JP2006028246A - Method for producing phenolic resin/silica composite spherical fine particle - Google Patents

Method for producing phenolic resin/silica composite spherical fine particle Download PDF

Info

Publication number
JP2006028246A
JP2006028246A JP2004205846A JP2004205846A JP2006028246A JP 2006028246 A JP2006028246 A JP 2006028246A JP 2004205846 A JP2004205846 A JP 2004205846A JP 2004205846 A JP2004205846 A JP 2004205846A JP 2006028246 A JP2006028246 A JP 2006028246A
Authority
JP
Japan
Prior art keywords
silica
phenol resin
spherical fine
fine particles
silica composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004205846A
Other languages
Japanese (ja)
Other versions
JP4627642B2 (en
Inventor
Akira Obayashi
明 王林
Kazutoshi Haraguchi
和敏 原口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawamura Institute of Chemical Research
Original Assignee
Kawamura Institute of Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Institute of Chemical Research filed Critical Kawamura Institute of Chemical Research
Priority to JP2004205846A priority Critical patent/JP4627642B2/en
Publication of JP2006028246A publication Critical patent/JP2006028246A/en
Application granted granted Critical
Publication of JP4627642B2 publication Critical patent/JP4627642B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing composite spherical fine particles whose structure comprising a phenolic resin and silica is controlled, which have silica layers having proper hardness, and whose silica contents are easily controlled. <P>SOLUTION: This method for producing the phenolic resin/silica composite spherical fine particles is characterized by adding an aqueous solution containing an emulsion stabilizer (D) to an organic phase comprising a phenolic resin (A), a silicon compound (B) and an organic solvent (C) to invert and emulsify the organic layer phase, and then thermally curing the obtained fine particles. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、フェノール樹脂とシリカからなる複合体球状微粒子の製造方法に関する。   The present invention relates to a method for producing composite spherical fine particles comprising a phenol resin and silica.

有機材料と無機材料とが複合化された球状微粒子を得る方法として、有機材料の球状微粒子の表面に無機材料を被覆する方法が提案されている(例えば特許文献1と2参照)。特許文献1では、有機高分子球状微粒子の水懸濁液中で珪酸ソーダを塩酸で中和してシリカ水和物を生成させる。この際シリカ水和物が該懸濁液中の高分子微粒子の表面に析出吸着して有機高分子/シリカ複合体球状微粒子が得られる。また、特許文献2では、フェノール樹脂球状粒子の水分散液にシリカゾル溶液を加えることで、該フェノール樹脂粒子表面にシリカ被覆層を形成させたフェノール樹脂/シリカ複合体球状粒子が得られている。これらの方法では、水懸濁液または水分散液に含有する珪酸ソーダやシリカゾル溶液を多く含有せしめる必要があり、無駄となる欠点がある。また、これらの方法によって得られた複合体球状微粒子は、その表面に吸着しているシリカの量が制御出来ず、しかも吸着したシリカが脱離されやすい問題も有している。
一方、シリコンアルコキシドとフェノール樹脂と溶媒からなる混合溶液を塩基性水溶液に滴下し、加水分解して、フェノール樹脂/シリカ複合微粒子が得られることが知られている(特許文献3参照)。しかし、この方法では球形の複合体微粒子が得られず、また、微粒子間の融着が起こりやすい欠点を有している。
As a method of obtaining spherical fine particles in which an organic material and an inorganic material are combined, a method of coating the surface of the spherical fine particles of the organic material with an inorganic material has been proposed (see, for example, Patent Documents 1 and 2). In Patent Document 1, sodium silicate is neutralized with hydrochloric acid in a water suspension of organic polymer spherical fine particles to form silica hydrate. At this time, silica hydrate is precipitated and adsorbed on the surface of the polymer fine particles in the suspension to obtain organic polymer / silica composite spherical fine particles. Further, in Patent Document 2, a phenol resin / silica composite spherical particle having a silica coating layer formed on the surface of the phenol resin particle is obtained by adding a silica sol solution to an aqueous dispersion of the phenol resin spherical particle. In these methods, it is necessary to contain a large amount of sodium silicate or silica sol solution contained in an aqueous suspension or dispersion, which has a disadvantage of being wasted. In addition, the composite spherical fine particles obtained by these methods have a problem that the amount of silica adsorbed on the surface thereof cannot be controlled and the adsorbed silica is easily detached.
On the other hand, it is known that a mixed solution composed of silicon alkoxide, a phenol resin and a solvent is dropped into a basic aqueous solution and hydrolyzed to obtain phenol resin / silica composite fine particles (see Patent Document 3). However, this method has the disadvantage that spherical composite fine particles cannot be obtained, and fusion between the fine particles is likely to occur.

特願昭63-25902Japanese Patent Application No. 63-25902 特開平6-243718Japanese Patent Laid-Open No. 6-23718 特開平9-208210JP 9-208210 A

本発明の目的は、フェノール樹脂とシリカからなる構造が制御され、適度な硬度のシリカ層を有し、しかもシリカ含有率が容易に制御される複合体球状微粒子の製造方法を提供することにある。   An object of the present invention is to provide a method for producing composite spherical fine particles in which a structure composed of a phenol resin and silica is controlled, a silica layer having an appropriate hardness is provided, and the silica content is easily controlled. .

本発明者らは、上記の目的を達成しようと鋭意研究を重ねた結果、フェノール樹脂とシリコン化合物からなる有機相に水相を添加することにより、有機相が転相乳化してフェノール樹脂/シリカ複合体球状微粒子が形成されることを見出して、本発明を完成するに至った。
即ち、本発明は、フェノール樹脂(A)とシリコン化合物(B)と有機溶媒(C)とを含む有機相にエマルジョン安定剤(D)を含む水溶液を添加して該有機層を転相乳化することにより得られる微粒子を加熱硬化することを特徴とするフェノール樹脂/シリカ複合体球状微粒子の製造方法に関する。
また、本発明は、表面付近にシリカ層又は樹脂を含むシリカ層(高シリカ含有層)が形成されているフェノール樹脂/シリカ複合体球状微粒子又は表面から内部にわたってシリカが連続的に分布しているフェノール樹脂/シリカ複合体球状微粒子の製造方法に関する。
As a result of intensive research aimed at achieving the above object, the present inventors have added a water phase to an organic phase composed of a phenol resin and a silicon compound, so that the organic phase is phase-inverted and emulsified to cause phenol resin / silica. The inventors have found that composite spherical fine particles are formed, and have completed the present invention.
That is, in the present invention, an aqueous solution containing an emulsion stabilizer (D) is added to an organic phase containing a phenol resin (A), a silicon compound (B), and an organic solvent (C) to phase-emulsify the organic layer. The present invention relates to a process for producing phenolic resin / silica composite spherical fine particles, wherein the fine particles obtained by heating are cured by heating.
Further, in the present invention, the silica is continuously distributed from the surface to the inside of the phenol resin / silica composite spherical fine particles in which a silica layer or a silica layer containing a resin (high silica-containing layer) is formed in the vicinity of the surface. The present invention relates to a method for producing phenol resin / silica composite spherical fine particles.

本発明で得られるフェノール樹脂/シリカ複合体球状微粒子は表面に適度な硬度のシリカ層を有しており、摺動材料や摩擦材料、例えば研磨砥粒として好適に用いられる。また、本発明による球状微粒子の製造方法では、従来のコロイダルシリカに比べて、シリカ層のシリカ含有率が容易に制御され、また、シリカ層の微細構造も制御できる。   The phenol resin / silica composite spherical fine particles obtained in the present invention have a silica layer with an appropriate hardness on the surface, and are suitably used as a sliding material or a friction material, for example, abrasive grains. Further, in the method for producing spherical fine particles according to the present invention, the silica content of the silica layer can be easily controlled and the fine structure of the silica layer can be controlled as compared with the conventional colloidal silica.

本発明で使用されるフェノール樹脂(A)は、フェノール類とアルデヒド類を酸性触媒又は塩基性触媒のうち一種で重縮合させ、続いて中和あるいは中和することなく減圧脱水して得た公知のノボラック又はレゾール型のフェノール樹脂である。また、球状微粒子調製の容易さから、レゾール型フェノール樹脂が好ましい。   The phenol resin (A) used in the present invention is obtained by polycondensation of phenols and aldehydes with one of an acidic catalyst or a basic catalyst, followed by vacuum dehydration without neutralization or neutralization. Novolak or resol type phenolic resin. Moreover, a resol type phenol resin is preferable from the viewpoint of easy preparation of spherical fine particles.

ここでフェノール類としては、フェノール、クレゾール、キシレノール、m-クレゾール、m-エチルフェノール、レゾルシン、カテコール、ヒドロキノン及びビスフェノールAなどが挙げられ、これらを単独または2種以上組み合わせて使用できる。また、アルデヒド類としては、ホルマリン、パラホルムアルデヒド、トリオキサン、アセトアルデヒド、ベンズアルデヒドなどが挙げられ、これらを単独または2種以上組み合わせて使用できる。   Here, examples of phenols include phenol, cresol, xylenol, m-cresol, m-ethylphenol, resorcin, catechol, hydroquinone, bisphenol A, and the like, and these can be used alone or in combination of two or more. Examples of aldehydes include formalin, paraformaldehyde, trioxane, acetaldehyde, benzaldehyde and the like, and these can be used alone or in combination of two or more.

本発明で使用されているシリコン化合物(B)は、シリコンアルコキシド、アルキル基置換シリコンアルコキシド及びそれらの部分重縮合物、シリカゾル、シリカナノ微粒子などである。
ここでシリコンアルコキシド及びアルキル基置換シリコンアルコキシドとしては、一般的にゾルーゲル法によるシリカ製造において用いられているものが使用できる。具体的にシリコンアルコキシドとしては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシランなどが挙げられる。また、アルキル基置換シリコンアルコキシドとしては、メチルトリメトキシシラン、エチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリエトキシシラン、フェニルトリメトキシシラン、ジメチルジメトキシシラン、ジエチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジエトキシシラン、ジフェニルジエトキシシランなどが挙げられる。
Examples of the silicon compound (B) used in the present invention include silicon alkoxide, alkyl group-substituted silicon alkoxide and partial polycondensates thereof, silica sol, and silica nanoparticles.
Here, as the silicon alkoxide and the alkyl group-substituted silicon alkoxide, those generally used in silica production by a sol-gel method can be used. Specific examples of the silicon alkoxide include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, and tetrabutoxysilane. Alkyl group-substituted silicon alkoxides include methyltrimethoxysilane, ethyltrimethoxysilane, methyltriethoxysilane, ethyltriethoxysilane, phenyltrimethoxysilane, dimethyldimethoxysilane, diethyldimethoxysilane, dimethyldiethoxysilane, diethyldimethoxysilane. Examples include ethoxysilane and diphenyldiethoxysilane.

なお、前記の部分重縮合物は、上述のシリコンアルコキシド又はアルキル基置換シリコンアルコキシドを水、溶媒、及び必要により酸又は塩基触媒と共に混合攪拌する方法によって得ることができる。このように合成される重縮合物が好ましく用いられるが、経済性や汎用性などの観点から、市販されているシリコンアルコキシド又はアルキル基置換シリコンアルコキシドの部分重縮合物、例えば、三菱化学(株)製のポリ(テトラメトキシシラン)「MS-51」や多摩化学(株)製のポリ(メチルトリメトキシシラン)「MTMS-A」などが更に好ましく用いられる。   The partial polycondensate can be obtained by a method in which the above silicon alkoxide or alkyl group-substituted silicon alkoxide is mixed and stirred with water, a solvent, and, if necessary, an acid or base catalyst. The polycondensate synthesized in this way is preferably used. From the viewpoints of economy and versatility, commercially available silicon alkoxides or partial polycondensates of alkyl group-substituted silicon alkoxides, for example, Mitsubishi Chemical Corporation Poly (tetramethoxysilane) “MS-51” manufactured by Tama Chemical Co., Ltd. and poly (methyltrimethoxysilane) “MTMS-A” manufactured by Tama Chemical Co., Ltd. are more preferably used.

本発明におけるシリコン化合物(B)の含有量については、用いたシリコン化合物中に含まれるシリカ量の球状微粒子に対するシリカの質量%で規定される。かかる複合体球状微粒子に対するシリカの含有量は0.5〜30質量%、好ましくは0.8〜20質量%、特に好ましくは1〜15質量%である。含有量は0.5質量%未満の場合、球状微粒子表面に均一なシリカ層が形成されにくく、30質量%を越えると、転相乳化する際、溶液がゲル化しやすくなり、球状微粒子が得られない場合がある。   The content of the silicon compound (B) in the present invention is defined by the mass% of silica with respect to spherical fine particles having a silica amount contained in the used silicon compound. The content of silica with respect to the composite spherical fine particles is 0.5 to 30% by mass, preferably 0.8 to 20% by mass, and particularly preferably 1 to 15% by mass. When the content is less than 0.5% by mass, it is difficult to form a uniform silica layer on the surface of the spherical fine particles. When the content exceeds 30% by mass, the solution tends to gel during phase inversion emulsification, and spherical fine particles cannot be obtained. There is.

本発明における有機溶媒(C)としては、フェノール樹脂を溶解し、且つシリコン化合物及び水と相溶するような有機溶媒が使用される。例えば、メタノール、エタノール、イソプロパノールなどの低級アルコール、アセトン、テトラヒドロフラン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドなどが挙げられる。これらは単独又は二種以上の混合で使用できる。有機溶媒の使用量はフェノール樹脂(A) 100質量部に対して有機溶媒が100〜500質量部となるように用いることが好ましい。   As the organic solvent (C) in the present invention, an organic solvent that dissolves the phenol resin and is compatible with the silicon compound and water is used. Examples thereof include lower alcohols such as methanol, ethanol and isopropanol, acetone, tetrahydrofuran, N, N-dimethylformamide, N, N-dimethylacetamide and the like. These can be used individually or in mixture of 2 or more types. The amount of the organic solvent used is preferably 100 to 500 parts by mass with respect to 100 parts by mass of the phenol resin (A).

本発明で用いるエマルジョン安定剤(D)としては、保護コロイドとして用いられるものであり、ヒドロキシエチルセルロース、カルボキシメチルセルロース、メチルセルロース、アラビアゴム、トラガントゴム、ポリビニルアルコール、アルギン酸ナトリウムなどが挙げられる。その使用量はフェノール樹脂に対し0.04〜5質量%が好ましく、より好ましくは0.05〜3質量%、特に好ましくは0.07〜1質量%である。また、上記のエマルジョン安定剤は、0.03〜1質量%水溶液に調製して水相として用いることが好ましい。   The emulsion stabilizer (D) used in the present invention is used as a protective colloid, and examples thereof include hydroxyethyl cellulose, carboxymethyl cellulose, methyl cellulose, gum arabic, tragacanth rubber, polyvinyl alcohol, sodium alginate and the like. The amount used is preferably 0.04 to 5% by mass, more preferably 0.05 to 3% by mass, and particularly preferably 0.07 to 1% by mass with respect to the phenol resin. The above emulsion stabilizer is preferably prepared in an aqueous solution of 0.03 to 1% by mass and used as an aqueous phase.

また、上記のフェノール樹脂とシリコン化合物及び有機溶媒からなる有機層を容易に転相乳化させるため、界面活性剤を適宜に添加することができる。界面活性剤としては、有機溶媒(C)に溶解できるカチオン性界面活性剤、アニオン性界面活性剤及び非イオン性界面活性剤であれば、特に制限することがなく用いられる。例えば、塩化n-ヘキサデシルトリメチルアンモニウムや塩化n-ドデシルトリメチルアンモニウムやn-ドデシル硫酸ナトリウムなどが挙げられる。   Moreover, in order to easily phase-invert and emulsify the organic layer composed of the above-described phenol resin, silicon compound, and organic solvent, a surfactant can be appropriately added. The surfactant is not particularly limited as long as it is a cationic surfactant, an anionic surfactant, or a nonionic surfactant that can be dissolved in the organic solvent (C). Examples thereof include n-hexadecyltrimethylammonium chloride, n-dodecyltrimethylammonium chloride, and sodium n-dodecylsulfate.

本発明における複合体球状微粒子の製造は、例えば次のようにして行うことができる。即ち、フェノール樹脂のメタノール溶液にシリコン化合物のメタノール溶液を滴下混合して有機相とする。この有機相を攪拌しながら、エマルジョン安定剤の水溶液(水相)をゆっくりと滴下する。溶液が徐々に濁り、次第に不透明な均質懸濁液になった。次に得られた懸濁液を水中に注ぎ、微粉末を沈殿させて遠心分離により複合体球状微粒子を回収する。更に回収した球状微粒子が水又は空気流動床の中で加熱により硬化される。
また、得られた複合体球状微粒子を容易に硬化させるため、予め硬化剤を有機相に加えることが好ましく、必須の場合もある。例えば、ノボラック型フェノール樹脂の場合、ヘキサミンを添加することが必要である。一方、レゾール型フェノール樹脂の場合、加熱自硬化することができるが、種々の有機あるいは無機の強酸を添加することにより低温で硬化させることもできる。この場合、トルエンスルホン酸やフェノールスルホン酸などが特に好ましく用いられる。
The composite spherical fine particles in the present invention can be produced, for example, as follows. That is, a methanol solution of a silicon compound is dropped into a methanol solution of a phenol resin to form an organic phase. While stirring the organic phase, an aqueous emulsion stabilizer solution (aqueous phase) is slowly added dropwise. The solution gradually became cloudy and gradually became an opaque homogeneous suspension. Next, the obtained suspension is poured into water, a fine powder is precipitated, and the composite spherical fine particles are recovered by centrifugation. Furthermore, the collected spherical fine particles are cured by heating in a water or air fluidized bed.
Further, in order to easily cure the obtained composite spherical fine particles, it is preferable to add a curing agent to the organic phase in advance, and it may be essential. For example, in the case of a novolac type phenol resin, it is necessary to add hexamine. On the other hand, in the case of a resol type phenol resin, it can be cured by heating, but it can also be cured at a low temperature by adding various organic or inorganic strong acids. In this case, toluenesulfonic acid or phenolsulfonic acid is particularly preferably used.

上述の製造方法でシリコンアルコキシド及び/又はシリカゾルを用いた場合、表面にシリカ層が形成されているフェノール樹脂/シリカ複合体球状微粒子が得られる。まだ、アルキル基又はフェニル基置換シリコンアルコキシドを用いた場合、表面付近に樹脂を含むシリカ層(高シリカ含有層)が形成されているフェノール樹脂/シリカ複合体球状微粒子又は表面から内部にわたってシリカが連続的に分布しているフェノール樹脂/シリカ複合体球状微粒子が得られる。かかる球状微粒子の大きさはシリコン化合物及びエマルジョン安定剤の含有量によって制御することができる。即ち、シリコン化合物及びエマルジョン安定剤の含有量が多ければ多いほど、球状微粒子が小さくなる。
また、シリカゾルやシリカナノ微粒子を用いた場合、上述の製造方法で得られた懸濁液をそのまま水で適宜に希釈して、研磨液として用いることができる。
When silicon alkoxide and / or silica sol is used in the above production method, phenol resin / silica composite spherical fine particles having a silica layer formed on the surface are obtained. Still, when alkyl group or phenyl group-substituted silicon alkoxide is used, phenolic resin / silica composite spherical fine particles in which a silica layer containing a resin (high silica-containing layer) is formed near the surface or silica continuously from the surface to the inside And spherically distributed phenolic resin / silica composite spherical particles are obtained. The size of the spherical fine particles can be controlled by the contents of the silicon compound and the emulsion stabilizer. That is, the larger the content of silicon compound and emulsion stabilizer, the smaller the spherical fine particles.
When silica sol or silica nanoparticle is used, the suspension obtained by the above production method can be appropriately diluted with water as it is and used as a polishing liquid.

次に、本発明のフェノール/シリカ複合体球状微粒子の形成機構について説明する。即ち、フェノール樹脂とシリコンアルコキシドと有機溶媒からなる有機相にフェノール樹脂の貧溶媒水を含む水相を滴下すると、フェノール樹脂が徐々に転相して微粒子として析出する。これと平行して、有機相に含まれているシリコンアルコキシドが加水分解・重縮合を行い、シリカを生成する。親水性のシリカが徐々にフェノール樹脂の表面(水との界面)に移動し凝集する。その結果、表面にシリカ層が形成されているフェノール樹脂/シリカ複合体球状微粒子が得られる。これに対して、アルキル基置換のシリコンアルコキシドを用いた場合、生成したシリカがアルキル基を含有するため、疎水性を増し、フェノール樹脂の表面に凝集しにくくなる。その結果、表面付近に樹脂を含むシリカ層(高シリカ含有層)が形成されているフェノール樹脂/シリカ複合体球状微粒子又は表面から内部にわたってシリカが連続的に分布しているフェノール樹脂/シリカ複合体球状微粒子が得られる。   Next, the formation mechanism of the phenol / silica composite spherical fine particles of the present invention will be described. That is, when an aqueous phase containing a poor solvent water of a phenol resin is dropped into an organic phase composed of a phenol resin, silicon alkoxide, and an organic solvent, the phenol resin gradually phase-inverts and precipitates as fine particles. In parallel with this, silicon alkoxide contained in the organic phase undergoes hydrolysis and polycondensation to produce silica. Hydrophilic silica gradually moves to the surface of the phenol resin (interface with water) and aggregates. As a result, phenol resin / silica composite spherical fine particles having a silica layer formed on the surface are obtained. On the other hand, when an alkyl group-substituted silicon alkoxide is used, the generated silica contains an alkyl group, so that the hydrophobicity is increased and the surface of the phenol resin is less likely to aggregate. As a result, a phenol resin / silica composite spherical fine particle in which a silica layer containing a resin (high silica-containing layer) is formed in the vicinity of the surface or a phenol resin / silica composite in which silica is continuously distributed from the surface to the inside Spherical fine particles are obtained.

本発明により得られるフェノール樹脂/シリカ複合体球状微粒子は、通常直径が0.1〜100μmのものであり、シリカ含有率が0.5〜30質量%であり、前記シリカ層又はシリカ含有層の厚みが5nm〜1000nmの範囲で、かかる粒子中に含まれるシリカの大きさが5nm〜1000nmの範囲である。   The phenolic resin / silica composite spherical fine particles obtained by the present invention usually have a diameter of 0.1 to 100 μm, a silica content of 0.5 to 30% by mass, and the silica layer or the silica-containing layer. The thickness is in the range of 5 nm to 1000 nm, and the size of silica contained in the particles is in the range of 5 nm to 1000 nm.

また、本発明で得られるフェノール樹脂/シリカ複合体球状微粒子は、その表面硬度がシリカ層のシリカ含有率や微細構造を変えることにより容易に制御されるため、研磨砥粒として好適に用いられる。例えば、複合体球状微粒子を界面活性剤やエマルジョン安定剤などを含む水溶液に分散させて得られる懸濁液をCMP(メカノケミカル研磨)用研磨液として用いた場合、従来のコロイダルシリカ研磨液に比べて、研磨部品は研磨による変形が少なく、スクラッチの発生が抑制されるメリットがある。   Moreover, since the surface hardness of the phenol resin / silica composite spherical fine particles obtained in the present invention can be easily controlled by changing the silica content and the fine structure of the silica layer, they are suitably used as abrasive grains. For example, when a suspension obtained by dispersing composite spherical fine particles in an aqueous solution containing a surfactant or an emulsion stabilizer is used as a CMP (mechanochemical polishing) polishing liquid, compared to conventional colloidal silica polishing liquid Thus, the abrasive part is less likely to be deformed by polishing and has the advantage of suppressing the occurrence of scratches.

以下実施例により本発明を更に詳しく説明する。また、以下の実施例において走査型電子顕微鏡(SEM)観察は日立製作所株式会社製S-430を用い、透過型電子顕微鏡(TEM)観察は日本電子株式会社製JEM-200CXを用いた。   Hereinafter, the present invention will be described in more detail with reference to examples. In the following examples, S-430 manufactured by Hitachi, Ltd. was used for observation by a scanning electron microscope (SEM), and JEM-200CX manufactured by JEOL Ltd. was used for observation by a transmission electron microscope (TEM).

(実施例1)
フェノライトJ325 (大日本インキ化学工業株式会社製、レゾール型フェノール樹脂、メタノール溶媒、固形分60%) 33.3gに、メタノール30gとテトラメトキシシランの低縮合物MS-51(三菱化成株式会社製、分子量約500) 4.75gからなる溶液を滴下混合して有機相とした。一方、蒸留水20gにヒトロキシエチルセルロースH.E.C ダイセル SP800 (ダイセル化学工業株式会社製) 0.12gを加え、攪拌溶解させて水相とした。次に、有機相を攪拌しながら、水相を簡易ピペットでゆっくりと滴下した。水相を約13g滴下したところ、溶液が濁ってしまい、次第に不透明になった。これは、有機相のフェノール樹脂などが転相乳化して析出したことによるものであった。溶液の光透過率は転相乳化する前が約11%であるのに対して、転相乳化した後が0.2%まで低下した。水相を滴下し終えたら、更に蒸留水20gを滴下して均質な懸濁液が得られた。
続いて、500g蒸留水を攪拌しながら、上記の懸濁液を水中に注ぎ、微粉末を沈殿させた。遠心分離により上澄み溶液を除き、得た微粉末を更に二回水洗した。この微粉末を水中に分散し、100℃、24時間加熱硬化させた後、遠心分離、真空乾燥により原料に対して収率57%でフェノール樹脂/シリカ複合体微粒子14.1gを得た。得られた複合体微粒子を空気雰囲気中1000℃で2時間焼成したところ、白色の灰分(SiO2)が13.6質量%であった。
上記の複合体微粒子試料を走査型電子顕微鏡用試料台の上で白金を用いて5nmの厚みに表面コートし、走査型電子顕微鏡を用いて形態観察を行った。その結果、該微粒子は平均粒径2μmの球状粒子であることがわかった。また、得られた球状微粒子を包埋用樹脂に包埋させミクロドームで超薄切片とし観察した透過型電子顕微鏡写真では、球状微粒子表面に約50nm厚みのシリカ層が形成されていることを示した。
(Example 1)
Phenolite J325 (manufactured by Dainippon Ink & Chemicals, Inc., resol type phenolic resin, methanol solvent, solid content 60%) 33.3 g, low condensate MS-51 of 30 g of methanol and tetramethoxysilane (manufactured by Mitsubishi Kasei Corporation, A solution consisting of 4.75 g of a molecular weight of about 500) was dropped and mixed to obtain an organic phase. On the other hand, 0.12 g of humanoxyethyl cellulose HEC Daicel SP800 (manufactured by Daicel Chemical Industries, Ltd.) was added to 20 g of distilled water, and dissolved by stirring to obtain an aqueous phase. Next, the aqueous phase was slowly dropped with a simple pipette while stirring the organic phase. When about 13 g of the aqueous phase was dropped, the solution became turbid and gradually became opaque. This was due to the phase inversion emulsification of the organic phase phenol resin and the like. The light transmittance of the solution was about 11% before phase inversion emulsification, but decreased to 0.2% after phase inversion emulsification. When the addition of the aqueous phase was completed, 20 g of distilled water was further added dropwise to obtain a homogeneous suspension.
Subsequently, while stirring 500 g distilled water, the above suspension was poured into water to precipitate a fine powder. The supernatant solution was removed by centrifugation, and the resulting fine powder was further washed twice with water. This fine powder was dispersed in water, heated and cured at 100 ° C. for 24 hours, and then centrifuged and vacuum dried to obtain 14.1 g of phenol resin / silica composite fine particles at a yield of 57% based on the raw material. When the obtained composite fine particles were baked at 1000 ° C. for 2 hours in an air atmosphere, the white ash content (SiO 2) was 13.6% by mass.
The composite fine particle sample was surface-coated to a thickness of 5 nm using platinum on a scanning electron microscope sample stage, and morphology observation was performed using a scanning electron microscope. As a result, it was found that the fine particles were spherical particles having an average particle diameter of 2 μm. A transmission electron micrograph of the obtained spherical fine particles embedded in an embedding resin and observed as an ultrathin section with a microdome shows that a silica layer with a thickness of about 50 nm is formed on the surface of the spherical fine particles. It was.

Figure 2006028246
Figure 2006028246

表1に記載の略号は以下を意味する。
フェノール樹脂
J325: レゾール型フェノール樹脂 フェノライトJ325(大日本インキ化学工業(株)製)
シリコン化合物
MS-51: テトラメトキシシラン低縮合物MKCシリケート(三菱化学(株)製)
TMOS: テトラメトキシシラン(東京化成工業(株)製)
MeTMOS: メチルトリメトキシシランLS-530(信越化学工業(株)製)
PhTMOS: フェニルトリメトキシシラン(東京化成工業(株)製、試薬特級)
GTMOS: 3-グリシドキシプロピルトリメトキシシランLS-2940 (信越化学工業(株)製)
メタノールシリカゾル: シリカゾル(日産化学工業(株)製、固形分30%、粒子径10〜20nm、メタノール溶媒)
MA-ST-M: シリカゾル(日産化学工業(株)製、固形分40%、粒子径20〜30nm、メタノール溶媒)
エマルジョン安定剤
H.E.C.: ヒトロキシエチルセルロース、H.E.C.ダイセルSP-800(ダイセル化学工業(株)製)
(4) 界面活性剤
HTAC: 塩化n-ヘキサデシルトリメチルアンモニウム(関東化学(株)製、鹿1級)
DSNa: n-ドデシル硫酸ナトリウム(和光純薬工業(株)製、試薬一級)
The abbreviations listed in Table 1 mean the following.
Phenolic resin
J325: Resol type phenol resin Phenolite J325 (Dainippon Ink Chemical Co., Ltd.)
Silicon compounds
MS-51: Tetramethoxysilane low condensate MKC silicate (Mitsubishi Chemical Corporation)
TMOS: Tetramethoxysilane (Tokyo Chemical Industry Co., Ltd.)
MeTMOS: Methyltrimethoxysilane LS-530 (Shin-Etsu Chemical Co., Ltd.)
PhTMOS: Phenyltrimethoxysilane (Tokyo Chemical Industry Co., Ltd., reagent grade)
GTMOS: 3-glycidoxypropyltrimethoxysilane LS-2940 (manufactured by Shin-Etsu Chemical Co., Ltd.)
Methanol silica sol: Silica sol (manufactured by Nissan Chemical Industries, Ltd., solid content 30%, particle size 10-20 nm, methanol solvent)
MA-ST-M: Silica sol (manufactured by Nissan Chemical Industries, solid content 40%, particle size 20-30nm, methanol solvent)
Emulsion stabilizer
HEC: Humanoxyethyl cellulose, HEC Daicel SP-800 (manufactured by Daicel Chemical Industries, Ltd.)
(4) Surfactant
HTAC: n-hexadecyltrimethylammonium chloride (manufactured by Kanto Chemical Co., Ltd., deer grade 1)
DSNa: Sodium n-dodecyl sulfate (manufactured by Wako Pure Chemical Industries, Ltd., reagent grade 1)

(実施例2〜4)
実施例2はSP800を0.06g用いること、実施例3はSP800を0.03g用いること、実施例4はSP800を0.015g用いること、それ以外は実施例1と同様にしてフェノール樹脂/シリカ複合体球状微粒子を調整した。表1に示したように、ヒドロキシエチルセルロースの仕込み量を減らすことによって球状微粒子が大きくなった。
(Examples 2 to 4)
Example 2 uses 0.06 g of SP800, Example 3 uses 0.03 g of SP800, Example 4 uses 0.015 g of SP800, and otherwise the phenol resin / silica composite spherical shape is the same as in Example 1. Fine particles were prepared. As shown in Table 1, the spherical fine particles were enlarged by reducing the amount of hydroxyethyl cellulose charged.

(実施例5〜7)
実施例5はMS-51を2.46g用いること以外は実施例1と同様に複合体球状微粒子を調整した。表1に示したように、シリコン化合物の仕込み量を減らすことによって球状微粒子が大きくなった。
実施例6についてはSP800を0.06g用い、実施例7についてはSP800を0.03g用い、それ以外は実施例5と同様にして複合体球状微粒子を調整した。結果は表1に示す。
(Examples 5 to 7)
In Example 5, composite spherical fine particles were prepared in the same manner as in Example 1 except that 2.46 g of MS-51 was used. As shown in Table 1, the spherical fine particles were enlarged by reducing the amount of silicon compound charged.
The composite spherical fine particles were prepared in the same manner as in Example 5 except that 0.06 g of SP800 was used for Example 6, 0.03 g of SP800 was used for Example 7, and other than that. The results are shown in Table 1.

(実施例8〜10)
実施例8についてはMS-51を1.2g用い、実施例9についてはMS-51を0.58g用い、実施例10についてはMS-51 1.2gとHTAC 0.2gを用い、それ以外は実施例1と同様にして複合体球状微粒子を調整した。
また、実施例8で得られた球状微粒子を包埋用樹脂に包埋させミクロドームで超薄切片とし観察した透過型電子顕微鏡写真では、球状微粒子表面に約10nm厚みのシリカ層が形成されていることを示した。
(Examples 8 to 10)
For Example 8, 1.2 g of MS-51 was used, for Example 9, 0.58 g of MS-51 was used, for Example 10, 1.2 g of MS-51 and 0.2 g of HTAC were used, and otherwise, Example 1 was used. Similarly, composite spherical fine particles were prepared.
In addition, in the transmission electron micrograph of the spherical fine particles obtained in Example 8 embedded in an embedding resin and observed as an ultrathin section with a microdome, a silica layer having a thickness of about 10 nm is formed on the surface of the spherical fine particles. Showed that.

(実施例11〜17)
実施例11〜17は、MS-51の変わりにいろいろなシリコン化合物を用いて単独又はMS-51と併用して、表1に示した仕込み量で実施例1とほぼ同様にして複合体微粒子を調整した。得られた微粒子がすべて球状微粒子であり、その粒子径及び収率を表1に示す。
また、実施例8と15で得られた球状微粒子を包埋用樹脂に包埋させミクロドームで超薄切片を作製し、球状微粒子断面を露出させた。次に、透過型電子顕微鏡を用いて、得た球状微粒子断面の外表面と内部に直径500nmの電子線ピームを当てて、Siの元素分析を行った。その結果を表2に示す。
(Examples 11 to 17)
In Examples 11-17, various fine silicon compounds were used instead of MS-51 alone or in combination with MS-51, and composite fine particles were prepared in substantially the same manner as in Example 1 with the amounts shown in Table 1. It was adjusted. The obtained fine particles are all spherical fine particles, and the particle size and yield are shown in Table 1.
Further, the spherical fine particles obtained in Examples 8 and 15 were embedded in an embedding resin, an ultrathin section was prepared with a microdome, and the spherical fine particle cross section was exposed. Next, using a transmission electron microscope, an electron beam beam having a diameter of 500 nm was applied to the outer surface and the inside of the obtained spherical fine particle cross section, and elemental analysis of Si was performed. The results are shown in Table 2.

Figure 2006028246
Figure 2006028246

表2に示したように、シリコンアルコキシド低縮合物MS-51を用いた実施例8では、シリカが球状微粒子の表面に凝集して、球の内部にはシリカが殆どなかった。これに対して比較的疎水性のメチル基置換シリコンアルコキシドMeTMOSを一部用いた実施例15では、得られた球状微粒子の表面だけではなく、球の内部にもシリカがかなり残った。   As shown in Table 2, in Example 8 using the silicon alkoxide low condensate MS-51, silica aggregated on the surface of the spherical fine particles, and there was almost no silica inside the sphere. In contrast, in Example 15 using a part of the relatively hydrophobic methyl group-substituted silicon alkoxide MeTMOS, a considerable amount of silica remained not only on the surface of the obtained spherical fine particles but also inside the sphere.

実施例3で得られたフェノール樹脂/シリカ複合体球状微粒子のSEM写真(倍率:1000)SEM photograph (magnification: 1000) of spherical fine particles of phenol resin / silica composite obtained in Example 3 実施例8で得られたフェノール樹脂/シリカ複合体球状微粒子のTEM写真(倍率:100,000)TEM photograph (magnification: 100,000) of the phenol resin / silica composite spherical fine particles obtained in Example 8

Claims (13)

フェノール樹脂(A)とシリコン化合物(B)と有機溶媒(C)とを含む有機相にエマルジョン安定剤(D)を含む水溶液を添加して該有機層を転相乳化することにより得られる微粒子を加熱硬化することを特徴とするフェノール樹脂/シリカ複合体球状微粒子の製造方法。 Fine particles obtained by adding an aqueous solution containing an emulsion stabilizer (D) to an organic phase containing a phenol resin (A), a silicon compound (B), and an organic solvent (C) and phase-inverting the organic layer. A method for producing spherical fine particles of a phenol resin / silica composite, characterized by being heat-cured. 前記シリコン化合物(B)がシリコンアルコキシド類、アルキル基またはフェニル基置換シリコンアルコキシド類、それらの低縮合物、又はシリカゾルである請求項1記載のフェノール樹脂/シリカ複合体球状微粒子の製造方法。 The method for producing spherical fine particles of a phenol resin / silica composite according to claim 1, wherein the silicon compound (B) is a silicon alkoxide, an alkyl group or a phenyl group-substituted silicon alkoxide, a low condensate thereof, or a silica sol. 転相乳化する際に、前記シリコン化合物(B)に含まれるシリコンアルコキシド類、アルキル基またはフェニル基置換シリコンアルコキシド類、またはそれらの低縮合物を加水分解及び重縮合反応を行わせる請求項1または2記載のフェノール樹脂/シリカ複合体球状微粒子の製造方法。 The silicon alkoxides, alkyl group or phenyl group-substituted silicon alkoxides contained in the silicon compound (B), or a low condensate thereof are subjected to hydrolysis and polycondensation reaction during phase inversion emulsification. 2. The method for producing a spherical fine particle of phenol resin / silica composite according to 2. 前記フェノール樹脂(A)がレゾール型フェノール樹脂であることを特徴とする請求項1〜3のいずれかに記載のフェノール樹脂/シリカ複合体球状微粒子の製造方法。 The said phenol resin (A) is a resol type phenol resin, The manufacturing method of the phenol resin / silica composite spherical fine particle in any one of Claims 1-3 characterized by the above-mentioned. 前記有機溶媒(C)が低級アルコールを含むものであることを特徴とする請求項1〜4のいずれかに記載のフェノール樹脂/シリカ複合体球状微粒子の製造方法。 The said organic solvent (C) is a thing containing a lower alcohol, The manufacturing method of the phenol resin / silica composite spherical fine particle in any one of Claims 1-4 characterized by the above-mentioned. 前記エマルジョン安定剤(D)がヒドロキシエチルセルロースである請求項1〜5のいずれかに記載のフェノール樹脂/シリカ複合体球状微粒子の製造方法。 The method for producing spherical fine particles of a phenol resin / silica composite according to any one of claims 1 to 5, wherein the emulsion stabilizer (D) is hydroxyethyl cellulose. 直径が0.1〜100μmである請求項1〜6のいずれか一つに記載のフェノール樹脂/シリカ複合体球状微粒子の製造方法。 The method for producing spherical fine particles of a phenol resin / silica composite according to any one of claims 1 to 6, wherein the diameter is 0.1 to 100 µm. シリカ含有率が0.5〜30質量%である請求項1〜7のいずれかに記載のフェノール樹脂/シリカ複合体球状微粒子の製造方法。 Silica content rate is 0.5-30 mass%, The manufacturing method of the phenol resin / silica composite spherical fine particle in any one of Claims 1-7. 粒子の表面にシリカ層又はシリカ含有層を有する請求項1〜8のいずれかに記載のフェノール樹脂/シリカ複合体球状微粒子の製造方法。 The method for producing a phenol resin / silica composite spherical fine particle according to any one of claims 1 to 8, wherein the particle surface has a silica layer or a silica-containing layer. 前記シリカ層又はシリカ含有層の厚みが5nm〜1000nmの範囲にある請求項9記載のフェノール樹脂/シリカ複合体球状微粒子の製造方法。 The method for producing phenol resin / silica composite spherical fine particles according to claim 9, wherein the thickness of the silica layer or the silica-containing layer is in the range of 5 nm to 1000 nm. 粒子内にシリカを含有する請求項1〜10のいずれかに記載のフェノール樹脂/シリカ複合体球状微粒子の製造方法。 The manufacturing method of the phenol resin / silica composite spherical fine particles according to any one of claims 1 to 10, wherein the particles contain silica. 前記シリカ層又はシリカ含有層のシリカと前記粒子内のシリカとが連続している請求項11記載のフェノール樹脂/シリカ複合体球状微粒子の製造方法。 12. The method for producing phenol resin / silica composite spherical fine particles according to claim 11, wherein the silica in the silica layer or the silica-containing layer and the silica in the particles are continuous. 粒子中に含まれるシリカの大きさが5nm〜1000nmの範囲にある請求項11または12のいずれかに記載のフェノール樹脂/シリカ複合体球状微粒子の製造方法。

The method for producing spherical fine particles of a phenol resin / silica composite according to claim 11 or 12, wherein the silica contained in the particles has a size in the range of 5 nm to 1000 nm.

JP2004205846A 2004-07-13 2004-07-13 Method for producing composite spherical fine particles containing phenol resin and silica Expired - Fee Related JP4627642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004205846A JP4627642B2 (en) 2004-07-13 2004-07-13 Method for producing composite spherical fine particles containing phenol resin and silica

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004205846A JP4627642B2 (en) 2004-07-13 2004-07-13 Method for producing composite spherical fine particles containing phenol resin and silica

Publications (2)

Publication Number Publication Date
JP2006028246A true JP2006028246A (en) 2006-02-02
JP4627642B2 JP4627642B2 (en) 2011-02-09

Family

ID=35894992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004205846A Expired - Fee Related JP4627642B2 (en) 2004-07-13 2004-07-13 Method for producing composite spherical fine particles containing phenol resin and silica

Country Status (1)

Country Link
JP (1) JP4627642B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242530A (en) * 2008-03-31 2009-10-22 Akebono Brake Ind Co Ltd Binder resin composition for friction material, thermosetting resin composite material containing the same, and friction material
JP2011213806A (en) * 2010-03-31 2011-10-27 Sumitomo Chemical Co Ltd Thermoplastic resin pellet
JP2014105270A (en) * 2012-11-27 2014-06-09 Asahi Kasei Chemicals Corp Aqueous composition, water-based coating material, coating film, and coated product

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09208210A (en) * 1996-02-07 1997-08-12 Hitachi Chem Co Ltd Production of silicon carbide powder
JP2003026923A (en) * 2001-07-19 2003-01-29 Jsr Corp Method of manufacturing aqueous dispersion containing polyorganosiloxane/organic polymer composite particle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09208210A (en) * 1996-02-07 1997-08-12 Hitachi Chem Co Ltd Production of silicon carbide powder
JP2003026923A (en) * 2001-07-19 2003-01-29 Jsr Corp Method of manufacturing aqueous dispersion containing polyorganosiloxane/organic polymer composite particle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242530A (en) * 2008-03-31 2009-10-22 Akebono Brake Ind Co Ltd Binder resin composition for friction material, thermosetting resin composite material containing the same, and friction material
JP2011213806A (en) * 2010-03-31 2011-10-27 Sumitomo Chemical Co Ltd Thermoplastic resin pellet
JP2014105270A (en) * 2012-11-27 2014-06-09 Asahi Kasei Chemicals Corp Aqueous composition, water-based coating material, coating film, and coated product

Also Published As

Publication number Publication date
JP4627642B2 (en) 2011-02-09

Similar Documents

Publication Publication Date Title
JP4998744B2 (en) Spherical zinc oxide particle powder and highly heat conductive composition
EP3009480B1 (en) Silica-containing resin composition and method for producing same, and molded article produced from silica-containing resin composition
JP5658905B2 (en) Bead-shaped hollow particles, production method thereof, and friction material using the beads-shaped hollow particles
US6124393A (en) Composite of thermosetting resin with metallic oxide and process for the preparation thereof
KR20170024378A (en) Graphene-containing organic-inorganic hybrid coating film, and method for preparing the same
JP5148971B2 (en) Spherical silica particles and method for producing the same
JP5102179B2 (en) Thermally conductive composition and method for producing the same
KR101765587B1 (en) Coating composition for preparing graphene oxide-containing organic-inorganic hybrid coating film, and method for preparing the same
KR100867466B1 (en) Method for Preparing Permanently Hydrophobic Aerogel Powder Having Increased Particle Size and Density And Aerogel Powder Therefrom
JP5253125B2 (en) Porous silica particles, method for producing the same, and composite material comprising the porous silica particles
WO2014057976A1 (en) Core-shell silica nanoparticles and production method thereof, hollow silica nanoparticle production method using same, and hollow silica nanoparticles obtained by said production method
JP6808720B2 (en) Method for manufacturing surface-treated granular inorganic material
KR101864767B1 (en) Preparation method of hollow silica nano powder with high purity and low reflection coating membrane comprising the powder
CN1217352C (en) Nano/micron microsphere with superparamagnetism and preparation method
JP4627642B2 (en) Method for producing composite spherical fine particles containing phenol resin and silica
AU2014295912B2 (en) Coated particles and method of coating particles
Saliba et al. Advanced nanocomposite coatings of fusion bonded epoxy reinforced with amino-functionalized nanoparticles for applications in underwater oil pipelines
JP2018100679A (en) Heat insulation material
KR101496746B1 (en) Silicone rubber powder and method of manufacturing thereof
JP3588860B2 (en) Composite of thermosetting resin and metal oxide and method for producing the same
JPH1192623A (en) Production of composite material of phenol resin and silica
JP2009126732A (en) Hydrophobic porous material and method for manufacturing the same
JP2011063732A (en) Coated silica fine particle-dispersed phenol resin for blending with rubber
JP5256629B2 (en) Coated inorganic fine particle-dispersed phenol resin and method for producing the same
JP5196544B2 (en) INORGANIC COMPOSITE RESIN MATERIAL AND PROCESS FOR PRODUCING THE SAME

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070611

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101108

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees