JP2006028564A - Steel for plastic molding die having excellent specular finishability - Google Patents

Steel for plastic molding die having excellent specular finishability Download PDF

Info

Publication number
JP2006028564A
JP2006028564A JP2004207142A JP2004207142A JP2006028564A JP 2006028564 A JP2006028564 A JP 2006028564A JP 2004207142 A JP2004207142 A JP 2004207142A JP 2004207142 A JP2004207142 A JP 2004207142A JP 2006028564 A JP2006028564 A JP 2006028564A
Authority
JP
Japan
Prior art keywords
steel
less
ppm
oxide
mirror finish
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004207142A
Other languages
Japanese (ja)
Inventor
Fumio Toyama
文夫 遠山
Isao Tamura
庸 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2004207142A priority Critical patent/JP2006028564A/en
Publication of JP2006028564A publication Critical patent/JP2006028564A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel for a plastic molding die having excellent specular finishability. <P>SOLUTION: The steel for a plastic molding die is a precipitation hardening steel having a composition comprising, by mass, 1.0 to 5.0% Ni, 0.5 to 1.5% Al, 0.1 to 2.5% Cu, 0.01 to 0.4% Zr and ≤0.02% S, and in which the content of O is regulated to ≤20 ppm and N to ≤50 ppm. Preferably, the content of Al is ≥0.6%, or further, the content of Ca is regulated to ≤5 ppm and Mg to ≤30 ppm. Regarding these steels for a die, at the time when oxides in each steel are floated up by electron beam button melting, and the floated surfaces of the oxides are observed, the ratio of ZrO<SB>2</SB>occupied in all the oxides is desirably ≥95 area%. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高度の鏡面仕上性を要求される、プラスチック製品の射出成形などに用いて最適な金型用鋼に関するものである。   TECHNICAL FIELD The present invention relates to a mold steel that is optimal for use in injection molding of plastic products and the like that requires a high degree of mirror finish.

従来、家電製品、OA機器の筐体や食品容器、医療機器等の高度の鏡面仕上(例えばダイヤモンドコンパウンドの砥粒メッシュ番号で8000、又はそれ以上)を要求されるプラスチック製品の成形用途には、高清浄度のJIS−SUS420J2又はそれに類似するステンレス鋼を50HRC程度に焼入れ焼戻しした金型が用いられるか、又はAISI−P21に代表されるNi,Al,Cuを添加した析出硬化鋼で切削前に予め40HRC前後の使用硬さに調質した鋼による金型が用いられてきた。特に後者の金型材は40HRCの高硬度の割に被切削性に優れ、また粗加工後に熱処理を必要としないことから、ユーザサイドでの熱処理工数ならびに熱処理歪の修正等の工数を省くことが出来るため、広範囲に使用されてきた。   Conventionally, for molding applications of plastic products that require a high degree of mirror finish (for example, a diamond compound abrasive mesh number of 8000 or more) such as home appliances, OA equipment casings, food containers, medical equipment, etc. A high-cleanness JIS-SUS420J2 or similar stainless steel die hardened and tempered to about 50HRC is used, or precipitation-hardened steel added with Ni, Al, Cu typified by AISI-P21 before cutting A mold made of steel that has been conditioned to a working hardness of around 40 HRC in advance has been used. In particular, the latter mold material is excellent in machinability for a high hardness of 40 HRC, and does not require heat treatment after rough machining, so that it is possible to save man-hours for heat treatment on the user side and correction of heat treatment strain, etc. Therefore, it has been used extensively.

AISI−P21の切削性や鏡面仕上性を改良した鋼としては、例えば質量%にてC約0.1%,Ni約3%,Al約1%,Cuおよそ1〜2%を含み、Crを特に添加しない鋼種が最も一般的に使用されている(特許文献1)。更に適量のCrを含んで耐食性を改良した鋼種も市場に供されている(特許文献2)。また、Alといった非金属介在物の大きさを50μm以下にしたプラスチック成形金型用鋼とすることで、被削性と鏡面仕上げ性を向上する手法が提案されている(特許文献3)。
特開昭63−114942 特開平11−220891 特開平11−335775
As steel having improved cutting performance and mirror finish of AISI-P21, for example, it contains about 0.1% C, about 3% Ni, about 1% Al, about 1 to 2% Cu, and Cr. A steel type not particularly added is most commonly used (Patent Document 1). Furthermore, a steel type containing an appropriate amount of Cr and having improved corrosion resistance is also available on the market (Patent Document 2). In addition, a technique has been proposed for improving machinability and mirror finish by using steel for plastic molds in which the size of non-metallic inclusions such as Al 2 O 3 is 50 μm or less (Patent Document 3). ).
JP-A-63-114942 JP-A-11-220891 JP-A-11-335775

上述したAISI−P21改良の鏡面仕上金型用鋼は、通常電気炉で溶製後に真空精錬するか、または真空誘導炉によっても製造されるところ、最近では電気炉で溶製された材料を電極とするエレクトロスラグ再溶解法や真空再溶解法によって製造されている。これは通常の電気炉溶製法のみでは、添加されているAlが溶湯中で硬質酸化物を形成し、鋳造時に凝集しやすく、この凝集したAlの酸化物(アルミナ)が鏡面仕上性を著しく害し得ることから、再溶解法によってこうした酸化物を低減し且つサイズ的にも小さくするためである。しかしながら、再溶解法の適用は製造上、工数及び歩留の観点からは大幅なコスト増要因となり得る。   The above-described AISI-P21 modified mirror finish mold steel is usually refined in a vacuum after being melted in an electric furnace, or is also produced in a vacuum induction furnace. Recently, the material melted in an electric furnace is used as an electrode. It is manufactured by the electroslag remelting method and the vacuum remelting method. This is because with the ordinary electric furnace melting method, the added Al forms a hard oxide in the molten metal and easily aggregates during casting, and this aggregated Al oxide (alumina) significantly impairs the mirror finish. This is because the oxide is reduced and the size is reduced by the remelting method. However, the application of the remelting method can be a significant cost increase factor from the viewpoint of manufacturing man-hours and yield.

上記の再溶解工程を省く為に、例えば特許文献3などで見られるように電気炉溶解時の精錬、鋳造工程で徹底的な脱酸を行なう方法も検討されてきた。こうした方法は確かに酸化物を低減するには有効であるが、完全に酸化物を除去することは難しく、また鋳造時にその凝集を完全に防ぐことを保証できない問題点があった。本発明者の経験では現実に1ppmレベルに酸素量を抑えた場合でもそれだけでは上記#8000レベルの鏡面仕上性を十分に保証することは出来なかった。アルミナが原因である。   In order to omit the above-described remelting step, for example, as seen in Patent Document 3, a method of performing thorough deoxidation in the refining and casting process during melting in an electric furnace has been studied. Such a method is effective for reducing oxides, but it is difficult to completely remove the oxides, and there is a problem that it cannot be guaranteed that the aggregation is completely prevented during casting. According to the inventor's experience, even when the oxygen amount was actually suppressed to the 1 ppm level, the mirror finish of the above-mentioned # 8000 level could not be sufficiently ensured by itself. Alumina is the cause.

また、上記以外の方法で、析出硬化の作用を得るには重要ではあるものの、その酸化物の形成が懸念される、特に0.5%以上の高いAlが添加された高度の鏡面仕上金型用鋼について、鏡面仕上性を十分に保証しつつ、再溶解工程を省く方法は未だかつて提案されていない。   Moreover, although it is important to obtain the effect of precipitation hardening by a method other than the above, there is a concern about the formation of the oxide, especially a high-level mirror finish mold to which high Al of 0.5% or more is added. For steel, there has not been proposed a method for sufficiently ensuring the mirror finish and omitting the remelting process.

本発明の目的は、従来より安価にかつ高度の鏡面仕上性を付与して製造することの出来る、Ni,Al,Cuを添加した析出硬化型プラスチック成形金型用鋼を提供することである。   An object of the present invention is to provide a steel for precipitation hardening plastic molding dies added with Ni, Al and Cu, which can be manufactured at a lower cost and with a higher mirror finish.

本発明者は、上記の問題を検討した結果、0.5%以上のAl添加鋼であっても適量のZrの添加した上で、調整の容易な他の条件さえ揃えれば、鋼中の酸化物の大半をZrの酸化物に取って変わらせることが可能で、その場合Zrの酸化物がピンホールなどの鏡面仕上性の阻害要因とはならないことを見いだした。また、Zrは酸化物を形成するだけでなく、硫化物や微量の硬質の炭窒化物も形成するが、これらが一定の条件下では鏡面仕上性に悪影響を及ぼさないことも見いだし、本発明に到達した。   As a result of studying the above problem, the present inventor has found that, even if an Al-added steel of 0.5% or more is added, an appropriate amount of Zr is added, and if other conditions that can be easily adjusted are prepared, the oxidation in the steel is achieved. It was found that most of the product could be replaced with an oxide of Zr, in which case the oxide of Zr would not be a hindrance to mirror finish such as pinholes. Zr not only forms oxides, but also forms sulfides and traces of hard carbonitrides, but it has also been found that these do not adversely affect mirror finish under certain conditions. Reached.

すなわち本発明は、質量比で、Ni:1.0〜5.0%、Al:0.5〜1.5%、Cu:0.1〜2.5%であり、Zr:0.01〜0.4%を含有し、Sは0.02%以下の析出硬化型鋼であって、Oを20ppm以下、Nを50ppm以下に規制したことを特徴とする鏡面仕上性に優れたプラスチック成形金型用鋼である。ここでSは添加してもよい元素であるが、0.02%以下に規制するものである。そして好ましくは、Al:0.6%以上、あるいはさらにCa:5ppm以下、Mg:30ppm以下に規制するものである。   That is, the present invention has a mass ratio of Ni: 1.0 to 5.0%, Al: 0.5 to 1.5%, Cu: 0.1 to 2.5%, and Zr: 0.01 to 0.4% and S is 0.02% or less precipitation hardening type steel, and O is controlled to 20 ppm or less and N is controlled to 50 ppm or less. Steel. Here, S is an element that may be added, but is restricted to 0.02% or less. And preferably, Al: 0.6% or more, or Ca: 5 ppm or less, Mg: 30 ppm or less.

そして、上記の金型用鋼については、エレクトロンビームボタン溶解により鋼中の酸化物を浮上させ、その酸化物の浮上面を観察した時の、全酸化物に占めるZr酸化物の割合が、95面積%以上であることが望ましい。   And about said steel for metal mold | die, the ratio of the Zr oxide to the total oxide when the oxide in steel is levitated by electron beam button melt | dissolution and the floating surface of the oxide is observed is 95. It is desirable that it is area% or more.

本発明のプラスチック成形金型用鋼の成分組成は、上記の規定元素に加えては、質量比で、C:0.4%以下、Si:2.0%以下、Mn:2.0%以下、P:0.03%以下、Cr:18%以下、Mo:4%以下であり、残部Feおよび不可避的不純物からなるものとでき、好ましい一形態である。以上の本発明のプラスチック成形金型用鋼は、好ましい一形態も合わせて、Cが0.15%以下であることがさらに望ましい。   In addition to the above specified elements, the component composition of the steel for plastic molds of the present invention is, by mass ratio, C: 0.4% or less, Si: 2.0% or less, Mn: 2.0% or less P: 0.03% or less, Cr: 18% or less, Mo: 4% or less, which can be composed of the remaining Fe and unavoidable impurities, which is a preferred embodiment. In the steel for plastic molding die of the present invention described above, it is further desirable that C is 0.15% or less, including a preferred embodiment.

本発明によれば、鏡面仕上性に優れる高硬度のプリハードン金型材を、再溶解工程なしに安価に供給することが可能となり、高級プラスチック製品の製造に欠くことのできない技術となる。   According to the present invention, it becomes possible to supply a pre-hardened mold material having high hardness with excellent mirror finish at a low cost without a remelting step, which is an indispensable technique for manufacturing high-grade plastic products.

上述したように、本発明の重要な特徴は、0.5%以上の高いAl添加のされた析出硬化型鋼にとっては従来困難と考えられてきた、その製造での再溶解工程なしに高度の鏡面仕上性を付与することが可能であって、その為の合金鋼設計についての必要条件を見いだしたことにある。   As described above, an important feature of the present invention is that it has a high specular surface without a remelting step in its manufacture, which has been considered difficult for precipitation hardened steel with a high Al content of 0.5% or more. It is possible to impart finishability, and found the necessary condition for designing the alloy steel.

まず、本発明の成分組成について説明する。なお、その含有する質量比の表記については、断わりのない限り“%”および“ppm”で示す。
・Ni:1.0〜5.0%,Al:0.5〜1.5%,Cu:0.1〜2.5%
NiとAlは主要な析出硬化相NiAl等の構成元素であり、Cuはその析出サイトを提供する重要な元素である。一般的には上記析出硬化相が多い方が被切削性が向上するが、多過ぎると靱性を低下させるので、相互に適量の範囲が存在する。Niは1.0%未満では必要な硬度(約40HRC)が得られにくく、5.0%を超えると硬化への寄与が得られずかえって切削加工性を害するので、1.0〜5.0%とする。Alは0.5%未満ではやはり必要な硬度(約40HRC)が得られにくく、1.5%を超えると靱性を著しく低下させるため、0.5〜1.5%とする。なお好ましい範囲は0.6〜1.5%である。Cuは0.1%未満では均質な硬さが得られにくくなり、2.5%を超えると靱性や熱間加工性を大幅に低下させるので、0.1〜2.5%とする。
First, the component composition of the present invention will be described. In addition, the description of the mass ratio contained therein is indicated by “%” and “ppm” unless otherwise specified.
Ni: 1.0-5.0%, Al: 0.5-1.5%, Cu: 0.1-2.5%
Ni and Al are constituent elements such as a main precipitation hardened phase Ni 3 Al, and Cu is an important element providing its precipitation site. In general, the greater the precipitation hardening phase, the better the machinability, but if it is too much, the toughness is lowered, so there is an appropriate range for each other. If Ni is less than 1.0%, the required hardness (about 40 HRC) is difficult to obtain, and if it exceeds 5.0%, the contribution to hardening is not obtained and the machinability is impaired. %. If Al is less than 0.5%, the required hardness (about 40 HRC) is hardly obtained, and if it exceeds 1.5%, the toughness is remarkably lowered, so 0.5 to 1.5%. A preferred range is 0.6 to 1.5%. If Cu is less than 0.1%, it becomes difficult to obtain a uniform hardness, and if it exceeds 2.5%, the toughness and hot workability are greatly reduced, so 0.1 to 2.5%.

・Zr:0.01〜0.4%
Zrは本発明の課題の解決を可能とした最も重要な元素である。即ち、鏡面磨き時にピンホールの要因となるアルミナ、そして更にはMg酸化物(マグネシア)等を還元し、ピンホールになりにくいZr酸化物(ジルコニア)を形成する。なお、同時にZrは硫化物、炭窒化物も形成するので、これらの量との関係で必要添加量が決まってくるが、下記の酸素および窒素に規制することで、本発明のAlそしてNiやCuの範囲にあっては0.01%以上で一定の効果が得られる。しかし、0.4%を超えると靱性に悪影響を及ぼすので、0.01〜0.4%とする。望ましい範囲は0.03〜0.2%であり、さらに望ましくは0.05〜0.15%である。
・ Zr: 0.01 to 0.4%
Zr is the most important element that can solve the problems of the present invention. That is, alumina that causes pinholes during mirror polishing, and further Mg oxide (magnesia) and the like are reduced to form Zr oxide (zirconia) that does not easily become pinholes. At the same time, since Zr also forms sulfides and carbonitrides, the necessary addition amount is determined in relation to these amounts, but by limiting to the following oxygen and nitrogen, Al and Ni of the present invention In the range of Cu, a certain effect can be obtained at 0.01% or more. However, if it exceeds 0.4%, the toughness is adversely affected. A desirable range is 0.03 to 0.2%, and more desirably 0.05 to 0.15%.

・S:0.02%以下
Sは被削性を向上する上で添加してもよいが、Mnと或いはZrと化合物を形成して鏡面仕上の際のオレンジピール(ゆず肌)の発生要因となる。また、多すぎるとZrがAlを還元する効力が著しく減じられることから、本発明にとっては上限管理の必要な元素である。添加する場合であっても、0.02%以下に規制することにより優れた鏡面仕上性を達成しやすくしている。
S: 0.02% or less S may be added to improve machinability, but it forms a compound with Mn or Zr to produce orange peel (yuzu skin) during mirror finish. Become. On the other hand, if the amount is too large, the effectiveness of Zr for reducing Al 2 O 3 is remarkably reduced. Therefore, it is an element that requires upper limit management for the present invention. Even when it is added, by controlling to 0.02% or less, excellent mirror finish is easily achieved.

・O(酸素):20ppm以下
Oは本発明の課題を解決する為に規定が不可欠の元素である。即ち、Oが過剰に存在する場合、Zrの添加効果は十分でなくなり、鋼中には鏡面仕上に有害なAlやMgOが多く生成してしまう。本発明のAl,Ni,CuとZrのバランスにおいては、Oは多くとも20ppm以下でなければならない。望ましい範囲は5ppm以下である。
O (oxygen): 20 ppm or less O is an indispensable element for solving the problems of the present invention. That is, when O is excessively present, the effect of adding Zr is not sufficient, and a large amount of Al 2 O 3 and MgO harmful to mirror finish are produced in the steel. In the balance of Al, Ni, Cu and Zr of the present invention, O must be at most 20 ppm or less. A desirable range is 5 ppm or less.

・N(窒素):50ppm以下
Nは、上述の通り、Zr,Cとともに硬質の炭窒化物、ZrCNを形成し、これは鏡面仕上性に悪影響を及ぼす。よって、本発明における鋼中のNは、50ppm以下である必要がある。望ましくは20ppm以下である。
N (nitrogen): 50 ppm or less As described above, N forms a hard carbonitride, ZrCN, together with Zr and C, which adversely affects mirror finish. Therefore, N in the steel in the present invention needs to be 50 ppm or less. Desirably, it is 20 ppm or less.

以上、本発明の効果を達成するのに必要不可欠な元素規定につき述べたが、さらに鏡面仕上性を向上するのに好ましい条件を述べる。
・Ca:5ppm以下
Caは、鋼中に不可避に存在するか、あるいは必要に応じて添加のされるSと化合物を生成し、鏡面磨き時にピンホール要因となる。よって、5ppm以下に規制しておくことが望ましい。少なければ少ないほど望ましい。
The element definition essential for achieving the effect of the present invention has been described above. Preferred conditions for further improving the mirror finish will be described.
-Ca: 5 ppm or less Ca is unavoidably present in steel, or forms S and a compound that is added as necessary, and becomes a pinhole factor during mirror polishing. Therefore, it is desirable to regulate to 5 ppm or less. The smaller the number, the better.

・Mg:30ppm以下
Mgは、上記の通りのMgOとして他の酸化物、硫化物と複合化合物を形成し、鏡面磨き時にピンホール要因となり得る。よって、30ppm以下に規制しておくことが望ましい。より望ましくは10ppm以下である。
Mg: 30 ppm or less Mg forms a complex compound with other oxides and sulfides as MgO as described above, and can become a pinhole factor during mirror polishing. Therefore, it is desirable to regulate to 30 ppm or less. More desirably, it is 10 ppm or less.

・エレクトロンビームボタン溶解により鋼中の酸化物を浮上させ、その酸化物の浮上面を観察した時の全酸化物に占めるZr酸化物の割合:95面積%以上
上記の適切な合金配合により、組織中の酸化物の大半をジルコニアとすることができ、鏡面仕上性に有害なアルミナやマグネシアを極少化することが可能である。そして、この作用効果は、エレクトロンビームボタン溶解により鋼中の酸化物を浮上分離して、その酸化物の浮上面を観察(走査型電子顕微鏡,元素マップ分析)することより、全浮上酸化物に占めるジルコニアの面積割合を調べることで、評価が可能である。そして好ましくは、その観察した時の全酸化物に占めるジルコニアの割合が95面積%以上であり、更に望ましくは99%以上である。
-The ratio of Zr oxide in the total oxide when the oxide in the steel is levitated by electron beam button melting and the floating surface of the oxide is observed: 95 area% or more. Most of the oxide can be made of zirconia, and it is possible to minimize alumina and magnesia which are harmful to mirror finish. This effect is achieved by separating the oxide in the steel by electron beam button melting and observing the floating surface of the oxide (scanning electron microscope, element map analysis). Evaluation is possible by examining the area ratio of occupying zirconia. Preferably, the ratio of zirconia in the total oxide when observed is 95 area% or more, more desirably 99% or more.

なお、本発明の評価に用いるエレクトロンビームボタン溶解とは、5g程度の試料を真空チャンバ中で電子ビームを用いて溶解したのち、球状に凝固させ、最上面に介在物を浮上させて計測可能とするものである。   Electron beam button melting used in the evaluation of the present invention means that a sample of about 5 g can be measured using an electron beam in a vacuum chamber, then solidified into a spherical shape, and inclusions can be floated on the uppermost surface. To do.

次に、上述の析出硬化型鋼にとって、本発明の用途に適した望ましい具体的な成分組成を示す。なお、これらに述べる元素種の望ましい範囲は、上述の根幹あるいは好ましい成分組成を満たしたプラスチック成形金型用鋼に加えて、単独あるいは複数でも適用することができる。   Next, a desirable specific component composition suitable for the application of the present invention will be shown for the above precipitation hardening steel. In addition, the desirable range of the element species described in these can be applied singly or in plural in addition to the above-described root or steel for plastic molds satisfying a preferable component composition.

Cは、適度の添加により時効硬さの向上や結晶粒微細化、粒界強度向上などの作用があるが、過剰に加える必要はなく、過剰に添加すれば硬質炭化物を形成して切削加工性の悪化や鏡面仕上性の低下をもたらす。本発明においてはZrとの炭化物、炭窒化物の形成防止に注意が必要であり、多くとも0.4%以下であることが望ましい。なお、更に好ましくは0.03〜0.15%である。   C has effects such as improvement of age hardness, grain refinement, and improvement of grain boundary strength by appropriate addition, but it is not necessary to add excessively, and if added excessively, hard carbide is formed and machinability is improved. Deterioration of the surface finish and the mirror finish. In the present invention, care must be taken to prevent the formation of carbides and carbonitrides with Zr, and at most 0.4% or less is desirable. In addition, More preferably, it is 0.03 to 0.15%.

Siは、鋼の高速切削加工時に工具表面に酸化物を形成して潤滑効果(ベラーグ効果)を発現させる作用があり、切削加工性の向上に重要な元素である。時効軟化抵抗を与える効果もある。但し、高すぎると靱性の低下等を招くので、2.0%以下とすることが望ましい。   Si has an action of forming an oxide on the tool surface during high-speed cutting of steel to develop a lubrication effect (Belag effect), and is an important element for improving the machinability. There is also an effect of giving aging softening resistance. However, if it is too high, it causes a decrease in toughness and the like, so 2.0% or less is desirable.

Mnは、鋼の脱酸剤として働き、Sの固定の為にも重要だが、高すぎると切削加工性の低下を招くので2.0%以下とすることが望ましい。   Mn works as a deoxidizer for steel and is important for fixing S, but if it is too high, it causes a decrease in cutting workability, so it is desirable to make it 2.0% or less.

Pは、靱性を低下させるが、0.03%以下の含有なら実用上有害でなく、0.03%以下とすることが望ましい。   P lowers the toughness, but if it is contained at 0.03% or less, it is not practically harmful, and is preferably 0.03% or less.

Crは、耐食性向上に有効な元素であるが、この添加の必要性や添加量は成形樹脂の種類などの用途上の必要によって決めるべきものである。但し、18%を超えて添加すると靱性が低下するので、18%以下とすることが望ましい。   Cr is an element effective for improving the corrosion resistance, but the necessity and amount of addition should be determined according to the application needs such as the type of molding resin. However, if added over 18%, the toughness decreases, so 18% or less is desirable.

Moは、時効硬化に寄与する元素の一つであり、本発明のNiAlによる析出硬化に加えて、更に硬度を増加させたい場合に使用することができる。但し、この効果において4%を超えても特性への有効性は低いので、4%以下とすることが望ましい。   Mo is one of the elements contributing to age hardening, and can be used when it is desired to further increase the hardness in addition to the precipitation hardening by NiAl of the present invention. However, even if it exceeds 4% in this effect, the effectiveness on the characteristics is low, so it is desirable to make it 4% or less.

なお、上記以外の残部については、Feと他の不可避的不純物としてもよいが、例えばW:1%以下、V:1%以下、Co:3%以下、Nb:0.5%以下、Ta:0.5%以下、Ti:0.5%以下、B:0.1%以下といった中からの1種以上を、必要に応じて添加しても良い。   The remainder other than the above may be Fe and other inevitable impurities, for example, W: 1% or less, V: 1% or less, Co: 3% or less, Nb: 0.5% or less, Ta: One or more of 0.5% or less, Ti: 0.5% or less, and B: 0.1% or less may be added as necessary.

電気炉溶解法により得た鋼塊を熱間加工して、表1に示す化学成分の、残部Feおよび不可避的不純物でなる試料を準備した。そして、これら試料に熱処理(溶体化および時効処理)を行なって、所定の硬さに調質した。そして、調質後の各試料について、上記の要領に従うエレクトロンビームボタン溶解試験による浮上酸化物中のジルコニアの割合調査と、#8000砥粒による鏡面仕上磨き試験(ピンホールおよびオレンジピールの有無評価)を行なった。その結果を、調質硬さと共に、表2に示す。   A steel ingot obtained by the electric furnace melting method was hot-worked to prepare a sample composed of the remaining Fe and unavoidable impurities of the chemical components shown in Table 1. Then, these samples were heat-treated (solution treatment and aging treatment) and tempered to a predetermined hardness. And, for each sample after tempering, a survey of the proportion of zirconia in the floating oxide by the electron beam button dissolution test according to the above procedure, and a mirror finish polishing test with # 8000 abrasive grains (existence evaluation of pinhole and orange peel) Was done. The results are shown in Table 2 together with the tempering hardness.

本発明鋼は、Al量が多いにも関わらず、酸素、窒素および硫黄の適正管理と、Zrの適正量添加により、酸化物のほとんどをジルコニア化できており、#8000鏡面仕上が問題なく可能であった。本発明鋼1および比較鋼6,7のジルコニア分布は、それぞれ図1,2,3に示す浮上介在物の走査型電子顕微鏡像およびO、Zr、Al元素のマップ分析結果の通りである。図1〜3のマップ像においては、白色(淡色)を呈している部位が各分析元素の濃化部である。本発明鋼1の場合(図1)、分析マップ上にはアルミナが1点のみ認められているが、数は少なく、凝集していない。また、ジルコニアの個々のサイズは小さく、凝集しにくい状況も認められる。   Although the steel of the present invention has a large amount of Al, most of the oxides can be converted into zirconia by appropriate control of oxygen, nitrogen and sulfur and addition of appropriate amounts of Zr. Met. The zirconia distribution of the invention steel 1 and the comparative steels 6 and 7 is as shown in the scanning electron microscope images of the floating inclusions and the map analysis results of the O, Zr, and Al elements shown in FIGS. In the map images of FIGS. 1 to 3, a portion exhibiting white (light color) is a concentrated portion of each analytical element. In the case of the steel 1 of the present invention (FIG. 1), only one alumina is recognized on the analysis map, but the number is small and it is not agglomerated. Moreover, the individual size of zirconia is small, and the situation where aggregation is difficult is also recognized.

比較鋼6は、Al量に比して、Zr量の不足により、酸化物の多くが凝集アルミナとなり、#8000鏡面仕上でこれが破砕、脱落しピンホールが発生した。比較鋼7は、本発明鋼と同量のZrを添加したにもかかわらず、Sが0.051%と高いために、ZrによるAlを還元する作用が減じられ、Zr酸化物への改質が十分ではなく、結果、アルミナによるピンホールが発生した。また、硫化物によるオレンジピールも発生した。 In Comparative Steel 6, because of the insufficient amount of Zr as compared with the amount of Al, most of the oxide became agglomerated alumina, which was crushed and dropped off with a # 8000 mirror finish, generating pinholes. In Comparative Steel 7, although the same amount of Zr as that of the steel of the present invention was added, S was as high as 0.051%, so the action of reducing Al 2 O 3 by Zr was reduced, and Zr oxide As a result, pinholes due to alumina were generated. Also, orange peel due to sulfide was generated.

比較鋼8は、本発明量のAlを添加しない試料であるが、この場合は0.007%と低いZr量であっても、酸化物の全量ジルコニア化が達成されている。しかし、析出硬化作用の不足により高硬さが得られないことから、十分に平滑な磨き面が得がたく、結果、S量が低いにもかかわらず、オレンジピール状肌となった。Al量の低い比較鋼9は、Zrの添加により酸化物のジルコニア化が達成されてはいる。しかし、比較鋼8ほどではないものの、析出硬化元素の不足から十分な硬度が得られず、若干のオレンジピールが発生した。   The comparative steel 8 is a sample to which the amount of the present invention is not added, but in this case, even when the amount of Zr is as low as 0.007%, the entire amount of zirconia of the oxide is achieved. However, since high hardness cannot be obtained due to insufficient precipitation hardening action, a sufficiently smooth polished surface is difficult to obtain, and as a result, an orange peel-like skin was obtained despite the low amount of S. In the comparative steel 9 having a low Al content, zirconia of the oxide is achieved by adding Zr. However, although not as much as comparative steel 8, sufficient hardness was not obtained due to the lack of precipitation hardening elements, and some orange peel was generated.

エレクトロンビームボタン溶解により本発明の一例のプラスチック成形金型用鋼中の酸化物を浮上分離し、その酸化物の浮上面を観察した、走査型電子顕微鏡像およびO、Zr、Al元素のマップ分析像である。Scanning electron microscope image and map analysis of O, Zr, and Al elements in which the oxide in the steel for plastic molding die of the present invention was separated by floating by electron beam button melting and the floating surface of the oxide was observed. It is a statue. エレクトロンビームボタン溶解により比較のための一例のプラスチック成形金型用鋼中の酸化物を浮上分離し、その酸化物の浮上面を観察した、走査型電子顕微鏡像およびO、Zr、Al元素のマップ分析像である。Scanning electron microscope image and map of O, Zr, and Al elements in which the oxide in the steel for plastic molding die for comparison was floated and separated by electron beam button melting, and the floating surface of the oxide was observed. It is an analysis image. エレクトロンビームボタン溶解により比較のための一例のプラスチック成形金型用鋼中の酸化物を浮上分離し、その酸化物の浮上面を観察した、走査型電子顕微鏡像およびO、Zr、Al元素のマップ分析像である。Scanning electron microscope image and map of O, Zr, and Al elements in which the oxide in the steel for plastic molding die for comparison was floated and separated by electron beam button melting, and the floating surface of the oxide was observed. It is an analysis image.

Claims (6)

質量比で、Ni:1.0〜5.0%、Al:0.5〜1.5%、Cu:0.1〜2.5%であり、Zr:0.01〜0.4%を含有し、Sは0.02%以下の析出硬化型鋼であって、Oを20ppm以下、Nを50ppm以下に規制したことを特徴とする鏡面仕上性に優れたプラスチック成形金型用鋼。 In terms of mass ratio, Ni: 1.0-5.0%, Al: 0.5-1.5%, Cu: 0.1-2.5%, Zr: 0.01-0.4% S is a precipitation hardening type steel of 0.02% or less, and O is controlled to 20 ppm or less and N is controlled to 50 ppm or less. 質量比で、Al:0.6%以上であることを特徴とする請求項1に記載の鏡面仕上性に優れたプラスチック成形金型用鋼。 The mass ratio of Al is 0.6% or more, and the steel for plastic molds with excellent mirror finish according to claim 1. 質量比で、Ca:5ppm以下、Mg:30ppm以下に規制したことを特徴とする請求項1または2に記載の鏡面仕上性に優れたプラスチック成形金型用鋼。 3. The steel for plastic molds with excellent mirror finish according to claim 1 or 2, wherein the mass ratio is restricted to Ca: 5 ppm or less and Mg: 30 ppm or less. エレクトロンビームボタン溶解により鋼中の酸化物を浮上させ、その酸化物の浮上面を観察した時の全酸化物に占めるZr酸化物の割合が、95面積%以上であることを特徴とする請求項1ないし3のいずれかに記載の鏡面仕上性に優れたプラスチック成形金型用鋼。 The ratio of the Zr oxide in the total oxide when the oxide in the steel is levitated by electron beam button melting and the floating surface of the oxide is observed is 95 area% or more. The steel for plastic molding dies excellent in mirror finish in any one of 1 to 3. 請求項1ないし3のいずれかの元素種に加えて、質量比で、C:0.4%以下、Si:2.0%以下、Mn:2.0%以下、P:0.03%以下、Cr:18%以下、Mo:4%以下であり、残部Feおよび不可避的不純物からなることを特徴とする請求項1ないし4のいずれかに記載の鏡面仕上性に優れたプラスチック成形金型用鋼。 In addition to the element species of any one of claims 1 to 3, by mass ratio, C: 0.4% or less, Si: 2.0% or less, Mn: 2.0% or less, P: 0.03% or less Cr: 18% or less, Mo: 4% or less, comprising the balance Fe and unavoidable impurities, for a plastic mold excellent in mirror finish according to any one of claims 1 to 4 steel. 質量比で、C:0.15%以下であることを特徴とする請求項1ないし5のいずれかに記載の鏡面仕上性に優れたプラスチック成形金型用鋼。 The steel for plastic molds with excellent mirror finish according to any one of claims 1 to 5, wherein C: 0.15% or less in terms of mass ratio.
JP2004207142A 2004-07-14 2004-07-14 Steel for plastic molding die having excellent specular finishability Pending JP2006028564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004207142A JP2006028564A (en) 2004-07-14 2004-07-14 Steel for plastic molding die having excellent specular finishability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004207142A JP2006028564A (en) 2004-07-14 2004-07-14 Steel for plastic molding die having excellent specular finishability

Publications (1)

Publication Number Publication Date
JP2006028564A true JP2006028564A (en) 2006-02-02

Family

ID=35895272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004207142A Pending JP2006028564A (en) 2004-07-14 2004-07-14 Steel for plastic molding die having excellent specular finishability

Country Status (1)

Country Link
JP (1) JP2006028564A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012229474A (en) * 2011-04-27 2012-11-22 Japan Steel Works Ltd:The Die-steel for plastic formation having excellent toughness, corrosion-resistance and mirror-finished surface
JP2013023708A (en) * 2011-07-19 2013-02-04 Daido Steel Co Ltd Prehardened steel for plastic molding die
JP2014189822A (en) * 2013-03-26 2014-10-06 Sanyo Special Steel Co Ltd Steel for anticorrosive plastic molding die excellent in specularity

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012229474A (en) * 2011-04-27 2012-11-22 Japan Steel Works Ltd:The Die-steel for plastic formation having excellent toughness, corrosion-resistance and mirror-finished surface
JP2013023708A (en) * 2011-07-19 2013-02-04 Daido Steel Co Ltd Prehardened steel for plastic molding die
JP2014189822A (en) * 2013-03-26 2014-10-06 Sanyo Special Steel Co Ltd Steel for anticorrosive plastic molding die excellent in specularity

Similar Documents

Publication Publication Date Title
US9809875B2 (en) Case hardening steel with excellent fatigue properties
US9896749B2 (en) Steel for induction hardening with excellent fatigue properties
EP3358029B1 (en) High-strength stainless steel sheet having excellent fatigue characteristics, and method for manufacturing same
CN105940132B (en) The steel wire material for spring and spring of excellent in fatigue characteristics
JP4424503B2 (en) Steel bar and wire rod
KR20200029060A (en) Austenitic abrasion-resistant steel sheet
JP6366326B2 (en) High toughness hot work tool steel and manufacturing method thereof
JP5268105B2 (en) Duplex stainless steel and method for producing the same
JP2010070812A (en) Free-cutting austenitic stainless steel wire rod excellent in cold forgeability, and manufacturing method therefor
CN108929999B (en) Bismuth-containing lead-free stainless steel wire for super free-cutting ball-point pen point and production method thereof
CN102796959A (en) Corrosion-resistant plastic mold steel and preparation method thereof
JP5137082B2 (en) Steel for machine structure and manufacturing method thereof
JP2006028564A (en) Steel for plastic molding die having excellent specular finishability
JP2014208870A (en) High speed tool steel, material for tip and cutting tool, and method of manufacturing material for tip
JP2007314837A (en) Age hardening type ferritic stainless steel sheet and age-treated steel material using the same
WO2005054532A1 (en) Low carbon composite free-cutting steel product excellent in roughness of finished surface and method for production thereof
JP5043529B2 (en) Steel for plastic molding dies with excellent specularity
JP2004002951A (en) Free cutting tool steel
JP2006077274A (en) Steel for mold for molding plastic having excellent mirror finishing property
JP2004091840A (en) Steel for metal mold with excellent machinability and polishability
JP3469462B2 (en) Steel for plastic molds with excellent mirror finish and machinability
JP2006097039A (en) Free-cutting stainless steel with excellent corrosion resistance, cold forgeability and hot workability
JP2003034842A (en) Steel for cold forging superior in swarf treatment property
JPH08193249A (en) Ferritic stainless steel and martensitic stainless steel, excellent in machinability
JP6359241B2 (en) Corrosion-resistant plastic molding steel with excellent specularity