the machinability, Pb: 0.05 to 0.4% was also used, and the balance was made of iron. Further, based on such a steel component composition, it is effective to coarsen MnS inclusions in order to stabilize the machinability. For that purpose, O (oxygen) is set to 0.008 to 0. It has been considered to be contained in the range of 0.020%.

しかしながら、近年、環境への負荷を軽減する観点から、鉛を含有しない低炭素硫黄系快削鋼が求められるようになってきた。このような低炭素硫黄系快削鋼は、鉛を実質的に含有しない代わりに、硫黄(以下、「S」とも記す)含有率を高めることによって被削性を改善するものであり、従来の規格を超えた高S鋼およびその加工方法の開発が進められるようになってきた。   However, in recent years, low carbon sulfur-based free-cutting steel containing no lead has been demanded from the viewpoint of reducing the burden on the environment. Such low-carbon sulfur-based free-cutting steel improves machinability by increasing the content of sulfur (hereinafter also referred to as “S”) instead of containing lead substantially. Development of high S steel exceeding the standard and its processing method has been advanced.

また、従来のS含有率を上回る低炭素S系快削鋼を安定かつ確実に製造するためには、溶鋼段階における製鋼法についても、従来の製鋼条件を見直し、最適化する必要に迫られてきた。   In addition, in order to stably and reliably manufacture low-carbon S-based free-cutting steel that exceeds the conventional S content, it has been necessary to review and optimize the conventional steelmaking conditions for the steelmaking method in the molten steel stage. It was.

従来鋼の製造方法としては、例えば、特許文献1に、スラグ中のMnOおよび鋼中のMn量を制御することによって、鋼中の酸素量を調整する低炭素硫黄系快削鋼の製造方法が開示されている。しかし、特許文献1に示されている鋼中の酸素含有率とスラグ中のMnO濃度(MnOのモル分率)および鋼中のMn含有率の関係式によれば、Mn含有率が1.5%の場合には、MnOのモル分率が0.3を超えなければ鋼中酸素濃度が80ppm以上を確保できないことになり、スラグ中に多量のMnOを共存させる必要がある。さらには、従来の製鋼条件では、Sの増加に伴ってS歩留まりは悪化し、S含有率も不安定になると考えられるが、同文献においてはこのような点についても考慮がなされていない。   As a conventional method for producing steel, for example, Patent Document 1 discloses a method for producing low-carbon sulfur-based free-cutting steel that adjusts the amount of oxygen in steel by controlling the amount of MnO in slag and the amount of Mn in steel. It is disclosed. However, according to the relational expression of the oxygen content in steel and the MnO concentration in slag (molar fraction of MnO) and the Mn content in steel shown in Patent Document 1, the Mn content is 1.5. %, If the MnO molar fraction does not exceed 0.3, the oxygen concentration in the steel cannot be ensured to be 80 ppm or more, and a large amount of MnO needs to coexist in the slag. Furthermore, under the conventional steelmaking conditions, it is considered that the S yield deteriorates with the increase of S and the S content becomes unstable, but this document does not consider such points.

また、このような高S鋼を基本として、Teを添加する場合の鋼の製造方法については知られていないため、高価な添加元素であるTeを有効かつ高い制御性のもとに含有させる鋼の溶製方法は、全く未知の状態であった。   Moreover, since the manufacturing method of steel in the case of adding Te based on such high S steel is not known, steel that contains Te, which is an expensive additive element, under effective and high controllability. The melting method was completely unknown.

特開平9−31522号公報(特許請求の範囲および段落[0006])JP-A-9-31522 (Claims and paragraph [0006])

本発明は、上記の問題を解決するためになされたものであり、その課題は、鉛を実質的に含有せずに、従来の低炭素硫黄系快削鋼を上回る高いS含有率を有する鋼を製造するに際して、溶製段階において、目標の酸素含有率を得るとともに、所期のS含有率を安定かつ確実に得ることのできる安価で確実な高硫黄含有鋼の溶製方法を提供することにある。   The present invention has been made in order to solve the above-mentioned problems, and the problem is that the steel is substantially free of lead and has a high S content exceeding conventional low-carbon sulfur free-cutting steel. To provide an inexpensive and reliable method for melting high-sulfur steel that can obtain the target oxygen content and obtain the desired S content in a stable and reliable manner during the melting stage. It is in.

さらに、本発明の別の課題は、一層被削性を向上させるTeを含有する高硫黄含有快削鋼の製造に際して、高価なTeを高い歩留まりで有効に添加できる溶製方法を提供することにある。   Furthermore, another object of the present invention is to provide a melting method capable of effectively adding expensive Te with a high yield in the production of high sulfur-containing free-cutting steel containing Te that further improves machinability. is there.

本発明者らは、上記の課題を解決するために、従来の低炭素硫黄系快削鋼の実機製造プロセスにおける溶製過程を改めて検討し直し、下記の(a)〜(f)の知見を得て、本発明を完成させた。   In order to solve the above-mentioned problems, the present inventors have reexamined the melting process in the actual production process of conventional low-carbon sulfur-based free-cutting steel, and obtained the following knowledge (a) to (f). The present invention was completed.

(a)低炭素S系快削鋼における酸素含有率は、転炉などの製鋼炉から取鍋への出鋼段階および取鍋内においてスラグと接触させて行う精錬(以下、「取鍋スラグ精錬」とも記す)の段階での諸条件により支配される。出鋼段階では、熱力学的平衡値よりも過剰な酸素が鋼中に過飽和状態または酸化物として懸濁した状態になっており、スラグ精錬段階では、これらの過剰な酸素が徐々に減少する状況にある。   (A) The oxygen content in low-carbon S-based free-cutting steel is determined by the refining performed in contact with the slag in the ladle stage from the steelmaking furnace such as a converter to the ladle (hereinafter referred to as “ladder slag refining”). Are also governed by the conditions at the stage. In the steelmaking stage, oxygen exceeding the thermodynamic equilibrium value is supersaturated or suspended as an oxide in the steel, and in the slag refining stage, the excess oxygen gradually decreases. It is in.

(b)硫黄含有率についても同様であり、出鋼段階において黄鉄鉱などの硫黄源が過剰に添加された後、スラグ精錬段階でこの過剰なSが徐々に減少する過程において、所定のS含有率に到達させる操作がなされる。   (B) The same applies to the sulfur content. In the process in which the excess S gradually decreases in the slag refining stage after an excessive sulfur source such as pyrite is added in the steelmaking stage, a predetermined S content is obtained. An operation to reach is performed.

(c)本発明の対象鋼は、実質的に鉛を含まず、S含有率が0.40〜0.70質量%と従来鋼に比して高いので、硫黄源が添加された後のスラグ精錬におけるS含有率の低下速度はさらに大きくなる。また、被削性を改善するためのMnS系介在物を有効に形成させるためには、S含有率の増加分に見合ってMn含有率を増加させる必要がある。   (C) The target steel of the present invention does not substantially contain lead, and the S content is 0.40 to 0.70 mass%, which is higher than that of conventional steel, so the slag after the sulfur source is added The rate of decrease in the S content during refining is further increased. In order to effectively form MnS inclusions for improving machinability, it is necessary to increase the Mn content in proportion to the increase in the S content.

(e)上記(c)のように高いMn含有率のもとでは、脱酸反応および脱硫反応がともに進行しやすいため、スラグ精錬段階での溶鋼中の酸素含有率およびS含有率の減少速度を、適切かつ確実に、制御する必要がある。これらの制御は、出鋼段階での主要成分組成およびスラグ精錬段階での攪拌強度を適正化することにより、可能である。   (E) Since the deoxidation reaction and the desulfurization reaction both proceed easily under a high Mn content as in (c) above, the rate of decrease in oxygen content and S content in the molten steel at the slag refining stage Must be controlled appropriately and reliably. These controls are possible by optimizing the main component composition in the steelmaking stage and the stirring strength in the slag refining stage.

(f)さらに、被削性向上元素のTeを添加する場合には、Teを鋼中に確実に溶解させる必要がある。スラグ精錬段階の後期にTeを添加し、かつ、攪拌強度を適正化することにより、Teの蒸発による損失を防止するとともに、スラグ中への移行による損失を防止し、溶鋼中にTeを確実に溶解させることができる。   (F) Furthermore, when adding Te as a machinability improving element, it is necessary to reliably dissolve Te in steel. By adding Te at the latter stage of the slag refining stage and optimizing the stirring strength, loss due to evaporation of Te is prevented, and loss due to transfer into slag is prevented, so that Te is surely contained in the molten steel. Can be dissolved.

本発明は、上記の知見に基いて完成されたものであり、その要旨は、下記の(1)および(2)に示す高硫黄含有鋼の製造方法にある。   The present invention has been completed on the basis of the above findings, and the gist of the present invention resides in a method for producing high sulfur steels shown in the following (1) and (2).

(1)質量%で、C:0.01〜0.15%、Si≦0.03%、Mn:0.9〜2.0%、S:0.40〜0.70%、P:0.01〜0.20%、N:0.003〜0.030%およびO(酸素):0.008〜0.020%を含有し、残部がFeおよび不純物からなる高硫黄含有鋼の製造方法であって、取鍋内においてスラグと接触させて精錬する際の溶鋼中のMn含有率を1.5質量%以下およびスラグ中のMnO含有率を25〜40質量%とし、かつ、前記精錬において、溶鋼の単位質量当たりの攪拌エネルギーである溶鋼の攪拌指数の値を10〜100(J/kg−溶鋼)の範囲に調整する高硫黄含有鋼の製造方法(以下、「第1発明」とも称する)。   (1) By mass%, C: 0.01 to 0.15%, Si ≦ 0.03%, Mn: 0.9 to 2.0%, S: 0.40 to 0.70%, P: 0 0.01 to 0.20%, N: 0.003 to 0.030%, and O (oxygen): 0.008 to 0.020%, and the method for producing a high-sulfur steel containing the balance of Fe and impurities In the refining, the Mn content in the molten steel when refining in contact with the slag in the ladle is 1.5% by mass or less and the MnO content in the slag is 25 to 40% by mass, and in the refining A method for producing a high sulfur content steel (hereinafter also referred to as “first invention”) in which the value of the stirring index of molten steel, which is the stirring energy per unit mass of molten steel, is adjusted to a range of 10 to 100 (J / kg-molten steel). ).

(2)質量%で、C:0.01〜0.15%、Si≦0.03%、Mn:0.9〜2.0%、S:0.40〜0.70%、P:0.01〜0.2%、N:0.003〜0.03%、O(酸素):0.008〜0.020%およびTe:0.001〜0.07%を含有し、残部がFeおよび不純物からなる高硫黄含有鋼の製造方法であって、Teを含有しない溶鋼を取鍋内においてスラグと接触させて精錬する際の溶鋼中のMn含有率を1.5質量%以下およびスラグ中のMnO含有率を25〜40質量%とし、かつ、前記精錬において、溶鋼の単位質量当たりの攪拌エネルギーである溶鋼の攪拌指数の値を10〜100(J/kg−溶鋼)の範囲に調整するとともに、精錬後期でのTe添加後において、前記溶鋼の攪拌指数の値を10(J/kg−溶鋼)以上の範囲に調整する高硫黄含有鋼の製造方法(以下、「第2発明」とも称する)。   (2) By mass%, C: 0.01 to 0.15%, Si ≦ 0.03%, Mn: 0.9 to 2.0%, S: 0.40 to 0.70%, P: 0 0.01 to 0.2%, N: 0.003 to 0.03%, O (oxygen): 0.008 to 0.020% and Te: 0.001 to 0.07%, with the balance being Fe And a method for producing high-sulfur steel comprising impurities, wherein the Mn content in the molten steel when the molten steel not containing Te is brought into contact with the slag in the ladle and refined is 1.5% by mass or less and in the slag In the refining, the stirring index value of the molten steel, which is the stirring energy per unit mass of the molten steel, is adjusted to a range of 10 to 100 (J / kg-molten steel). In addition, after the addition of Te in the latter stage of refining, the value of the stirring index of the molten steel is 10 (J / The method of manufacturing high sulfur-containing steel is adjusted to a range of g- molten steel) or more (hereinafter, also referred to as "second invention").

本発明において、「取鍋」とは、一般の取鍋はもちろんのこと、転炉形式の精錬容器など、本発明における取鍋スラグ精錬の目的のために使用できる精錬容器を意味する。   In the present invention, the “ladder” means a refining vessel that can be used for the purpose of refining ladle slag in the present invention, such as a refining vessel of a converter type as well as a general ladle.

「攪拌指数」とは、溶鋼の単位質量当たりの攪拌エネルギーを意味し、例えば、下記(1)式により求められる量をいう。   The “stirring index” means stirring energy per unit mass of molten steel, for example, an amount obtained by the following equation (1).

Z=10-3×∫εdθ ・・・・(1)
ここで、Zは攪拌指数(J/kg−溶鋼)を、εは攪拌動力密度(W/t−溶鋼)を、そして、θは取鍋精錬時間(s)を、それぞれ表す。
Z = 10 −3 × ∫εdθ (1)
Here, Z represents the stirring index (J / kg-molten steel), ε represents the stirring power density (W / t-molten steel), and θ represents the ladle refining time (s).

上記(1)式における攪拌動力密度とは、溶鋼単位質量(1t)当たり、単位時間(1s)当たりの攪拌エネルギーを意味し、例えば、取鍋底部から不活性ガスを吹き込むことにより攪拌を行う場合には、後出の(2)式により算出される量をいう。   The stirring power density in the above formula (1) means stirring energy per unit time (1 s) per unit mass (1 t) of molten steel. For example, stirring is performed by blowing an inert gas from the bottom of the ladle. Means an amount calculated by the following equation (2).

また、「精錬後期」とは、主要成分が目標の含有率になるように精錬操作が概ね終了し、Teを含む微量元素の含有量の調整や鋳造を実施するための温度調整を行う段階を意味する。   In addition, the “second stage of refining” is a stage in which the refining operation is almost completed so that the main component has the target content rate, and the content of trace elements including Te is adjusted and the temperature is adjusted to perform casting. means.

なお、明細書の以下の記載において、成分組成を表す含有率の「%」は「質量%」を意味するものとする。   In the following description of the specification, “%” of the content ratio representing the component composition means “mass%”.

本発明の方法によれば、高S含有鋼の製造において、取鍋スラグ精錬における溶鋼中Mn含有率およびスラグ中MnO含有率ならびに溶鋼の攪拌指数を調整することにより、従来は制御が困難であった溶鋼中酸素含有率およびS含有率の制御性を高め、S歩留りの高い安定した品質の高S含有鋼を安価に製造できる。したがって、Pb快削鋼に替わる高S含有快削鋼を安価に供給でき、さらに、高いTe歩留りと制御性のもとに安定した品質のTe含有高S快削鋼を供給できる。   According to the method of the present invention, in the production of high S content steel, it has been difficult to control conventionally by adjusting the Mn content in molten steel, the MnO content in slag and the stirring index of molten steel in ladle slag refining. In addition, the controllability of the oxygen content and S content in molten steel can be improved, and high quality S steel with high S yield and stable quality can be produced at low cost. Therefore, high-S content free-cutting steel that replaces Pb free-cutting steel can be supplied at low cost, and stable Te-containing high-S free-cutting steel can be supplied with high Te yield and controllability.

本発明は、質量%で、C:0.01〜0.15%、Si≦0.03%、Mn:0.9〜2.0%、S:0.40〜0.70%、P:0.01〜0.2%、N:0.003〜0.03%およびO(酸素):0.008〜0.020%を含有し、残部がFeおよび不純物からなる高硫黄含有鋼の製造方法であって、取鍋内においてスラグと接触させて精錬する際の溶鋼中のMn含有率を1.5質量%以下およびスラグ中のMnO含有率を25〜40質量%とし、かつ、前記精錬において、溶鋼の単位質量当たりの攪拌エネルギーである溶鋼の攪拌指数の値を10〜100(J/kg−溶鋼)の範囲に調整する高硫黄含有鋼の製造方法である。以下に、本発明の範囲を前記のとおり限定した理由および好ましい範囲について説明する。   In the present invention, by mass%, C: 0.01 to 0.15%, Si ≦ 0.03%, Mn: 0.9 to 2.0%, S: 0.40 to 0.70%, P: Production of steel containing high sulfur containing 0.01 to 0.2%, N: 0.003 to 0.03% and O (oxygen): 0.008 to 0.020%, with the balance being Fe and impurities In the ladle, the Mn content in the molten steel when refining is brought into contact with the slag in the ladle is 1.5% by mass or less, and the MnO content in the slag is 25 to 40% by mass. Is a method for producing high-sulfur steel, wherein the value of the stirring index of the molten steel, which is the stirring energy per unit mass of the molten steel, is adjusted to a range of 10 to 100 (J / kg-molten steel). The reason why the scope of the present invention is limited as described above and the preferred range will be described below.

(A)高硫黄含有鋼の成分組成
C:0.01〜0.15%
Cは、鋼の強度および靱性を得るのに必要な元素である。快削性を最重要特性とする快削鋼にあって、必要な引張強度および疲労強度を得るには、C含有率を0.01%以上とする必要がある。しかし、その含有率が0.15%を超えて高くなると、快削鋼の基本的特性である母材の加工性が悪化する。そこで、C含有率の適正範囲を0.01〜0.15%とした。
(A) Component composition of high sulfur steel C: 0.01 to 0.15%
C is an element necessary for obtaining the strength and toughness of steel. In free-cutting steel having free-cutting properties as the most important characteristic, in order to obtain necessary tensile strength and fatigue strength, the C content needs to be 0.01% or more. However, if the content exceeds 0.15%, the workability of the base material, which is a basic characteristic of free-cutting steel, deteriorates. Therefore, the appropriate range of the C content is set to 0.01 to 0.15%.

Si:≦0.03%
Siは、鋼の脱酸作用および固溶強化作用を有する元素である。後述する範囲の鋼中の酸素含有率を確保するためには、Si含有率を0.03%以下とする必要がある。
Si: ≦ 0.03%
Si is an element having a deoxidizing action and a solid solution strengthening action of steel. In order to secure the oxygen content in the steel in the range described later, the Si content needs to be 0.03% or less.

Mn:0.9〜2.0%
Mnは、鋼中においてSと結合してMnSを形成し、被削性を高める作用を有するとともに、脱酸元素としても機能する元素である。MnSを形成させることにより圧延時の脆性原因となるFeSの生成を抑制するためには、Mnを0.9%以上含有させることが必要である。一方、Mn含有率が2.0%を超えて高くなると、脱酸作用が強くなり本発明の要件である酸素含有率0.008%以上を安定して確保することが難しくなる。そこで、Mn含有率の適正範囲を0.9〜2.0%とした。
Mn: 0.9 to 2.0%
Mn is an element that combines with S in steel to form MnS to enhance machinability and also functions as a deoxidizing element. In order to suppress the formation of FeS that causes brittleness during rolling by forming MnS, it is necessary to contain 0.9% or more of Mn. On the other hand, when the Mn content is higher than 2.0%, the deoxidizing action becomes strong, and it becomes difficult to stably secure an oxygen content of 0.008% or more, which is a requirement of the present invention. Therefore, the appropriate range of the Mn content is set to 0.9 to 2.0%.

S:0.40〜0.70%
鋼中のSは、MnSを形成して、被削性を高めるために必須の元素である。Pbを実質的に含有しない状態で、従来のPbを含有する快削鋼に匹敵する被削性の向上効果を得るためには、S含有率を0.40%以上とする必要がある。しかし、その含有率が0.70%を超えて高くなると、圧延時における割れの発生が顕著になり、また、鋼の機械的特性が著しく劣化する。そこで、S含有率の適正範囲を0.40〜0.70%とした。なお、
被削性向上と鋼材としての機械的特性の圧延方向の異方性とをバランスさせる観点から、好ましい含有率の範囲は0.50〜0.60%である。
S: 0.40 to 0.70%
S in steel is an essential element for forming MnS and improving machinability. In order to obtain an effect of improving machinability comparable to that of a conventional free-cutting steel containing Pb in a state where Pb is not substantially contained, the S content needs to be 0.40% or more. However, if the content exceeds 0.70%, the occurrence of cracks during rolling becomes significant, and the mechanical properties of the steel deteriorate significantly. Therefore, the appropriate range of the S content is set to 0.40 to 0.70%. In addition,
From the viewpoint of balancing the improvement in machinability and the anisotropy in the rolling direction of the mechanical properties as a steel material, the preferred content range is 0.50 to 0.60%.

P:0.01〜0.20%
Pは、結晶粒界に偏析して鋼を脆化させる作用があり、被削性の向上に効果を有する元素である。その効果を得るためには、0.01%以上を含有させる必要がある。一方、Pの含有率が高くなると、鋼の靱性を劣化させ、また、延性を低下させるので、その含有率は0.20%以下とする。Pは、その含有率が0.20%以下の範囲であれば、固溶強化作用を有する元素であり、材料としての必要強度を考慮して、その含有率を決定することができる。また、Pは、鉄鉱石やスクラップに随伴して持ち込まれる場合が多く、脱燐あるいは加燐を行う場合には、これらが製造コストの増加要因となるので、この点を考慮して成分組成を決定する必要がある。上記の理由から、P含有率の適正範囲を0.01〜0.20%とした。
P: 0.01-0.20%
P is an element that segregates at the grain boundaries and embrittles the steel, and has an effect of improving machinability. In order to obtain the effect, it is necessary to contain 0.01% or more. On the other hand, when the P content is increased, the toughness of the steel is deteriorated and the ductility is lowered. Therefore, the content is set to 0.20% or less. P is an element having a solid solution strengthening action if its content is in the range of 0.20% or less, and its content can be determined in consideration of the necessary strength as a material. In addition, P is often brought along with iron ore and scrap, and when dephosphorization or phosphorus addition, these increase production costs. It is necessary to decide. For the above reason, the appropriate range of the P content is set to 0.01 to 0.20%.

N:0.003〜0.030%
Nは、鋼中では窒化物を形成して結晶粒界に偏在し、MnSとともに被削性の向上に寄与する元素である。その作用を確実なものとするためには、N含有率を0.003%以上とする必要がある。一方、N含有率が0.030%を超えて高くなると、窒化物が粗大化し、かえって工具の摩耗を顕在化させる。そこで、N含有率の適正範囲を0.003〜0.030%とした。
N: 0.003-0.030%
N is an element that forms nitrides in steel, is unevenly distributed at grain boundaries, and contributes to improvement of machinability together with MnS. In order to ensure the effect, the N content needs to be 0.003% or more. On the other hand, when the N content exceeds 0.030%, the nitride becomes coarse, and the wear of the tool becomes apparent. Therefore, the appropriate range of N content is set to 0.003 to 0.030%.

O(酸素):0.008〜0.020%
酸素は、鋼中では酸化物系介在物としてMnSとともに存在し、被削性の向上に対して有用な効果をもたらす元素である。すなわち、酸素が酸化物系介在物としてMnSと共存すると、MnSは比較的粗大な球状を呈し、鋼材の圧延時においてもMnSはあまり伸展せず、孤立した厚みのある形状を保つ。このような形状の介在物は、切削時に脆化の起点となり、被削性に著しい改善をもたらす。また、切削工具先端での構成刃先の形成をMnSが適度に抑制することにより、仕上げ面粗さの改善をもたらす。上記の効果は、酸素含有率が0.008%以上において享受できる。しかし、酸素含有率が0.020%を超えて高くなると、酸化物系介在物の存在が、かえって鋼材表面の品質に悪影響をおよぼす。そこで、酸素含有率の適正範囲を0.008〜0.020%とした。なお、被削性の改善効果と大型酸化物系介在物に起因する表面疵発生の抑制とをバランスさせる観点から、好ましい含有率の範囲は0.010〜0.018%である。
O (oxygen): 0.008 to 0.020%
Oxygen is an element that exists together with MnS as an oxide inclusion in steel and has a useful effect on the improvement of machinability. That is, when oxygen coexists with MnS as oxide inclusions, MnS exhibits a relatively coarse spherical shape, and MnS does not extend much even during rolling of a steel material, and maintains an isolated and thick shape. Inclusions having such a shape become a starting point of embrittlement during cutting, resulting in a significant improvement in machinability. In addition, MnS moderately suppresses the formation of the constituent cutting edge at the tip of the cutting tool, thereby improving the finished surface roughness. The above effect can be enjoyed when the oxygen content is 0.008% or more. However, when the oxygen content is higher than 0.020%, the presence of oxide inclusions adversely affects the quality of the steel surface. Therefore, the appropriate range of the oxygen content is set to 0.008 to 0.020%. In addition, the range of a preferable content rate is 0.010 to 0.018% from a viewpoint which balances the improvement effect of a machinability, and suppression of the surface flaw generation resulting from a large sized oxide type inclusion.

なお、本発明において、酸素含有率とは、鋼中の溶存酸素量および介在物中に含まれる酸素量の総和、すなわち、全酸素含有率を意味する。   In the present invention, the oxygen content means the total amount of dissolved oxygen in steel and the amount of oxygen contained in inclusions, that is, the total oxygen content.

ところで、前述の高いMn含有率の範囲を考慮すれば、この有用な元素である酸素を従来の成分調整の方法により制御することは困難であった。本発明により享受できる効果の一つは、この有用な酸素を製鋼段階において安定かつ確実に制御することができることである。   By the way, in consideration of the above-described range of the high Mn content, it is difficult to control oxygen, which is a useful element, by a conventional component adjustment method. One of the effects that can be enjoyed by the present invention is that this useful oxygen can be stably and reliably controlled in the steelmaking stage.

Te:0.001〜0.070%
鋼中のTeは、MnS介在物の周囲および内部にMnTeを形成することにより、被削性を改善する作用を有する元素である。このような被削性改善効果は、Te含有率が0.001%以上において得られる。一方、Teが0.070%を超えて多量に含有されると、熱間において、MnS介在物の周囲のMnTe相を起点として脆化が生じる。そこで、Te含有率の適正範囲を0.001〜0.070%とした。被削性改善および熱間における脆化抑制の双方を両立させることができる好適なTe含有率の範囲は0.004〜0.050%である。
Te: 0.001 to 0.070%
Te in steel is an element that has the effect of improving machinability by forming MnTe around and inside the MnS inclusions. Such a machinability improving effect is obtained when the Te content is 0.001% or more. On the other hand, when Te is contained in a large amount exceeding 0.070%, embrittlement occurs starting from the MnTe phase around the MnS inclusions in the hot state. Therefore, the appropriate range of Te content is set to 0.001 to 0.070%. A suitable Te content range that can achieve both machinability improvement and hot embrittlement suppression is 0.004 to 0.050%.

(B)取鍋スラグ精錬における溶鋼中Mnおよびスラグ中MnO組成
本発明の高硫黄含有鋼の製造方法においては、転炉などの製鋼炉から取鍋への出鋼段階および取鍋でのスラグ精錬段階での状態の規定が重要である。出鋼段階では、一般に酸化精錬後に、新たな合金鉄や造滓剤などの原料および副原料を添加する操作があり、炉の形態に応じて出鋼時間や攪拌状態が相違する。そこで、この出鋼段階における状態を規定する状態量として、取鍋スラグ精錬時の示強変数である溶鋼中Mn含有率およびスラグ中MnO含有率を規定した。この場合の取鍋スラグ精錬時とは、取鍋に溶鋼が収容されてスラグ精錬を行う期間を意味する。このスラグ精錬時における溶鋼の成分組成およびスラグの成分組成は、主として出鋼時において合金鉄や造滓剤が添加されることにより決定される。したがって、上記のような規定が有効になる。
(B) Mn in molten steel and MnO composition in slag in ladle slag refining In the method for producing high sulfur-containing steel of the present invention, the stage of steel removal from a steelmaking furnace such as a converter to a ladle and slag refining in a ladle The definition of the state at the stage is important. In the steelmaking stage, there is generally an operation of adding raw materials such as new alloy iron and ironmaking agent and auxiliary materials after oxidative refining, and the steeling time and stirring state differ depending on the form of the furnace. Therefore, the Mn content in molten steel and the MnO content in slag, which are strong variables at the time of refining ladle slag, were defined as the state quantities that define the state in this steelmaking stage. The ladle slag refining in this case means a period in which molten steel is accommodated in the ladle and slag refining is performed. The component composition of molten steel and the component composition of slag at the time of slag refining are determined mainly by addition of alloy iron and a faux-forming agent at the time of steelmaking. Therefore, the above rules are effective.

本発明では、上記の取鍋精錬開始時における溶鋼中Mn含有率は1.5%以下である必要がある。その理由は、取鍋スラグ精錬の早い段階においてMn含有率が1.5%を超えて高いと、たとえ、その後のスラグ精錬でMn含有率が低下しても、初期の酸素含有率が低下しすぎることから、取鍋精錬段階において安定して0.008%以上の酸素含有率を得ることが難しくなるからである。また、Mn含有率が1.5%を超えて高くなると、スラグによる脱硫も進行し、そのためにS含有率を都度調整する必要が生じるからでもある。好ましくは、Mn含有率を1.2%以下に保持し、合金鉄などを添加することにより、スラグ精錬の後半から末期に必要なMn含有率に調整するのがよい。なお、Mn含有率は、好ましくは0.5%以上とするのがよい。   In the present invention, the Mn content in the molten steel at the start of the above ladle refining needs to be 1.5% or less. The reason for this is that if the Mn content is higher than 1.5% at an early stage of ladle slag refining, even if the Mn content is decreased during the subsequent slag refining, the initial oxygen content is decreased. This is because it is difficult to stably obtain an oxygen content of 0.008% or more in the ladle refining stage. Moreover, if the Mn content exceeds 1.5%, desulfurization with slag also proceeds, so that it becomes necessary to adjust the S content each time. Preferably, the Mn content is maintained at 1.2% or less, and by adding iron alloy or the like, the Mn content necessary for the slag refining is adjusted from the latter half to the final stage. The Mn content is preferably 0.5% or more.

上記の精錬開始時におけるスラグ中MnO含有率は、25〜40%の範囲とする必要がある。その理由は、MnO含有率が25%未満では、0.008%以上の溶鋼中酸素含有率を安定して得ることが難しくなり、一方、MnO含有率が40%を超えて高くなると、安定して鋼中Mn含有率を維持することができなくなるからである。   The MnO content in the slag at the start of the above refining needs to be in the range of 25-40%. The reason is that when the MnO content is less than 25%, it becomes difficult to stably obtain an oxygen content in the molten steel of 0.008% or more, while when the MnO content is higher than 40%, it is stable. This is because the Mn content in the steel cannot be maintained.

(C)取鍋スラグ精錬時の攪拌条件
取鍋スラグ精錬時の溶鋼単位質量当たりの攪拌量について説明する。取鍋精錬時においては、溶鋼中の成分組成および温度を均一にするためにガス攪拌などにより溶鋼の攪拌操作が行われている。一般には、攪拌動力と呼ばれる溶鋼単位質量当たり、単位時間あたりの攪拌エネルギー(「攪拌動力密度」とも称する)(ε)によりで表されることが多く、その算出方法には特に限定されないが、例えば、取鍋底部から不活性ガスを吹き込むことによりガス攪拌を行う場合は、下記の(2)式により求めることができる。
(C) Stirring conditions during ladle slag refining The amount of stirring per unit mass of molten steel during ladle slag refining will be described. During ladle refining, the molten steel is agitated by gas agitation in order to make the composition and temperature of the molten steel uniform. Generally, it is often expressed by stirring energy per unit time (also referred to as “stirring power density”) (ε) per unit mass of molten steel called stirring power, and the calculation method is not particularly limited. When gas stirring is performed by blowing an inert gas from the bottom of the ladle, the following equation (2) can be used.

ε=(371×Q×T/m)×[ln{1+(9.8×7×103×h)/p}+(1−298/T)] ・・・・(2)
ここで、εは攪拌動力密度(W/t−溶鋼)、Qは吹き込みガス流量(Nm3/s)、Tは溶鋼温度(K)、mは溶鋼質量(t)、hは溶鋼の浴深さ(m)、そしてpは雰囲気の圧力(Pa)をそれぞれ表す。
ε = (371 × Q × T / m) × [ln {1+ (9.8 × 7 × 10 3 × h) / p} + (1−298 / T)] (2)
Where ε is the stirring power density (W / t-molten steel), Q is the blown gas flow rate (Nm 3 / s), T is the molten steel temperature (K), m is the molten steel mass (t), and h is the bath depth of the molten steel. (M) and p represent the atmospheric pressure (Pa), respectively.

取鍋スラグ精錬の期間中は、ガス攪拌が行われているので、上記の攪拌動力密度をスラグ精錬時間(θ)について積分することにより、下記(1)式により示されるとおり、溶鋼単位質量(1kg)当たりの攪拌エネルギー(Z)が得られる。   Since the gas stirring is performed during the ladle slag refining period, by integrating the above stirring power density with respect to the slag refining time (θ), the unit mass of molten steel ( Stir energy (Z) per kg) is obtained.

Z=10-3×∫εdθ ・・・・(1)
本発明では、攪拌指数として、上記(1)式により求められるZを用いることができる。なお、吹き込みガス流量が精錬時間に対して一定の場合には、攪拌指数は下記(3)式のように表される。
Z=10-3×ε×θ ・・・・(3)
すなわち、上記の(1)式または(3)式におけるZは(J/kg−溶鋼)の次元を有し、溶鋼単位質量当たりの攪拌エネルギーを表す指数である。したがって、この指数は、酸素含有率の減少速度やS含有率の減少速度を制御するための指標になり得る。
Z = 10 −3 × ∫εdθ (1)
In this invention, Z calculated | required by the said (1) Formula can be used as a stirring index. When the flow rate of the blown gas is constant with respect to the refining time, the stirring index is expressed as the following equation (3).
Z = 10 −3 × ε × θ (3)
That is, Z in the above formula (1) or (3) is an index having a dimension of (J / kg-molten steel) and representing the stirring energy per unit mass of the molten steel. Therefore, this index can be an index for controlling the decrease rate of the oxygen content rate and the decrease rate of the S content rate.

次に、攪拌指数の限定理由について説明する。鋼中の酸素含有率を制御するに当たり、上記の攪拌指数が臨界的な値を有することを下記の試験により確認した。   Next, the reason for limiting the stirring index will be described. In controlling the oxygen content in steel, it was confirmed by the following test that the agitation index had a critical value.

MgO耐火物製容器中において鋼を溶解できる黒鉛発熱体抵抗加熱炉を用いて、C:0.06〜0.10%、Si≦0.03%、Mn:1.2〜1.5%、S:0.40〜0.55%、P:0.05〜0.07%を含有する溶鋼10kgを、1873Kの温度で、1.013×105PaのArガス雰囲気中において保持した。鋼中酸素含有率を予め、0.015〜0.025%の範囲に予備調整した後に、CaO、SiO2、MnO、MgO、Al23からなるスラグ300gを添加するとともに、鋼中のMn含有率が1.5〜1.6%となるように金属Mnを添加した。スラグの成分組成については、MnO:30〜35%、MgO:10%、Al23:3%程度となるように配合率を調整し、また、残分については、CaOおよびSiO2が同含有率とになるように調整した。 Using a graphite heating element resistance heating furnace capable of melting steel in a MgO refractory container, C: 0.06-0.10%, Si ≦ 0.03%, Mn: 1.2-1.5%, 10 kg of molten steel containing S: 0.40 to 0.55% and P: 0.05 to 0.07% was held in an Ar gas atmosphere of 1.013 × 10 5 Pa at a temperature of 1873K. After preliminarily adjusting the oxygen content in the steel to a range of 0.015 to 0.025%, 300 g of slag composed of CaO, SiO 2 , MnO, MgO, Al 2 O 3 is added, and Mn in the steel is added. Metal Mn was added so that the content would be 1.5-1.6%. The chemical composition of the slag, MnO: 30~35%, MgO: 10%, Al 2 O 3: Adjust the mixing ratio so that about 3%, also for residue, CaO and SiO 2 are the same It adjusted so that it might become a content rate.

MgO耐火物製保持容器の下部には、ガス攪拌用の多孔質レンガを設置し、0.24〜0.4NL/分の流量でArガスを供給して溶鋼を攪拌し、その時の溶鋼中の酸素含有率の推移を調査した。   At the bottom of the MgO refractory holding container, a porous brick for gas stirring is installed, and Ar gas is supplied at a flow rate of 0.24 to 0.4 NL / min to stir the molten steel. The transition of oxygen content was investigated.

図1は、溶鋼の攪拌指数と溶鋼中の全酸素含有率との関係を示す図である。同図において、縦軸の全酸素含有率は、鋼中の溶存酸素量および介在物中に含有させる酸素量の総和を意味する。   FIG. 1 is a graph showing the relationship between the stirring index of molten steel and the total oxygen content in the molten steel. In the figure, the total oxygen content on the vertical axis means the total amount of dissolved oxygen in steel and oxygen contained in inclusions.

同図の結果によれば、溶鋼中の全酸素含有率は、攪拌指数の増加とともに低下する。この関係に基づき、攪拌指数を指標として溶鋼中の酸素含有率を制御できることがわかる。さらに、本発明で対象とする鋼種において鋼中の酸素含有率を確実に0.008%以上とするためには、攪拌指数の値を100以下にする必要のあることが判明した。一方、溶鋼の成分組成および温度を均一にするためには、最低限度の攪拌量が必要であり、攪拌指数の値にして10以上が必要である。そこで、攪拌指数(Z)の適正範囲を10〜100と
した。なお、長時間または強度の攪拌は、製鋼コストの増加を招くことから、好ましい攪拌指数の範囲は、10〜80である。
According to the results in the figure, the total oxygen content in the molten steel decreases as the stirring index increases. Based on this relationship, it can be seen that the oxygen content in the molten steel can be controlled using the stirring index as an index. Furthermore, it has been found that in order to ensure that the oxygen content in the steel of the present invention is 0.008% or more, the stirring index value must be 100 or less. On the other hand, in order to make the component composition and temperature of the molten steel uniform, a minimum amount of stirring is required, and a stirring index value of 10 or more is required. Therefore, the appropriate range of the stirring index (Z) was set to 10-100. In addition, since the stirring for a long time or intensity causes an increase in steelmaking cost, the preferable range of the stirring index is 10 to 80.

(D)Te添加時の攪拌条件
Teを添加する場合の攪拌条件について説明する。Teは、鉄鋼用の合金元素としては極めて高価であり、鋼成分の調整用としては純金属が用いられることが多い。Teは融点が449.5℃、沸点は989.5℃であって、いずれも製鋼温度に比較して低く、したがって、鋼中への添加時における蒸発損失が多い。さらに、その化学的挙動は、同族元素のSに類似しており、スラグへの吸収と分配があると考えられる。したがって、本発明で対象とする高硫黄含有鋼にさらにTeを添加するに当たっては、蒸発損失を可及的少量に抑え、かつスラグへの吸収を抑制するための適正な撹拌条件、すなわち、攪拌指数が存在すると推察した。
(D) Stirring conditions when adding Te The stirring conditions when adding Te will be described. Te is extremely expensive as an alloy element for steel, and pure metal is often used for adjusting steel components. Te has a melting point of 449.5 [deg.] C. and a boiling point of 989.5 [deg.] C., both of which are lower than the steelmaking temperature, and therefore, there is a large evaporation loss when added to steel. Furthermore, its chemical behavior is similar to the homologous element S, and is believed to have absorption and distribution into the slag. Therefore, when adding Te to the high-sulfur steel that is the subject of the present invention, appropriate stirring conditions for suppressing evaporation loss to a minimum amount and suppressing absorption into the slag, that is, a stirring index I guessed there existed.

そこで、前述の溶鋼10kgを使用した酸素含有率の制御試験と同様の成分組成の溶鋼およびスラグを用いて、所定量のTeを添加し、その後のTe含有率の減少挙動と攪拌条件との関連を調査した。
図2は、溶鋼中のTe残留率およびスラグと溶鋼間のTeの分配比におよぼす溶鋼の攪拌指数の影響を示す図である。同図において、Te残留率は、溶鋼中のTe含有率(%)から算出した溶鋼中のTe残留量をTe添加量で除し、百分率(%)により表示した値である。また、(Te)/[Te]の値は、スラグ中のTe含有率(%)(以下、(Te)とも表示する)と溶鋼中のTe含有率(%)(以下、[Te]とも表示する)との比を表し、スラグと溶鋼間におけるTeの分配比(−)を意味する。
Therefore, a predetermined amount of Te is added using molten steel and slag having the same composition as in the oxygen content control test using 10 kg of molten steel described above, and the relationship between the subsequent decrease in Te content and the stirring conditions investigated.
FIG. 2 is a diagram showing the influence of the stirring index of molten steel on the Te residual ratio in molten steel and the distribution ratio of Te between slag and molten steel. In the figure, the Te residual rate is a value expressed by percentage (%) by dividing the Te residual amount in the molten steel calculated from the Te content rate (%) in the molten steel by the Te addition amount. The value of (Te) / [Te] is also expressed as Te content (%) in slag (hereinafter also referred to as (Te)) and Te content (%) in molten steel (hereinafter referred to as [Te]. The ratio of Te between the slag and the molten steel (−).

同図の結果から、Te残留率は、攪拌時間とともに上昇し、攪拌指数が10以上において、Te残留率は30%以上を確保できている。一方、スラグ中Te含有率および溶鋼中Te含有率は、攪拌時間の経過とともに、すなわち、攪拌指数の増加とともに低下するが、スラグと溶鋼間のTeの分配比、(Te)/[Te]の値は、攪拌指数が10以上において、70(−)以下にまで低下し、溶鋼中Te含有率の確保が容易となる。そこで、Te添加以降における攪拌指数の適正範囲を10以上とした。   From the results shown in FIG. 9, the Te residual rate increases with the stirring time, and when the stirring index is 10 or more, the Te residual rate is secured at 30% or more. On the other hand, the Te content in the slag and the Te content in the molten steel decrease with the elapse of the stirring time, that is, with an increase in the stirring index, but the distribution ratio of Te between the slag and the molten steel, (Te) / [Te] The value decreases to 70 (−) or less when the stirring index is 10 or more, and it becomes easy to secure the Te content in the molten steel. Therefore, the appropriate range of the stirring index after Te addition is set to 10 or more.

しかしながら、攪拌指数が100を超えて高くなると、溶鋼中のTe残留率は50〜60%で飽和し、また、スラグと溶鋼間のTeの分配比、(Te)/[Te]の値も20(−)前後の一定値となるので、攪拌時間を長くすることによる精錬効果の増加はわずかとなり、かえって精錬コストを上昇させて好ましくない。したがって、攪拌指数は100以下とすることが好ましい。   However, when the stirring index is higher than 100, the residual ratio of Te in the molten steel is saturated at 50 to 60%, and the distribution ratio of Te between the slag and the molten steel, the value of (Te) / [Te] is also 20 Since it becomes a constant value before and after (−), the increase in the refining effect by increasing the stirring time becomes small, which is not preferable because it increases the refining cost. Therefore, the stirring index is preferably 100 or less.

(E)実生産規模における本発明の実施形態および効果
転炉などの製鋼炉で酸素上吹きによって脱炭されて、C含有率が0.03〜0.13%程度となった溶鋼に対して、出鋼時に、Mn合金鉄、硫黄源としての黄鉄鉱石、P合金鉄などが添加される。ここで、Mn合金鉄は、取鍋に収容された段階での溶鋼中Mn含有率が1.5%以下、好ましくは1.2%以下、さらに好ましくは1.0%以下となるように添加される必要がある。その理由は、前述のとおり、出鋼時の溶鋼中酸素含有率を高く維持するためである。次に、転炉スラグを必要に応じて除滓した後、改めて、CaO源としての生石灰、SiO2源としての珪砂などの造滓剤が添加される。この時、造滓剤は、取鍋に収容された段階でのスラグ中MnO含有率が25〜40%の範囲となるように添加される必要がある。また、転炉出鋼時の溶鋼中の酸素とMn合金鉄との反応によって、MnOが形成されるので、このMnOならびにCaOおよびSiO2が転炉スラグにより希釈されることを勘案したうえで、目標MnO含有率となるように、Mn合金鉄および各造滓剤の添加量が制御されなければならない。また、必要に応じて、MnO源としてMn鉱石などを添加することもできる。
(E) Embodiments and effects of the present invention in actual production scale For molten steel decarburized by top blowing oxygen in a steelmaking furnace such as a converter and having a C content of about 0.03 to 0.13% At the time of steel production, Mn alloy iron, pyrite ore as a sulfur source, P alloy iron, and the like are added. Here, the Mn alloy iron is added so that the Mn content in the molten steel at the stage of being accommodated in the ladle is 1.5% or less, preferably 1.2% or less, more preferably 1.0% or less. Need to be done. The reason for this is to maintain a high oxygen content in the molten steel at the time of steel output as described above. Next, after removing the converter slag as necessary, a fossilizing agent such as quick lime as a CaO source and silica sand as a SiO 2 source is added again. At this time, the slagging agent needs to be added so that the MnO content in the slag at the stage of being accommodated in the ladle is in the range of 25 to 40%. In addition, since MnO is formed by the reaction between oxygen in the molten steel and the Mn alloy iron at the time of converter steel, after considering that MnO and CaO and SiO 2 are diluted by the converter slag, In order to achieve the target MnO content, the addition amounts of Mn alloy iron and each of the faux agents must be controlled. Moreover, Mn ore etc. can also be added as a MnO source as needed.

次に、取鍋に収容された溶鋼は、取鍋精錬が行われる位置でガス攪拌などによる攪拌操を受ける。攪拌の動力は、例えば、前記の(2)式で示されるような攪拌動力密度の算出式により求めればよい。また、取鍋スラグ精錬時間とは、転炉などの精錬炉から取鍋に出鋼されて、取鍋精錬位置で攪拌などの処理を受ける時間を意味し、途中における電気的加熱や合金鉄の添加などの時間も含まれる。これに対して、攪拌などの操作を受けない鋳造までの待機時間、またはクレーンなどにより搬送される時間は含まれない。   Next, the molten steel accommodated in the ladle is subjected to a stirring operation such as gas stirring at a position where the ladle refining is performed. The power of stirring may be obtained by, for example, a formula for calculating the stirring power density as shown by the above formula (2). In addition, ladle slag refining time means the time that steel is extracted from a refining furnace such as a converter to a ladle and subjected to processing such as stirring at the ladle refining position. Time such as addition is also included. On the other hand, the waiting time until casting which does not receive operation, such as stirring, or the time conveyed by a crane etc. is not included.

本発明の取鍋スラグ精錬について、取鍋底部に設けたガス吹き込み羽口からガスを供給することによりガス撹拌を行う場合を例にとり説明する。取鍋に収容した段階で溶鋼中Mn含有率を1.5%以下にする必要がある。好ましくは、溶鋼中Mn含有率が1.2%以下、さらに好ましくは、1.0%以下で取鍋に収容し、攪拌指数の値を6以上に保持した後、取鍋精錬の後半から末期において、所期のMn含有率である0.9〜2.0%に調整することが好ましい。   About the ladle slag refining of this invention, the case where gas stirring is performed by supplying gas from the gas blowing tuyere provided in the ladle bottom part is demonstrated as an example. It is necessary to make the Mn content in the molten steel 1.5% or less at the stage of being accommodated in the ladle. Preferably, the Mn content in the molten steel is 1.2% or less, more preferably 1.0% or less, and the ladle is stored in a ladle and the stirring index value is maintained at 6 or more. Therefore, it is preferable to adjust to 0.9 to 2.0% which is the desired Mn content.

この時のスラグ成分組成としては、MnO含有率を25〜40%の範囲となるように調整する。スラグのその他の主要成分は、CaO、SiO2、MgO、Al23、FeOおよびSである。スラグ量およびスラグ成分組成は、精錬時における外気との雰囲気の遮断、取鍋耐火物の損耗、溶鋼中S含有率の調整のしやすさなどを考慮して決定する。その好適条件を例示すれば、スラグ量は溶鋼1tあたり2kg〜20kg、CaO:15〜35%、SiO2:15〜35%、MgO:5〜20%、Al23:3〜15%およびFeO:3〜8%の範囲である。 As a slag component composition at this time, MnO content rate is adjusted so that it may become the range of 25-40%. Other major components of the slag, CaO, SiO 2, MgO, Al 2 O 3, a FeO and S. The amount of slag and the composition of the slag component are determined in consideration of the interruption of the atmosphere with the outside air during refining, the wear of the ladle refractory, the ease of adjusting the S content in the molten steel, and the like. To exemplify the preferred conditions, the amount of slag is 2kg~20kg per molten steel 1t, CaO: 15~35%, SiO 2: 15~35%, MgO: 5~20%, Al 2 O 3: 3~15% and FeO: It is 3 to 8% of range.

ガス吹き込み攪拌は、通常、スラグ精錬の処理位置に取鍋が設置された際に、ガスの吹き込みを開始し、合金鉄の添加および加熱精錬を経て、さらに必要に応じて造滓剤の追加などが行われる間も、その操作を継続する。したがって、攪拌指数は、前記の攪拌動力密度を取鍋精錬時間について積分することにより求めることができ、特に、攪拌ガス量が一定の場合は、攪拌動力密度と攪拌時間(すなわち、取鍋スラグ精錬時間)との積により算出することができる。   Gas blow stirring is usually performed when a ladle is installed at the slag refining processing position, and then gas blowing is started, followed by addition of alloyed iron and heat refining, and further addition of a slagging agent as necessary. The operation is continued while. Therefore, the stirring index can be obtained by integrating the stirring power density with respect to the ladle refining time. In particular, when the amount of stirring gas is constant, the stirring power density and the stirring time (that is, ladle slag refining). Time).

この攪拌指数の値を10〜100に調整することにより、非平衡状態で高い濃度にある溶鋼中酸素含有率を適度に低下させ、かつ、最終の酸素含有率が0.008〜0.020%の範囲の高S含有鋼を得ることができる。さらには、このような制御を行うことにより、溶鋼中S含有率の過度の低下やMn含有率の変動を抑制することが可能となり、取鍋スラグ精錬による安価で安定した品質の高S含有鋼の製造が可能となる。   By adjusting the value of the stirring index to 10 to 100, the oxygen content in the molten steel at a high concentration in a non-equilibrium state is appropriately reduced, and the final oxygen content is 0.008 to 0.020%. High S content steel in the range of can be obtained. Furthermore, by performing such control, it becomes possible to suppress an excessive decrease in the S content in the molten steel and fluctuations in the Mn content, and a low-cost and stable quality high-S content steel by ladle slag refining. Can be manufactured.

また、鋼中のFeの一部に替えて、Teを0.001〜0.070%添加する場合は、Teの蒸発損失が生じやすいことに鑑み、取鍋スラグ精錬の後半以降に添加する。この場合のTeの添加形態は特に制限されるものではないが、合金形態のTeを用いれば、添加初期における蒸発損失を防ぎやすいので好ましい。ここで、Teを添加する場合に、Teが極力溶鋼中に多く残留し、しかも安定した成分組成制御が可能な溶鋼の攪拌条件は、攪拌指数の値で10以上である。一方、その上限は、Te歩留まり向上の観点からは特に限定されないが、攪拌時間の増大は精錬コストの上昇を招くことから、攪拌指数を100以下とすることが好ましい。   In addition, when Te is added in an amount of 0.001 to 0.070% instead of a part of Fe in steel, it is added after the latter half of ladle slag refining in view of the tendency of Te evaporation loss to occur. The addition form of Te in this case is not particularly limited, but it is preferable to use an alloy form of Te because it is easy to prevent evaporation loss in the initial stage of addition. Here, when Te is added, Te remains in the molten steel as much as possible, and the stirring condition of the molten steel capable of stable component composition control is 10 or more in terms of the stirring index. On the other hand, the upper limit is not particularly limited from the viewpoint of improving the Te yield, but an increase in the stirring time causes an increase in the refining cost, so the stirring index is preferably 100 or less.

上述のようにして、取鍋スラグ精錬を経て溶製された安価でしかも安定した品質の高S含有鋼は、通常の連続鋳造および圧延行程を経て製品化される。   As described above, an inexpensive and stable high S content steel melted through ladle slag refining is commercialized through ordinary continuous casting and rolling processes.

本発明の高硫黄含有鋼の製造方法の効果を確認するため、以下に述べる溶製試験を行い、その結果を評価した。   In order to confirm the effect of the manufacturing method of the high sulfur content steel of the present invention, the melting test described below was performed and the result was evaluated.

(実施例1)
1.試験方法
溶鋼量78tの容量を有する転炉により脱炭吹錬して得た溶鋼を用いて取鍋スラグ精錬し、さらに連続鋳造を行った。目標とする鋼成分組成は、C:0.01〜0.15%、Si≦0.03%、Mn:0.9〜2.0%、S:0.40〜0.70%、P:0.01〜0.20%、N:0.003〜0.030%、O:0.008〜0.020%の範囲である。また、Teを添加する鋼種については、Te:0.001〜0.070%の範囲である。
Example 1
1. Test method Ladle slag was refined using molten steel obtained by decarburization blown by a converter having a capacity of molten steel of 78 t, and further continuous casting was performed. The target steel composition is C: 0.01 to 0.15%, Si ≦ 0.03%, Mn: 0.9 to 2.0%, S: 0.40 to 0.70%, P: The range is 0.01 to 0.20%, N: 0.003 to 0.030%, and O: 0.008 to 0.020%. Moreover, about the steel grade which adds Te, it is the range of Te: 0.001-0.070%.

転炉吹錬によりC:0.01〜0.15%程度に脱炭された溶鋼は、取鍋底部にガス吹き込み羽口を有する取鍋に出鋼された。出鋼時にMn合金鉄などの合金鉄および必要に応じてP合金鉄を添加して成分調整を行った。また、スラグ量および成分組成を調整するために、転炉から出鋼後に除滓した後、所定量の生石灰および珪砂を造滓剤として添加した。その後、溶鋼を収容した取鍋を電気加熱が可能な取鍋精錬位置に搬送し、Arガス配管を接続して、取鍋スラグ精錬を実施した。   Molten steel decarburized to about C: 0.01-0.15% by converter blowing was steeled in a ladle having a gas blown tuyere at the bottom of the ladle. The components were adjusted by adding alloy iron such as Mn alloy iron and P-alloy iron as necessary at the time of steel production. Further, in order to adjust the slag amount and the component composition, after removing from the converter after steel removal, predetermined amounts of quick lime and quartz sand were added as a slagging agent. Thereafter, the ladle containing the molten steel was transported to a ladle refining position where electric heating was possible, Ar gas piping was connected, and ladle slag refining was carried out.

精錬時に、出鋼後の取鍋中の溶鋼成分組成および取鍋スラグの成分組成を確認するため、攪拌指数で5となる時間を経過する以前に、溶鋼およびスラグの分析サンプルを採取して成分組成を調査した。さらに、攪拌指数が10〜100の範囲となるように攪拌用Arガス量および取鍋スラグ精錬時間を調整した後、適宜、溶鋼およびスラグの分析サンプルを採取した。途中、必要に応じて所期の組成となるように成分組成の調整を行い、また、所期の溶鋼温度となるように通電加熱を行って温度調整を実施した。そして、この後、溶鋼を収容した取鍋は連続鋳造機に搬送され、溶鋼は連続鋳造された。   At the time of refining, in order to confirm the composition of the molten steel in the ladle after ladle and the composition of the ladle slag, samples of the molten steel and slag are collected and analyzed before the time when the stirring index becomes 5 The composition was investigated. Furthermore, after adjusting the amount of Ar gas for stirring and the ladle slag refining time so that the stirring index is in the range of 10 to 100, samples for analysis of molten steel and slag were appropriately collected. In the middle, the component composition was adjusted as necessary to achieve the desired composition, and the temperature was adjusted by conducting heating to achieve the desired molten steel temperature. And after this, the ladle which accommodated the molten steel was conveyed to the continuous casting machine, and the molten steel was continuously cast.

2.試験結果
上記の試験における試験条件および試験結果を表1に示した。なお、試験条件として、取鍋スラグ精錬における攪拌用Arガス流量、攪拌動力密度、スラグ精錬時間、攪拌指数、溶鋼中Mn含有率:[Mn]、およびスラグ中MnO含有率:(MnO)を、また、試験結果として、精錬後における鋼中の全酸素含有率:[O]および硫黄含有率:[S]を示した。
2. Test results
The test conditions and test results in the above test are shown in Table 1. As test conditions, Ar gas flow rate for stirring in ladle slag refining, stirring power density, slag refining time, stirring index, Mn content in molten steel: [Mn], and MnO content in slag: (MnO) As test results, the total oxygen content in steel after refining: [O] and the sulfur content: [S] were shown.

Figure 2006028575
Figure 2006028575

同表において、精錬前の溶鋼中のMn含有率およびスラグ中のMnO含有率は、いずれも、取鍋スラグ精錬中において、攪拌指数の値が5となる以前の時期に採取したサンプルの分析結果に基づいている。攪拌動力密度(ε)は前記(2)式により求めた値を、また、攪拌指数(Z)は、前記(1)式または(3)式により求めた値を示した。   In the table, the Mn content in the molten steel before refining and the MnO content in the slag are both analytical results of samples taken before the stirring index value of 5 during the ladle slag refining Based on. The stirring power density (ε) was a value obtained by the above equation (2), and the stirring index (Z) was a value obtained by the above equation (1) or (3).

試験番号1〜10は、第1発明において規定された条件を全て満足する本発明例についての試験であり、試験番号11〜16は、第1発明において規定された条件のうちの少なくとも1つを満足しない比較例についての試験である。   Test Nos. 1 to 10 are tests for examples of the present invention that satisfy all of the conditions defined in the first invention, and Test Nos. 11 to 16 satisfy at least one of the conditions defined in the first invention. This is a test for a comparative example which is not satisfactory.

精錬前の溶鋼中Mn含有率、スラグ中MnO含有率および取鍋スラグ精錬における攪拌指数がいずれも第1発明で規定する範囲内にある試験番号1〜10では、精錬後の鋼中の酸素含有率はいずれも0.008〜0.020%の範囲内に存在し、目標とする高硫黄含有鋼の成分組成を達成している。   In test numbers 1 to 10 in which the Mn content in the molten steel before refining, the MnO content in the slag, and the stirring index in the ladle slag refining are all within the ranges defined in the first invention, the oxygen content in the steel after refining All the rates are in the range of 0.008 to 0.020%, and the target component composition of the high sulfur content steel is achieved.

これに対して、鋼中Mn含有率が1.5%を超えて高い試験番号11、攪拌指数が100を超えて高い試験番号12および精錬後Mn含有率が2.0%を超えて高い試験番号14は、精錬後の酸素含有率が低過ぎ、また、攪拌指数が10未満の試験番号13は、精錬後の酸素含有率が高過ぎ、いずれも、目標とする高硫黄含有鋼の成分組成から外れた結果となった。さらに、スラグ中MnO含有率が25%未満の試験番号15は、精錬後の酸素含有率が低過ぎ、また、スラグ中MnO含有率が40%を超えて高い試験番号16は、精錬後の酸素含有率が高過ぎ、いずれも、高硫黄含有鋼の成分組成から外れた結果となった。   On the other hand, the test number 11 in which the Mn content in the steel exceeds 1.5% is high, the test number 12 in which the stirring index exceeds 100 and the Mn content after refining exceeds 2.0% and the high test No. 14 is the oxygen content after refining is too low, and Test No. 13 whose stirring index is less than 10 is too high after refining. The result was out of the range. Furthermore, the test number 15 in which the MnO content in the slag is less than 25% is too low after the refining, and the test number 16 in which the MnO content in the slag is higher than 40% is the oxygen after the refining. The content rate was too high, and both results were out of the component composition of the high sulfur steel.

(実施例2)
1.試験方法
実施例1の場合と同様に、溶鋼量78tの容量を有する転炉により脱炭吹錬して得た溶鋼を用いて攪拌をともなう取鍋スラグ精錬を行い、精錬の後半にTeを添加してArガスを所定の流量で所定時間吹き込み、さらに攪拌を継続実施した。Te添加以降、溶鋼およびスラグ中のTe含有率を調査するために、適宜経時的に、成分分析用の試料を採取した。精錬後の高S含有鋼は、連続鋳造工程に供した。
(Example 2)
1. Test method As in the case of Example 1, ladle slag refining with stirring is performed using molten steel obtained by decarburization blowing using a converter having a capacity of 78 t of molten steel, and Te is added in the latter half of the refining. Then, Ar gas was blown in at a predetermined flow rate for a predetermined time, and stirring was further continued. In order to investigate the Te content in the molten steel and slag after the addition of Te, samples for component analysis were taken over time as appropriate. The steel containing high S after refining was subjected to a continuous casting process.

Te添加量は、78tの溶鋼に対して、名目上0.030〜0.085%となる量を添加しており、溶鋼中成分の実績値では0.011〜0.056%の範囲にあった。このように鋼中およびスラグ中Teの含有率を分析することにより、Te残留率、およびスラグと溶鋼間のTeの分配比((Te)/[Te])を求めた。ここで、Te残留率は、前記図2の説明において述べたとおり、溶鋼中のTe含有率(%)から算出した溶鋼中のTe残留量をTe添加量で除し、百分率(%)により表示した。   Te is added in an amount of nominally 0.030 to 0.085% to 78t of molten steel, and the actual value of components in the molten steel is in the range of 0.011 to 0.056%. It was. Thus, by analyzing the content of Te in the steel and slag, the Te residual ratio and the Te distribution ratio ((Te) / [Te]) between the slag and the molten steel were obtained. Here, the Te residual ratio is expressed as a percentage (%) by dividing the Te residual amount in the molten steel calculated from the Te content (%) in the molten steel by the Te addition amount, as described in the description of FIG. did.

2.試験結果
図3は、溶鋼中のTe残留率およびスラグと溶鋼間のTeの分配比におよぼす溶鋼の攪拌指数の影響を示す図である。
2. Test Results FIG. 3 is a diagram illustrating the influence of the stirring index of molten steel on the Te residual ratio in molten steel and the distribution ratio of Te between slag and molten steel.

同図の結果によれば、攪拌指数(Z)の値が、第1発明で規定された攪拌指数の下限値である10未満の場合には、Te残留率は低く、また、Teの分配比((Te)/[Te])の値も高いことから、溶鋼中へのTeの歩留まりは低く、また、溶鋼中のTe含有率も安定しない。   According to the result of FIG. 6, when the value of the stirring index (Z) is less than 10 which is the lower limit value of the stirring index defined in the first invention, the Te residual ratio is low, and the Te distribution ratio Since the value of ((Te) / [Te]) is also high, the yield of Te in the molten steel is low, and the Te content in the molten steel is not stable.

これに対して、攪拌指数(Z)の値が10を超えて高くなると、Te残留率は上昇し、Teの分配比((Te)/[Te])の値も20〜40(−)前後の安定した値となり、成分組成の制御性も向上することが判明した。   On the other hand, when the value of the stirring index (Z) exceeds 10 and the Te residual ratio increases, the value of the Te distribution ratio ((Te) / [Te]) is also around 20 to 40 (-). It became clear that the controllability of the component composition was improved.

本発明の方法によれば、高S含有鋼の製造において、取鍋スラグ精錬における溶鋼中Mnおよびスラグ中MnO含有率ならびに溶鋼の攪拌指数を調整することにより、従来は制御が困難であった溶鋼中酸素含有率およびS含有率の制御性を高め、S歩留りの高い安定した品質の高S含有鋼を安価に製造できる。したがって、Pb快削鋼に替わる高S含有快削鋼を安価に提供でき、さらに、高いTe歩留りと制御性のもとに安定した品質のTe含有高S快削鋼も提供できる。よって、本発明の高S含有鋼の製造方法は、Pbを含有しない高S含有快削鋼の製造分野において、溶鋼の溶製方法として広範に適用できる。   According to the method of the present invention, in the production of high S content steel, by adjusting the Mn content in the molten steel and the MnO content in the slag and the stirring index of the molten steel in the ladle slag refining, it has been difficult to control conventionally. The controllability of the medium oxygen content and the S content can be improved, and a high quality S steel with a high S yield and a stable quality can be produced at low cost. Therefore, high-S content free-cutting steel that replaces Pb free-cutting steel can be provided at a low cost, and stable Te-containing high-S free-cutting steel with high Te yield and controllability can also be provided. Therefore, the manufacturing method of the high S content steel of the present invention can be widely applied as a melting method of molten steel in the manufacturing field of the high S content free cutting steel not containing Pb.

溶鋼の攪拌指数と溶鋼中の全酸素含有率との関係を示す図である。It is a figure which shows the relationship between the stirring index of molten steel, and the total oxygen content rate in molten steel. 溶鋼中のTe残留率およびスラグと溶鋼間のTeの分配比におよぼす溶鋼の攪拌指数の影響を示す図である。It is a figure which shows the influence of the stirring index of molten steel on the Te residual rate in molten steel, and the distribution ratio of Te between slag and molten steel. 溶鋼中のTe残留率およびスラグと溶鋼間のTeの分配比におよぼす溶鋼の攪拌指数の影響を示す図である。It is a figure which shows the influence of the stirring index of molten steel on the Te residual rate in molten steel, and the distribution ratio of Te between slag and molten steel.

Claims (2)

質量%で、C:0.01〜0.15%、Si≦0.03%、Mn:0.9〜2.0%、S:0.40〜0.70%、P:0.01〜0.2%、N:0.003〜0.03%およびO(酸素):0.008〜0.020%を含有し、残部がFeおよび不純物からなる高硫黄含有鋼の製造方法であって、取鍋内においてスラグと接触させて精錬する際の溶鋼中のMn含有率を1.5質量%以下およびスラグ中のMnO含有率を25〜40質量%とし、かつ、前記精錬において、溶鋼の単位質量当たりの攪拌エネルギーである溶鋼の攪拌指数の値を10〜100(J/kg−溶鋼)の範囲に調整することを特徴とする高硫黄含有鋼の製造方法。   In mass%, C: 0.01 to 0.15%, Si ≦ 0.03%, Mn: 0.9 to 2.0%, S: 0.40 to 0.70%, P: 0.01 to 0.2%, N: 0.003-0.03% and O (oxygen): 0.008-0.020%, a method for producing a high-sulfur steel containing the balance of Fe and impurities In the ladle, the Mn content in the molten steel when refining in contact with the slag is 1.5% by mass or less, and the MnO content in the slag is 25 to 40% by mass. A method for producing high-sulfur steel, characterized by adjusting the value of the stirring index of molten steel, which is stirring energy per unit mass, to a range of 10 to 100 (J / kg-molten steel). 質量%で、C:0.01〜0.15%、Si≦0.03%、Mn:0.9〜2.0%、S:0.40〜0.70%、P:0.01〜0.2%、N:0.003〜0.03%、O(酸素):0.008〜0.020%およびTe:0.001〜0.07%を含有し、残部がFeおよび不純物からなる高硫黄含有鋼の製造方法であって、Teを含有しない溶鋼を取鍋内においてスラグと接触させて精錬する際の溶鋼中のMn含有率を1.5質量%以下およびスラグ中のMnO含有率を25〜40質量%とし、かつ、前記精錬において、溶鋼の単位質量当たりの攪拌エネルギーである溶鋼の攪拌指数の値を10〜100(J/kg−溶鋼)の範囲に調整するとともに、精錬後期でのTe添加後において、前記溶鋼の攪拌指数の値を10(J/kg−溶鋼)以上の範囲に調整することを特徴とする高硫黄含有鋼の製造方法。
In mass%, C: 0.01 to 0.15%, Si ≦ 0.03%, Mn: 0.9 to 2.0%, S: 0.40 to 0.70%, P: 0.01 to 0.2%, N: 0.003 to 0.03%, O (oxygen): 0.008 to 0.020% and Te: 0.001 to 0.07%, with the balance being Fe and impurities A method for producing a high sulfur content steel, comprising a molten steel not containing Te in a ladle in contact with slag and refining Mn content in the molten steel of 1.5% by mass or less and containing MnO in the slag In the refining, the stirring index value of the molten steel, which is the stirring energy per unit mass of the molten steel, is adjusted to a range of 10 to 100 (J / kg-molten steel) and refined. After Te addition in the latter period, the stirring index value of the molten steel was 10 (J / kg- Method for producing a high sulfur content steel and adjusting to a range of steel) or more.
JP2004208335A 2004-07-15 2004-07-15 Method for producing high sulfur steel Active JP4285349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004208335A JP4285349B2 (en) 2004-07-15 2004-07-15 Method for producing high sulfur steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004208335A JP4285349B2 (en) 2004-07-15 2004-07-15 Method for producing high sulfur steel

Publications (2)

Publication Number Publication Date
JP2006028575A true JP2006028575A (en) 2006-02-02
JP4285349B2 JP4285349B2 (en) 2009-06-24

Family

ID=35895283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004208335A Active JP4285349B2 (en) 2004-07-15 2004-07-15 Method for producing high sulfur steel

Country Status (1)

Country Link
JP (1) JP4285349B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102154534A (en) * 2010-03-30 2011-08-17 吴海涛 Arc furnace smelting high-sulfur alloy steel and preparation method thereof
CN109182648A (en) * 2018-08-08 2019-01-11 鞍钢股份有限公司 A method of sulphur free-cutting steel is produced using desulphurization and slag skimming iron

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102154534A (en) * 2010-03-30 2011-08-17 吴海涛 Arc furnace smelting high-sulfur alloy steel and preparation method thereof
CN109182648A (en) * 2018-08-08 2019-01-11 鞍钢股份有限公司 A method of sulphur free-cutting steel is produced using desulphurization and slag skimming iron

Also Published As

Publication number Publication date
JP4285349B2 (en) 2009-06-24

Similar Documents

Publication Publication Date Title
JP5221379B2 (en) Method for producing ferritic stainless steel with fine solidification structure and ferritic stainless steel produced thereby
JP5803824B2 (en) Method of melting carburized bearing steel
JP5326475B2 (en) Method for recovering chromium from chromium-containing slag
JP5803815B2 (en) Method of melting bearing steel
JP6990337B1 (en) Ni-based alloy with excellent surface properties and its manufacturing method
JP4656007B2 (en) Method of processing molten iron by adding Nd and Ca
JP6526307B1 (en) Ni-Cr-Nb-Fe-based alloy excellent in internal quality and hot workability and method for producing the same
JP4285349B2 (en) Method for producing high sulfur steel
JP4544126B2 (en) Manufacturing method of low carbon sulfur free cutting steel
JP4714655B2 (en) Desulfurization method for chromium-containing molten iron
JPH10102119A (en) Production of sulfur free-cutting steel resulfurized carbon steel
KR100361778B1 (en) Manufacturing method of ultra low carbon stainless steel by slag control
JP5509913B2 (en) Method of melting high Si steel with low S and Ti content
KR101786931B1 (en) Method for refining of molten stainless steel
JP5387045B2 (en) Manufacturing method of bearing steel
CN113684345B (en) Preparation method of free-cutting electroslag remelting stainless steel and stainless steel prepared by method
JP7438435B1 (en) Stainless steel with excellent surface quality
JP7255639B2 (en) Molten steel desulfurization method and desulfurization flux
JP4833889B2 (en) Desulfurization method for chromium-containing molten iron
JP5454313B2 (en) Blowing acid decarburization method for chromium-containing steel
JP4591354B2 (en) Treatment method of molten iron by Nd addition
JPH08193245A (en) Bearing steel and its production
JP2007186729A (en) TREATMENT METHOD FOR MOLTEN IRON BY Nd ADDITION
SU857271A1 (en) Method of producing high-strength steel
JPH11279623A (en) Method for melting ferritic stainless steel containing high aluminum capable of suppressing erosion of refractory of refining container, and excellent in manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081208

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090316

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4285349

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350