JP2003332327A - Gasification supply method - Google Patents

Gasification supply method

Info

Publication number
JP2003332327A
JP2003332327A JP2002141386A JP2002141386A JP2003332327A JP 2003332327 A JP2003332327 A JP 2003332327A JP 2002141386 A JP2002141386 A JP 2002141386A JP 2002141386 A JP2002141386 A JP 2002141386A JP 2003332327 A JP2003332327 A JP 2003332327A
Authority
JP
Japan
Prior art keywords
raw material
vaporization
flow rate
gas
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002141386A
Other languages
Japanese (ja)
Inventor
Yukichi Takamatsu
勇吉 高松
Gakuo Yoneyama
岳夫 米山
Yuji Mori
勇次 森
Akiyoshi Asano
彰良 淺野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Pionics Ltd
Original Assignee
Japan Pionics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Pionics Ltd filed Critical Japan Pionics Ltd
Priority to JP2002141386A priority Critical patent/JP2003332327A/en
Publication of JP2003332327A publication Critical patent/JP2003332327A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gasification supply method which can supply a liquid CVD raw material used in manufacturing of a barrier film by gasification at an extremely high concentration and a desired supply amount stably to a semiconductor manufacturing device. <P>SOLUTION: Amino liquid CVD raw material is heated and gasified at high accuracy and supplied to a gas mass flow controller. Its flow rate is controlled by the gas mass flow controller and is supplied to the semiconductor manufacturing device, without carrying a carrier gas such as nitrogen, helium and argon. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体製造装置
(CVD装置)にガス状のアミノ系CVD原料を供給す
るための気化供給方法に関する。さらに詳細には、アミ
ノ系液体CVD原料を、同伴ガスを伴うことなく、極め
て高濃度で、しかも所望の供給量で安定して半導体製造
装置に気化供給するための気化供給方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vaporization supply method for supplying a gaseous amino-based CVD source to a semiconductor manufacturing apparatus (CVD apparatus). More specifically, the present invention relates to a vaporization and supply method for stably vaporizing and supplying an amino-based liquid CVD raw material to a semiconductor manufacturing apparatus at a desired high supply amount with extremely high concentration without accompanying gas.

【0002】[0002]

【従来の技術】半導体分野においては、銅配線のバリア
膜として、高誘電率を有しステップカバレッジ性が高い
窒化チタン膜、窒化タンタル膜、あるいはTi−Zr−
N膜、W−Ta−N膜等が用いられている。これらの半
導体薄膜のCVD原料としては、例えばTi源としてT
i(OCH(CH324(液体原料)、Ti(OCH
(CH322(DPM)2(固体原料)、Ta源として
ペンタエトキシタンタル(Ta(OC255)(液体
原料)、Ta(OiPr)2(DPM)3(固体原料)、
Zr源としてZr(OC(CH334(液体原料)、
Zr(DPM)4(固体原料)が用いられている。
2. Description of the Related Art In the field of semiconductors, a titanium nitride film, a tantalum nitride film, or a Ti-Zr- film having a high dielectric constant and a high step coverage is used as a barrier film for copper wiring.
An N film, a W-Ta-N film or the like is used. As a CVD raw material for these semiconductor thin films, for example, as a Ti source, T
i (OCH (CH 3 ) 2 ) 4 (liquid raw material), Ti (OCH
(CH 3 ) 2 ) 2 (DPM) 2 (solid raw material), pentaethoxytantalum (Ta (OC 2 H 5 ) 5 ) (liquid raw material) as Ta source, Ta (OiPr) 2 (DPM) 3 (solid raw material) ,
As a Zr source, Zr (OC (CH 3 ) 3 ) 4 (liquid raw material),
Zr (DPM) 4 (solid raw material) is used.

【0003】CVD原料として液体原料を使用する場
合、通常は、液体原料が、液体流量制御部を経由して、
キャリアガスとともに気化器に供給され、気化器でガス
状にされた後、CVD装置に供給される。しかし、液体
原料は、一般的に蒸気圧が低く、粘度が高く、気化温度
と分解温度が接近しているため、その品質を低下させる
ことなく、しかも所望の濃度及び流量で効率よく気化さ
せることは困難なことであった。また、固体原料は、高
温に保持し昇華して気化供給することにより高純度の原
料を得ることが可能であるが、工業的には充分な供給量
を確保することが極めて困難であるため、通常はテトラ
ヒドロフラン等の溶媒に溶解させて液体原料とすること
により気化させて使用している。しかし、固体原料は、
気化温度が溶媒と大きく相異し、加熱により溶媒のみが
気化して固体原料が析出しやすいので、液体原料の気化
よりもさらに困難であった。
When a liquid raw material is used as the CVD raw material, the liquid raw material is usually passed through a liquid flow rate control unit,
It is supplied to a vaporizer together with a carrier gas, made into a gas state in the vaporizer, and then supplied to a CVD apparatus. However, since liquid raw materials generally have low vapor pressure, high viscosity, and vaporization temperature and decomposition temperature are close to each other, they can be efficiently vaporized at a desired concentration and flow rate without deteriorating their quality. Was difficult. Further, the solid raw material, it is possible to obtain a high-purity raw material by holding at a high temperature and sublimating to vaporize and supply, but it is extremely difficult to ensure a sufficient supply amount industrially, Usually, it is dissolved in a solvent such as tetrahydrofuran and used as a liquid raw material to be vaporized and used. However, the solid raw material is
It was more difficult than the vaporization of the liquid raw material because the vaporization temperature was largely different from that of the solvent and only the solvent was vaporized by heating to easily precipitate the solid raw material.

【0004】尚、過去においては、例えば、液体原料を
入れる容器、液体原料の温度調整手段、及び液体原料に
気体を吹き込むための管を備えた気化器、あるいは気化
器内に超音波振動子が設けられており、液体原料を超音
波振動により霧状にするとともに加熱して気化させる気
化装置等が使用されていた。しかし、液体原料を加熱し
気体を吹き込む気化器では、容器内で長時間加熱される
ことにより分解、変質を生じるために気化ガスの品質が
低下し、気化ガスの濃度や供給量の制御も難しいという
欠点があった。また、超音波振動を用いた気化器では、
液体原料がミストの状態で半導体製造装置へ供給される
虞れがあり、さらに固体のCVD原料を溶媒に溶解させ
た液体CVD原料を減圧下で気化供給する場合は、溶媒
のみが気化され、固体原料が析出する虞れがあった。
Incidentally, in the past, for example, a vaporizer equipped with a container for containing the liquid raw material, a temperature adjusting means for the liquid raw material, and a pipe for blowing gas into the liquid raw material, or an ultrasonic transducer inside the vaporizer was used. A vaporizer or the like was used that was provided and atomizes the liquid raw material by ultrasonic vibration and heats it to vaporize it. However, in a vaporizer that heats a liquid material and blows in gas, the quality of the vaporized gas deteriorates because it decomposes and deteriorates due to being heated in the container for a long time, and it is difficult to control the concentration and supply amount of the vaporized gas. There was a drawback. Also, in the vaporizer using ultrasonic vibration,
There is a possibility that the liquid raw material may be supplied to the semiconductor manufacturing apparatus in a mist state, and when the liquid CVD raw material in which the solid CVD raw material is dissolved in the solvent is vaporized and supplied under reduced pressure, only the solvent is vaporized and the solid There was a risk that the raw materials would precipitate.

【0005】このように液体原料または固体原料を用い
た半導体膜の製造は、高度の技術を必要とするが、高品
質、高純度のものが期待できるため、気化ガスの品質を
低下させることなく、しかも所望の濃度及び流量で効率
よく気化する目的で、種々の気化器あるいは気化供給方
法が開発されてきた。例えば、近年においては、気化室
の形状が、球形、楕球形、樽形、円筒形等であり、キャ
リヤーガスが気化室内で旋回流を形成するような向きに
設定され、気化室の中央部には形状が気化室の形状に略
相似形で加熱手段が付与された突起が設けられている気
化器(特開2000−315686)、CVD原料供給
部のCVD原料との接触部が、フッ素系樹脂、ポリイミ
ド系樹脂等の耐腐食性合成樹脂で構成される気化器(特
願2001−349840)等が開発されている。
As described above, the production of a semiconductor film using a liquid raw material or a solid raw material requires a high level of technology, but since high quality and high purity can be expected, the quality of vaporized gas is not deteriorated. Moreover, various vaporizers or vaporization supply methods have been developed for the purpose of efficiently vaporizing at a desired concentration and flow rate. For example, in recent years, the shape of the vaporization chamber has been spherical, oval, barrel-shaped, cylindrical, etc., and the carrier gas has been set in such a direction as to form a swirl flow in the vaporization chamber, and the vaporization chamber has a central portion. Is a vaporizer provided with a projection to which a heating means is provided in a shape substantially similar to the shape of the vaporization chamber (Japanese Patent Laid-Open No. 2000-315686), and the contact portion of the CVD raw material supply portion with the CVD raw material is a fluororesin. , A vaporizer (Japanese Patent Application No. 2001-349840) composed of a corrosion resistant synthetic resin such as a polyimide resin has been developed.

【0006】[0006]

【発明が解決しようとする課題】特開2000−315
686の気化器は、加熱されたキャリヤーガスが、気化
室の内壁面と突起の間隙を滑らかに旋回し、このような
加熱されたキャリヤーガスの流れにより、気化室の内壁
及び気化室の中央部の突起からの熱伝達が容易になり、
気化室内の温度の均一化をはかることができるので、C
VD原料の品質低下を抑制できるとともに効率よく気化
させることができる。また、特願2001−34984
0の気化器は、CVD原料との接触部の構成材料を、耐
熱性のほか、断熱性があり、CVD原料が付着しにくい
特性を有する耐腐食性合成樹脂としたものであり、固体
CVD原料を有機溶媒に溶解させた原料を用いた場合に
おいても、急激な原料の加熱を防止できるので、溶媒の
みが気化しCVD原料が析出することが少なく、99.
9%以上の高い気化効率が得られる気化器である。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
In the vaporizer of 686, the heated carrier gas swirls smoothly in the gap between the inner wall surface of the vaporization chamber and the protrusions, and the flow of the heated carrier gas causes the inner wall of the vaporization chamber and the central portion of the vaporization chamber to move. Heat transfer from the protrusions on the
Since the temperature inside the vaporization chamber can be made uniform, C
It is possible to suppress the quality deterioration of the VD raw material and efficiently vaporize it. In addition, Japanese Patent Application No. 2001-34984
The vaporizer of No. 0 is a solid CVD raw material in which the constituent material of the contact portion with the CVD raw material is a corrosion-resistant synthetic resin having heat resistance and heat insulation properties, and the CVD raw material does not easily adhere. Even when a raw material dissolved in an organic solvent is used, rapid heating of the raw material can be prevented, so that only the solvent is vaporized and the CVD raw material is less likely to be deposited.
It is a vaporizer capable of obtaining a high vaporization efficiency of 9% or more.

【0007】しかしながら、これらの気化器を用いて気
化供給する方法は、液体CVD原料を用いた場合におい
て、CVD原料に伴って供給されるキャリアガスの供給
量を減少させると気化効率が低下し、固体CVD原料を
用いた場合において、固体CVD原料を溶解する溶媒の
量、あるいはCVD原料に伴って供給されるキャリアガ
スの供給量を減少させると、溶媒のみが気化する傾向が
大きくなり、気化室内に固体CVD原料が析出し付着す
る虞があった。しかし、化学気相成長においては、CV
D原料を高濃度で供給することによりその利用効率を上
げるとともに高品質の半導体膜が得られることが好まし
い。従って、本発明が解決しようとする課題は、液体C
VD原料を、極めて高濃度で、しかも所望の供給量で安
定して半導体製造装置に気化供給できる気化供給方法を
提供することである。
However, in the method of vaporizing and supplying by using these vaporizers, in the case of using the liquid CVD raw material, when the supply amount of the carrier gas supplied along with the CVD raw material is reduced, the vaporization efficiency is lowered, When the solid CVD raw material is used, if the amount of the solvent that dissolves the solid CVD raw material or the supply amount of the carrier gas that is supplied along with the CVD raw material is decreased, the tendency that only the solvent is vaporized becomes large. There is a possibility that the solid CVD raw material may be deposited and adhere to the above. However, in chemical vapor deposition, CV
It is preferable to supply the D raw material at a high concentration to improve the utilization efficiency and obtain a high quality semiconductor film. Therefore, the problem to be solved by the present invention is that the liquid C
It is an object of the present invention to provide a vaporization and supply method capable of stably vaporizing and supplying a VD raw material to a semiconductor manufacturing apparatus at an extremely high concentration and at a desired supply amount.

【0008】[0008]

【課題を解決するための手段】本発明者らは、これらの
課題を解決すべく鋭意検討した結果、高誘電率を有する
バリア膜の製造において、テトラジメチルアミノジルコ
ニウム、ペンタジメチルアミノタンタル、テトラジエチ
ルアミノチタン等のアミノ系液体CVD原料は、これら
の気化温度またはその近辺の温度では分解、変質を生じ
ないこと、及びこれらのアミノ系液体CVD原料を精度
よく加熱制御して気化し、気化ガスを気体流量制御部で
流量制御することにより、これらのCVD原料を極めて
高濃度で半導体製造装置へ気化供給できることを見い出
し本発明に到達した。すなわち本発明は、アミノ系液体
CVD原料を、加熱し気化させて気体流量制御部に供給
し、該気体流量制御部により流量制御して、同伴ガスを
伴うことなく半導体製造装置へ供給することを特徴とす
る気化供給方法である。
The inventors of the present invention have made extensive studies to solve these problems, and as a result, in the production of a barrier film having a high dielectric constant, tetradimethylaminozirconium, pentadimethylaminotantalum, tetradiethylamino, etc. Amino-based liquid CVD raw materials such as titanium do not decompose or deteriorate at or near their vaporization temperatures, and these amino-based liquid CVD raw materials are vaporized by heating and controlling them with high precision. The inventors have found that these CVD raw materials can be vaporized and supplied to a semiconductor manufacturing apparatus at an extremely high concentration by controlling the flow rate with a flow rate control unit, and have reached the present invention. That is, according to the present invention, the amino-based liquid CVD raw material is heated and vaporized and supplied to the gas flow rate control unit, and the flow rate is controlled by the gas flow rate control unit to supply the semiconductor manufacturing apparatus without accompanying gas. It is a characteristic vaporization supply method.

【0009】[0009]

【発明の実施の形態】本発明は、アミノ系液体CVD原
料を気化させて、半導体製造装置に供給する気化供給方
法に適用される。本発明の気化供給方法は、アミノ系液
体CVD原料を、精度よく加熱し気化させて気体流量制
御部に供給し、気体流量制御部により流量制御して、窒
素、ヘリウム、アルゴン等の同伴ガスを伴うことなく半
導体製造装置へ供給する気化供給方法である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is applied to a vaporization and supply method of vaporizing an amino liquid CVD raw material and supplying it to a semiconductor manufacturing apparatus. The vaporization supply method of the present invention, the amino-based liquid CVD raw material is accurately heated and vaporized and supplied to the gas flow rate control unit, the flow rate is controlled by the gas flow rate control unit, and entrained gases such as nitrogen, helium, and argon are supplied. It is a vaporization and supply method for supplying to a semiconductor manufacturing apparatus without accompanying it.

【0010】本発明の気化供給方法に適用できるCVD
原料は、テトラキスジメチルアミノジルコニウム(Zr
(N(CH324)、テトラキスジエチルアミノジル
コニウム(Zr(N(C2524)、ペンタジメチル
アミノタンタル(Ta(N(CH325)、ペンタジ
エチルアミノタンタル(Ta(N(C2525)、テ
トラキスジメチルアミノチタン(Ti(N(CH32
4)、テトラキスジエチルアミノチタン(Ti(N(C2
524)、テトラキスジエチルアミノハフニウム
(Hf(N(C2524)、テトラキスジメチルアミ
ノケイ素(Si(N(CH324)、テトラキスジエ
チルアミノケイ素(Si(N(C252 4)、トリス
ジメチルアミノケイ素ハライド(SiH(N(C
323)、またはテトラキスジエチルアミノゲルマ
ニウム(Ge(N(C2524)等のアミノ系液体C
VD原料である。
CVD applicable to the vaporization supply method of the present invention
The raw material is tetrakisdimethylaminozirconium (Zr
(N (CH3)2)Four), Tetrakisdiethylaminozil
Konium (Zr (N (C2HFive)2)Four), Pentadimethyl
Amino tantalum (Ta (N (CH3)2)Five), Pentazi
Ethylamino tantalum (Ta (N (C2HFive)2)Five), Te
Trakis dimethylamino titanium (Ti (N (CH3)2)
Four), Tetrakisdiethylaminotitanium (Ti (N (C2
HFive)2)Four), Tetrakisdiethylaminohafnium
(Hf (N (C2HFive)2)Four), Tetrakisdimethylami
Silicon (Si (N (CH3)2)Four), Tetrachys die
Cylaminosilicon (Si (N (C2HFive)2) Four), Tris
Dimethylamino silicon halide (SiH (N (C
H3)2)3), Or tetrakisdiethylaminogerma
Ni (Ge (N (C2HFive)2)Four) Etc. amino liquid C
It is a VD raw material.

【0011】次に、本発明の気化供給方法を、図1及び
図2に基づいて詳細に説明するが、本発明はこれにより
限定されるものではない。図1及び図2は、本発明の気
化供給方法を適用した気化供給システムの例を示す構成
図である。これらの気化供給システムは、ヒーター3を
有し前述の液体CVD原料1が封入されたCVD原料容
器2、気体流量制御部4等により構成されている。ま
た、本発明においては、これらとともに気化ガスの圧力
計6、シーケンサー7が備えられていることが好まし
い。尚、図1及び図2は、1系統(1種類の原料)の気
化供給ラインを有する気化供給システムであるが、本発
明の気化供給方法は、複数系統の気化供給ラインを有す
る気化供給システムにも適用できる。
Next, the vaporization supply method of the present invention will be described in detail with reference to FIGS. 1 and 2, but the present invention is not limited thereto. 1 and 2 are configuration diagrams showing an example of a vaporization supply system to which the vaporization supply method of the present invention is applied. These vaporization supply systems are composed of a CVD raw material container 2 having a heater 3 in which the liquid CVD raw material 1 is enclosed, a gas flow rate control unit 4, and the like. Further, in the present invention, it is preferable that a pressure gauge 6 for vaporized gas and a sequencer 7 are provided together with these. 1 and 2 show a vaporization supply system having one system (one type of raw material) of vaporization supply lines, the vaporization supply method of the present invention is applicable to a vaporization supply system having a plurality of systems of vaporization supply lines. Can also be applied.

【0012】本発明の気化供給方法においては、CVD
原料として通常はCVD原料容器に真空充填されたアミ
ノ系液体CVD原料が使用される。CVD原料容器が気
化供給ラインに設置された後、アミノ系液体CVD原料
は、CVD原料容器に取付けられたヒーターあるいは熱
溶媒により加熱され気化されて、気体マスフローコント
ローラー等の気体流量制御部に供給される。アミノ系C
VD原料の気化ガスは、気体流量制御部により流量制御
された後、半導体製造装置に供給される。本発明の気化
供給方法においては、窒素、ヘリウム、アルゴン等の同
伴ガスは使用されない。
In the vaporization supply method of the present invention, CVD
As a raw material, an amino-based liquid CVD raw material that is vacuum-filled in a CVD raw material container is usually used. After the CVD raw material container is installed in the vaporization supply line, the amino-based liquid CVD raw material is heated and vaporized by a heater or a thermal solvent attached to the CVD raw material container and supplied to a gas flow rate control unit such as a gas mass flow controller. It Amino C
The vaporized gas of the VD raw material is supplied to the semiconductor manufacturing apparatus after the flow rate is controlled by the gas flow rate control unit. In the vaporization and supply method of the present invention, entrained gas such as nitrogen, helium and argon is not used.

【0013】尚、本発明の気化供給方法においては、気
体流量制御部の前段または後段に圧力計を設置して気化
ガスの圧力を測定し、図1のようにシーケンサーを介し
て電気信号によりCVD原料容器の温度を制御するか、
あるいは図2のようにシーケンサーを介して電気信号に
より気体流量制御部の流量を制御することが好ましい。
このようにすることにより、アミノ系CVD原料の気化
量が一定になるようにCVD原料容器の温度設定あるい
は気体流量制御部の流量設定を調整することが可能とな
る。尚、アミノ系CVD原料の加熱温度は、通常は50
〜250℃であり、気体流量制御部も前記温度範囲とな
るように保温される。また、気化ガスの圧力については
特に制限されることがないが、通常は10Paのような
減圧から200KPaのような加圧の範囲内とされる。
In the vaporization and supply method of the present invention, a pressure gauge is installed before or after the gas flow rate control unit to measure the pressure of the vaporized gas, and the CVD is performed by an electric signal via a sequencer as shown in FIG. Control the temperature of the raw material container,
Alternatively, it is preferable to control the flow rate of the gas flow rate control section by an electric signal via a sequencer as shown in FIG.
By doing so, it becomes possible to adjust the temperature setting of the CVD source container or the flow rate setting of the gas flow rate control unit so that the vaporization amount of the amino-based CVD source becomes constant. The heating temperature of the amino-based CVD raw material is usually 50.
The temperature is up to 250 ° C, and the gas flow rate control unit is also kept warm within the above temperature range. The pressure of the vaporized gas is not particularly limited, but is usually within the range of reduced pressure such as 10 Pa to increased pressure such as 200 KPa.

【0014】[0014]

【実施例】次に、本発明を実施例により具体的に説明す
るが、本発明がこれらにより限定されるものではない。
EXAMPLES Next, the present invention will be specifically described by way of examples, but the present invention is not limited to these.

【0015】実施例1 図1に示すような気化供給システムを製作した。気体マ
スフローコントローラーの前段には圧力計を設置し、測
定された気化ガスの圧力信号をシーケンサーを介してC
VD原料容器のヒーターにフィードバックすることによ
り、気化ガスを所定の流量で安定して半導体製造装置に
供給できるように設定した。また、半導体製造装置には
シリコン基板をセットした。
Example 1 A vaporization supply system as shown in FIG. 1 was manufactured. A pressure gauge is installed in front of the gas mass flow controller, and the measured pressure signal of the vaporized gas is sent to the C through a sequencer.
By feeding back to the heater of the VD raw material container, the vaporized gas was set to be stably supplied to the semiconductor manufacturing apparatus at a predetermined flow rate. A silicon substrate was set in the semiconductor manufacturing device.

【0016】次に、テトラキスジエチルアミノジルコニ
ウムが真空充填された液体CVD原料容器を、前記の気
化供給システムに接続し、以下のようにしてシリコン基
板上に窒化ジルコニウム膜を堆積させた。気体マスフロ
ーコントローラーの温度を100℃、半導体製造装置の
温度を250℃とするとともに、液体CVD原料容器を
90℃に加熱し、液体CVD原料の気化供給試験を開始
した。液体CVD原料は30秒後、3.0cc/min
で安定に気化供給できるようになり、その後15分間継
続して気化供給を行なった。この間、気体マスフローコ
ントローラーの流量変動は±5%以下であった。
Next, the liquid CVD raw material container in which tetrakisdiethylaminozirconium was vacuum-filled was connected to the above vaporization supply system, and a zirconium nitride film was deposited on the silicon substrate as follows. The temperature of the gas mass flow controller was 100 ° C., the temperature of the semiconductor manufacturing apparatus was 250 ° C., the liquid CVD raw material container was heated to 90 ° C., and the vaporization supply test of the liquid CVD raw material was started. After 30 seconds, the liquid CVD raw material is 3.0 cc / min
Then, stable vaporization and supply became possible, and then vaporization and supply were continued for 15 minutes. During this time, the flow rate fluctuation of the gas mass flow controller was ± 5% or less.

【0017】気化供給試験終了後、半導体製造装置から
基板を取出し、膜厚及び比抵抗を測定することにより窒
化ジルコニウム膜の成長速度及び品質を調べた。その結
果、成長速度は48nm/minであり、薄膜の比抵抗
は60μΩcmであった。尚、前記のようにして得られ
る窒化ジルコニウム膜は、比抵抗が小さいほど高品質の
バリア膜とされる。
After the vaporization supply test was completed, the substrate was taken out from the semiconductor manufacturing apparatus, and the film thickness and the specific resistance were measured to examine the growth rate and quality of the zirconium nitride film. As a result, the growth rate was 48 nm / min and the specific resistance of the thin film was 60 μΩcm. The zirconium nitride film obtained as described above has a higher quality as the specific resistance is smaller.

【0018】実施例2 実施例1の気化供給試験において、気体マスフローコン
トローラーの温度を110℃、液体CVD原料容器を1
00℃に変え、5.0cc/minで気化ガスを安定し
て半導体製造装置に気化供給したほかは、実施例1と同
様にして気化供給試験を行なった。この間、気体マスフ
ローコントローラーの流量変動は±5%以下であった。
気化供給試験終了後、半導体製造装置から基板を取出
し、膜厚及び比抵抗を測定することにより窒化ジルコニ
ウム膜の成長速度及び品質を調べた。その結果、成長速
度は75nm/minであり、薄膜の比抵抗は70μΩ
cmであった。
Example 2 In the vaporization supply test of Example 1, the temperature of the gas mass flow controller was 110 ° C. and the liquid CVD raw material container was 1
A vaporization supply test was performed in the same manner as in Example 1 except that the vaporized gas was stably vaporized and supplied to the semiconductor manufacturing apparatus at 5.0 cc / min at 5.0 cc / min. During this time, the flow rate fluctuation of the gas mass flow controller was ± 5% or less.
After completion of the vaporization supply test, the substrate was taken out from the semiconductor manufacturing apparatus, and the growth rate and quality of the zirconium nitride film were examined by measuring the film thickness and the specific resistance. As a result, the growth rate was 75 nm / min and the resistivity of the thin film was 70 μΩ.
It was cm.

【0019】実施例3 テトラキスジエチルアミノチタンが真空充填された液体
CVD原料容器を、実施例1と同様な気化供給システム
に接続し、以下のようにしてシリコン基板上に窒化チタ
ン膜を堆積させた。気体マスフローコントローラーの温
度を130℃、半導体製造装置の温度を300℃とする
とともに、液体CVD原料容器を140℃に加熱し、液
体CVD原料の気化供給試験を開始した。液体CVD原
料は30秒後、3.0cc/minで安定に気化供給で
きるようになり、その後15分間継続して気化供給を行
なった。この間、気体マスフローコントローラーの流量
変動は±5%以下であった。
Example 3 A liquid CVD raw material container in which tetrakisdiethylaminotitanium was vacuum-filled was connected to the same vaporization supply system as in Example 1, and a titanium nitride film was deposited on a silicon substrate as follows. The temperature of the gas mass flow controller was set to 130 ° C., the temperature of the semiconductor manufacturing apparatus was set to 300 ° C., the liquid CVD raw material container was heated to 140 ° C., and the vaporization supply test of the liquid CVD raw material was started. After 30 seconds, the liquid CVD raw material could be stably vaporized and supplied at 3.0 cc / min, and then continuously vaporized and supplied for 15 minutes. During this time, the flow rate fluctuation of the gas mass flow controller was ± 5% or less.

【0020】気化供給試験終了後、半導体製造装置から
基板を取出し、膜厚及び比抵抗を測定することにより窒
化チタン膜の成長速度及び品質を調べた。その結果、成
長速度は72nm/minであり、薄膜の比抵抗は70
μΩcmであった。尚、前記のようにして得られる窒化
チタン膜は、比抵抗が小さいほど高品質のバリア膜とさ
れる。
After the vaporization supply test was completed, the substrate was taken out from the semiconductor manufacturing apparatus, and the film thickness and the specific resistance were measured to examine the growth rate and quality of the titanium nitride film. As a result, the growth rate was 72 nm / min, and the resistivity of the thin film was 70 nm.
It was μΩcm. The titanium nitride film obtained as described above has a higher quality as the specific resistance is smaller.

【0021】比較例1 実施例1の気化供給試験において、半導体製造装置の直
前で100℃に加熱された窒素ガスを100cc/mi
nで気化ガスに添加したほかは、実施例1と同様にして
気化供給試験を行なった。気化供給試験終了後、半導体
製造装置から基板を取出し、膜厚及び比抵抗を測定する
ことにより窒化ジルコニウム膜の成長速度及び品質を調
べた。その結果、成長速度は23nm/minであり、
薄膜の比抵抗は150μΩcmであった。
Comparative Example 1 In the vaporization and supply test of Example 1, 100 cc / mi of nitrogen gas heated to 100 ° C. immediately before the semiconductor manufacturing apparatus was used.
A vaporization supply test was conducted in the same manner as in Example 1 except that n was added to the vaporized gas. After completion of the vaporization supply test, the substrate was taken out from the semiconductor manufacturing apparatus, and the growth rate and quality of the zirconium nitride film were examined by measuring the film thickness and the specific resistance. As a result, the growth rate was 23 nm / min,
The specific resistance of the thin film was 150 μΩcm.

【0022】比較例2 実施例3の気化供給試験において、半導体製造装置の直
前で130℃に加熱された窒素ガスを100cc/mi
nで気化ガスに添加したほかは、実施例1と同様にして
気化供給試験を行なった。気化供給試験終了後、半導体
製造装置から基板を取出し、膜厚及び比抵抗を測定する
ことにより窒化チタン膜の成長速度及び品質を調べた。
その結果、成長速度は30nm/minであり、薄膜の
比抵抗は350μΩcmであった。
Comparative Example 2 In the vaporization supply test of Example 3, 100 cc / mi of nitrogen gas heated to 130 ° C. immediately before the semiconductor manufacturing apparatus was used.
A vaporization supply test was conducted in the same manner as in Example 1 except that n was added to the vaporized gas. After completion of the vaporization supply test, the substrate was taken out from the semiconductor manufacturing apparatus, and the film thickness and the specific resistance were measured to examine the growth rate and quality of the titanium nitride film.
As a result, the growth rate was 30 nm / min and the specific resistance of the thin film was 350 μΩcm.

【0023】以上のように、本発明においては、アミノ
系液体CVD原料を安定して半導体製造装置へ気化供給
することができ、またバリア膜は成長速度が速く、しか
も高品質のものが得られることが確認された。
As described above, in the present invention, the amino-based liquid CVD raw material can be stably vaporized and supplied to the semiconductor manufacturing apparatus, and the barrier film has a high growth rate and high quality. It was confirmed.

【0024】[0024]

【発明の効果】本発明の気化供給方法により、アミノ系
液体CVD原料を、窒素、ヘリウム、アルゴン等の同伴
ガスを伴うことなく、所望の供給量で安定して半導体製
造装置へ気化供給することが可能となった。その結果、
極めて高品質の半導体膜が得られるようになった。
According to the vaporization and supply method of the present invention, the amino-based liquid CVD raw material can be stably vaporized and supplied to the semiconductor manufacturing apparatus at a desired supply amount without accompanying gases such as nitrogen, helium and argon. Became possible. as a result,
It has become possible to obtain extremely high quality semiconductor films.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の気化供給方法を適用した気化供給シス
テムの一例を示す構成図
FIG. 1 is a configuration diagram showing an example of a vaporization supply system to which a vaporization supply method of the present invention is applied.

【図2】本発明の気化供給方法を適用した図1以外の気
化供給システムの一例を示す構成図
FIG. 2 is a configuration diagram showing an example of a vaporization supply system other than FIG. 1 to which the vaporization supply method of the present invention is applied.

【符号の説明】[Explanation of symbols]

1 アミノ系液体CVD原料 2 CVD原料容器 3 ヒーター 4 気体マスフローコントローラー(気体流量制御部) 5 半導体製造装置 6 圧力計 7 シーケンサー 1 Amino liquid CVD raw material 2 CVD raw material container 3 heater 4 Gas mass flow controller (gas flow controller) 5 Semiconductor manufacturing equipment 6 pressure gauge 7 Sequencer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 淺野 彰良 神奈川県平塚市田村5181番地 日本パイオ ニクス株式会社平塚工場内 Fターム(参考) 4K030 AA11 BA09 BA10 BA17 BA18 BA22 BA29 BA38 CA04 EA01 JA09 JA10 KA41 LA02 LA15 5F045 AA03 AA06 AA08 AB31 AC08 AC09 EE03 EE04    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Akira Asano             5181 Tamura, Hiratsuka, Kanagawa Japan Pio             Nix Corporation Hiratsuka Factory F-term (reference) 4K030 AA11 BA09 BA10 BA17 BA18                       BA22 BA29 BA38 CA04 EA01                       JA09 JA10 KA41 LA02 LA15                 5F045 AA03 AA06 AA08 AB31 AC08                       AC09 EE03 EE04

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 アミノ系液体CVD原料を、加熱し気化
させて気体流量制御部に供給し、該気体流量制御部によ
り流量制御して、同伴ガスを伴うことなく半導体製造装
置へ供給することを特徴とする気化供給方法。
1. An amino-based liquid CVD raw material is heated and vaporized to be supplied to a gas flow rate control unit, and the flow rate is controlled by the gas flow rate control unit so as to be supplied to a semiconductor manufacturing apparatus without accompanying gas. Characterized vaporization supply method.
【請求項2】 気体流量制御部に供給される前または供
給された後の気化ガス圧力を測定し、シーケンサーを介
して電気信号によりCVD原料容器の温度を制御する請
求項1に記載の気化供給方法。
2. The vaporization supply according to claim 1, wherein the vaporized gas pressure before or after being supplied to the gas flow rate control unit is measured, and the temperature of the CVD raw material container is controlled by an electric signal via a sequencer. Method.
【請求項3】 気体流量制御部に供給される前または供
給された後の気化ガス圧力を測定し、シーケンサーを介
して電気信号により気体流量制御部の流量を制御する請
求項1に記載の気化供給方法。
3. The vaporization according to claim 1, wherein the vaporized gas pressure before or after being supplied to the gas flow rate control unit is measured, and the flow rate of the gas flow rate control unit is controlled by an electric signal via a sequencer. Supply method.
【請求項4】 気体流量制御部が気体マスフローコント
ローラーある請求項1に記載の気化供給方法。
4. The vaporization and supply method according to claim 1, wherein the gas flow rate control unit is a gas mass flow controller.
【請求項5】 気体流量制御部の温度を50〜250℃
に設定する請求項1に記載の気化供給方法。
5. The temperature of the gas flow rate control unit is 50 to 250 ° C.
The vaporization supply method according to claim 1, wherein
【請求項6】 気化供給される前のアミノ系液体CVD
原料が、液体CVD原料容器に真空充填されたものであ
る請求項1に記載の気化供給方法。
6. Amino-based liquid CVD before vaporization and supply
The vaporization supply method according to claim 1, wherein the raw material is vacuum-filled in a liquid CVD raw material container.
【請求項7】 アミノ系液体CVD原料が、テトラキス
ジメチルアミノジルコニウム、テトラキスジエチルアミ
ノジルコニウム、ペンタジメチルアミノタンタル、ペン
タジエチルアミノタンタル、テトラキスジメチルアミノ
チタン、テトラキスジエチルアミノチタン、テトラキス
ジエチルアミノハフニウム、テトラキスジメチルアミノ
ケイ素、テトラキスジエチルアミノケイ素、トリスジメ
チルアミノケイ素ハライド、またはテトラキスジエチル
アミノゲルマニウムである請求項1に記載の気化供給方
法。
7. The amino-based liquid CVD raw material is tetrakisdimethylaminozirconium, tetrakisdiethylaminozirconium, pentadimethylaminotantalum, pentadiethylaminotantalum, tetrakisdimethylaminotitanium, tetrakisdiethylaminotitanium, tetrakisdiethylaminohafnium, tetrakisdimethylaminosilicon, tetrakisdiethylamino. The vaporization and supply method according to claim 1, which is silicon, trisdimethylaminosilicon halide, or tetrakisdiethylaminogermanium.
JP2002141386A 2002-05-16 2002-05-16 Gasification supply method Pending JP2003332327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002141386A JP2003332327A (en) 2002-05-16 2002-05-16 Gasification supply method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002141386A JP2003332327A (en) 2002-05-16 2002-05-16 Gasification supply method

Publications (1)

Publication Number Publication Date
JP2003332327A true JP2003332327A (en) 2003-11-21

Family

ID=29701984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002141386A Pending JP2003332327A (en) 2002-05-16 2002-05-16 Gasification supply method

Country Status (1)

Country Link
JP (1) JP2003332327A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008229413A (en) * 2007-03-16 2008-10-02 Seiko Epson Corp Surface treatment apparatus and method therefor
WO2009122646A1 (en) * 2008-04-01 2009-10-08 株式会社フジキン Gas supply device equipped with carburetor
CN102326129A (en) * 2009-03-04 2012-01-18 株式会社堀场Stec Gas supply device
JP5128289B2 (en) * 2005-12-06 2013-01-23 株式会社トリケミカル研究所 Hafnium-based compound, hafnium-based thin film forming material, and hafnium-based thin film forming method
WO2018016375A1 (en) 2016-07-20 2018-01-25 昭和電工株式会社 Gas supply apparatus and gas supply method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5128289B2 (en) * 2005-12-06 2013-01-23 株式会社トリケミカル研究所 Hafnium-based compound, hafnium-based thin film forming material, and hafnium-based thin film forming method
JP2008229413A (en) * 2007-03-16 2008-10-02 Seiko Epson Corp Surface treatment apparatus and method therefor
JP4697162B2 (en) * 2007-03-16 2011-06-08 セイコーエプソン株式会社 Surface treatment apparatus and method
WO2009122646A1 (en) * 2008-04-01 2009-10-08 株式会社フジキン Gas supply device equipped with carburetor
JP2009252760A (en) * 2008-04-01 2009-10-29 Fujikin Inc Gas supply device with carburetor
US8931506B2 (en) 2008-04-01 2015-01-13 Fujikin Incorporated Gas supply apparatus equipped with vaporizer
CN102326129A (en) * 2009-03-04 2012-01-18 株式会社堀场Stec Gas supply device
US9157578B2 (en) 2009-03-04 2015-10-13 Horiba Stec, Co., Ltd. Gas supply device
WO2018016375A1 (en) 2016-07-20 2018-01-25 昭和電工株式会社 Gas supply apparatus and gas supply method
KR20190020063A (en) 2016-07-20 2019-02-27 쇼와 덴코 가부시키가이샤 Gas supply and gas supply method
EP3489569A4 (en) * 2016-07-20 2020-03-25 Showa Denko K.K. Gas supply apparatus and gas supply method
US11427907B2 (en) 2016-07-20 2022-08-30 Showa Denko K.K. Gas supply apparatus and gas supply method

Similar Documents

Publication Publication Date Title
JP5816349B2 (en) Method for depositing a film on a substrate and apparatus for delivering a vaporized precursor compound
JP3822135B2 (en) Vaporization supply device
WO2011070945A1 (en) Thin film manufacturing apparatus, thin film manufacturing method, and method for manufacturing semiconductor device
JPH10500733A (en) Apparatus and method for supplying gas to reaction chamber
US20060144338A1 (en) High accuracy vapor generation and delivery for thin film deposition
KR20020089341A (en) Device and method for depositing one or more layers onto a substrate
US8092870B2 (en) Preparation of metal oxide thin film via cyclic CVD or ALD
US10047436B2 (en) Raw material supply method, raw material supply apparatus, and storage medium
US20060051975A1 (en) Novel deposition of SiON dielectric films
JP2003332327A (en) Gasification supply method
JP2002359242A (en) Method and apparatus for forming film and insulation film, and semiconductor integrated circuit
TWI261311B (en) Vaporizer
JPH038330A (en) Apparatus for vaporizing and supplying liquid material for semiconductor
JP2005209766A (en) Method for manufacturing oxide film containing hafnium
JP4595356B2 (en) Raw material vaporizer for metalorganic chemical vapor deposition equipment
US20120071001A1 (en) Vaporizing and feed apparatus and vaporizing and feed method
JP2721222B2 (en) Source gas supply device for plasma CVD
JP2005175249A (en) Apparatus and method for vaporizing liquid material
WO2017179680A1 (en) Hfn film manufacturing method and hfn film
JPH06316765A (en) Vaporizer for liquid material
JP2000315686A (en) Vaporizer and vaporizing and supplying method
JP2003318170A (en) Vaporizer
JPH0372078A (en) Method and device for forming thin film
JP2003105545A (en) Vaporizing and feeding method
JP2000200781A (en) Apparatus and method for gasification of liquid raw material

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041217

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060209

A02 Decision of refusal

Effective date: 20060607

Free format text: JAPANESE INTERMEDIATE CODE: A02