JP4998744B2 - Spherical zinc oxide particle powder and highly heat conductive composition - Google Patents

Spherical zinc oxide particle powder and highly heat conductive composition Download PDF

Info

Publication number
JP4998744B2
JP4998744B2 JP2008099013A JP2008099013A JP4998744B2 JP 4998744 B2 JP4998744 B2 JP 4998744B2 JP 2008099013 A JP2008099013 A JP 2008099013A JP 2008099013 A JP2008099013 A JP 2008099013A JP 4998744 B2 JP4998744 B2 JP 4998744B2
Authority
JP
Japan
Prior art keywords
zinc oxide
particles
spherical
less
particle powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008099013A
Other languages
Japanese (ja)
Other versions
JP2009249226A (en
Inventor
俊之 博多
勝司 岩見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2008099013A priority Critical patent/JP4998744B2/en
Publication of JP2009249226A publication Critical patent/JP2009249226A/en
Application granted granted Critical
Publication of JP4998744B2 publication Critical patent/JP4998744B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、熱伝導性材料、紫外線吸収材料、触媒担体として有用な、球状酸化亜鉛粒子、およびその製造方法に関するものである。   The present invention relates to a spherical zinc oxide particle useful as a heat conductive material, an ultraviolet absorbing material, and a catalyst carrier, and a method for producing the same.

IC、トランジスタ、ダイオード等の電子部品は、その動作により発熱し、その熱のために性能が低下することが懸念される。特に、最近の電子機器の小型化に伴い、発生する熱を如何に効率的に除去するかということが電子部品における最大の課題となっている。一般的に、これら熱を除去するために、放熱体といわれる主に金属からなる部品を電子部品の周りに取り付けている。ただし、これらは導電性であるために、直接電子部品につけると漏電などの問題が発生し好ましくない。そこで、熱伝導性グリースや熱伝導性シート等を電子部品と放熱体の間に介在させて上記問題を解決する対策が行なわれている。   There is a concern that electronic components such as ICs, transistors, and diodes generate heat due to their operation, and the performance deteriorates due to the heat. In particular, with the recent miniaturization of electronic devices, how to efficiently remove the generated heat has become the biggest challenge for electronic components. In general, in order to remove such heat, a part mainly made of metal called a heat radiator is attached around an electronic part. However, since these are conductive, problems such as electric leakage are not preferable if they are directly attached to an electronic component. Therefore, measures are taken to solve the above problems by interposing a heat conductive grease, a heat conductive sheet or the like between the electronic component and the radiator.

熱伝導性グリースや熱伝導性シートは、高熱伝導性フィラーをシリコーングリースやシリコーンゴムやアクリルゴム等のマトリックス中に分散させたものであり、如何に高熱伝導性フィラーを高充填させるかが一つのポイントである。と同時に、熱伝導性グリースの場合は、できるだけ低粘度であるほうが好ましく、また、熱伝導性シートの場合には、できるだけ薄い方が好ましい。   Thermally conductive grease and thermally conductive sheet are high thermal conductive fillers dispersed in a matrix such as silicone grease, silicone rubber, and acrylic rubber. It is a point. At the same time, in the case of a thermally conductive grease, it is preferable that the viscosity is as low as possible, and in the case of a thermally conductive sheet, the thinner one is preferable.

熱伝導性フィラーとしては、アルミナ、窒化アルミニウム、窒化ホウ素又は窒化ケイ素等の粉末が用いられている。いわゆる熱伝導率においては、窒化アルミニウムや窒化ケイ素は非常に高く、本目的を達成するためには好ましい材料であり、これらのフィラーを高充填できるように種々工夫がなされている。   As the heat conductive filler, powder of alumina, aluminum nitride, boron nitride, silicon nitride or the like is used. In so-called thermal conductivity, aluminum nitride and silicon nitride are very high and are preferable materials for achieving this object, and various devices have been devised so that these fillers can be highly filled.

しかしながら、窒化アルミニウム粉末や窒化ケイ素粉末は、水分が存在すると加水分解反応を起こし、大幅に熱伝導率が低下すると同時に、アンモニアガスを発生し、気泡として存在することで、本来の高い熱伝導性を十分に生かすことができなくなる。   However, aluminum nitride powder or silicon nitride powder undergoes a hydrolysis reaction in the presence of moisture, resulting in a significant decrease in thermal conductivity. At the same time, ammonia gas is generated and present as bubbles, resulting in inherent high thermal conductivity. Cannot be fully utilized.

特許文献1(特開2004−142999号公報)には、炭酸イオン及び/または炭酸水素イオン、アンモニウムイオンを含む水溶液と亜鉛イオンを含む水溶液とを混合して、得られた生成物を300℃以上で焼成して球状の0.01〜10μmの酸化亜鉛粒子を生成することを提案している。ただし、得られた粒子の球形度についての記載はなく、さらに、粒度分布および細孔構造等による記載はなく、例えば熱伝導性粒子として高分子材料中に充填しようとした場合に、高充填することが難しく、結果として十分な熱伝導性を得ることが難しくなる。   In Patent Document 1 (Japanese Patent Application Laid-Open No. 2004-142999), an aqueous solution containing carbonate ions and / or bicarbonate ions and ammonium ions and an aqueous solution containing zinc ions are mixed, and the resulting product is 300 ° C. or higher. To produce spherical 0.01 to 10 μm zinc oxide particles. However, there is no description about the sphericity of the obtained particles, and there is no description based on the particle size distribution, pore structure, etc., for example, high packing when trying to fill the polymer material as thermally conductive particles As a result, it becomes difficult to obtain sufficient thermal conductivity.

特許文献2(特開平11−49516号公報)には、粒子表面に微細な球状あるいは針状突起を有した、粒子径が1〜50μmの球状酸化亜鉛粒子に関して提案されている。ただし、粒子表面の突起物により粒子間の摩擦力が大きく、高分子材料中に充填しようとした場合に、高充填することが難しく、また、有機酸化亜鉛を熱処理して合成するために、粒子内部に細孔を多く有し、高分子材料への分散の際に粘度が高くなり、結果として高充填できなくなり、熱伝導性が十分とはいえない。   Patent Document 2 (Japanese Patent Application Laid-Open No. 11-49516) proposes spherical zinc oxide particles having a fine spherical or acicular protrusion on the particle surface and a particle diameter of 1 to 50 μm. However, due to the projections on the particle surface, the frictional force between the particles is large, and when trying to fill the polymer material, it is difficult to fill the polymer material. There are many pores inside, and the viscosity becomes high when dispersed in a polymer material. As a result, high filling cannot be achieved, and the thermal conductivity is not sufficient.

特許文献3(特開2002−201483号公報)には、5〜17μmの平均粒子径を有する無機粉末の粗粒を40〜90容量%と、前記粗粒の平均粒子径の1/3〜1/40の平均粒子径を有する微粒を10〜60容量%とを組み合わせたものを提案している。ただし、粗粒の形状および粒度分布については記載されておらず、単に従来の微粒子だけを充填していたものに対して、熱伝導性とディスペンス性が向上したものに過ぎない。   In Patent Document 3 (Japanese Patent Laid-Open No. 2002-201483), 40 to 90% by volume of coarse particles of an inorganic powder having an average particle size of 5 to 17 μm and 1/3 to 1 of the average particle size of the coarse particles are disclosed. A combination of 10 to 60% by volume of fine particles having an average particle size of / 40 is proposed. However, the shape and particle size distribution of the coarse particles are not described, and only the thermal conductivity and the dispensing property are improved compared to the case where only conventional fine particles are filled.

特許文献4(特開2000−143808号公報)には、シリコーンゲル100重量部に対して、A成分としてシリコーンゲルの硬化反応の阻害を防止する表面処理をした窒化物または炭化物が5〜500重量部、B成分として比表面積が1.0m/g以下でありかつ平均粒子径10〜100μmの塩基性金属酸化物が0〜1200重量部、C成分として補強剤が0〜500重量部、D成分として架橋剤が0〜20重量部、を含む組成のコンパウンドについて記載されている。これも、平均粒子径だけが規定してあり、その形状についての記載はない。 In Patent Document 4 (Japanese Patent Laid-Open No. 2000-143808), 5 to 500 weights of nitride or carbide subjected to a surface treatment for preventing the inhibition of the curing reaction of the silicone gel as component A with respect to 100 parts by weight of the silicone gel. 0 to 1200 parts by weight of a basic metal oxide having a specific surface area of 1.0 m 2 / g or less and an average particle size of 10 to 100 μm as the B component, and 0 to 500 parts by weight of the reinforcing agent as the C component, D A compound having a composition containing 0 to 20 parts by weight of a crosslinking agent as a component is described. Again, only the average particle size is defined, and there is no description of its shape.

また、特許文献5(特開2001−2830号公報)には、窒化アルミニウムや窒化ホウ素、窒化ケイ素等の加水分解を防止する目的で、当該熱伝導性粒子を加水分解されにくいシリカやアルミナ等の無機酸化物でコートする事が記載されている。ところが、高温高湿化条件での信頼性において十分とはいえない。   Patent Document 5 (Japanese Patent Application Laid-Open No. 2001-2830) discloses silica, alumina, and the like that are difficult to hydrolyze the thermally conductive particles for the purpose of preventing hydrolysis of aluminum nitride, boron nitride, silicon nitride and the like. The coating with an inorganic oxide is described. However, the reliability under high temperature and high humidity conditions is not sufficient.

特開2004−142999号公報JP 2004-142999 A 特開平11−49516号公報JP 11-49516 A 特開2002−201483号公報JP 2002-201483 A 特開2000−143808号公報JP 2000-143808 A 特開2001−2830号公報JP 2001-2830 A

本発明はかかる実情に鑑み、高温高湿化においても信頼性が高く、できるだけ充填性が高められ、かつ、熱伝導性の高い材料を提供することを課題とする   In view of the actual situation, the present invention has an object to provide a material that is highly reliable even in high temperature and high humidity, has high filling properties as much as possible, and has high thermal conductivity.

即ち、本発明は、平均粒子径が1〜300μm、BET比表面積が1m/g以下であり、水銀圧入法による細孔容積が0.05ml/g以下であり、球形度が1.4未満の球状粒子であることを特徴とする球状酸化亜鉛粒子粉末である(本発明1)。 That is, the present invention has an average particle diameter of 1 to 300 μm, a BET specific surface area of 1 m 2 / g or less, a pore volume by mercury intrusion method of 0.05 ml / g or less, and a sphericity of less than 1.4. It is a spherical zinc oxide particle powder characterized by being spherical particles of the present invention (Invention 1).

また、本発明は、高分子材料を主成分とする材料中に、30体積%以上の請求項1に記載の球状酸化亜鉛粒子粉末を含む高熱伝導性組成物である(本発明2)。   Moreover, this invention is a highly heat conductive composition which contains the spherical zinc oxide particle powder of Claim 1 of 30 volume% or more in the material which has a polymeric material as a main component (invention 2).

本発明に係る球状酸化亜鉛粒子粉末は、水銀圧入法による細孔がほとんどなく、且つ、平均粒子径が1〜300μmであって、球状の粒子であることから、熱伝導性材料、紫外線吸収材料、触媒担体として有用である。   Since the spherical zinc oxide particle powder according to the present invention has almost no pores by the mercury intrusion method and has an average particle diameter of 1 to 300 μm and is a spherical particle, it is a thermally conductive material, an ultraviolet absorbing material. It is useful as a catalyst support.

本発明に係る球状酸化亜鉛粒子粉末は、平均粒子径(D50)が1〜300μm、BET比表面積が1m/g以下であり、水銀圧入法による細孔容積が0.05ml/g以下であり、球形度が1.4未満であることを特徴とする酸化亜鉛の球状粒子からなる酸化亜鉛球状粒子粉末である。 The spherical zinc oxide particles according to the present invention have an average particle diameter (D50) of 1 to 300 μm, a BET specific surface area of 1 m 2 / g or less, and a pore volume by mercury intrusion method of 0.05 ml / g or less. A zinc oxide spherical particle powder composed of zinc oxide spherical particles characterized by a sphericity of less than 1.4.

本発明に係る球状酸化亜鉛粒子粉末の粒子形状は、球状であり、その球形度(長軸径/短軸径)は1.4未満である。粒子形状が球状でない場合は、充填性が低下する。   The particle shape of the spherical zinc oxide particle powder according to the present invention is spherical, and the sphericity (major axis diameter / minor axis diameter) is less than 1.4. When the particle shape is not spherical, the filling property is lowered.

本発明に係る球状酸化亜鉛粒子粉末の平均粒子径(D50)は1〜300μmである。平均粒子径(D50)が1μm未満の粒子は、樹脂等で成型する際の充填量を高めることが難しくなる。一方、300μmを越えるものは熱伝導シート用の充填材等として使用される場合、充填量を高めることが難しくなる。好ましい平均粒子径(D50)は1〜200μmであり、さらに好ましくは1〜100μmである。   The average particle diameter (D50) of the spherical zinc oxide particle powder according to the present invention is 1 to 300 μm. Particles having an average particle diameter (D50) of less than 1 μm are difficult to increase the filling amount when molded with a resin or the like. On the other hand, when the thickness exceeding 300 μm is used as a filler for a heat conductive sheet, it is difficult to increase the filling amount. A preferable average particle diameter (D50) is 1 to 200 μm, and more preferably 1 to 100 μm.

本発明に係る球状のフェライト粒子粉末の粒度分布は、D50で示した場合の平均粒子径に対するD90(フェライト粒子粉末の全体積を100%として累積体積で表した粒子径を求めたときの累積割合が90%となる点)で示した場合の平均粒子径の比率(D90/D50)で、好ましくは3.0以下、より好ましくは2.8以下である。D10(フェライト粒子粉末の全体積を100%として累積体積で表した粒子径を求めたときの累積割合が10%となる点)で示した場合の平均粒子径に対するD50で示した場合の平均粒子径の比率(D50/D10)で、好ましくは3.0以下、より好ましくは2.5以下である。 The particle size distribution of the spherical ferrite particle powder according to the present invention is as follows: D 90 with respect to the average particle diameter in the case of D 50 (when the particle diameter expressed in cumulative volume is defined with the total volume of the ferrite particle powder being 100%. The average particle size ratio (D 90 / D 50 ) in the case where the cumulative ratio is 90%) is preferably 3.0 or less, more preferably 2.8 or less. D 10 (the point at which the cumulative ratio when the particle size represented by the cumulative volume is 100% when the total volume of the ferrite particle powder is 100% is 10%) is indicated by D 50 with respect to the average particle size. The ratio of average particle diameter (D 50 / D 10 ) is preferably 3.0 or less, more preferably 2.5 or less.

本発明に係る球状酸化亜鉛粒子粉末のBET比表面積は1.0m/g以下である。BET比表面積が1.0m/gを越えると、充填量を高くできない。さらに熱伝導性も低くなってしまう。好ましいBET比表面積は0.01〜0.15m/gである。 The BET specific surface area of the spherical zinc oxide particle powder according to the present invention is 1.0 m 2 / g or less. When the BET specific surface area exceeds 1.0 m 2 / g, the filling amount cannot be increased. Furthermore, the thermal conductivity is lowered. A preferred BET specific surface area is 0.01 to 0.15 m 2 / g.

本発明に係る球状酸化亜鉛粒子粉末の水銀圧入法による細孔容積が0.05ml/g以下である。水銀圧入法による細孔容積が0.05ml/gを超えると、充填量が高くできないし、熱伝導性も低くなってしまう。好ましい細孔容積は0.001〜0.01ml/gである。   The spherical zinc oxide particle powder according to the present invention has a pore volume of 0.05 ml / g or less by mercury porosimetry. When the pore volume by the mercury intrusion method exceeds 0.05 ml / g, the filling amount cannot be increased and the thermal conductivity is also lowered. The preferred pore volume is 0.001 to 0.01 ml / g.

本発明に係る球状酸化亜鉛粒子粉末の水分量は、33℃、80%RH条件で24時間放置後に、0.1%未満が好ましい。水分量が0.1%より高くなると、電子部品や基板あるいはヒートシンク等を腐食してしまう恐れがある。より好ましくは0.01〜0.08%である。   The water content of the spherical zinc oxide particles according to the present invention is preferably less than 0.1% after standing for 24 hours at 33 ° C. and 80% RH. If the moisture content is higher than 0.1%, the electronic component, the substrate, the heat sink or the like may be corroded. More preferably, it is 0.01 to 0.08%.

本発明に係る球状酸化亜鉛粒子粉末の比重は、5.47〜5.60が好ましい。比重が5.47未満の場合、樹脂が残存していることになり好ましくない。より好ましくは5.50〜5.60である。   The specific gravity of the spherical zinc oxide particle powder according to the present invention is preferably 5.47 to 5.60. When the specific gravity is less than 5.47, the resin remains, which is not preferable. More preferably, it is 5.50-5.60.

本発明に係る球状酸化亜鉛粒子粉末のかさ密度は、2.45〜2.80g/mlが好ましい。かさ密度が2.45g/ml未満の場合、高分子中への充填性を高めることが困難となる。かさ密度が2.80g/mlを超える酸化亜鉛粒子粉末は、工業的に製造することが困難である。   The bulk density of the spherical zinc oxide particles according to the present invention is preferably 2.45 to 2.80 g / ml. When the bulk density is less than 2.45 g / ml, it is difficult to improve the filling property into the polymer. Zinc oxide particle powder having a bulk density exceeding 2.80 g / ml is difficult to produce industrially.

本発明に係る球状酸化亜鉛粒子粉末の体積固有抵抗値は、1.0×10Ωcm以上が好ましい。体積固有抵抗値が1.0×10Ωcm未満の場合、電子部品に用いた場合に漏電等の問題を引き起こす。できるだけ、体積固有抵抗値は高い方が好ましい。 The volume resistivity value of the spherical zinc oxide particles according to the present invention is preferably 1.0 × 10 9 Ωcm or more. When the volume specific resistance value is less than 1.0 × 10 9 Ωcm, problems such as electric leakage occur when used for electronic components. It is preferable that the volume resistivity value is as high as possible.

次に、球状酸化亜鉛粒子粉末の製造法について述べる。   Next, a method for producing spherical zinc oxide particle powder will be described.

本発明に係る球状酸化亜鉛粒子粉末は、酸化亜鉛原料粒子の存在下でフェノール類とアルデヒド類とを水性媒体中で反応・硬化させ、酸化亜鉛原料粒子とフェノール樹脂とからなる複合体粒子を生成させ、次いで、400〜700℃で加熱処理することにより前記フェノール樹脂を除去し、さらに800〜1400℃で加熱処理することにより酸化亜鉛原料粒子粉末を焼結させることにより製造することができる。   The spherical zinc oxide particle powder according to the present invention reacts and cures phenols and aldehydes in an aqueous medium in the presence of zinc oxide raw material particles to produce composite particles composed of zinc oxide raw material particles and a phenol resin. Then, the phenol resin is removed by heat treatment at 400 to 700 ° C., and the zinc oxide raw material particle powder is sintered by further heat treatment at 800 to 1400 ° C.

本発明における酸化亜鉛原料粒子の平均粒子径は、複合体粒子の平均粒子径よりも小さい粒子であればよく、0.01〜5.0μm、殊に、0.1〜2.0μmの範囲のものが好ましい。酸化亜鉛原料粒子の平均粒子径が0.01μm未満では複合体粒子中の酸化亜鉛原料粒子の含有量が低くなり、一方、5.0μmを越えると複合体粒子及びフェライト粒子の表面が凹凸になったり、球形度が低くなったりする。   The average particle diameter of the zinc oxide raw material particles in the present invention may be any particle that is smaller than the average particle diameter of the composite particles, and is in the range of 0.01 to 5.0 μm, particularly 0.1 to 2.0 μm. Those are preferred. When the average particle diameter of the zinc oxide raw material particles is less than 0.01 μm, the content of the zinc oxide raw material particles in the composite particles is low. On the other hand, when the average particle diameter exceeds 5.0 μm, the surfaces of the composite particles and the ferrite particles become uneven. Or the sphericity is low.

また、酸化亜鉛原料粒子は、あらかじめ親油化処理をしておくことが望ましく、親油化処理がされていない酸化亜鉛原料粒子を用いる場合には、球状複合体粒子を得ることが困難となる場合がある。   In addition, it is desirable that the zinc oxide raw material particles have been subjected to lipophilic treatment in advance, and when using zinc oxide raw material particles that have not been subjected to lipophilic treatment, it becomes difficult to obtain spherical composite particles. There is a case.

親油化処理は、酸化亜鉛原料粒子をシラン系カップリング剤やチタネート系カップリング剤等のカップリング剤で処理する方法、又は界面活性剤を含む水性媒体中に酸化亜鉛原料粒子を分散させ、粒子表面に界面活性剤を吸着させる方法等がある。   The lipophilic treatment is a method of treating zinc oxide raw material particles with a coupling agent such as a silane coupling agent or a titanate coupling agent, or dispersing zinc oxide raw material particles in an aqueous medium containing a surfactant, There is a method of adsorbing a surfactant on the particle surface.

シラン系カップリング剤としては、疎水性基、エポキシ基、アミノ基を有するものがあり、これらは単独で又は必要に応じ2種以上組み合わせて用いられる。   Silane coupling agents include those having a hydrophobic group, an epoxy group, and an amino group, and these may be used alone or in combination of two or more as required.

疎水性基を有するシラン系カップリング剤としては、ビニルトリクロルシラン、ビニルトリエトキシシラン、ビニルトリス(β−メトキシ)シラン等があり、チタネート系カップリング剤としては、イソプロピルトリイソステアロイルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルトリス(ジオクチルピロホスフェート)チタネート等がある。   Examples of silane coupling agents having a hydrophobic group include vinyltrichlorosilane, vinyltriethoxysilane, vinyltris (β-methoxy) silane, and titanate coupling agents include isopropyltriisostearoyl titanate and isopropyltridodecyl. Examples include benzenesulfonyl titanate and isopropyl tris (dioctyl pyrophosphate) titanate.

エポキシ基を有するシラン系カップリング剤としては、γ−グリシドキシプロピルメチルジメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)トリメトキシシラン等がある。   Examples of the silane coupling agent having an epoxy group include γ-glycidoxypropylmethyldimethoxysilane, γ-glycidoxypropyltrimethoxysilane, and β- (3,4-epoxycyclohexyl) trimethoxysilane.

アミノ基を有するシラン系カップリング剤としては、γ−アミノプロピルトリメトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルメチルジメトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン等がある。   Examples of the silane coupling agent having an amino group include γ-aminopropyltrimethoxysilane, N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane, N-β- (aminoethyl) -γ-aminopropyl. Examples include methyldimethoxysilane and N-phenyl-γ-aminopropyltrimethoxysilane.

界面活性剤としては特に制限はなく、公知の界面活性剤を使用することができるが、無機化合物粒子や該粒子表面に有する水酸基と結合可能な官能基を有するものが望ましく、イオン性で言えばカチオン性、あるいはアニオン性のものが好ましい。これらは単独で又は必要に応じ2種以上組み合わせて用いられる。   The surfactant is not particularly limited, and a known surfactant can be used. However, those having a functional group capable of bonding to the inorganic compound particles and the hydroxyl groups on the surface of the particles are desirable. Cationic or anionic ones are preferred. These may be used alone or in combination of two or more as required.

上記いずれの処理方法によっても本発明の目的を達成できるが、フェノール樹脂との接着性を考慮するとアミノ基、あるいはエポキシ基を有するシラン系カップリング剤による処理が好ましい。   The object of the present invention can be achieved by any of the above-mentioned treatment methods, but treatment with a silane coupling agent having an amino group or an epoxy group is preferable in view of adhesion to a phenol resin.

本発明における親油化処理剤の量は、酸化亜鉛原料粒子に対し0.1〜5.0重量%が好ましい。0.1重量%未満の場合には、親油化処理剤の被覆を複合体粒子表面に密着させることが困難となり、また、親油化処理が不十分なために酸化亜鉛原料粒子の含有量の高い複合体粒子を得ることができない。また、酸化亜鉛原料粒子が複合体粒子にしっかりと埋め込まれない。一方、5.0重量%を越える場合には、親油化処理剤の被覆を複合体粒子表面に密着させることができるが、生成した複合体粒子同志の凝集が生じ、複合体粒子の粒子サイズの制御が困難になる。   The amount of the lipophilic agent in the present invention is preferably 0.1 to 5.0% by weight with respect to the zinc oxide raw material particles. If it is less than 0.1% by weight, it becomes difficult to make the coating of the lipophilic agent adhere to the surface of the composite particles, and the content of zinc oxide raw material particles because the lipophilic treatment is insufficient. High composite particles cannot be obtained. Moreover, the zinc oxide raw material particles are not firmly embedded in the composite particles. On the other hand, when it exceeds 5.0% by weight, the coating of the lipophilic agent can be brought into close contact with the surface of the composite particles, but the generated composite particles are aggregated, and the particle size of the composite particles is increased. It becomes difficult to control.

本発明に係る球状の酸化亜鉛粒子を製造するには、まず、酸化亜鉛原料粒子及び塩基性触媒の存在下でフェノール類とアルデヒド類とを水性媒体中で反応させることにより、酸化亜鉛原料粒子とフェノール樹脂とからなる球状の複合体粒子を調製する。   In order to produce spherical zinc oxide particles according to the present invention, first, by reacting phenols and aldehydes in an aqueous medium in the presence of zinc oxide raw material particles and a basic catalyst, Spherical composite particles composed of a phenol resin are prepared.

該複合体粒子中の酸化亜鉛原料粒子の含有量は、80〜98重量%が好ましい。80重量%未満の場合には、フェノール樹脂が多くなり引き続いて行われる加熱処理時において、それだけフェノール樹脂を除去するためのエネルギーが多く必要となるので好ましくなく、一方、98重量%を越える場合には、加熱処理前の複合体粒子の強度が弱くなり、加熱処理時に粒子が破壊する場合がある。   The content of the zinc oxide raw material particles in the composite particles is preferably 80 to 98% by weight. When the amount is less than 80% by weight, the amount of phenol resin is increased, and in the subsequent heat treatment, it is not preferable because much energy is required for removing the phenol resin. On the other hand, when the amount exceeds 98% by weight, The strength of the composite particles before the heat treatment becomes weak, and the particles may be destroyed during the heat treatment.

本発明における塩基性触媒としては、通常のフェノール樹脂製造に使用される塩基性触媒が使用される。例えば、アンモニア水、ヘキサメチレンテトラミン及びジメチルアミン、ジエチルトリアミン、ポリエチレンイミン等のアルキルアミンが挙げられる。これら塩基性触媒のフェノール類に対するモル比は、0.02〜0.7が好ましい。該モル比が0.02未満では反応が十分に進まず、一方、0.7を越えると過剰な塩基性触媒が反応溶液中に多く残り、排水処理の負荷を増大させるので好ましくない。   As a basic catalyst in this invention, the basic catalyst used for normal phenol resin manufacture is used. Examples thereof include aqueous ammonia, hexamethylenetetramine, and alkylamines such as dimethylamine, diethyltriamine, and polyethyleneimine. The molar ratio of these basic catalysts to phenols is preferably 0.02 to 0.7. When the molar ratio is less than 0.02, the reaction does not proceed sufficiently. On the other hand, when it exceeds 0.7, a large amount of excess basic catalyst remains in the reaction solution, which increases the load of wastewater treatment.

本発明におけるフェノール類としては、フェノールの他、m−クレゾール、p−tert−ブチルフェノール、o−プロピルフェノール、レゾルシノール、ビスフェノールA等のアルキルフェノール類、及びベンゼン核又はアルキル基の一部又は全部が塩素原子、臭素原子で置換されたハロゲン化フェノール類等のフェノール性水酸基を有する化合物が挙げられ、これらは単独で又は必要に応じ2種以上組み合わせて用いられるが、この中でフェノールが最も好ましい。すなわち、フェノール類としてフェノール以外の化合物を用いた場合には、粒子が生成し難かったり、粒子が生成したとしても不定形状であったりすることがあるので、形状性を考慮すれば、フェノールが最も好ましい。場合によっては、市販のフェノール樹脂をアルコール等の溶剤に溶解させた形で使用することもできる。   As phenols in the present invention, in addition to phenol, alkylphenols such as m-cresol, p-tert-butylphenol, o-propylphenol, resorcinol, bisphenol A, and a part or all of benzene nucleus or alkyl group are chlorine atoms. And compounds having a phenolic hydroxyl group such as halogenated phenols substituted with a bromine atom, and these are used alone or in combination of two or more as required. Among them, phenol is most preferred. That is, when a compound other than phenol is used as the phenol, particles may be difficult to produce, or even if particles are produced, the shape may be indefinite. preferable. In some cases, a commercially available phenol resin can be used in a form dissolved in a solvent such as alcohol.

本発明におけるアルデヒド類としては、ホルマリン又はパラホルムアルデヒドのいずれかの形態のホルムアルデヒド及びフルフラール等が挙げられ、これらは単独で又は必要に応じ2種以上組み合わせて用いられるが、ホルムアルデヒドが経済面で特に好ましい。アルデヒド類のフェノール類に対するモル比は、1〜4が好ましく、特に好ましいのは1.2〜3である。アルデヒド類のフェノール類に対するモル比が1より小さいと、粒子が生成し難かったり、生成したとしても樹脂の硬化が進行し難いために生成する粒子の強度が弱かったりする傾向があり、一方、該モル比が4よりも大きいと、反応後に水性媒体中に残留する未反応のアルデヒド類が増加する傾向がある。   Examples of the aldehydes in the present invention include formaldehyde and furfural in any form of formalin or paraformaldehyde, and these are used singly or in combination of two or more as required, but formaldehyde is particularly preferable in terms of economy. . The molar ratio of aldehydes to phenols is preferably 1 to 4, particularly preferably 1.2 to 3. If the molar ratio of aldehydes to phenols is less than 1, particles are difficult to form, and even if they are formed, the resin tends to harden, so that the strength of the generated particles tends to be weak. When the molar ratio is larger than 4, unreacted aldehydes remaining in the aqueous medium after the reaction tend to increase.

本発明における酸化亜鉛原料粒子とフェノール樹脂からなる球状複合体粒子は、70〜90℃の温度範囲で反応と同時に硬化を進行させた後、40℃以下に冷却すると、球状複合体粒子を含む水分散液が得られる。   In the present invention, the spherical composite particles composed of the zinc oxide raw material particles and the phenol resin are cured at the same time as the reaction in the temperature range of 70 to 90 ° C. and then cooled to 40 ° C. or lower. A dispersion is obtained.

次に、この水分散液を濾過、遠心分離等の常法に従って固液を分離した後、乾燥することにより、酸化亜鉛原料粒子とフェノール樹脂からなる球状複合体粒子が得られる。   Next, the solid dispersion is separated from the aqueous dispersion according to a conventional method such as filtration and centrifugation, and then dried to obtain spherical composite particles composed of zinc oxide raw material particles and a phenol resin.

本発明における反応においては、必要により、懸濁安定剤を存在させてもよい。   In the reaction in the present invention, a suspension stabilizer may be present if necessary.

懸濁安定剤としては、カルボキシメチルセルロース、ポリビニルアルコールのような親水性有機化合物及びフッ化カルシウムのようなフッ素化合物、硫酸カルシウム等の水に不溶性の無機塩類等が挙げられ、これらは単独で又は必要に応じ2種以上組み合わせて用いられる。   Examples of the suspension stabilizer include hydrophilic organic compounds such as carboxymethyl cellulose and polyvinyl alcohol, fluorine compounds such as calcium fluoride, and water-insoluble inorganic salts such as calcium sulfate. These may be used alone or necessary. 2 or more types are used in combination.

次に、得られた球状複合体粒子を加熱処理することによりフェノール樹脂を除去する。加熱処理は、フェノール樹脂が分解する温度、すなわち400〜700℃の温度で行う。700℃を越えると、粒子間の凝集が生じ、粒度分布が広くなり、一方、400℃未満ではフェノール樹脂が十分に分解除去されない。好ましい加熱処理の温度範囲は500〜600℃である。   Next, the phenol resin is removed by heat-treating the obtained spherical composite particles. The heat treatment is performed at a temperature at which the phenol resin decomposes, that is, a temperature of 400 to 700 ° C. When the temperature exceeds 700 ° C., aggregation between particles occurs and the particle size distribution becomes wide. On the other hand, when the temperature is lower than 400 ° C., the phenol resin is not sufficiently decomposed and removed. A preferable temperature range of the heat treatment is 500 to 600 ° C.

400〜700℃での加熱処理の処理時間は、加熱温度によっても変わるが、通常、2〜8時間程度である。2時間未満ではフェノール樹脂の分解が不十分で該樹脂の除去が不十分となる傾向があり、一方、8時間を越えると処理時間自体が長くなりすぎる。雰囲気はフェノール樹脂を分解し、炭素として残存させない点で酸化雰囲気が好ましい。   The treatment time of the heat treatment at 400 to 700 ° C. is usually about 2 to 8 hours, although it varies depending on the heating temperature. If it is less than 2 hours, the decomposition of the phenol resin tends to be insufficient, and the removal of the resin tends to be insufficient. On the other hand, if it exceeds 8 hours, the treatment time itself becomes too long. The atmosphere is preferably an oxidizing atmosphere because it decomposes the phenol resin and does not leave it as carbon.

加熱処理炉としては、固定式のものや、回転式もの等いずれの処理機でも構わないが、粒子同志の凝集を防ぐためには回転式のものが好ましい。   The heat treatment furnace may be either a fixed type or a rotary type, but a rotary type is preferable in order to prevent particles from aggregating.

本発明における酸化雰囲気は、空気を加熱処理炉内に流せばよく、1L/min以上の流量で流せば十分である。1L/min未満では熱処理炉内に樹脂の分解ガスが充満するので、炭素として残存してしまい好ましくない。   The oxidizing atmosphere in the present invention is sufficient if air is flowed into the heat treatment furnace, and it is sufficient if it is flowed at a flow rate of 1 L / min or more. If it is less than 1 L / min, the decomposition gas of the resin is filled in the heat treatment furnace, so that it remains as carbon.

次に、引き続き焼結させるための加熱処理(焼成)を行う。この加熱処理は、800〜1400℃の温度で行う。1400℃を越えると、粒子同士が焼結してしまい、粒度分布が広くなってしまう。一方、800℃未満では、焼結が不十分であり、造粒粒子の強度が不足してしまう。好ましい加熱処理(焼成)の温度範囲は900〜1300℃である。   Next, heat treatment (sintering) for subsequent sintering is performed. This heat treatment is performed at a temperature of 800 to 1400 ° C. When it exceeds 1400 ° C., the particles are sintered with each other, and the particle size distribution becomes wide. On the other hand, if it is less than 800 degreeC, sintering will be inadequate and the intensity | strength of granulated particle will run short. A preferable temperature range of the heat treatment (firing) is 900 to 1300 ° C.

800〜1400℃の加熱処理の処理時間は、加熱温度によっても変わるが、1〜10時間程度である。1時間未満では焼結が不十分となる傾向があり、一方、10時間を越えると生産性が低下する傾向がある。   The treatment time for the heat treatment at 800 to 1400 ° C. is about 1 to 10 hours, although it varies depending on the heating temperature. If it is less than 1 hour, the sintering tends to be insufficient, whereas if it exceeds 10 hours, the productivity tends to decrease.

加熱処理の雰囲気は、空気を流しながら酸化雰囲気下で行えばよい。ガスの流量は、1L/min以上であることが好ましい。1L/min未満では所望の粒子の表面性を得ることが難しくなる。   The atmosphere for the heat treatment may be performed in an oxidizing atmosphere while flowing air. The gas flow rate is preferably 1 L / min or more. If it is less than 1 L / min, it is difficult to obtain the surface properties of the desired particles.

次に、高熱伝導性組成物について述べる。   Next, a highly heat conductive composition is described.

本発明に係る球状酸化亜鉛粒子粉末は、単独であるいは窒化アルミニウム、窒化ホウ素、アルミナ等の材料と混合して、シリコーン樹脂やシリコーンゲル、シリコーンオイル、エポキシ樹脂等の高分子材料中に分散させて、高熱伝導性組成物とすることができる。本発明に係る球状酸化亜鉛粒子粉末の含有量としては30体積%以上が好ましく、熱伝導性を高めるためには35体積%以上が好ましく、さらに40体積%以上が好ましい。粒度分布が制御された球状粒子を用いることなく、60体積%を超える酸化亜鉛粒子粉末の混合は非常に難しい。   The spherical zinc oxide particles according to the present invention are used alone or mixed with materials such as aluminum nitride, boron nitride, and alumina, and dispersed in a polymer material such as silicone resin, silicone gel, silicone oil, and epoxy resin. A high thermal conductive composition can be obtained. The content of the spherical zinc oxide particles according to the present invention is preferably 30% by volume or more, and 35% by volume or more is preferable to increase the thermal conductivity, and 40% by volume or more is more preferable. Without using spherical particles with a controlled particle size distribution, it is very difficult to mix zinc oxide particle powder exceeding 60% by volume.

上記の如くして得られる本発明に係る球状酸化亜鉛粒子は、熱伝導性材料、紫外線吸収材料、触媒担体として有用である。   The spherical zinc oxide particles according to the present invention obtained as described above are useful as a heat conductive material, an ultraviolet absorbing material, and a catalyst carrier.

<作用>
まず、本発明において重要な点は、まず酸化亜鉛原料粒子とフェノール樹脂からなる複合体粒子を調製し、該複合体粒子を400〜700℃で加熱処理して前記フェノール樹脂を分解させた後、引き続き800〜1400℃で加熱処理(焼成)させることで、焼結化を行うことにある。特に、一旦調製される酸化亜鉛原料粒子とフェノール樹脂とからなる複合体粒子が、酸化亜鉛原料粒子の含有量が高く、水銀圧入法による細孔がほとんどなく、且つ、平均粒子径が1〜300μmの球状の粒子であることが重要であり、その粒度分布を維持したまま加熱処理により焼結化されることである。
<Action>
First, the important point in the present invention is to first prepare composite particles composed of zinc oxide raw material particles and a phenol resin, and then heat-treat the composite particles at 400 to 700 ° C. to decompose the phenol resin, It is to sinter by performing heat processing (baking) at 800-1400 degreeC continuously. In particular, composite particles composed of zinc oxide raw material particles and phenol resin once prepared have a high content of zinc oxide raw material particles, almost no pores by mercury intrusion method, and an average particle diameter of 1 to 300 μm. It is important that the spherical particles are sintered and are sintered by heat treatment while maintaining the particle size distribution.

本発明に係る球状酸化亜鉛粒子粉末が、水銀圧入法による細孔容積が0.05ml/g以下であり、BET比表面積が1.0m/g以下である理由について、本発明者は、一旦調製される酸化亜鉛原料粒子とフェノール樹脂からなる球状複合体粒子中の酸化亜鉛原料粒子の充填量が極めて高く、且つ、該複合体粒子の水銀圧入法による細孔がほとんどないことに起因して、引き続き加熱処理による焼結化を行った後も、細孔容積が0.05ml/g以下であり、BET比表面積が1.0m/g以下となるものと考えている。 Regarding the reason why the spherical zinc oxide particle powder according to the present invention has a pore volume by a mercury intrusion method of 0.05 ml / g or less and a BET specific surface area of 1.0 m 2 / g or less, the present inventor once Due to the extremely high filling amount of the zinc oxide raw material particles in the spherical composite particles composed of the zinc oxide raw material particles and the phenol resin to be prepared, and the composite particles having almost no pores by the mercury intrusion method. Even after subsequent sintering by heat treatment, the pore volume is considered to be 0.05 ml / g or less and the BET specific surface area is assumed to be 1.0 m 2 / g or less.

以下、本発明を実施例及び比較例に基づいて、更に詳細に説明するが、本発明はこれらにより何ら制限されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example and a comparative example, this invention is not restrict | limited at all by these.

尚、以下の施例及び比較例における平均粒子径は、レーザー回折式粒度分布計(SYMPATEC社製RODOS)により計測した値で示した。   In addition, the average particle diameter in the following Examples and Comparative Examples was shown as a value measured by a laser diffraction particle size distribution meter (RODOS manufactured by SYMPATEC).

また、粒子の粒子形態は、放出型走査電子顕微鏡(株式会社日立製作所製 S−4800型FE−SEM(Type−I))で観察したものである。   The particle morphology of the particles was observed with an emission scanning electron microscope (S-4800 FE-SEM (Type-I) manufactured by Hitachi, Ltd.).

かさ密度はJIS K5101に記載の方法に従って測定した。   The bulk density was measured according to the method described in JIS K5101.

球形度の測定は、放出型走査電子顕微鏡(株式会社日立製作所製 S−4800型FE−SEM(Type−I))により球状複合体粒子をランダムに250個以上抽出し、平均長軸径l及び平均短軸径wを求め、下記式によって算出した。   The sphericity is measured by randomly extracting 250 or more spherical composite particles with an emission scanning electron microscope (S-4800 FE-SEM (Type-I) manufactured by Hitachi, Ltd.), and calculating the average major axis diameter l and The average minor axis diameter w was obtained and calculated by the following formula.

球形度=l/w
l:球形複合体粒子の平均長軸径
w:球形複合体粒子の平均短軸径
Sphericity = l / w
l: Average major axis diameter of spherical composite particles w: Average minor axis diameter of spherical composite particles

BET比表面積は、窒素吸着法により測定した。   The BET specific surface area was measured by a nitrogen adsorption method.

細孔容積は、水銀圧入式オートポア9220(商品名、島津製作所製)で測定した値で示した。   The pore volume was indicated by a value measured with a mercury intrusion autopore 9220 (trade name, manufactured by Shimadzu Corporation).

体積固有抵抗値は、ハイレジスタンスメーター4339B(商品名、横河ヒュ−レットパッカード社製)で測定した値を用いた。   As the volume resistivity value, a value measured with a high resistance meter 4339B (trade name, manufactured by Yokogawa Hewlett-Packard Company) was used.

水分量は、まず、得られた球状酸化亜鉛粒子粉末を33℃、80%RH条件の恒温恒湿槽で24時間放置した後、カールフィッシャー水分計AQ−2100(商品名、平沼産業社製)で測定した値を用いた。   The moisture content was determined by first leaving the obtained spherical zinc oxide particle powder in a constant temperature and humidity chamber at 33 ° C. and 80% RH for 24 hours, and then Karl Fischer moisture meter AQ-2100 (trade name, manufactured by Hiranuma Sangyo Co., Ltd.) The value measured in was used.

熱伝導率は、まず、得られた球状酸化亜鉛粒子あるいは比較としての市販球状アルミナを所定の割合で、シリコーン樹脂(CY52−276A&B;東レダウコーニング社製)と十分に混合して、さらに真空ポンプにより脱気を十分に行い、50mm×100mmの大きさの成形体を作製する。乾燥機を用いて、80℃で乾燥したものを、迅速熱伝導率計QTM−500(商品名、京都電子社製)で測定した値を用いた。   The thermal conductivity is obtained by first mixing the obtained spherical zinc oxide particles or the commercially available spherical alumina for comparison with a silicone resin (CY52-276A &B; manufactured by Toray Dow Corning Co., Ltd.) at a predetermined ratio, and further using a vacuum pump. Is sufficiently deaerated to produce a molded body having a size of 50 mm × 100 mm. The value measured with a rapid thermal conductivity meter QTM-500 (trade name, manufactured by Kyoto Electronics Co., Ltd.) after drying at 80 ° C. using a dryer was used.

実施例1
ヘンシェルミキサー内に平均粒子径1μmのZnO(1種)1kgを仕込み、十分に攪拌して、次にアミノ基を有するシラン系カップリング剤KBM−902(商品名:信越化学工業製)5gを添加混合して、上記原料粒子の粒子表面をアミノ基を有するシラン系カップリング剤で処理した。
Example 1
Charge 1 kg of ZnO (1 type) with an average particle size of 1 μm into a Henschel mixer, stir well, then add 5 g of silane coupling agent KBM-902 (trade name: manufactured by Shin-Etsu Chemical Co., Ltd.) having an amino group. After mixing, the surface of the raw material particles was treated with a silane coupling agent having an amino group.

次に、1Lのフラスコに、フェノール108g、37%ホルマリン155g、粒子表面がアミノ基を有するシラン系カップリング剤で処理されている上記原料粒子1kg、25%アンモニア水28g及び水112gを仕込み、攪拌しながら60分間で70℃に上昇させた後、同温度で60分間反応させた後、30分かけて85℃まで昇温させる。同温度で120分間反応・硬化させることにより、フェノール樹脂と酸化亜鉛原料粒子とからなる複合体粒子を得た。   Next, 108 g of phenol, 155 g of 37% formalin, 1 kg of the above raw material particles treated with a silane coupling agent having an amino group on the particle surface, 28 g of 25% aqueous ammonia and 112 g of water are charged into a 1 L flask and stirred. While raising the temperature to 70 ° C. over 60 minutes, the mixture is reacted at the same temperature for 60 minutes, and then heated to 85 ° C. over 30 minutes. By reacting and curing at the same temperature for 120 minutes, composite particles composed of phenol resin and zinc oxide raw material particles were obtained.

次に、フラスコ内の内容物を30℃に冷却し、上澄み液を除去し、さらに下層の沈殿物を濾過し、通風乾燥機で80℃で7時間乾燥し、複合体粒子(A)を得た。   Next, the contents in the flask are cooled to 30 ° C., the supernatant liquid is removed, and the precipitate in the lower layer is further filtered and dried at 80 ° C. for 7 hours with an air dryer to obtain composite particles (A). It was.

得られた複合体粒子(A)は、平均粒子径11μmで、充填成分の含有量が87重量%、BET比表面積0.01m/g、細孔容積は0.001ml/gあった。 The obtained composite particles (A) had an average particle diameter of 11 μm, a content of the filling component of 87% by weight, a BET specific surface area of 0.01 m 2 / g, and a pore volume of 0.001 ml / g.

次いで、これを内容量10Lの回転式加熱処理炉内に入れ、空気を3L/minの流量で流しながら、加熱処理炉内を2時間で600℃に上げ、同温度で4時間加熱処理(加熱処理I)してフェノール樹脂を除去した後、続いて2時間で1200℃まで温度を上げ、同温度で5時間加熱処理(加熱処理II)して焼結化を行った。その後、室温まで冷却した後取り出し、球状の酸化亜鉛粒子(I)を得た。   Next, this is put into a rotary heat treatment furnace having an internal volume of 10 L, and while the air is flowed at a flow rate of 3 L / min, the inside of the heat treatment furnace is raised to 600 ° C. in 2 hours, and heat treatment (heating) is performed at the same temperature for 4 hours. After removing phenol resin by treatment I), the temperature was raised to 1200 ° C. in 2 hours, followed by heat treatment at the same temperature for 5 hours (heat treatment II) to perform sintering. Then, after cooling to room temperature, it took out and obtained spherical zinc oxide particles (I).

得られた酸化亜鉛粒子の平均粒子径11μmであった。また、BET比表面積は0.02m/g、細孔容積は0.004ml/g、体積固有抵抗は2.5×1010Ωcm、球形度は1.2、水分量は0.05%であった。
さらに、得られた酸化亜鉛粒子のSEM写真を図1、図2に示す。
The average particle diameter of the obtained zinc oxide particles was 11 μm. The BET specific surface area is 0.02 m 2 / g, the pore volume is 0.004 ml / g, the volume resistivity is 2.5 × 10 10 Ωcm, the sphericity is 1.2, and the water content is 0.05%. there were.
Further, SEM photographs of the obtained zinc oxide particles are shown in FIGS.

実施例2
親油化処理剤の種類及び量、その他反応条件を変えた以外は、実施例1と同様にして複合体粒子Bを得た。このときの製造条件及び諸特性を表1〜表3に示す。
Example 2
A composite particle B was obtained in the same manner as in Example 1 except that the kind and amount of the lipophilic agent and other reaction conditions were changed. The manufacturing conditions and various characteristics at this time are shown in Tables 1 to 3.

比較例1
実施例1と同じ酸化亜鉛原料粒子1kgにポリビニルアルコール20gと水200gを加え、スラリー化させた。このスラリーをスプレードライヤ−で造粒および乾燥を行い、平均粒子径72μmの複合体粒子(C)を調製した。
次に、該粒子を回転式加熱処理炉内に入れ、空気を3L/minで流しながら、加熱処理炉内を2時間で600℃に上げ、同温度で2時間加熱処理Iを行いポリビニルアルコールを除去した後、続いて3時間で1200℃に昇温し、同温度で4時間加熱処理IIを行い、酸化亜鉛粒子(III)を得た。
Comparative Example 1
20 g of polyvinyl alcohol and 200 g of water were added to 1 kg of the same zinc oxide raw material particles as in Example 1 to make a slurry. This slurry was granulated and dried with a spray dryer to prepare composite particles (C) having an average particle diameter of 72 μm.
Next, the particles are placed in a rotary heat treatment furnace, and while the air is flowed at 3 L / min, the heat treatment furnace is heated to 600 ° C. in 2 hours, and heat treatment I is performed at the same temperature for 2 hours to obtain polyvinyl alcohol. After the removal, the temperature was subsequently raised to 1200 ° C. in 3 hours, and heat treatment II was performed at the same temperature for 4 hours to obtain zinc oxide particles (III).

このときの製造条件及び諸特性を表1〜表3に示す。 The manufacturing conditions and various characteristics at this time are shown in Tables 1 to 3.

高熱伝導性組成物の製造
表4に示す組成割合に従って、種々の無機化合物とシリコーン樹脂(CY52−276A&B;東レダウコーニング社製)とを十分に混合して、さらに真空ポンプにより脱気を十分に行い、50mm×100mmの大きさの成形体を作製した。
Production of High Thermal Conductivity Composition According to the composition ratio shown in Table 4, various inorganic compounds and silicone resin (CY52-276A &B; manufactured by Toray Dow Corning Co., Ltd.) are sufficiently mixed, and further deaeration is sufficiently performed by a vacuum pump. A molded body having a size of 50 mm × 100 mm was produced.

得られた高熱伝導性組成物の諸特性を表4に示す。   Table 4 shows various characteristics of the obtained high thermal conductive composition.

表4において、実施例3〜5と比較例2〜4について、粒子(A+B)の含有量が同じ例同士を対比すれば、本発明に係る組成物が高い熱伝導率を有することが確認された。また、実施例6〜8と比較例5〜7についても、粒子(A+B)の含有量が同じ例同士を対比すれば、本発明に係る組成物が高い熱伝導率を有することが確認された。   In Table 4, about Examples 3-5 and Comparative Examples 2-4, if the example with the same content of particle | grains (A + B) is contrasted, it will be confirmed that the composition which concerns on this invention has high thermal conductivity. It was. Moreover, also about Examples 6-8 and Comparative Examples 5-7, if the content of particle | grains (A + B) was contrasted, it was confirmed that the composition which concerns on this invention has high thermal conductivity. .

以上のように、本発明に係る球状の酸化亜鉛粒子は、球状を呈し、特定の粒度分布を有し、体積固有抵抗値が1×109〜1×1011Ωcmと高く、さらに、BET比表面積が0.2m/g以下で、細孔容積が0.05ml/g以下であり、細孔をほとんど有しない構造をもつために熱伝導性材料として有用である。さらに、紫外線吸収材料、触媒担体として有用である。 As described above, the spherical zinc oxide particles according to the present invention have a spherical shape, a specific particle size distribution, a high volume resistivity value of 1 × 10 9 to 1 × 10 11 Ωcm, and a BET ratio. Since it has a surface area of 0.2 m 2 / g or less, a pore volume of 0.05 ml / g or less, and a structure having few pores, it is useful as a heat conductive material. Further, it is useful as an ultraviolet absorbing material and a catalyst carrier.

実施例1で得られた球状酸化亜鉛粒子(I)の電子顕微鏡写真である(×5,000)。2 is an electron micrograph of spherical zinc oxide particles (I) obtained in Example 1 (× 5,000). 実施例1で得られた球状酸化亜鉛粒子(I)の電子顕微鏡写真である。(×10,000)2 is an electron micrograph of spherical zinc oxide particles (I) obtained in Example 1. (× 10,000)

Claims (2)

平均粒子径が1〜300μm、BET比表面積が1m/g以下であり、水銀圧入法による細孔容積が0.05ml/g以下であり、球形度が1.4未満の球状粒子であることを特徴とする球状酸化亜鉛粒子粉末。 Spherical particles having an average particle diameter of 1 to 300 μm, a BET specific surface area of 1 m 2 / g or less, a pore volume by mercury intrusion method of 0.05 ml / g or less, and a sphericity of less than 1.4. Spherical zinc oxide particle powder characterized by 高分子材料を主成分とする材料中に、30体積%以上の請求項1に記載の球状酸化亜鉛粒子粉末を含む高熱伝導性組成物。
A highly thermally conductive composition comprising the spherical zinc oxide particle powder according to claim 1 in a volume of 30% by volume or more in a material mainly composed of a polymer material.
JP2008099013A 2008-04-07 2008-04-07 Spherical zinc oxide particle powder and highly heat conductive composition Active JP4998744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008099013A JP4998744B2 (en) 2008-04-07 2008-04-07 Spherical zinc oxide particle powder and highly heat conductive composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008099013A JP4998744B2 (en) 2008-04-07 2008-04-07 Spherical zinc oxide particle powder and highly heat conductive composition

Publications (2)

Publication Number Publication Date
JP2009249226A JP2009249226A (en) 2009-10-29
JP4998744B2 true JP4998744B2 (en) 2012-08-15

Family

ID=41310270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008099013A Active JP4998744B2 (en) 2008-04-07 2008-04-07 Spherical zinc oxide particle powder and highly heat conductive composition

Country Status (1)

Country Link
JP (1) JP4998744B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8435485B2 (en) * 2008-10-28 2013-05-07 Sakai Chemical Industry Co., Ltd. Method for producing zinc oxide using ammonium bromide, exoergic filler, resin composition, exoergic grease and exoergic coating composition comprising the zinc oxide
US8399092B2 (en) 2009-10-07 2013-03-19 Sakai Chemical Industry Co., Ltd. Zinc oxide particle having high bulk density, method for producing it, exoergic filler, exoergic resin composition, exoergic grease and exoergic coating composition
JP4771027B2 (en) * 2009-10-07 2011-09-14 堺化学工業株式会社 Zinc oxide particles, production method thereof, heat dissipating filler, heat dissipating resin composition, heat dissipating grease, and heat dissipating coating composition
JP5552883B2 (en) * 2010-04-26 2014-07-16 堺化学工業株式会社 Low-conductivity zinc oxide particles, heat-dissipating filler, heat-dissipating resin composition, heat-dissipating grease, heat-dissipating coating composition, and method for producing low-conducting zinc oxide particles
JP5700852B2 (en) * 2010-04-26 2015-04-15 堺化学工業株式会社 Filler particles, resin composition, grease and paint composition
JP5617410B2 (en) * 2010-07-23 2014-11-05 堺化学工業株式会社 Zinc oxide particles, resin composition, grease, coating composition and cosmetics
US20130216834A1 (en) 2010-09-13 2013-08-22 Sakai Chemical Industry Co., Ltd, Zinc oxide particles and cosmetic
DE102010045252B4 (en) * 2010-09-14 2013-08-01 Gottfried Wilhelm Leibniz Universität Hannover Process for the preparation of zinc oxide
KR101907940B1 (en) * 2011-06-10 2018-10-16 사까이가가꾸고오교가부시끼가이샤 Rounded zinc peroxide particles, rounded zinc oxide particles, manufacturing method therefor, cosmetic material, and heat-dissipating filler
DK2781486T3 (en) * 2011-11-17 2017-09-18 Sakai Chemical Industry Co USE OF SURFACE TREATED ZINCOXIDE POWDER AS ANTIBACTERIAL
ES2742031T3 (en) 2012-03-08 2020-02-12 Sakai Chemical Industry Co Preparation process of spherical particles of zinc oxide of aggregate laminar zinc oxide
KR102047418B1 (en) 2012-05-21 2019-11-22 토요잉크Sc홀딩스주식회사 Easily deformable aggregates and process for producing same, thermally conductive resin composition, thermally conductive member and process for producing same, and thermally conductive adhesion sheet
JP5967002B2 (en) * 2013-04-08 2016-08-10 東洋インキScホールディングス株式会社 Easily deformable aggregate, heat conductive resin composition, heat conductive member, and heat conductive adhesive sheet
JP6131427B2 (en) * 2012-07-13 2017-05-24 東洋インキScホールディングス株式会社 Thermally conductive resin composition, thermal conductive member and method for producing the same, and thermal conductive adhesive sheet
JP6293474B2 (en) 2013-01-18 2018-03-14 株式会社東芝 Non-linear resistance paint, busbar and stator coil

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1149516A (en) * 1997-07-29 1999-02-23 Res Inst For Prod Dev Spherical zinc oxide
JP2000143808A (en) * 1998-11-17 2000-05-26 Fuji Kobunshi Kogyo Kk Heat conductive, electrical insulating silicone gel composition
JP3746915B2 (en) * 1999-06-21 2006-02-22 富士通株式会社 High thermal conductive composition
JP4603700B2 (en) * 2001-01-04 2010-12-22 株式会社日立製作所 High thermal conductive grease composition and cooling device using the same
JP4017497B2 (en) * 2002-10-25 2007-12-05 エスケー化研株式会社 Method for producing spherical zinc oxide
JP4951908B2 (en) * 2005-09-20 2012-06-13 宇部興産株式会社 Method for producing spherical zinc oxide or acid carbide fine particles
JP2007254637A (en) * 2006-03-24 2007-10-04 Toyota Central Res & Dev Lab Inc Thermo-conductive filler, thermo-conductive resin composite material, and method for producing thermo-conductive filler

Also Published As

Publication number Publication date
JP2009249226A (en) 2009-10-29

Similar Documents

Publication Publication Date Title
JP4998744B2 (en) Spherical zinc oxide particle powder and highly heat conductive composition
JP6816920B2 (en) Hexagonal boron nitride powder, its manufacturing method, resin composition and resin sheet
KR102265034B1 (en) Hexagonal boron nitride powder, its manufacturing method, resin composition, and resin sheet
JP6348610B2 (en) Hexagonal boron nitride powder, production method thereof, resin composition and resin sheet
JP7096921B2 (en) Hexagonal boron nitride powder and its manufacturing method, as well as compositions and radiating materials using it.
KR101845106B1 (en) Spherical aluminum nitride powder
WO2017038512A1 (en) Powder of hexagonal boron nitride, process for producing same, resin composition, and resin sheet
KR101816954B1 (en) Aluminum nitride powder and process for manufacturing same
KR101859785B1 (en) Method for manufacturing spherical aluminum nitride powder
CN110099865B (en) Hexagonal boron nitride powder, method for producing same, resin composition, and resin sheet
JP7467980B2 (en) Boron nitride agglomerated powder, heat dissipation sheet, and method for manufacturing semiconductor device
JP7434818B2 (en) Method for producing silicon-containing oxide-coated aluminum nitride particles and method for producing heat dissipating resin composition
WO2010073634A1 (en) Polyanionic positive electrode active material for non-aqueous electrolyte secondary battery, process for producing same, and non-aqueous electrolyte secondary battery
TW202122343A (en) Boron nitride powder and method for producing same, boron carbonitride powder, composite material and heat dissipation member
JP5877684B2 (en) Method for producing aluminum nitride sintered granules
TWI679252B (en) Glass-coated aluminum nitride particles, method for producing the same, and exothermic resin composition containing the same
JP2003201116A (en) Granular alumina, manufacturing method of granular alumina and composition containing granular alumina
KR101974114B1 (en) Method for producing sintered aluminum nitride granules
JP4300747B2 (en) Spherical ferrite particles for radio wave absorber and method for producing the same
US20030125418A1 (en) Particulate alumina, method for producing particulate alumina, and composition containing particulate alumina
WO2022039200A1 (en) Spherical aln particles, production method therefor, and composite material containing same
JP5591100B2 (en) Method for producing surface-treated aluminum nitride powder
JP2022147702A (en) Aluminum nitride sintered granule
TW202302448A (en) Hexagonal boron nitride aggregate particle and hexagonal boron nitride powder, resin composition, resin sheet
JP2006028246A (en) Method for producing phenolic resin/silica composite spherical fine particle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120418

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120501

R150 Certificate of patent or registration of utility model

Ref document number: 4998744

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250