JP2006027987A - Glass manufacturing method and glass manufacturing equipment - Google Patents

Glass manufacturing method and glass manufacturing equipment Download PDF

Info

Publication number
JP2006027987A
JP2006027987A JP2004213068A JP2004213068A JP2006027987A JP 2006027987 A JP2006027987 A JP 2006027987A JP 2004213068 A JP2004213068 A JP 2004213068A JP 2004213068 A JP2004213068 A JP 2004213068A JP 2006027987 A JP2006027987 A JP 2006027987A
Authority
JP
Japan
Prior art keywords
raw material
glass
gas
material gas
glass raw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004213068A
Other languages
Japanese (ja)
Inventor
Taiichiro Yamashita
泰一郎 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2004213068A priority Critical patent/JP2006027987A/en
Publication of JP2006027987A publication Critical patent/JP2006027987A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01807Reactant delivery systems, e.g. reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/80Feeding the burner or the burner-heated deposition site
    • C03B2207/85Feeding the burner or the burner-heated deposition site with vapour generated from liquid glass precursors, e.g. directly by heating the liquid
    • C03B2207/88Controlling the pressure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a glass manufacturing method and glass manufacturing equipment for manufacturing glass of even thickness by avoiding influence of variations in atmospheric pressure through piping from a burner or the like so as to supply a specific amount of raw material gas to a reacting zone such as the burner or the like per unit of time. <P>SOLUTION: The glass manufacturing method comprises a step of supplying a glass raw material liquid A to a vaporizer 12 to make the raw material liquid A into the glass raw material gas by vaporization with the vaporizer 12, and a step of manufacturing glass with the reacting zone by supplying the glass raw material gas to the reacting zone. The glass manufacturing method and the glass manufacturing equipment are characterized in that the flow rate of the glass raw material gas is adjusted based on a measurement result obtained by measuring the concentration of the glass raw material gas. <P>COPYRIGHT: (C)2006,JPO&amp;NCIPI

Description

本発明は、ガラスの製造方法およびガラス製造装置に関するものである。   The present invention relates to a glass manufacturing method and a glass manufacturing apparatus.

ガラス微粒子堆積体又はガラス体を製造する方法としてMCVD法、PCVD法、VAD法、OVD法などが知られており、これらの方法でガラス原料ガスあるいはその他のガスの流量を変化させながら製造する場合、各ガスをマスフローコントローラ(MFC)等のガス流量制御装置により精密に流量制御して反応部に供給し、ここでSiCl4等のガラス原料ガスを気相で酸化反応又は火炎加水分解反応させることにより生成するガラス微粒子を堆積させる(例えば特許文献1参照)。 As a method for producing a glass fine particle deposit or glass body, MCVD method, PCVD method, VAD method, OVD method, etc. are known, and when producing by changing the flow rate of glass raw material gas or other gas by these methods Each gas is precisely controlled by a gas flow controller such as a mass flow controller (MFC) and supplied to the reaction section, where the glass raw material gas such as SiCl 4 is oxidized or flame hydrolyzed in the gas phase. Glass fine particles generated by the above are deposited (for example, see Patent Document 1).

原料ガスをより正確に一定量ずつ反応部に供給する装置としては、原料液を一定温度の容器に吐出して瞬時に気化させるものが提案されている(特許文献2参照)。   As an apparatus for supplying a raw material gas to a reaction unit more accurately and in a fixed amount, a device that discharges a raw material liquid into a container having a constant temperature and vaporizes it instantaneously has been proposed (see Patent Document 2).

特開平7−10586号公報Japanese Patent Laid-Open No. 7-10586 特開平3−54130号公報JP-A-3-54130

上記装置においては、原料ガスの供給圧は気化器内の原料ガスの蒸気圧となる。この蒸気圧はバーナからの配管を通じて大気圧変動の影響を受けるので、原料ガスの供給圧を精密に一定にすることはできない。したがって、単位時間にバーナに供給される原料ガスの量を精密に一定にすることはできない。これにより、製造されるガラスの厚さが変動することがある。
本発明は、バーナ等からの配管を通じて大気圧変動の影響を受けず、単位時間にバーナ等の反応部に原料ガスを一定量供給して均一な厚さのガラスを製造するガラスの製造方法およびガラス製造装置を提供することを目的とする。
In the above apparatus, the supply pressure of the source gas is the vapor pressure of the source gas in the vaporizer. Since this vapor pressure is affected by atmospheric pressure fluctuations through the piping from the burner, the supply pressure of the raw material gas cannot be made precisely constant. Therefore, the amount of source gas supplied to the burner per unit time cannot be made precisely constant. Thereby, the thickness of the manufactured glass may fluctuate.
The present invention is a glass manufacturing method for manufacturing a glass having a uniform thickness by supplying a constant amount of a raw material gas to a reaction section such as a burner per unit time without being affected by atmospheric pressure fluctuations through piping from a burner or the like. It aims at providing a glass manufacturing apparatus.

本発明者らは上記課題に鑑み鋭意研究した結果、以下の発明により上記課題を解決しうることを見出した。
(1)気化器にガラス原料液を供給し、前記気化器で前記原料液を気化させてガラス原料ガスとし、前記ガラス原料ガスを反応部に供給し、前記反応部でガラスを生成させるガラスの製造方法であって、前記ガラス原料ガスの濃度を測定して、その測定結果により前記ガラス原料ガスの流量を調整することを特徴とするガラスの製造方法。
(2)前記ガラス原料ガスに希釈ガスを混合して混合ガスとし、前記混合ガスを前記反応部に供給する前記ガラスの製造方法であって、前記混合ガス中の前記ガラス原料ガスの濃度を測定して、その測定結果により前記混合ガスの流量を調整することを特徴とする(1)に記載のガラスの製造方法。
(3)前記気化器に供給されたガラス原料液にキャリアガスを吹き込んで前記原料液を気化させることを特徴とする(1)または(2)に記載のガラスの製造方法。
(4)ガラス原料液をガラス原料ガスに気化する気化器と、前記ガラス原料ガスからガラスまたはガラス微粒子を生成する反応部とを有するガラス製造装置であって、前記ガラス原料ガスを気化器から送り出す原料ガス配管を有し、前記ガラス原料ガス濃度を測定する濃度計とガラス原料ガス流量調整手段とを前記原料ガス配管上に有し、前記濃度計で測定された前記ガラス原料ガス濃度により前記ガラス原料ガス流量調整手段の設定流量を調整する制御部を有するガラス製造装置。
(5)ガラス原料液をガラス原料ガスに気化する気化器と、前記ガラス原料ガスからガラスまたはガラス微粒子を生成する反応部とを有するガラス製造装置であって、前記ガラス原料ガスを気化器から送り出す原料ガス配管、前記原料ガス配管に接続される希釈ガス配管、および前記ガラス原料ガスと前記希釈ガスが混合された混合ガスを前記反応部に供給する混合ガス配管を有し、前記混合ガス中の前記ガラス原料ガス濃度を測定する濃度計と混合ガス流量調整手段とを前記混合ガス配管上に有し、前記濃度計で測定された前記ガラス原料ガス濃度により前記混合ガス流量調整手段の設定流量を調整する制御部を有するガラス製造装置。
As a result of intensive studies in view of the above problems, the present inventors have found that the above problems can be solved by the following invention.
(1) A glass raw material liquid is supplied to a vaporizer, the raw material liquid is vaporized by the vaporizer to obtain a glass raw material gas, the glass raw material gas is supplied to a reaction part, and glass is generated in the reaction part. It is a manufacturing method, Comprising: The density | concentration of the said glass raw material gas is measured, The flow rate of the said glass raw material gas is adjusted with the measurement result, The manufacturing method of the glass characterized by the above-mentioned.
(2) A method for producing the glass, in which a dilution gas is mixed with the glass raw material gas to form a mixed gas, and the mixed gas is supplied to the reaction part, and the concentration of the glass raw material gas in the mixed gas is measured. And the flow rate of the said mixed gas is adjusted with the measurement result, The manufacturing method of the glass as described in (1) characterized by the above-mentioned.
(3) The method for producing glass according to (1) or (2), wherein a carrier gas is blown into the glass raw material liquid supplied to the vaporizer to vaporize the raw material liquid.
(4) A glass manufacturing apparatus having a vaporizer that vaporizes a glass raw material liquid into a glass raw material gas and a reaction unit that generates glass or glass fine particles from the glass raw material gas, and sends out the glass raw material gas from the vaporizer. It has a raw material gas pipe, has a concentration meter for measuring the glass raw material gas concentration and a glass raw material gas flow rate adjusting means on the raw material gas pipe, and the glass is measured by the glass raw material gas concentration measured by the concentration meter. The glass manufacturing apparatus which has a control part which adjusts the setting flow volume of a source gas flow volume adjustment means.
(5) A glass manufacturing apparatus having a vaporizer that vaporizes a glass raw material liquid into a glass raw material gas and a reaction unit that generates glass or glass fine particles from the glass raw material gas, and sends out the glass raw material gas from the vaporizer A raw material gas pipe, a dilution gas pipe connected to the raw material gas pipe, and a mixed gas pipe for supplying a mixed gas in which the glass raw material gas and the dilution gas are mixed to the reaction section; A concentration meter for measuring the glass raw material gas concentration and a mixed gas flow rate adjusting means are provided on the mixed gas pipe, and a set flow rate of the mixed gas flow rate adjusting means is determined by the glass raw material gas concentration measured by the concentration meter. A glass manufacturing apparatus having a controller to be adjusted.

本発明によれば、原料ガスの流量を調整して反応部に供給するので、反応部周囲の大気圧変動の影響を受けて単位時間あたりに反応部に供給される原料ガスの量が変動することがなく、原料ガスの供給量を正確に制御することができる。これにより製造されるガラスの厚さを均一にすることができるという優れた効果を奏する。   According to the present invention, since the flow rate of the raw material gas is adjusted and supplied to the reaction unit, the amount of the raw material gas supplied to the reaction unit varies per unit time under the influence of the atmospheric pressure fluctuation around the reaction unit. In this case, the supply amount of the source gas can be accurately controlled. This produces an excellent effect that the thickness of the produced glass can be made uniform.

本発明のガラスの製造方法およびガラス製造装置は、ガラス原料液を気化して得たガラス原料ガスの濃度を測定して、その測定結果により前記ガラス原料ガスの流量を調整することを特徴とする。
本発明では原料ガスに希釈ガスを混合してもよい。希釈ガスは、原料ガスと反応しないものであればよく、後の工程で反応用ガスとして作用できる酸素(O2)でもよいし、窒素(N2)でもよいし、不活性ガス、例えばヘリウム(He)、アルゴン(Ar)等でもよい。
The glass production method and glass production apparatus of the present invention are characterized by measuring the concentration of a glass raw material gas obtained by vaporizing a glass raw material liquid and adjusting the flow rate of the glass raw material gas according to the measurement result. .
In the present invention, a diluent gas may be mixed with the raw material gas. The dilution gas may be any gas that does not react with the source gas, and may be oxygen (O 2 ), nitrogen (N 2 ), or an inert gas such as helium (which can act as a reaction gas in a later step. He), argon (Ar), or the like may be used.

ガラス原料ガスは、SiCl4、GeCl4、POCl3、SiCl3Fなどがあり、単一の成分(例えばSiCl4)からなるものであってもよいし、複数の成分(例えばSiCl4とGeCl4などの屈折率調整成分)からなるものであってもよい。
本発明においては、ガラス原料ガス濃度が所定の濃度になっているかモニタし、ずれていればガラス原料ガスの流量を調整する。例えば、単位時間に反応部に供給されるガラス原料ガスの量(ガラス原料ガス濃度×ガラス原料ガス流量)が一定となるようにガラス原料ガスの流量を調整する。濃度計は通常用いられる濃度計を用いることができる。
本発明において、ガラスを生成するとは、ガラス微粒子を生成することを含む。ガラス微粒子を堆積してガラス微粒子堆積体を製造する方法は、MCVD法、OVD法(VAD法を含む)として知られている方法がある。本発明は、ガラス微粒子を生成することなく透明ガラスを直接製造することももちろん含む。
The glass source gas includes SiCl 4 , GeCl 4 , POCl 3 , SiCl 3 F, and the like, and may be composed of a single component (for example, SiCl 4 ) or a plurality of components (for example, SiCl 4 and GeCl 4). Or other refractive index adjusting components).
In the present invention, it is monitored whether the glass raw material gas concentration is a predetermined concentration, and if it is deviated, the flow rate of the glass raw material gas is adjusted. For example, the flow rate of the glass source gas is adjusted so that the amount of glass source gas supplied to the reaction unit per unit time (glass source gas concentration × glass source gas flow rate) is constant. As the densitometer, a commonly used densitometer can be used.
In the present invention, generating glass includes generating glass fine particles. Methods for depositing glass particulates to produce a glass particulate deposit include methods known as MCVD and OVD methods (including VAD methods). The present invention naturally includes the direct production of transparent glass without producing glass particles.

本発明の一つの実施形態について図1を参照して以下に説明する。
ガラス原料液Aを気化器12に入れる。気化器12を数十℃に加熱し、ガラス原料液Aを気化させてガラス原料ガスとする。このときガラス原料液Aにキャリアガスをキャリアガス配管18から吹き込んで曝気させる。これによりガラス原料液Aの気化を安定して行うことができる。ガラス原料ガスは原料ガス配管15を通って気化器12から送り出され、反応部であるガラス微粒子合成用バーナ29に供給される。
原料ガス配管15には濃度計32と混合ガス流量調整手段であるマスフローコントローラ(MFC)33とが設けられる。濃度計32でガラス原料ガス濃度が測定される。
制御部35は濃度計32およびMFC33に電気的に接続される。濃度計32で測定されたガラス原料ガス濃度が電気信号になって制御部35に伝えられる。制御部35は測定されたガラス原料ガス濃度によってMFC33の設定流量を調整する。例えば、単位時間あたりにバーナ29に供給されるガラス原料ガスの量、つまりガラス原料ガス濃度とガラス原料ガス流量の積が一定となるようにガラス原料ガスの流量を調整する。ガラス原料ガス濃度が低下すればMFC33の設定流量を大きくしてガラス原料ガス流量を増やすことになる。
One embodiment of the present invention will be described below with reference to FIG.
Glass raw material liquid A is put into the vaporizer 12. The vaporizer 12 is heated to several tens of degrees Celsius to vaporize the glass raw material liquid A to obtain a glass raw material gas. At this time, a carrier gas is blown into the glass raw material liquid A from the carrier gas pipe 18 to be aerated. Thereby, vaporization of the glass raw material liquid A can be performed stably. The glass raw material gas is sent out from the vaporizer 12 through the raw material gas pipe 15 and supplied to the glass fine particle synthesizing burner 29 which is a reaction part.
The source gas pipe 15 is provided with a concentration meter 32 and a mass flow controller (MFC) 33 which is a mixed gas flow rate adjusting means. The glass raw material gas concentration is measured by the densitometer 32.
The control unit 35 is electrically connected to the concentration meter 32 and the MFC 33. The glass raw material gas concentration measured by the densitometer 32 is transmitted to the control unit 35 as an electric signal. The control unit 35 adjusts the set flow rate of the MFC 33 according to the measured glass raw material gas concentration. For example, the flow rate of the glass raw material gas is adjusted so that the amount of the glass raw material gas supplied to the burner 29 per unit time, that is, the product of the glass raw material gas concentration and the glass raw material gas flow rate becomes constant. If the glass source gas concentration decreases, the set flow rate of the MFC 33 is increased to increase the glass source gas flow rate.

制御部35での流量の調整方法としては、例えば、ガラス原料ガス濃度とガラス原料ガス流量の関係を予め実測により求めて、ある濃度のときにその濃度とガラス原料流量の積を一定にするために必要なガラス原料ガスの流量を求める式を制御部35に記憶させておく。またはガラス原料ガスの濃度と流量の値の組を表として制御部35に記憶させておく。これにより、ガラス原料ガス濃度が制御部35に伝えられたときに、必要なガラス原料流量を制御部35で算出する。そしてその流量の電気信号をMFC33に伝え、MFC33の設定流量を変更する。この結果、単位時間あたりにバーナ29に供給されるガラス原料ガスの量が一定となる。
濃度計32としては、ガスの熱伝導率の変化を、そのガス中に入れた測温抵抗体の抵抗値の変化として検知する方式のものを挙げることができる。この方式のものは、対照ガスの熱伝導率を測定することを必要とするので、その場合、濃度計32には、図1に示すように、対照ガス配管40を接続することが必要である。ガラス原料ガスにはキャリアガスが含まれている。対照ガスをキャリアガスと同じガスとすると、ガラス原料ガスの熱伝導率と対照ガスの熱伝導率とを比較したときに、両者の差はガラス原料ガス濃度によることになる。この二つのガスそれぞれに測温抵抗体を入れると、それらのガスの熱伝導率の差は測温抵抗体に掛かる電圧の差として検知される。ガラス原料ガス濃度と前記電圧の差との関係を予め求めて濃度計35に記憶させておいて、検知された電圧の差からガラス原料ガス濃度を求める。濃度計32には、前述した方式以外に水素炎イオン化検出器を使用することができる。あるいは音波や超音波の伝播速度から混合ガス中のある成分ガス濃度を求める方式ものを使用することができる。圧力に応じた濃度の補正係数を濃度計に記憶させ、大気圧の変動の影響を補正してもよい。
As a method for adjusting the flow rate in the control unit 35, for example, a relationship between the glass raw material gas concentration and the glass raw material gas flow rate is obtained in advance by actual measurement, and the product of the concentration and the glass raw material flow rate is made constant at a certain concentration. Is stored in the control unit 35. Alternatively, a set of glass source gas concentration and flow rate values is stored in the control unit 35 as a table. Thereby, when the glass raw material gas concentration is transmitted to the control unit 35, a necessary glass raw material flow rate is calculated by the control unit 35. Then, the electric signal of the flow rate is transmitted to the MFC 33, and the set flow rate of the MFC 33 is changed. As a result, the amount of the glass source gas supplied to the burner 29 per unit time is constant.
An example of the densitometer 32 is one that detects a change in the thermal conductivity of a gas as a change in the resistance value of a resistance temperature detector placed in the gas. Since this method requires measuring the thermal conductivity of the control gas, it is necessary to connect the control gas pipe 40 to the concentration meter 32 as shown in FIG. . The glass source gas contains a carrier gas. If the control gas is the same gas as the carrier gas, the difference between the two will depend on the glass source gas concentration when comparing the thermal conductivity of the glass source gas and the control gas. When a resistance temperature detector is inserted in each of the two gases, the difference in thermal conductivity between these gases is detected as a difference in voltage applied to the resistance temperature detector. The relationship between the glass raw material gas concentration and the voltage difference is obtained in advance and stored in the densitometer 35, and the glass raw material gas concentration is obtained from the detected voltage difference. For the densitometer 32, a flame ionization detector can be used in addition to the method described above. Alternatively, a system that obtains the concentration of a certain component gas in the mixed gas from the propagation speed of sound waves or ultrasonic waves can be used. A concentration correction coefficient corresponding to the pressure may be stored in the densitometer to correct the influence of fluctuations in atmospheric pressure.

MFC33で流量を調整されたガラス原料ガスは反応部であるガラス微粒子合成用バーナに供給される。バーナ29には、別の配管34a、34b、34cを通って燃焼ガスである水素(H2)、支燃ガスである酸素(O2)、シールガスであるアルゴン(Ar)等のガスが供給され、火炎が生成される。ガラス原料ガスはこの火炎中で加水分解または酸化されてガラス微粒子となり、火炎流によって基盤であるガラスロッド30に吹き付けられる。ガラスロッド30をその軸を中心として回転させながら、バーナ29またはガラスロッド30を移動させてガラスロッド30上にガラス微粒子を堆積させてガラス微粒子堆積体7を製造する。
単位時間あたりにバーナ29に供給されるガラス原料ガスの量が一定であるので、バーナ29で単位時間あたりに生成されるガラス微粒子の量も一定となり、そのガラス微粒子が堆積してできるガラス微粒子堆積体7の厚さを一定とすることができる。
ガラス微粒子堆積体7を加熱すると透明ガラスが得られる。
The glass raw material gas whose flow rate is adjusted by the MFC 33 is supplied to a glass fine particle synthesis burner which is a reaction part. A gas such as hydrogen (H 2 ) as a combustion gas, oxygen (O 2 ) as a combustion support gas, and argon (Ar) as a seal gas is supplied to the burner 29 through another pipes 34a, 34b, and 34c. And a flame is generated. The glass raw material gas is hydrolyzed or oxidized in this flame to become glass fine particles, and is sprayed onto the glass rod 30 as a base by the flame flow. While rotating the glass rod 30 about its axis, the burner 29 or the glass rod 30 is moved to deposit glass particles on the glass rod 30 to produce the glass particle deposit 7.
Since the amount of the glass raw material gas supplied to the burner 29 per unit time is constant, the amount of the glass fine particles generated per unit time by the burner 29 is also constant, and the glass fine particle deposition formed by the deposition of the glass fine particles. The thickness of the body 7 can be made constant.
When the glass fine particle deposit 7 is heated, a transparent glass is obtained.

ガラス原料ガスに希釈ガスを混合して混合ガスとなし、これを反応部に供給してガラスを生成することができる。この形態について図2を参照して以下に説明する。
ガラス原料ガスが原料ガス配管15を通って気化器12から送り出されところまでは図1で説明したのと同様である。原料ガス配管15には希釈ガス配管23が接続される。この接続点でガラス原料ガスと希釈ガスが混合されて混合ガスとなる。混合ガスは混合ガス配管26を通って反応部であるガラス微粒子合成用バーナ29に供給される。
混合ガス配管には濃度計32と混合ガス流量調整手段であるマスフローコントローラ(MFC)33とが設けられる。濃度計32で混合ガス中のガラス原料ガス濃度が測定される。
A dilution gas is mixed with the glass raw material gas to form a mixed gas, which can be supplied to the reaction section to produce glass. This embodiment will be described below with reference to FIG.
The process until the glass raw material gas is sent out from the vaporizer 12 through the raw material gas pipe 15 is the same as that described in FIG. A dilution gas pipe 23 is connected to the source gas pipe 15. At this connection point, the glass raw material gas and the dilution gas are mixed to form a mixed gas. The mixed gas is supplied to the glass fine particle synthesizing burner 29 which is a reaction part through the mixed gas pipe 26.
The mixed gas pipe is provided with a concentration meter 32 and a mass flow controller (MFC) 33 which is a mixed gas flow rate adjusting means. The glass raw material gas concentration in the mixed gas is measured by the densitometer 32.

濃度計32は制御部35に電気的に接続され、ガラス原料ガス濃度が電気信号になって制御部35に伝えられる。制御部35は原料ガス濃度によりMFC33の設定流量を調整する。例えば、単位時間あたりにバーナ29に供給されるガラス原料の量、つまりガラス原料ガス濃度とガラス原料ガス流量の積が一定となるように混合ガスの流量を調整する。このときガラス原料ガスの流量は混合ガスの流量に変換係数を掛けた値とするが、前記変換係数はガラス原料ガス濃度によって変わるので、予めガラス原料ガス濃度と変換係数との関係を求めておき、濃度計32で測定されたガラス原料ガス濃度における変換係数を使用して、ガラス原料ガス濃度とガラス原料ガス流量の積が一定となるように混合ガス流量を調整する。ガラス原料ガス濃度が低下すればMFC33の設定流量を大きくして混合ガス流量を増やすことになる。
希釈ガス配管23に希釈ガス流量調整手段としてMFC3が設けられているときは、制御部35からMFC3に指令を出して、その設定流量を変更してガラス原料ガス濃度を調整してもよい。例えば、ガラス原料ガスが低下すれば、MFC3の設定流量を小さくする指令が制御部35から出されて希釈ガスの流量を少なくして、ガラス原料ガス濃度を増加させてもよい。
濃度計32は、図1で説明したものと同様である。
気化器12は反応部であるバーナ29の近傍、例えばバーナからの配管の長さが1m以内の箇所に設けることができる。バーナが複数本ある場合は各バーナごとに気化器を設け、各気化器の容量を小さくする。ガラス原料液を気化器に供給するときに流量調整手段を使用してもよい。気化器を百数十℃まで加熱してガラス原料液を滴下して瞬時に気化してガラス原料ガスとする。その後希釈ガスを混合することやガラス原料ガス濃度を測定して混合ガスの流量を調整することは前述の場合と同様である。希釈ガスの温度により混合ガスの温度を調整できる。
気化器への入口付近でガラス原料液に希釈ガスを混合してガラス原料液を霧状にしてその表面積を大きくすると気化効率が向上する。この場合、気化器出口からバーナ29までの配管にヒータや冷媒流路などの温度調整手段を設けて気化器出口で温度調整を行うとよい。
The concentration meter 32 is electrically connected to the control unit 35, and the glass source gas concentration is transmitted to the control unit 35 as an electric signal. The control unit 35 adjusts the set flow rate of the MFC 33 according to the raw material gas concentration. For example, the flow rate of the mixed gas is adjusted so that the amount of the glass raw material supplied to the burner 29 per unit time, that is, the product of the glass raw material gas concentration and the glass raw material gas flow rate becomes constant. At this time, the flow rate of the glass raw material gas is a value obtained by multiplying the flow rate of the mixed gas by the conversion coefficient. However, since the conversion coefficient varies depending on the glass raw material gas concentration, the relationship between the glass raw material gas concentration and the conversion coefficient is obtained in advance. Using the conversion coefficient in the glass raw material gas concentration measured by the densitometer 32, the mixed gas flow rate is adjusted so that the product of the glass raw material gas concentration and the glass raw material gas flow rate becomes constant. If the glass raw material gas concentration decreases, the set flow rate of the MFC 33 is increased and the mixed gas flow rate is increased.
When the dilution gas pipe 23 is provided with the MFC 3 as the dilution gas flow rate adjusting means, the controller 35 may issue a command to the MFC 3 to change the set flow rate to adjust the glass raw material gas concentration. For example, if the glass source gas decreases, a command to reduce the set flow rate of the MFC 3 may be issued from the control unit 35 to decrease the flow rate of the dilution gas and increase the glass source gas concentration.
The densitometer 32 is the same as that described in FIG.
The vaporizer 12 can be provided in the vicinity of the burner 29 as a reaction part, for example, at a place where the length of the pipe from the burner is within 1 m. When there are a plurality of burners, a vaporizer is provided for each burner to reduce the capacity of each vaporizer. A flow rate adjusting means may be used when supplying the glass raw material liquid to the vaporizer. The vaporizer is heated to hundreds of degrees Celsius and a glass raw material liquid is dropped to vaporize instantaneously to obtain a glass raw material gas. Thereafter, the dilution gas is mixed and the flow rate of the mixed gas is adjusted by measuring the glass raw material gas concentration as in the case described above. The temperature of the mixed gas can be adjusted by the temperature of the dilution gas.
Vaporization efficiency is improved by mixing the glass raw material liquid with a dilution gas in the vicinity of the inlet to the vaporizer to make the glass raw material liquid into a mist to increase its surface area. In this case, temperature adjustment means such as a heater or a refrigerant flow path may be provided in the pipe from the vaporizer outlet to the burner 29 to adjust the temperature at the vaporizer outlet.

別な形態として、反応部をガラス管の内部として前記ガラス管の内側にガラス層を形成するMCVD法について、図3を参照して以下に説明する。
ガラス原料液を気化してMFC33により流量を調整して反応部へ送りだすところまでは図1で説明した場合と同様であり、同符号は同じものを示す。あるいは図2で説明した場合のように希釈ガスを混合してもよい。
流量を調整されたガラス原料ガスが反応部であるガラス管5内に供給される。別な配管24からO2がガラス管5内に供給される。ガラス管5およびその内部は熱源6によって1700℃程度に加熱される。ガラス管5内でガラス原料ガスが酸化してガラス微粒子が生成する。そのガラス微粒子はガラス管5の内側に付着すると同時にガラス管5の熱により透明化する。熱源6がガラス管5の長さ方向に相対的に移動することでガラス管5の長さ方向にガラス層8が形成される。図3中の右向きの矢印は熱源のガラス管5に対する相対移動方向を示す。未反応のガス等は排気管41から排気される。ガラス管5をその軸を中心として回転させるとガラス管の周にそってガラス層8の厚さを均一にすることができて好ましい。
As another embodiment, an MCVD method for forming a glass layer on the inner side of the glass tube with the reaction part inside the glass tube will be described below with reference to FIG.
The process up to the point where the glass raw material liquid is vaporized and the flow rate is adjusted by the MFC 33 and sent to the reaction section is the same as in the case described with reference to FIG. Or you may mix dilution gas like the case where it demonstrated in FIG.
The glass raw material gas whose flow rate is adjusted is supplied into the glass tube 5 which is a reaction part. O 2 is supplied into the glass tube 5 from another pipe 24. The glass tube 5 and the inside thereof are heated to about 1700 ° C. by the heat source 6. The glass raw material gas is oxidized in the glass tube 5 to generate glass fine particles. The glass fine particles adhere to the inside of the glass tube 5 and at the same time become transparent by the heat of the glass tube 5. The glass layer 8 is formed in the length direction of the glass tube 5 by the heat source 6 relatively moving in the length direction of the glass tube 5. A right-pointing arrow in FIG. 3 indicates a direction of relative movement of the heat source with respect to the glass tube 5. Unreacted gas or the like is exhausted from the exhaust pipe 41. When the glass tube 5 is rotated around its axis, the thickness of the glass layer 8 can be made uniform along the circumference of the glass tube.

本発明の一実施形態を模式的に示した概略説明図である。It is the schematic explanatory drawing which showed typically one Embodiment of this invention. 本発明の他の実施形態を模式的に示した概略説明図である。It is the schematic explanatory drawing which showed other embodiment of this invention typically. 本発明のさらに他の実施形態を模式的に示した概略説明図である。It is the schematic explanatory drawing which showed typically other embodiment of this invention typically.

符号の説明Explanation of symbols

3、33 MFC、 5 ガラス管(基盤)、 6 熱源、
7 ガラス微粒子堆積体、 8 ガラス層、
12 気化器、 15 原料ガス配管、 18 キャリアガス配管、
23 希釈ガス配管、 24 O2ガス配管、 26 混合ガス配管、
29 ガラス微粒子合成用バーナ、
30 ガラスロッド、 32 濃度計
34a、34b、34c 配管、35 制御部、 40 対照ガス配管、
41 排気管、
A ガラス原料液。

3, 33 MFC, 5 glass tube (base), 6 heat source,
7 Glass particulate deposit, 8 Glass layer,
12 vaporizer, 15 source gas piping, 18 carrier gas piping,
23 dilution gas piping, 24 O 2 gas piping, 26 mixed gas piping,
29 Burner for glass fine particle synthesis,
30 glass rod, 32 densitometers 34a, 34b, 34c piping, 35 control section, 40 control gas piping,
41 exhaust pipe,
A Glass raw material liquid.

Claims (5)

気化器にガラス原料液を供給し、前記気化器で前記原料液を気化させてガラス原料ガスとし、前記ガラス原料ガスを反応部に供給し、前記反応部でガラスを生成させるガラスの製造方法であって、前記ガラス原料ガスの濃度を測定して、その測定結果により前記ガラス原料ガスの流量を調整することを特徴とするガラスの製造方法。   A method for producing glass in which a glass raw material liquid is supplied to a vaporizer, the raw material liquid is vaporized by the vaporizer to obtain a glass raw material gas, the glass raw material gas is supplied to a reaction part, and glass is generated in the reaction part. A method for producing glass, comprising measuring a concentration of the glass raw material gas and adjusting a flow rate of the glass raw material gas based on a measurement result. 前記ガラス原料ガスに希釈ガスを混合して混合ガスとし、前記混合ガスを前記反応部に供給する前記ガラスの製造方法であって、前記混合ガス中の前記ガラス原料ガスの濃度を測定して、その測定結果により前記混合ガスの流量を調整することを特徴とする請求項1に記載のガラスの製造方法。   The glass raw material gas is a mixed gas obtained by mixing a diluent gas and supplying the mixed gas to the reaction part, wherein the concentration of the glass raw material gas in the mixed gas is measured, The method for producing glass according to claim 1, wherein the flow rate of the mixed gas is adjusted according to the measurement result. 前記気化器に供給されたガラス原料液にキャリアガスを吹き込んで前記原料液を気化させることを特徴とする請求項1または2に記載のガラスの製造方法。   The method for producing glass according to claim 1, wherein a carrier gas is blown into the glass raw material liquid supplied to the vaporizer to vaporize the raw material liquid. ガラス原料液をガラス原料ガスに気化する気化器と、前記ガラス原料ガスからガラスまたはガラス微粒子を生成する反応部とを有するガラス製造装置であって、前記ガラス原料ガスを気化器から送り出す原料ガス配管を有し、前記ガラス原料ガス濃度を測定する濃度計とガラス原料ガス流量調整手段とを前記原料ガス配管上に有し、前記濃度計で測定された前記ガラス原料ガス濃度により前記ガラス原料ガス流量調整手段の設定流量を調整する制御部を有するガラス製造装置。   A raw material gas pipe having a vaporizer for vaporizing a glass raw material liquid into a glass raw material gas and a reaction unit for generating glass or glass fine particles from the glass raw material gas, and sending out the glass raw material gas from the vaporizer A glass raw material gas flow rate according to the glass raw material gas concentration measured by the concentration meter, and having a concentration meter for measuring the glass raw material gas concentration and a glass raw material gas flow rate adjusting means on the raw material gas pipe. The glass manufacturing apparatus which has a control part which adjusts the setting flow volume of an adjustment means. ガラス原料液をガラス原料ガスに気化する気化器と、前記ガラス原料ガスからガラスまたはガラス微粒子を生成する反応部とを有するガラス製造装置であって、前記ガラス原料ガスを気化器から送り出す原料ガス配管、前記原料ガス配管に接続される希釈ガス配管、および前記ガラス原料ガスと前記希釈ガスが混合された混合ガスを前記反応部に供給する混合ガス配管を有し、前記混合ガス中の前記ガラス原料ガス濃度を測定する濃度計と混合ガス流量調整手段とを前記混合ガス配管上に有し、前記濃度計で測定された前記ガラス原料ガス濃度により前記混合ガス流量調整手段の設定流量を調整する制御部を有するガラス製造装置。

A raw material gas pipe having a vaporizer for vaporizing a glass raw material liquid into a glass raw material gas and a reaction unit for generating glass or glass fine particles from the glass raw material gas, and sending out the glass raw material gas from the vaporizer A dilution gas pipe connected to the raw material gas pipe, and a mixed gas pipe for supplying a mixed gas in which the glass raw material gas and the dilution gas are mixed to the reaction section, and the glass raw material in the mixed gas A control having a concentration meter for measuring gas concentration and a mixed gas flow rate adjusting means on the mixed gas pipe, and adjusting a set flow rate of the mixed gas flow rate adjusting means according to the glass raw material gas concentration measured by the concentration meter Glass manufacturing apparatus having a section.

JP2004213068A 2004-07-21 2004-07-21 Glass manufacturing method and glass manufacturing equipment Pending JP2006027987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004213068A JP2006027987A (en) 2004-07-21 2004-07-21 Glass manufacturing method and glass manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004213068A JP2006027987A (en) 2004-07-21 2004-07-21 Glass manufacturing method and glass manufacturing equipment

Publications (1)

Publication Number Publication Date
JP2006027987A true JP2006027987A (en) 2006-02-02

Family

ID=35894776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004213068A Pending JP2006027987A (en) 2004-07-21 2004-07-21 Glass manufacturing method and glass manufacturing equipment

Country Status (1)

Country Link
JP (1) JP2006027987A (en)

Similar Documents

Publication Publication Date Title
KR101301967B1 (en) Plasma Nano-powder Synthesizing and Coating Device and Method of the same
CN100371275C (en) Method and apparatus for fabricating an optical fiber preform in ovd process
CN103987667A (en) Method for producing synthetic quartz glass
JPH0781965A (en) Gas producer, method for producing optical waveguide and optical fiber preform and device therefor
JPH0610144A (en) Low vapor pressure material supply device
WO2005082798A1 (en) Method and device for producing optical fiber matrix
JP7463967B2 (en) Apparatus and method for manufacturing soot glass deposit
JP2000272925A (en) Production of silica by decomposition of organosilane
JP2006027987A (en) Glass manufacturing method and glass manufacturing equipment
JP4277574B2 (en) Gas material supply method and apparatus, and glass fine particle deposit body and glass material manufacturing method using the same
KR100450928B1 (en) Apparatus and method for manufacturing optical fiber preform using modified chemical vapour deposition
JP2004161555A (en) Method and apparatus for supplying glass forming gas, and method and apparatus for manufacturing glass particulate deposit
JP2005343714A (en) Method and apparatus for producing gaseous mixture and method and apparatus for manufacturing glass
JPS62223037A (en) Formation of porous glass layer
JP2016023133A (en) Isothermal plasma cvd system for reducing taper in optical fiber preform
JP2003340265A (en) Method and apparatus for vaporizing liquid raw material, and apparatus for producing glass base material
JP2007176728A (en) Burner device and method of manufacturing synthetic quartz glass using the same
CN112533879B (en) Method and device for the reproducible production of preforms for glass fiber production
JPH0499279A (en) Method for gasifying and supplying liquid material and device for supplying this material
JP2012162414A (en) Method and apparatus for producing glass fine particle deposit
JP2003332327A (en) Gasification supply method
JP6979914B2 (en) Vaporizer
JP2004099342A (en) Method and apparatus for manufacturing glass member
JP2023051076A (en) Method and apparatus for manufacturing glass particle deposit
JP5092226B2 (en) Method for producing glass particulate deposit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061109

RD03 Notification of appointment of power of attorney

Effective date: 20070319

Free format text: JAPANESE INTERMEDIATE CODE: A7423

A977 Report on retrieval

Effective date: 20090326

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A02 Decision of refusal

Effective date: 20091020

Free format text: JAPANESE INTERMEDIATE CODE: A02