JP2006028277A - Manufacturing method of coke and waste plastic grain - Google Patents

Manufacturing method of coke and waste plastic grain Download PDF

Info

Publication number
JP2006028277A
JP2006028277A JP2004206780A JP2004206780A JP2006028277A JP 2006028277 A JP2006028277 A JP 2006028277A JP 2004206780 A JP2004206780 A JP 2004206780A JP 2004206780 A JP2004206780 A JP 2004206780A JP 2006028277 A JP2006028277 A JP 2006028277A
Authority
JP
Japan
Prior art keywords
waste plastic
particle
particle size
coal
average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004206780A
Other languages
Japanese (ja)
Other versions
JP4303651B2 (en
Inventor
Seiji Nomura
誠治 野村
Kenji Kato
健次 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004206780A priority Critical patent/JP4303651B2/en
Publication of JP2006028277A publication Critical patent/JP2006028277A/en
Application granted granted Critical
Publication of JP4303651B2 publication Critical patent/JP4303651B2/en
Anticipated expiration legal-status Critical
Active legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/143Feedstock the feedstock being recycled material, e.g. plastics

Landscapes

  • Coke Industry (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for suppressing the expansion pressure of a coke oven by adding waste plastics in charging the waste plastics into the coke oven as a charging raw material of the coke oven. <P>SOLUTION: The manufacturing method of coke is characterized by enabling the roundness of the waste plastics to become 0.5 or less on average using the waste plastics together with coal as a charging raw material of the coke oven, provided that the roundness C is the modulus represented by C=4πA/U<SP>2</SP>wherein the perimeter length of the individual is designated as U and the cross sectional area is designated as A in the cross section vertical to the major axis of the individual. The method is further characterized by enabling the average of the average particle size to become the lower limit value or more of the following particle size of the waste plastics: the particle size lower limit value=L×thickness of softening molten layer (1), provided that L is the constant determined by the type and addition rate of the waste plastics and the average particle size is an average value of the major axis diameter and the minor axis diameter of the individual. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、コークス炉装入原料として石炭とともに廃プラスチックを用いるコークスの製造方法及び廃プラスチック粒に関するものである。   The present invention relates to a method for producing coke and waste plastic particles using waste plastic together with coal as a coke oven charging raw material.

プラスチック産業廃棄物、プラスチック一般廃棄物として大量に排出される廃プラスチックの処理に関しては、従来は大部分が埋め立てで処理され、一部が燃焼処理されている。廃プラスチックは、一般に埋め立てにおいては土中の細菌やバクテリアで分解されず、焼却する場合は発熱量が大きく焼却炉に悪影響を及ぼすとともに、塩素を含む廃プラスチックの場合は排ガス中の塩素の処理が問題となっている。埋め立て処分場が将来不足することが予想されることや環境問題の高まりから、このような廃プラスチックのリサイクルの促進が望まれている。   Conventionally, most of waste plastics discharged in large quantities as plastic industrial waste and general plastic waste are treated in landfills and partly combusted. Waste plastic is generally not decomposed by soil bacteria or bacteria in landfills, and when incinerated, it generates a large amount of heat and adversely affects the incinerator. In the case of waste plastic containing chlorine, the treatment of chlorine in the exhaust gas is difficult. It is a problem. In view of the anticipated shortage of landfill sites in the future and growing environmental problems, it is desirable to promote the recycling of such waste plastics.

廃プラスチックのリサイクルの方法としては、プラスチックの再利用のほか、燃焼時の熱の利用や熱分解で得られるガスや油を燃料や化学原料として利用する方法が考えられる。廃プラスチックをコークス炉に添加して処理する方法として、例えば特許文献1、特許文献2ではコークス製造用装入炭に廃プラスチックを配合してコークスを製造する方法が開示されている。これらの方法は、コークス乾留時の高温によって廃プラスチックの大部分を熱分解し、水素、メタン、エタン、プロパン等の高カロリー還元分解ガスとして、コークス炉ガスとして回収する方式のものである。   As a method of recycling waste plastic, in addition to the reuse of plastic, there can be considered a method of using heat or gas or oil obtained by pyrolysis as fuel or chemical raw material in addition to recycling of plastic. As a method of adding waste plastic to a coke oven and treating it, for example, Patent Literature 1 and Patent Literature 2 disclose a method of producing coke by adding waste plastic to coking coal charging coal. In these methods, most of the plastic waste is pyrolyzed at a high temperature during coke dry distillation, and recovered as a coke oven gas as a high calorie reducing cracking gas such as hydrogen, methane, ethane, and propane.

多量のプラスチックを石炭中に均一混合して使用する方法では、コークス強度の低下を引き起こすので、特許文献2においては廃プラスチックの添加量を1質量%以下とする必要があるとしている。また上記コークス強度の低下防止を図るためには粘結性の高い粘結炭の配合割合を増加させることが必要であった。しかし、粘結炭は非微粘結炭に比べて資源賦存量が少なく、かつ高価である。   In the method in which a large amount of plastic is uniformly mixed and used in coal, the coke strength is lowered. In Patent Document 2, the amount of waste plastic added is required to be 1% by mass or less. In order to prevent the coke strength from being lowered, it is necessary to increase the blending ratio of caking coal having high caking properties. However, caking coal is less expensive and more expensive than non-minor caking coal.

特許文献3においては、廃プラスチックの添加量が同じである場合、添加する廃プラスチックの平均粒径が大きいほど石炭とプラスチックの接する面積は減少するので、脆弱箇所を減らすことができるとし、コークス炉に装入する廃プラスチックの平均粒径を石炭の平均粒径の10倍以上とすることにより、廃プラスチックの添加量を増大してもコークス強度の低下を抑制できるとしている。石炭の平均粒径は0.6〜2.0mmが好ましいとしている。   In Patent Document 3, when the amount of waste plastic added is the same, the larger the average particle size of the waste plastic added, the smaller the area where coal and plastic are in contact with each other. By making the average particle size of the waste plastic charged into the coal more than 10 times the average particle size of coal, it is said that the reduction in coke strength can be suppressed even if the amount of waste plastic added is increased. The average particle size of coal is preferably 0.6 to 2.0 mm.

一方、特許文献4においては、プラスチックの粒度が十分小さい場合、プラスチック熱分解後空隙は、軟化溶融して膨れた石炭粒子によって埋められてしまうことを見出した。この文献によれば、プラスチック粒子の大きさが軟化溶融層内にほぼ完全に吸収されてしまうような大きさであれば、プラスチック熱分解後空隙は軟化溶融層中に埋没してしまうため、プラスチック粒度が小さいほどコークス強度に及ぼす悪影響は小さくなる。これは、プラスチックの大きさが軟化溶融層の厚みの30%よりも大きくなると、廃プラスチックの熱分解により発生するガスが軟化溶融層の外側に抜けてしまい、軟化溶融層の膨張を促進する効果が失われるのに対し、特許文献4に記載のものは軟化溶融層中に埋没する程度に小さい粒度のものを用いるためである。そして、廃プラスチックの種類および添加率により変わる定数Kを定め、粒度上限値を「K・軟化溶融層厚み」として定め、粒度上限値以下の大きさに調製した廃プラスチック粒状物を用いることによって強度の高い高炉用コークスを製造できるとしている。   On the other hand, in patent document 4, when the particle size of plastic was small enough, it discovered that the space | gap after plastic pyrolysis will be filled with the coal particle which expanded by softening and melting. According to this document, if the size of the plastic particles is such that it is almost completely absorbed into the softened melt layer, the voids are buried in the softened melt layer after plastic pyrolysis. The smaller the particle size, the smaller the adverse effect on coke strength. This is because, when the size of the plastic is larger than 30% of the thickness of the softened molten layer, the gas generated by the thermal decomposition of the waste plastic escapes to the outside of the softened molten layer, thereby promoting the expansion of the softened molten layer. This is because the material described in Patent Document 4 has a particle size small enough to be buried in the softened and melted layer. Then, a constant K that varies depending on the type of waste plastic and the addition rate is determined, the upper limit of particle size is determined as “K · softening melt layer thickness”, and the strength is obtained by using the waste plastic granular material adjusted to a size equal to or smaller than the upper limit of particle size. It is said that high blast furnace coke can be manufactured.

以上により、廃プラスチック添加によるコークス強度低下を抑制するには、プラスチック粒度を特許文献4に記載のように小さくするか、あるいは特許文献3に記載のように大きくすればよいことがわかる。   From the above, it can be seen that the plastic particle size can be reduced as described in Patent Document 4 or increased as described in Patent Document 3 in order to suppress the reduction in coke strength due to the addition of waste plastic.

コークス炉の炭化室で石炭を乾留してコークスを製造する過程で、石炭は加熱されることにより膨張し、コークス炉の炉壁に圧力を及ぼすが、この圧力のことを一般に膨張圧と呼んでいる。この膨張圧が異常に高くなると、コークス炉の炉壁が直接損傷して操業不能になったり、コークスの炭化室から炉外への排出時(押し出し時)に抵抗(押し出し抵抗)が増大し、炉壁に過大な負荷を加えることにより、炉壁損傷の原因となる。このため、コークス炉の操業において膨張圧をコークス炉損傷の許容限界値以下に管理することは、重要な課題である。特に、近年コークス炉の老朽化が進み、炉体強度が低下することにより許容限界値が低下するとともに、近年の調湿炭法などの石炭事前処理技術の導入によりコークス炉炭化室内の石炭装入嵩密度が上昇し、膨張圧は増加傾向にあり、コークス炉の延命のために膨張圧管理はますます重要な課題となっている。   In the process of producing coke by carbonizing coal in a coke oven, the coal expands when heated and exerts pressure on the coke oven wall. This pressure is generally called expansion pressure. Yes. If this expansion pressure becomes abnormally high, the furnace wall of the coke oven will be damaged directly, making it impossible to operate, or the resistance (extrusion resistance) will increase when the coke is discharged from the carbonization chamber (extruding), If an excessive load is applied to the furnace wall, it will cause damage to the furnace wall. For this reason, it is an important issue to manage the expansion pressure below the allowable limit value for coke oven damage in the operation of the coke oven. In particular, coke ovens have become aging in recent years, and the allowable limit value is lowered due to a decrease in furnace body strength. In addition, the introduction of coal pretreatment technology such as the humidity-controlling coal method in recent years has led to the introduction of coal into the coke oven carbonization chamber. As the bulk density rises and the expansion pressure tends to increase, expansion pressure management has become an increasingly important issue for extending the life of coke ovens.

特許文献5においては、従来の配合炭を構成する各銘柄石炭の膨張圧の相加平均値から配合炭の膨張圧を推定する際に、膨張圧の低い単味炭の配合割合を増やす代わりに、簡便な膨張圧の低減方法を用いることで膨張圧を低減し、膨張圧を安定的且つ確実に、コークス炉が損傷しない許容限界値以下に制御し、かつ一定強度以上のコークスを製造するためのコークス炉操業方法が開示されている。   In patent document 5, when estimating the expansion pressure of blended coal from the arithmetic mean value of the expansion pressure of each brand coal which comprises the conventional blended coal, instead of increasing the blending ratio of simple coal with low expansion pressure To reduce the expansion pressure by using a simple expansion pressure reduction method, to control the expansion pressure stably and reliably below the allowable limit value that does not damage the coke oven, and to produce coke with a certain strength or higher The coke oven operating method is disclosed.

特開昭48−34901号公報JP 48-34901 A 特開平8―157834号公報Japanese Patent Laid-Open No. 8-157834 特開2001−49263号公報JP 2001-49263 A 特開2002−327182号公報JP 2002-327182 A 特開2001−214171号公報JP 2001-214171 A

特許文献5には配合炭膨張圧を推定する方法、粘結剤添加により膨張圧を抑制する方法が開示されているが、コークス炉の炉体老朽化が進行している中、さらに膨張圧を抑制する手段が求められている。   Patent Document 5 discloses a method for estimating the blended coal expansion pressure, and a method for suppressing the expansion pressure by adding a binder, but the expansion pressure is further reduced while the coke oven aging progresses. There is a need for a means to suppress.

一方、前述のとおり、廃プラスチックをコークス炉装入原料としてコークス炉に装入する方法が種々の文献に開示されている。これら文献においてはコークス強度のみに着目しており、廃プラスチック添加によってコークス炉の膨張圧を抑制する方法については何ら開示されていない。   On the other hand, as described above, various literatures disclose methods for charging waste plastic into a coke oven as a coke oven charging raw material. These documents focus only on the coke strength, and do not disclose any method for suppressing the expansion pressure of the coke oven by adding waste plastic.

本発明は、廃プラスチックをコークス炉装入原料としてコークス炉に装入するに際し、廃プラスチック添加によってコークス炉の膨張圧を抑制する方法を提供することを目的とする。   An object of the present invention is to provide a method for suppressing the expansion pressure of a coke oven by adding the waste plastic when the waste plastic is charged into the coke oven as a raw material charged in the coke oven.

即ち、本発明の要旨とするところは以下の通りである。
(1)コークス炉装入原料として石炭とともに廃プラスチックを用い、廃プラスチックの真円度を平均で0.5以下とすることを特徴とするコークスの製造方法。
ただし真円度Cとは、個体の長軸に垂直でかつ短軸を含む断面において、個体の外周長をU、個体の断面積をAとしたとき、C=4πA/U2で表される係数である。以下同じ。
ここで長軸とは、粒子を平面上に安定させ、その粒子の平面上への投影像を2本の平行線ではさんだとき、その平行線の間隔が最大となる平行線を選択し、その平行線と粒子との接点を通る軸であって、該平行線に直角な方向を有する軸を意味する。短軸とは長軸に平行な方向の2本の平行線で粒子をはさんだとき、その平行線と粒子との接点を通る軸であって、長軸に直角な方向を有する軸を意味する。
(2)廃プラスチックの平均粒度の平均が、下記粒度下限値以上であることを特徴とする上記(1)に記載のコークスの製造方法。
粒度下限値=L×軟化溶融層厚み (1)
ただし、Lは廃プラスチックの種類及び添加率により定まる定数である。
また、平均粒度とは、個体の長軸径と短軸径との平均値であり、長軸径とは粒子を平面上に安定させ、その粒子の平面上への投影像を2本の平行線ではさんだとき、その平行線の間隔が最大となる粒子の幅を意味し、短軸径とは上記長軸径決定時の平行線に直角な方向の2本の平行線で粒子をはさむときの距離を意味する。
(3)廃プラスチック粒の真円度が平均で0.5以下であることを特徴とするコークス炉装入用廃プラスチック粒。
That is, the gist of the present invention is as follows.
(1) A method for producing coke, wherein waste plastic is used together with coal as a raw material charged in a coke oven, and the roundness of waste plastic is 0.5 or less on average.
However, the roundness C is expressed by C = 4πA / U 2, where U is the outer peripheral length of the individual and A is the cross-sectional area of the individual in a cross section perpendicular to the long axis of the individual and including the short axis. It is a coefficient. same as below.
Here, the long axis means that the particle is stabilized on a plane, and when the projected image of the particle on the plane is sandwiched between two parallel lines, the parallel line that maximizes the distance between the parallel lines is selected. The axis passing through the contact point between the parallel line and the particle means the axis having a direction perpendicular to the parallel line. The short axis means an axis that passes through the contact point between the parallel line and the particle when the particle is sandwiched between two parallel lines in a direction parallel to the long axis, and has a direction perpendicular to the long axis. .
(2) The method for producing coke according to (1) above, wherein an average of the average particle size of the waste plastic is not less than the following lower limit of particle size.
Particle size lower limit = L × softened melt layer thickness (1)
However, L is a constant determined by the type of waste plastic and the addition rate.
The average particle size is an average value of the long axis diameter and the short axis diameter of an individual. The long axis diameter stabilizes a particle on a plane and projects two parallel projection images of the particle on the plane. This means the width of the particle where the distance between the parallel lines is the largest when sandwiched between lines. The short axis diameter is when the particle is sandwiched between two parallel lines in the direction perpendicular to the parallel line when determining the long axis diameter. Means distance.
(3) Waste plastic particles for coke oven charging, wherein the roundness of the waste plastic particles is 0.5 or less on average.

本発明は、コークス炉装入原料として石炭とともに廃プラスチックを用いるに際し、廃プラスチックの真円度を平均で0.5以下とすることにより、コークス炉の炉壁にかかる膨張圧を抑制することが可能となる。   In the present invention, when waste plastic is used together with coal as a raw material for charging a coke oven, the roundness of the waste plastic is set to 0.5 or less on average, thereby suppressing the expansion pressure on the furnace wall of the coke oven. It becomes possible.

本発明においては、石炭とともにコークス炉に装入する廃プラスチックの真円度を定義する。真円度とは、粒状物である個体の断面形状が、真円にどれだけ近いかを示す指標である。そして本発明において、真円度Cとは、個体の長軸に垂直でかつ短軸を含む断面において、個体の外周長をU、個体の断面積をAとしたとき、C=4πA/U2で表される係数である。ここで長軸とは、粒子を平面上に安定させ、その粒子の平面上への投影像を2本の平行線ではさんだとき、その平行線の間隔が最大となる平行線を選択し、その平行線と粒子との接点を通る軸であって、該平行線に直角な方向を有する軸を意味する。短軸とは長軸に平行な方向の2本の平行線で粒子をはさんだとき、その平行線と粒子との接点を通る軸であって、長軸に直角な方向を有する軸を意味する。 In the present invention, the roundness of the waste plastic charged into the coke oven together with coal is defined. The roundness is an index indicating how close the cross-sectional shape of a solid object is to a perfect circle. In the present invention, the roundness C is C = 4πA / U 2 , where U is the outer perimeter of the individual and A is the cross-sectional area of the individual in a cross section perpendicular to the long axis of the individual and including the short axis. Is a coefficient represented by Here, the long axis means that the particle is stabilized on a plane, and when the projected image of the particle on the plane is sandwiched between two parallel lines, the parallel line that maximizes the distance between the parallel lines is selected. The axis passing through the contact point between the parallel line and the particle means the axis having a direction perpendicular to the parallel line. The short axis means an axis that passes through the contact point between the parallel line and the particle when the particle is sandwiched between two parallel lines in a direction parallel to the long axis, and has a direction perpendicular to the long axis. .

真円度は、例えば廃プラスチックの短軸と長軸を決定した後、長軸に垂直でかつ短軸を含む断面で切断し、切断面の面積(A)と外周長(C)を測定して求めればよい。面積および外周長は、画像解析等の方法で求めることが可能である。廃プラスチックの形状にばらつきがある場合は、いくつかの試料の真円度を測定して、その平均値を求めればよい。   For example, after determining the short axis and long axis of waste plastic, the roundness is cut by a cross section perpendicular to the long axis and including the short axis, and the area (A) and the outer peripheral length (C) of the cut surface are measured. Find it. The area and the outer peripheral length can be obtained by a method such as image analysis. When the shape of the waste plastic varies, the roundness of several samples may be measured and the average value may be obtained.

コークス炉に装入する廃プラスチックを通常の方法で粒状物とする場合、その断面形状は図1(a)に示すような形状であり、その真円度はせいぜい0.9程度である。これに対し、本発明において使用する廃プラスチックは真円度が平均で0.5以下である。真円度が0.5となる廃プラスチック粒の断面形状は、例えば図1(b)に示すような形状を有している。   When the waste plastic charged in the coke oven is made into a granular material by a normal method, the cross-sectional shape thereof is as shown in FIG. 1 (a), and the roundness is about 0.9 at most. On the other hand, the waste plastic used in the present invention has an average roundness of 0.5 or less. The cross-sectional shape of the waste plastic particles having a roundness of 0.5 has a shape as shown in FIG.

廃プラスチックの真円度を平均で0.5以下とした結果、廃プラスチックの表面には細かい凹凸が形成されることとなる。このように表面に凹凸を有する廃プラスチック粒状物を石炭とともにコークス炉に装入して乾留を行った場合、石炭の軟化溶融時において軟化溶融している石炭とプラスチックの接触面積が大きくなる。このため、軟化溶融した石炭からガスが軟化溶融層の外部に抜けやすくなり、軟化溶融層内のガス圧が低下し、結果としてコークス炉の炉壁にかかる膨張圧も抑制することが可能となる。   As a result of the roundness of the waste plastic being 0.5 or less on average, fine irregularities are formed on the surface of the waste plastic. In this way, when waste plastic particles having irregularities on the surface are charged into a coke oven together with coal and subjected to dry distillation, the contact area between the softened and melted coal and the plastic becomes large during the softening and melting of the coal. For this reason, it becomes easy for gas to escape from the softened and melted coal to the outside of the softened and melted layer, the gas pressure in the softened and melted layer is lowered, and as a result, the expansion pressure applied to the furnace wall of the coke oven can be suppressed. .

コークス炉装入物に廃プラスチックを添加した場合、軟化溶融した石炭層内のガスが抜けるのは、主に軟化溶融した石炭と廃プラスチックの界面である。本発明においては、廃プラスチックの真円度が平均で0.5以下と小さいため、石炭と廃プラスチックが接する界面が広くなる。接触面積が大きい方が、ガスが流れる道が多くなるので、結果として軟化溶融層内の圧力を低下させることが可能となり、膨張圧を抑制することができるのである。   When waste plastic is added to the coke oven charge, the gas in the softened and melted coal bed escapes mainly at the interface between the softened and melted coal and the waste plastic. In the present invention, since the roundness of waste plastic is as small as 0.5 or less on average, the interface between coal and waste plastic is widened. As the contact area is larger, the number of paths through which the gas flows is increased. As a result, the pressure in the softened and melted layer can be reduced, and the expansion pressure can be suppressed.

又、本発明の廃プラスチック粒の真円度が平均で0.5以下であることを特徴とするコークス炉装入用廃プラスチック粒は、これをコークス炉装入原料として石炭とともにコークス炉に装入することにより、膨張圧を抑制することが可能となる。   Further, the waste plastic particles for charging a coke oven characterized in that the roundness of the waste plastic particles according to the present invention is 0.5 or less on average is loaded into a coke oven together with coal as a coke oven charging raw material. By entering, the expansion pressure can be suppressed.

真円度≦0.5の廃プラスチックは、例えば加温して半溶融させた廃プラスチックを押出成型する際に、押出成型機のダイス形状を適正な形状に変えることにより製造することが可能である。あるいは、押し出し成型直後でまだ可塑性がある段階において、廃プラスチックに外部から適度な形状に圧密することにより製造することが可能である。   Waste plastic with roundness ≦ 0.5 can be manufactured by changing the die shape of the extruder to an appropriate shape when extruding waste plastic that has been heated and semi-molten, for example. is there. Alternatively, it can be produced by compacting waste plastic into an appropriate shape from the outside immediately after the extrusion molding.

さらに、膨張圧をより一層抑制するために、装入する廃プラスチックの粒度に好適範囲が存在することを見出した。   Furthermore, in order to further suppress the expansion pressure, it has been found that there is a suitable range for the particle size of the waste plastic to be charged.

膨張圧の発生原因は、軟化溶融層内に溜まったガスの圧力に起因する。ところが、装入する廃プラスチックの粒度の平均を軟化溶融層厚に対して所定の比率よりも大きい値とすることにより、軟化溶融層内のガスが廃プラスチックを通して外部に抜けやすくなり、結果として軟化溶融層内のガス圧が低下して膨張圧を抑制することが可能となる。   The cause of the expansion pressure is due to the pressure of the gas accumulated in the softened and melted layer. However, by setting the average particle size of the waste plastic to be charged to a value larger than a predetermined ratio with respect to the softened melt layer thickness, the gas in the softened melt layer can easily escape to the outside through the waste plastic, resulting in softening. It becomes possible to suppress the expansion pressure by reducing the gas pressure in the molten layer.

ここで、廃プラスチックの平均粒度の平均を下記粒度下限値よりも大きい値とすると好ましい結果を得ることができる。
粒度下限値=L×軟化溶融層厚み (1)
ただし、Lは廃プラスチックの種類及び添加率により定まる定数である。また、平均粒度とは、個体の長軸径と短軸径との平均値であり、長軸径とは粒子を平面上に安定させ、その粒子の平面上への投影像を2本の平行線ではさんだとき、その平行線の間隔が最大となる粒子の幅を意味し、短軸径とは上記長軸径決定時の平行線に直角な方向の2本の平行線で粒子をはさむときの距離を意味する。すなわち、表面の細かい凹凸は反映されない。具体的には、外径をノギスなどの測定用具で測定すればよい。
Here, when the average of the average particle size of the waste plastic is set to a value larger than the following particle size lower limit value, preferable results can be obtained.
Particle size lower limit = L × softened melt layer thickness (1)
However, L is a constant determined by the type of waste plastic and the addition rate. The average particle size is an average value of the long axis diameter and the short axis diameter of an individual. The long axis diameter stabilizes a particle on a plane and projects two parallel projection images of the particle on the plane. This means the width of the particle where the distance between the parallel lines is the largest when sandwiched between lines. The short axis diameter is when the particle is sandwiched between two parallel lines in the direction perpendicular to the parallel line when determining the long axis diameter. Means distance. That is, fine irregularities on the surface are not reflected. Specifically, the outer diameter may be measured with a measuring tool such as a caliper.

上記Lの値は、具体的には以下のような方法で求めることができる。種類、粒度が異なる廃プラスチックを、所定の割合で配合炭に混合した後、炉壁に加わる膨張圧をロードセルなどにより直接測定することが可能な可動壁型の試験乾留炉に廃プラスチックを含む配合炭を装入し、乾留中における膨張圧を測定する。ここで、膨張圧が激減する時のプラスチック粒径を求め、この時のプラスチック粒径(mm)/軟化溶融層厚み(mm)を定数のLとすればよい。   Specifically, the value of L can be obtained by the following method. Mixing waste plastics of different types and particle sizes into blended coal at a specified ratio and then including waste plastic in a movable wall type test distillation furnace that can directly measure the expansion pressure applied to the furnace wall with a load cell etc. Charcoal is charged and the expansion pressure during dry distillation is measured. Here, the plastic particle diameter when the expansion pressure is drastically reduced is obtained, and the plastic particle diameter (mm) / softened molten layer thickness (mm) at this time may be set to a constant L.

プラスチックの種類と添加率によってLの値は異なる。これは、プラスチックの種類により、軟化溶融層からのガス抜け性が異なるためである。例えば本発明者の検討例によると、軟化溶融層厚み3〜7mm、廃プラスチック添加率0.3〜3質量%の範囲では、脂肪族系樹脂又は脂肪族系有機化合物の廃プラスチックの場合はL=2〜6、ポリスチレンなどの芳香族系樹脂又は芳香族系有機化合物の廃プラスチックやポリエチレンテレフタレートなど酸素を含む樹脂又は有機化合物の廃プラスチックの場合はL=1〜4であった。具体的には、石炭に対してプラスチックを2質量%添加し、軟化溶融層厚みが5.7mmの場合、脂肪族系の廃プラスチックの場合はL=2.5、ポリスチレンなどの芳香族系のプラスチックやポリエチレンテレフタレートなど酸素を含むプラスチックではL=1.5であった。   The value of L varies depending on the type of plastic and the addition rate. This is because the gas releasing properties from the softened and molten layer differ depending on the type of plastic. For example, according to the study example of the present inventor, in the range of the softened melt layer thickness of 3 to 7 mm and the waste plastic addition rate of 0.3 to 3% by mass, in the case of waste plastic of aliphatic resin or aliphatic organic compound, L = 2 to 6, L = 1 to 4 in the case of an aromatic resin such as polystyrene or a waste plastic of an aromatic organic compound, a resin containing oxygen such as polyethylene terephthalate, or a waste plastic of an organic compound. Specifically, when 2% by mass of plastic is added to coal and the thickness of the softened molten layer is 5.7 mm, L = 2.5 in the case of aliphatic waste plastic, aromatic type such as polystyrene For plastics containing oxygen, such as plastic and polyethylene terephthalate, L = 1.5.

実際に廃プラスチックを用いるに際しては、廃プラスチックは各種プラスチック(樹脂または有機化合物)の混合物であるため、Lの値については各種プラスチックの混合比率を考慮して定めればよい。   When waste plastic is actually used, since waste plastic is a mixture of various plastics (resin or organic compound), the value of L may be determined in consideration of the mixing ratio of various plastics.

コークス炉においては、軟化溶融状態にある層の厚みは、乾留条件、およびコークス炉炉幅方向の位置により異なり、温度勾配が大きい炉壁近傍では薄く温度勾配が緩やかな炭化室中央においては厚くなるが、炭化室内のほとんどの領域において厚みはほぼ一定である。さまざまな操業条件を仮定して軟化溶融層厚みを伝熱モデルにより計算すると、炉幅方向片側において壁面10%、中央側10%を除いた部分に形成される軟化溶融層の厚みはほぼ一定であることがわかる。したがって、軟化溶融層厚みとしては、炉幅方向片側において壁側10%、中央側10%を除いた部分に形成される軟化溶融層の厚みの平均値を用いればよい。   In a coke oven, the thickness of the layer in the softened and molten state varies depending on the dry distillation conditions and the position in the coke oven width direction, and is thicker near the furnace wall where the temperature gradient is large and thicker at the center of the carbonization chamber where the temperature gradient is gentle. However, the thickness is almost constant in most regions within the carbonization chamber. Assuming various operating conditions, the thickness of the softened molten layer is calculated by a heat transfer model. The thickness of the softened molten layer formed on the one side of the furnace width direction excluding the wall surface 10% and the central side 10% is almost constant. I know that there is. Therefore, as the thickness of the softened molten layer, an average value of the thickness of the softened molten layer formed in a portion excluding the wall side 10% and the center side 10% on one side in the furnace width direction may be used.

一例的には、炉幅450mm(片側225mm)のコークス炉において、炉温1150℃、石炭の軟化溶融温度範囲100℃の条件で炉幅方向各位置における軟化溶融層厚みを伝熱モデルにより計算すると、温度勾配が大きい炉壁近傍では薄く2mm程度であり、温度勾配が緩やかな炭化室中央においては厚く20mm程度であるが、炭化室内のほとんどの領域において厚みはほぼ一定である。ここで、炉幅方向片側において壁側10%(壁から22.5mm)、中央側10%(中央から22.5mm)を除いた部分に形成される軟化溶融層の厚みの平均値は5mmである。さまざまな操業条件を仮定して軟化溶融層の厚みを求めると、およそ3〜7mmの範囲となる。   For example, in a coke oven having a furnace width of 450 mm (one side of 225 mm), the thickness of the softened molten layer at each position in the furnace width direction is calculated by a heat transfer model under the conditions of a furnace temperature of 1150 ° C. and a softening melting temperature range of coal of 100 ° C. In the vicinity of the furnace wall where the temperature gradient is large, the thickness is about 2 mm, and in the center of the carbonization chamber where the temperature gradient is gentle, the thickness is about 20 mm. However, the thickness is almost constant in most regions in the carbonization chamber. Here, on the one side in the furnace width direction, the average value of the thickness of the softened molten layer formed on the portion excluding the wall side 10% (22.5 mm from the wall) and the center side 10% (22.5 mm from the center) is 5 mm. is there. When the thickness of the softened and melted layer is obtained under various operating conditions, the thickness is in the range of about 3 to 7 mm.

ここで、石炭の軟化溶融温度範囲とは、JIS M8801に規定されたギーセラープラストメーター法による流動性試験において測定される軟化開始温度と固化温度の温度差のことであり、通常60℃〜100℃程度の値である。   Here, the softening melting temperature range of coal is a temperature difference between a softening start temperature and a solidification temperature measured in a fluidity test by the Gisela plastometer method defined in JIS M8801, and is usually 60 ° C to 100 ° C. The value is about ℃.

軟化溶融層の厚みは、先に述べたように大凡5mm程度であるが、コークス炉装入用配合炭の軟化溶融温度範囲、石炭装入嵩密度、およびコークス炉の炉温により異なる。軟化溶融層厚みは、軟化溶融温度範囲が広いほど、石炭装入嵩密度が高いほど、コークス炉の炉温が低いほど厚くなり、装入嵩密度BD、コークス炉の炉温T、軟化溶融温度範囲ΔTのそれぞれの一次関数として表される。さらに、これらの3つのパラメーターを用いて、軟化溶融層の厚みを下記(2)式により求めることができる。
軟化溶融層の厚み(mm)=[a・BD+b・T+c]×(ΔT+25)/100 …(2)
ΔT(℃):コークス炉装入用配合炭の軟化溶融温度範囲である。JIS M8801に規定されたギーセラープラストメーター法による流動性試験において測定される軟化解し温度と固化温度の温度差として定めることができる。
BD(t/m3):石炭の装入嵩密度(乾燥石炭ベース)である。
T(℃):コークス炉の炉温である。
a,b,c:定数である。
ここで定数のa,b,cはコークス炉型式や操業形態により異なるが、本発明者らの検討では、a=4.5〜5.3、b=−0.0076〜−0.0088、c=8.9〜10.4であった。
The thickness of the softened and melted layer is about 5 mm as described above, but differs depending on the softening and melting temperature range of the blended coal for coke oven charging, the bulk density of the coal charge, and the furnace temperature of the coke oven. The softened melt layer thickness becomes thicker as the softening melt temperature range is wider, the coal charging bulk density is higher, and the furnace temperature of the coke oven is lower, the charging bulk density BD, the furnace temperature T of the coke oven, the softening melting temperature. It is expressed as a linear function of each of the ranges ΔT. Furthermore, using these three parameters, the thickness of the softened molten layer can be obtained by the following equation (2).
Softened melt layer thickness (mm) = [a · BD + b · T + c] × (ΔT + 25) / 100 (2)
ΔT (° C.): Softening and melting temperature range of coal blend for coke oven charging. It can be defined as the temperature difference between the softening temperature and the solidification temperature measured in the fluidity test by the Gisela plastometer method defined in JIS M8801.
BD (t / m 3 ): Charging bulk density of coal (based on dry coal).
T (° C.): The temperature of the coke oven.
a, b, c: constants.
Here, the constants a, b, and c vary depending on the coke oven type and operation mode, but in the study by the present inventors, a = 4.5 to 5.3, b = −0.0076 to −0.0088, c = 8.9 to 10.4.

特許文献3においては、添加する廃プラスチックの平均粒径が大きいほど石炭とプラスチックの接する面積は減少するので、脆弱箇所を減らすことができるとしている。特許文献3で述べている「接する面積」には、表面の凹凸よりもプラスチック自体の大きさの方が影響が大きいことを見出した。このため、廃プラスチックの粒度が特許文献3に記載のものと同一でも、表面形状(凹凸)の異なる廃プラスチックを用いることで、特許文献3に記載のものと同一の強度を保持しつつ、それよりも膨張圧を低下させることを可能とした。   In patent document 3, since the area which coal and a plastics contact decreases as the average particle diameter of the waste plastic to add is large, it is supposed that a weak point can be reduced. It has been found that the size of the plastic itself has a greater influence on the “contact area” described in Patent Document 3 than the unevenness of the surface. For this reason, even if the particle size of the waste plastic is the same as that described in Patent Document 3, it is possible to maintain the same strength as that described in Patent Document 3 by using waste plastic having a different surface shape (unevenness). It was possible to reduce the expansion pressure.

本発明においては、廃プラスチックの真円度を平均で0.5以下とした上、上述のように粒径の大きな廃プラスチックとするのではなく、(3)式により求まる粒度上限値以下の大きさに調製した粒状物を用いることとしても良い。
粒度上限値(mm)=K・軟化溶融層厚み …(3)
K:廃プラスチックの種類および添加率により定まる定数である。
In the present invention, the roundness of the waste plastic is set to 0.5 or less on average, and it is not a waste plastic having a large particle size as described above, but a size equal to or less than the upper limit of the particle size obtained by the equation (3) It is good also as using the granular material prepared further.
Upper limit of particle size (mm) = K. Softened melt layer thickness (3)
K: A constant determined by the type of waste plastic and the addition rate.

本発明においては、廃プラスチックの真円度を平均で0.5以下とした結果として、軟化溶融した石炭からガスが軟化溶融層の外部に抜けやすくなり、軟化溶融層内のガス圧が低下し、結果としてコークス炉の炉壁にかかる膨張圧も抑制することが可能となる。これに加え、廃プラスチックの粒度を細かくするので、廃プラスチックの熱分解により発生するガスが軟化溶融層内に内包され、結果として軟化溶融層の膨張が促進され(石炭の膨張率が高くなり)、その結果、軟化溶融層内部のガス圧力により、軟化溶融した石炭同士の融着結合が強固になるためである。廃プラスチックの真円度を小さくすることによって膨張圧を抑制し、一方で廃プラスチックの粒度を小さくすることによって膨張率を高くしコークス強度を確保するものである。膨張率が高くなる一方で膨張圧が抑制されるということは一見矛盾するように思えるが、そもそも膨張率は拘束がない条件でどの程度石炭が膨張するかを示す指標、膨張圧は膨張が拘束された条件で炉壁に作用する機械的な力であり、全く異なる概念である。石炭粒子同士が接着融合すればコークス強度は向上するので、コークス強度に影響を及ぼすのは膨張率であり、膨張圧ではない。廃プラスチックの真円度を平均で0.5以下とした上、(3)式により求まる粒度上限値以下の大きさに調製した粒状物を用いると、石炭粒子同士が膨れて接触し、結合するまでは、廃プラスチックから発生したガスは石炭の膨張に作用するが、ひとたび石炭粒子同士がくっついてしまうと、今度は逆に添加した廃プラスチックは過剰なガスを逃がすためのガス抜きとして作用するため、膨張圧は低下するのである。   In the present invention, as a result of setting the roundness of the waste plastic to 0.5 or less on average, gas is likely to escape from the softened and melted coal to the outside of the softened and melted layer, and the gas pressure in the softened and melted layer is reduced. As a result, the expansion pressure applied to the furnace wall of the coke oven can be suppressed. In addition, since the particle size of the waste plastic is made fine, the gas generated by the thermal decomposition of the waste plastic is included in the softened and melted layer, and as a result, the expansion of the softened and melted layer is promoted (the expansion coefficient of coal becomes high). As a result, the fusion bond between the softened and melted coals is strengthened by the gas pressure inside the softened and melted layer. By reducing the roundness of the waste plastic, the expansion pressure is suppressed. On the other hand, by reducing the particle size of the waste plastic, the expansion coefficient is increased and the coke strength is ensured. Although it seems that the expansion pressure is suppressed while the expansion coefficient is high, it seems contradictory at first. However, the expansion coefficient is an index that shows how much coal expands under the condition that there is no restriction. It is a mechanical force that acts on the furnace wall under specified conditions, and is a completely different concept. If the coal particles are bonded and fused together, the coke strength is improved, so that the coke strength is affected by the expansion coefficient, not the expansion pressure. When the roundness of the waste plastic is set to 0.5 or less on average, and the granular material prepared to have a particle size not more than the upper limit of the particle size obtained by the equation (3) is used, the coal particles swell and come into contact with each other. Until then, the gas generated from the waste plastic acts on the expansion of the coal, but once the coal particles stick together, the waste plastic added to this time acts as a degasser to release excess gas. The expansion pressure decreases.

ここで(3)式の定数Kは、軟化溶融層厚み、プラスチック添加率により異なるが、具体的には下記のように石炭の膨張率を測定する方法で求めればよい。   Here, the constant K in the equation (3) varies depending on the thickness of the softened molten layer and the plastic addition rate, but specifically, it may be obtained by a method of measuring the expansion coefficient of coal as described below.

すなわち、直径12mmのレトルト(底部密閉、上部開放型)内に、所定の粒度のポリエチレン粒子を石炭に対し所定質量%添加した後、混合物を想定される軟化溶融層厚みに相当する高さまで装入し、外部より均一に加熱し、加熱中における石炭層の膨張挙動を測定し、膨張率が激減するときのプラスチック粒径を求め、プラスチック粒径(mm)/装入高さ(mm)を定数のKとすればよい。   That is, a polyethylene particle having a predetermined particle size is added to a coal in a retort having a diameter of 12 mm (bottom sealed, top open type) with respect to coal, and then the mixture is charged to a height corresponding to the assumed softened melt layer thickness. Heat uniformly from the outside, measure the expansion behavior of the coal bed during heating, determine the plastic particle size when the expansion rate is drastically reduced, and determine the plastic particle size (mm) / charging height (mm) as a constant K

例えば軟化溶融層厚み3〜7mm、プラスチック添加率0.3〜3質量%の範囲では、脂肪族系の廃プラスチックの場合はK=0.3〜0.7,ポリスチレンなどの芳香族系のプラスチックやポリエチレンテレフタレートなど酸素を含むプラスチックではK=0.075〜0.175である。具体的には、石炭に対してプラスチックを2質量%添加し、軟化溶融層厚みが5.7mmの場合、脂肪族系の廃プラスチックの場合はK=0.5、ポリスチレンなどの芳香族系のプラスチックやポリエチレンテレフタレートなど酸素を含むプラスチックではK=0.125である。(3)式で定義されるような粒度上限値以下に廃プラスチック粒度を調整して石炭に添加すれば、廃プラスチック未添加時のコークスドラム強度と同程度の強度を持つコークスを製造することが可能である。   For example, in the range of softened melt layer thickness of 3 to 7 mm and plastic addition rate of 0.3 to 3% by mass, in the case of aliphatic waste plastic, K = 0.3 to 0.7, aromatic plastic such as polystyrene For plastics containing oxygen such as polyethylene terephthalate, K = 0.075 to 0.175. Specifically, when 2% by mass of plastic is added to coal and the thickness of the softened molten layer is 5.7 mm, K = 0.5 in the case of aliphatic waste plastic, aromatic type such as polystyrene In the case of plastics containing oxygen such as plastic and polyethylene terephthalate, K = 0.125. If the waste plastic particle size is adjusted to be equal to or lower than the particle size upper limit defined by the formula (3) and added to the coal, coke having the same strength as the coke drum strength when the waste plastic is not added can be produced. Is possible.

プラスチックの種類によってKの値が異なるのは、プラスチックの熱分解ガスと石炭との化学的相互作用により、石炭自身の粘結性が阻害される場合があるためである。廃プラスチックを構成する主要なプラスチックのうち、例えばポリエチレンや塩化ビニルのような脂肪族系のプラスチックは石炭粘結性の阻害作用がなく、ポリスチレンのような芳香族系のプラスチックやポリエチレンテレフタレートのような酸素を含むプラスチックは粘結性阻害作用がある。廃プラスチックが脂肪族系プラスチックと芳香族系および酸素を含む廃プラスチックの混合物の場合は、両者の比率に従い、上限値を決める係数Kを変化させればよい。   The reason why the value of K varies depending on the type of plastic is that the caking property of the coal itself may be hindered by the chemical interaction between the pyrolysis gas of the plastic and the coal. Of the main plastics that make up waste plastics, aliphatic plastics such as polyethylene and vinyl chloride have no inhibitory effect on coal caking, and aromatic plastics such as polystyrene and polyethylene terephthalate Plastics containing oxygen have a caking inhibiting effect. When the waste plastic is a mixture of an aliphatic plastic and an aromatic plastic and waste plastic containing oxygen, the coefficient K for determining the upper limit value may be changed according to the ratio of the two.

また、廃プラスチック粒度の下限値については理論的にはなく、粉砕および輸送などの実プロセスを考慮して決定すればよい。   Further, the lower limit value of the waste plastic particle size is not theoretical, and may be determined in consideration of actual processes such as pulverization and transportation.

本発明において、廃プラスチック添加率の上限値については特に定めるものではなく、目的とする強度のコークスが製造できる範囲であれば好いが、添加率が5質量%を越えると、高炉で使用可能な強度をもつコークスを製造することが困難になるので、添加率は5質量%以下であることが望ましい。さらに、廃プラスチックを処理することによりコークスの生産量は低下するので、コークスの生産量と処理したい廃プラスチックの量のバランスを考慮する必要がある。   In the present invention, the upper limit value of the waste plastic addition rate is not particularly defined, and it is preferable as long as the coke having the desired strength can be produced. If the addition rate exceeds 5% by mass, it can be used in a blast furnace. Since it becomes difficult to produce coke having strength, the addition rate is desirably 5% by mass or less. Furthermore, since the amount of coke produced decreases due to the treatment of waste plastic, it is necessary to consider the balance between the amount of coke produced and the amount of waste plastic to be treated.

石炭をコークス炉で乾留する場合、その温度は最高で約1,350℃になる。一方、ポリ塩化ビニルやポリ塩化ビニリデンは250℃程度から熱分解を起こし始め、約400℃でガス化し、1,350℃ではほぼ完全に分解する。従って、コークス炉で石炭とともに塩素含有廃プラスチックを熱分解する限り、熱分解または乾留温度、乾留パターンは従来の石炭乾留と同じでよい。   When coal is carbonized in a coke oven, the maximum temperature is about 1,350 ° C. On the other hand, polyvinyl chloride and polyvinylidene chloride begin to thermally decompose at about 250 ° C., gasify at about 400 ° C., and almost completely decompose at 1,350 ° C. Therefore, as long as the chlorine-containing waste plastic is pyrolyzed together with coal in a coke oven, the pyrolysis or the carbonization temperature and the carbonization pattern may be the same as those of conventional coal carbonization.

廃プラスチックが加熱された際に発生する廃プラスチック由来の塩素系ガスは、石炭の乾留中に発生する過剰のアンモニアと反応する。したがってコークス炉から系外に取り出される安水には、塩化アンモニウムが多量に蓄積されるが、これに強塩基、例えば、水酸化ナトリウム(苛性ソーダ)を添加することにより、塩化アンモニウムを無害の塩化ナトリウムに転換することが可能である。水酸化ナトリウムの添加量は塩化アンモニウムと同等量、またはそれより多く添加することが望ましい。安水は、系外の脱安設備において、蒸気ストリッピングによってフリーアンモニアを気化除去した後に活性汚泥処理を行い、放流する。脱安設備に入る前に水酸化ナトリウムによって安水中の塩化アンモニウムを塩化ナトリウムとアンモニアにしておけば、安水中に含まれていた窒素成分はすべてアンモニアとして除去でき、脱安設備を出た安水中には無害な塩化ナトリウムしか残存せず、このまま放流しても海水中の窒素分を増大する心配はない。   Chlorine gas derived from waste plastic generated when the waste plastic is heated reacts with excess ammonia generated during the carbonization of coal. Therefore, a large amount of ammonium chloride accumulates in the aqueous solution taken out of the coke oven from the system. By adding a strong base such as sodium hydroxide (caustic soda), ammonium chloride is harmless to sodium chloride. It is possible to convert to It is desirable to add sodium hydroxide in an amount equal to or greater than that of ammonium chloride. In the dewatering equipment outside the system, the water is evaporated after free ammonia is removed by steam stripping, and then activated sludge is discharged. If ammonium chloride in the water is converted into sodium chloride and ammonia with sodium hydroxide before entering the safeguard, all nitrogen components contained in the safewater can be removed as ammonia, and the safe water that has exited the safeguard Only harmless sodium chloride remains, and even if it is discharged as it is, there is no fear of increasing the nitrogen content in the seawater.

炉幅400mm、炉高600mm、炉長600mmの可動壁型の試験コークス炉を用い、石炭と廃プラスチックを均一に混合し、乾留時間18.5時間の条件で乾留した。焼成後のコークスについては、窒素で冷却した後、JIS K2151に準じたコークスのドラム強度指数(150回転後+15mm指数)を測定した。また、膨張圧を可動壁の外側に設置したロードセルにより測定した。装入炭として、粘結炭70質量%、非微粘結炭30質量%の配合炭を用いた。石炭とともに装入する廃プラスチックとして、ポリエチレン50質量%、ポリスチレン50質量%からなる配合のものを用いた。廃プラスチックの添加率はいずれも2%とした。   Using a movable wall type test coke oven having a furnace width of 400 mm, a furnace height of 600 mm, and a furnace length of 600 mm, coal and waste plastics were uniformly mixed and subjected to dry distillation under conditions of a dry distillation time of 18.5 hours. About the coke after baking, after cooling with nitrogen, the drum strength index (after 150 rotations +15 mm index) of the coke according to JIS K2151 was measured. Further, the expansion pressure was measured by a load cell installed outside the movable wall. As charging coal, blended coal of 70% by weight caking coal and 30% by weight non-caking coal was used. As the waste plastic to be charged together with coal, the one composed of 50% by mass of polyethylene and 50% by mass of polystyrene was used. The waste plastic addition rate was 2% in all cases.

廃プラスチックは、加温して半溶融させた廃プラスチックを押出成型することにより固形物としたものを用いた。また、押出成型機のダイス形状を変えることにより、真円度の異なる廃プラスチックを製造した。ここで、廃プラスチックの平均粒度の平均を、10、20、30、40mmとした。真円度の平均は、本発明例No.1〜4が0.5、比較例No.1〜4が0.9であった。   The waste plastic used was a solid made by extruding the heated and semi-molten waste plastic. In addition, waste plastics with different roundness were manufactured by changing the die shape of the extrusion molding machine. Here, the average of the average particle size of the waste plastic was set to 10, 20, 30, and 40 mm. The average roundness is calculated according to Example No. of the present invention. 1-4 is 0.5, comparative example No. 1-4 was 0.9.

このとき、コークス炉装入用配合炭の軟化溶融温度範囲、石炭装入嵩密度、およびコークス炉の炉温から(2)式により求めた軟化溶融層の厚みは4.7mmであり、(1)式から求めた廃プラスチック粒度下限値はL=2として9.4mmであり、廃プラスチック粒度は本発明の範囲内である。ここで、(2)式の定数としては、a=5.04、b=−0.08、c=9.9を用いた。   At this time, the thickness of the softened molten layer obtained by the equation (2) from the softened melting temperature range of the blended coal for coke oven charging, the coal charging bulk density, and the furnace temperature of the coke oven is 4.7 mm, (1 ) The lower limit value of the waste plastic particle size obtained from the formula is 9.4 mm as L = 2, and the waste plastic particle size is within the scope of the present invention. Here, as constants of the formula (2), a = 5.04, b = −0.08, and c = 9.9 were used.

Figure 2006028277
Figure 2006028277

比較例No.1〜4はいずれも膨張圧が10〜12kPaと高かったのに対し、本発明例No.1〜4は膨張圧が7〜8kPaと良好な値であった。一方、コークス強度については、本発明例と比較例とではほぼ同様の値となり、即ち従来と同様のコークス強度を確保することができた。   Comparative Example No. 1 to 4 all had high inflation pressures of 10 to 12 kPa. 1 to 4 had a good expansion pressure of 7 to 8 kPa. On the other hand, the coke strength was almost the same between the inventive example and the comparative example, that is, the coke strength similar to the conventional one could be secured.

真円度について説明する図であり、(a)は真円度が0.9の場合、(b)は真円度が0.5の場合を示す図である。It is a figure explaining roundness, (a) is a figure which shows the case where roundness is 0.9, (b) is the case where roundness is 0.5.

Claims (3)

コークス炉装入原料として石炭とともに廃プラスチックを用い、廃プラスチックの真円度を平均で0.5以下とすることを特徴とするコークスの製造方法。
ただし真円度Cとは、個体の長軸に垂直でかつ短軸を含む断面において、個体の外周長をU、個体の断面積をAとしたとき、C=4πA/U2で表される係数である。以下同じ。
ここで長軸とは、粒子を平面上に安定させ、その粒子の平面上への投影像を2本の平行線ではさんだとき、その平行線の間隔が最大となる平行線を選択し、その平行線と粒子との接点を通る軸であって、該平行線に直角な方向を有する軸を意味する。短軸とは長軸に平行な方向の2本の平行線で粒子をはさんだとき、その平行線と粒子との接点を通る軸であって、長軸に直角な方向を有する軸を意味する。
A method for producing coke, wherein waste plastic is used together with coal as a raw material for charging a coke oven, and the roundness of waste plastic is 0.5 or less on average.
However, the roundness C is expressed by C = 4πA / U 2, where U is the outer peripheral length of the individual and A is the cross-sectional area of the individual in a cross section perpendicular to the long axis of the individual and including the short axis. It is a coefficient. same as below.
Here, the long axis means that the particle is stabilized on a plane, and when the projected image of the particle on the plane is sandwiched between two parallel lines, the parallel line that maximizes the distance between the parallel lines is selected. The axis passing through the contact point between the parallel line and the particle means the axis having a direction perpendicular to the parallel line. The short axis means an axis that passes through the contact point between the parallel line and the particle when the particle is sandwiched between two parallel lines in a direction parallel to the long axis, and has a direction perpendicular to the long axis. .
廃プラスチックの平均粒度の平均が、下記粒度下限値以上であることを特徴とする請求項1に記載のコークスの製造方法。
粒度下限値=L×軟化溶融層厚み (1)
ただし、Lは廃プラスチックの種類及び添加率により定まる定数である。
また、平均粒度とは、個体の長軸径と短軸径との平均値であり、長軸径とは粒子を平面上に安定させ、その粒子の平面上への投影像を2本の平行線ではさんだとき、その平行線の間隔が最大となる粒子の幅を意味し、短軸径とは上記長軸径決定時の平行線に直角な方向の2本の平行線で粒子をはさむときの距離を意味する。
The method for producing coke according to claim 1, wherein the average particle size of the waste plastic is equal to or greater than the following lower limit of particle size.
Particle size lower limit = L × softened melt layer thickness (1)
However, L is a constant determined by the type of waste plastic and the addition rate.
The average particle size is an average value of the long axis diameter and the short axis diameter of an individual. The long axis diameter stabilizes a particle on a plane and projects two parallel projection images of the particle on the plane. This means the width of the particle where the distance between the parallel lines is the largest when sandwiched between lines. The short axis diameter is when the particle is sandwiched between two parallel lines in the direction perpendicular to the parallel line when determining the long axis diameter. Means distance.
廃プラスチック粒の真円度が平均で0.5以下であることを特徴とするコークス炉装入用廃プラスチック粒。   Waste plastic particles for coke oven charging, wherein the roundness of the waste plastic particles is 0.5 or less on average.
JP2004206780A 2004-07-14 2004-07-14 Coke production method and waste plastic particles Active JP4303651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004206780A JP4303651B2 (en) 2004-07-14 2004-07-14 Coke production method and waste plastic particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004206780A JP4303651B2 (en) 2004-07-14 2004-07-14 Coke production method and waste plastic particles

Publications (2)

Publication Number Publication Date
JP2006028277A true JP2006028277A (en) 2006-02-02
JP4303651B2 JP4303651B2 (en) 2009-07-29

Family

ID=35895021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004206780A Active JP4303651B2 (en) 2004-07-14 2004-07-14 Coke production method and waste plastic particles

Country Status (1)

Country Link
JP (1) JP4303651B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008019316A (en) * 2006-07-11 2008-01-31 Nippon Steel Corp Method of operating coke oven

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008019316A (en) * 2006-07-11 2008-01-31 Nippon Steel Corp Method of operating coke oven

Also Published As

Publication number Publication date
JP4303651B2 (en) 2009-07-29

Similar Documents

Publication Publication Date Title
JP4199637B2 (en) Waste plastic recycling and molding methods
RU2546268C2 (en) Carbon article, method of producing carbon article and use thereof
JPWO2006114818A1 (en) Method and apparatus for supplying waste to gasification melting furnace
US7897132B2 (en) Process for production of carbon alloy products
JP2005263983A (en) Method for recycling organic waste using coke oven
KR20010031507A (en) Method of treating resin or organic compound, or waste plastics containing them
JP5759097B2 (en) Solid fuel
JP4303651B2 (en) Coke production method and waste plastic particles
JP4231213B2 (en) Coke production method
JP5762653B1 (en) Coal charcoal, method for producing the same, and method of using charcoal
JP2014040570A (en) Method of manufacturing coke for gasification melting furnace, and method of using the same
KR101405479B1 (en) Method for manufacturing coal briquettes and apparatus for the same
JP4088054B2 (en) Coke production method
JP3872615B2 (en) Coke production method
JP6168287B2 (en) Waste melting treatment method
US7795319B1 (en) Tire recycling method generating carbonous residue
KR101867432B1 (en) Recarburizer composition
JP4153627B2 (en) Method for producing molded coke
JP2009018592A (en) Molding method of waste plastic
JP4279980B2 (en) Coke manufacturing method
JP4327999B2 (en) Coke manufacturing method
KR100856653B1 (en) Method for supplying waste to gasification melting furnace
KR20130058845A (en) Recarburizer using wasted tire
JP4396295B2 (en) Method for producing metallurgical coke
JP2001200263A (en) Process for preparing blast furnace coke using waste plastic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090424

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4303651

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140501

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350