JP2006027031A - Apparatus for cooling cylinder of resin extruder and method for cooling cylinder - Google Patents

Apparatus for cooling cylinder of resin extruder and method for cooling cylinder Download PDF

Info

Publication number
JP2006027031A
JP2006027031A JP2004208042A JP2004208042A JP2006027031A JP 2006027031 A JP2006027031 A JP 2006027031A JP 2004208042 A JP2004208042 A JP 2004208042A JP 2004208042 A JP2004208042 A JP 2004208042A JP 2006027031 A JP2006027031 A JP 2006027031A
Authority
JP
Japan
Prior art keywords
cylinder
air
resin extruder
sleeve
cooling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004208042A
Other languages
Japanese (ja)
Other versions
JP4347152B2 (en
Inventor
Kazuhisa Fukutani
和久 福谷
Takehiko Wakazono
武彦 若園
Naoyuki Tadai
直行 多代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2004208042A priority Critical patent/JP4347152B2/en
Publication of JP2006027031A publication Critical patent/JP2006027031A/en
Application granted granted Critical
Publication of JP4347152B2 publication Critical patent/JP4347152B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/275Recovery or reuse of energy or materials
    • B29C48/276Recovery or reuse of energy or materials of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/40Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft
    • B29B7/42Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft with screw or helix
    • B29B7/428Parts or accessories, e.g. casings, feeding or discharging means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/40Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft
    • B29B7/42Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft with screw or helix
    • B29B7/428Parts or accessories, e.g. casings, feeding or discharging means
    • B29B7/429Screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • B29B7/826Apparatus therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • F28D7/026Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of only one medium being helically coiled and formed by bent members, e.g. plates, the coils having a cylindrical configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the cooling nonuniformity in the peripheral direction of a cylinder while compact properties is kept good in an apparatus for cooling the cylinder of a resin extruder. <P>SOLUTION: A sleeve 3 is formed to surround the cylinder 2, and an air inlet 4 and an air outlet 5 are formed in the sleeve 3. A blower 6 for supplying air is connected to the air inlet 4. A cylindrical space 7 formed between the cylinder 2 and the sleeve 3 is partitioned in the axial direction of the cylinder by screens 11-15. An air circulation opening 8 is opened in each of the screens 11-15. The air circulation openings 8 of the adjacent screens are arranged alternately, and air is made to flow in the peripheral direction in spaces R2-R5 held between the screens 11-15. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、樹脂押出機におけるシリンダを冷却する装置及びその方法に関する。   The present invention relates to an apparatus and a method for cooling a cylinder in a resin extruder.

この種の冷却装置は、例えば特許文献1の図1に開示される。特許文献1の図1において、その軸を水平に向けて設置された押出機のシリンダは、囲いによって被覆され、その囲いの下面から低温の空気がブロワによって供給される。囲いの内部に供給された空気は、冷却ゾーンを通過しながらシリンダの両側を循環し、囲いの頂部に作られた出口を通過して排出される。   This type of cooling device is disclosed in FIG. In FIG. 1 of Patent Document 1, a cylinder of an extruder installed with its axis oriented horizontally is covered by an enclosure, and cold air is supplied from the lower surface of the enclosure by a blower. The air supplied to the inside of the enclosure circulates on both sides of the cylinder while passing through the cooling zone, and is discharged through an outlet made at the top of the enclosure.

また特許文献1は、上記構成ではいわゆる煙突効果によってシリンダの頂部の冷却効率が底部に比して低くなってしまうことを指摘して、以下の構成を開示する。即ち、特許文献1の図2あるいは図3に示すように、空気の出口を、前記ブロワの位置とはシリンダ軸方向で異なった位置で、且つ囲いの底面に設ける。この結果、ブロワから囲いの内部に供給された空気は、バッフルによってシリンダの外周上に分散させた後、シリンダ部分に沿って実質的に縦方向(シリンダ軸方向)に流して、出口から排出される。即ち、囲いによって形成される冷却ゾーンの全長にわたってシリンダ軸方向の空気の流れが形成される。特許文献1は上記構成とすることで、シリンダの横断面にわたって温度を均一にすることができ、押出スクリュー及びシリンダの磨耗及び破損が大いに減少できるとする。
特開平6−254944号公報(図1、段落番号0003、図2・図3、段落番号0013、0014)
Patent Document 1 discloses the following configuration, pointing out that the cooling efficiency at the top of the cylinder is lower than that at the bottom due to the so-called chimney effect in the above configuration. That is, as shown in FIG. 2 or FIG. 3 of Patent Document 1, an air outlet is provided at a position different from the position of the blower in the cylinder axial direction and on the bottom surface of the enclosure. As a result, the air supplied from the blower to the inside of the enclosure is dispersed on the outer periphery of the cylinder by the baffle, and then flows in the vertical direction (cylinder axial direction) along the cylinder portion and is discharged from the outlet. The That is, an air flow in the cylinder axial direction is formed over the entire length of the cooling zone formed by the enclosure. Patent Document 1 assumes that the temperature can be made uniform over the cross section of the cylinder by adopting the above-described configuration, and wear and breakage of the extrusion screw and the cylinder can be greatly reduced.
JP-A-6-254944 (FIG. 1, paragraph number 0003, FIG. 2 and FIG. 3, paragraph numbers 0013 and 0014)

しかし、上記特許文献1の図2あるいは図3の構成は、シリンダの上部と下部とで冷却空気の軸方向の流速を等しくしようとすると、囲いの内部において空気がブロワから流入する部分に、大きなヘッダーが必要となってしまう。従って、煙突効果を回避してシリンダを周方向にある程度均一に冷却することはできるものの、囲いをコンパクトな構成とすることが難しかった。   However, in the configuration of FIG. 2 or FIG. 3 of the above-mentioned Patent Document 1, when the axial flow velocity of the cooling air is made equal between the upper part and the lower part of the cylinder, the air flows into the part where the air flows from the blower inside the enclosure. A header is required. Therefore, although the chimney effect can be avoided and the cylinder can be cooled to some extent in the circumferential direction, it has been difficult to make the enclosure compact.

また、特許文献1の図2や図3のように単にシリンダ軸方向の空気の流れを形成しただけでは、シリンダの冷却効率が十分に良好であるとは言いがたい。この点、特許文献1の図4ではシリンダの外周に冷却フィンを設けた構成を開示しているが、このように補助的な熱交換手段を付加すると製造コストや組立工数が増大するとともに、冷却フィンの取付スペース確保のために囲いが大型化してしまうことになる。   Moreover, it is difficult to say that the cooling efficiency of the cylinder is sufficiently good simply by forming an air flow in the cylinder axial direction as shown in FIGS. In this regard, FIG. 4 of Patent Document 1 discloses a configuration in which cooling fins are provided on the outer periphery of the cylinder. However, the addition of the auxiliary heat exchange means increases the manufacturing cost and the number of assembling steps and reduces the cooling time. The enclosure will be enlarged to secure the fin mounting space.

課題を解決するための手段及び効果Means and effects for solving the problems

本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段とその効果を説明する。   The problems to be solved by the present invention are as described above. Next, means for solving the problems and the effects thereof will be described.

◆本発明の第1の観点によれば、樹脂押出機のシリンダ冷却装置であって、シリンダを囲むスリーブと、このスリーブに設けられる空気入口及び空気出口と、前記空気入口から空気を供給するブロワと、前記シリンダと前記スリーブとの間の空間をシリンダ軸方向に仕切る少なくとも1枚の仕切板と、その仕切板に開口される空気流通口と、を有してなる、樹脂押出機のシリンダ冷却装置が提供される。   ◆ According to a first aspect of the present invention, a cylinder cooling device for a resin extruder, a sleeve surrounding a cylinder, an air inlet and an air outlet provided in the sleeve, and a blower for supplying air from the air inlet And cooling the cylinder of the resin extruder, comprising: at least one partition plate that partitions the space between the cylinder and the sleeve in the cylinder axial direction; and an air circulation port that is open to the partition plate. An apparatus is provided.

これにより、仕切板によって、シリンダとスリーブとの間の空間においてシリンダの周方向の流れを積極的に形成できる。この結果、コンパクトな構成で、シリンダの周方向の冷却ムラが生じにくい構成とできる。また、仕切板によって流路が狭くなる分、流速が増大するので、冷却効率を向上させ得る。従って、補助的な熱交換手段を設ける必要性を小さくでき、コスト及び製造工数の低減が容易なコンパクトな構成とできる。   Thereby, the flow of the circumferential direction of a cylinder can be actively formed in the space between a cylinder and a sleeve with a partition plate. As a result, with a compact configuration, it is possible to achieve a configuration in which uneven cooling in the circumferential direction of the cylinder hardly occurs. Moreover, since the flow rate increases as the flow path becomes narrower by the partition plate, the cooling efficiency can be improved. Therefore, it is possible to reduce the necessity for providing auxiliary heat exchange means, and to achieve a compact configuration in which cost and manufacturing man-hours can be easily reduced.

◆前記の樹脂押出機のシリンダ冷却装置においては、前記仕切板は複数枚設けられるとともに、隣り合う仕切板で挟まれた空気流路をシリンダ軸を含む平面で切った流路断面積をS1、当該空気流路をシリンダ軸に垂直な平面で切った流路断面積をS2としたときに、S1<S2であることが好ましい。   In the cylinder cooling device for the resin extruder, a plurality of the partition plates are provided, and a flow passage cross-sectional area obtained by cutting an air flow passage sandwiched between adjacent partition plates by a plane including the cylinder shaft is S1, It is preferable that S1 <S2, where S2 is a cross-sectional area of the air channel cut by a plane perpendicular to the cylinder axis.

これにより、仕切板で挟まれた空気流路において、空気の周方向の流速を軸方向の流速よりも大きくできる(確実に周方向の空気の流れを形成できる)。従って、シリンダの周方向の冷却ムラを一層確実に低減できる。   Thereby, in the air flow path sandwiched between the partition plates, the circumferential flow velocity of the air can be made larger than the axial flow velocity (a circumferential air flow can be reliably formed). Therefore, the uneven cooling in the circumferential direction of the cylinder can be reduced more reliably.

◆前記の樹脂押出機のシリンダ冷却装置においては、S1<0.5×S2であることが好ましい。   In the cylinder cooling device for the resin extruder, it is preferable that S1 <0.5 × S2.

これにより、空気の周方向の流速を更に大きくでき、シリンダの周方向の冷却ムラを確実に低減できる。   Thereby, the flow velocity in the circumferential direction of air can be further increased, and uneven cooling in the circumferential direction of the cylinder can be reliably reduced.

◆前記の樹脂押出機のシリンダ冷却装置においては、前記仕切板の空気流通口は、その開口面積の比率が30%以上かつ50%以下であることが好ましい。   In the cylinder cooling device for the resin extruder, the ratio of the opening area of the air circulation port of the partition plate is preferably 30% or more and 50% or less.

これにより、スリーブ内での空気の周方向の流れを確実に形成すると同時に、空気入口から空気出口までスムーズに冷却空気を通過させることができる。   Thus, the cooling air can be smoothly passed from the air inlet to the air outlet at the same time as the circumferential flow of air in the sleeve is reliably formed.

◆前記の樹脂押出機のシリンダ冷却装置においては、前記仕切板は前記シリンダの外周面に接触するように設けられていることが好ましい。   In the cylinder cooling device of the resin extruder, it is preferable that the partition plate is provided so as to contact the outer peripheral surface of the cylinder.

これにより、空気の流れを案内する仕切板に冷却フィンとしての役割を兼ねさせることができ、簡素な構成で冷却効率を向上させ得る。   Thereby, the partition plate that guides the air flow can also serve as a cooling fin, and the cooling efficiency can be improved with a simple configuration.

◆前記の樹脂押出機のシリンダ冷却装置においては、前記仕切板は、前記空気流通口に相当する部分を切り欠いた円弧状の板として構成されていることが好ましい。   In the cylinder cooling device of the resin extruder, it is preferable that the partition plate is configured as an arc-shaped plate with a portion corresponding to the air circulation port cut out.

これにより、空気流通口を介した空気の流通がスムーズになり、冷却効率が一層向上する。   Thereby, the circulation of air through the air circulation port becomes smooth, and the cooling efficiency is further improved.

◆前記の樹脂押出機のシリンダ冷却装置においては、前記仕切板は複数枚設けられるとともに、隣り合う仕切板の空気流通口同士は互いに重複しない位置に配置されていることが好ましい。   In the cylinder cooling device for the resin extruder, it is preferable that a plurality of the partition plates are provided and the air circulation ports of adjacent partition plates are arranged at positions that do not overlap each other.

これにより、各仕切板によって挟まれた空間内で、空気を空気流通口から空気流通口へ、確実に周方向に流すことができる。この結果、シリンダの周方向の冷却ムラが一層低減される。   Thereby, in the space pinched | interposed by each partition plate, air can be reliably flowed from the air circulation port to the air circulation port in the circumferential direction. As a result, the uneven cooling in the circumferential direction of the cylinder is further reduced.

◆前記の樹脂押出機のシリンダ冷却装置においては、隣り合う仕切板の空気流通口同士はシリンダ軸を挟んで交互に設けられていることが好ましい。   In the cylinder cooling device for the resin extruder, it is preferable that the air circulation ports of adjacent partition plates are provided alternately with the cylinder shaft in between.

なお、「交互に設けられている」とは、空気流通口同士が、150°以上かつ210°以下の角度差を有するように設けられていることを意味する。   “Alternately provided” means that the air circulation ports are provided so as to have an angle difference of 150 ° or more and 210 ° or less.

これにより、各仕切板によって挟まれた空間内で、空気を空気流通口から空気流通口へ、確実に周方向に流すことができる。この結果、シリンダの周方向の冷却ムラが一層低減される。   Thereby, in the space pinched | interposed by each partition plate, air can be reliably flowed from the air circulation port to the air circulation port in the circumferential direction. As a result, the uneven cooling in the circumferential direction of the cylinder is further reduced.

◆本発明の第2の観点によれば、樹脂押出機のシリンダ冷却方法であって、シリンダを囲むようにスリーブを設け、前記シリンダと前記スリーブとの間の空間をシリンダ軸方向に部分的に仕切るように少なくとも1枚の仕切板を設けた上で、前記スリーブに設けた空気入口から当該スリーブ内に空気を供給し、この空気を、前記スリーブと前記シリンダと前記仕切板によって構成される流路を通過させた後に前記スリーブに設けた空気出口から排出させる、樹脂押出機のシリンダ冷却方法が提供される。   ◆ According to a second aspect of the present invention, there is provided a cylinder cooling method for a resin extruder, wherein a sleeve is provided so as to surround the cylinder, and a space between the cylinder and the sleeve is partially formed in a cylinder axial direction. After providing at least one partition plate so as to partition, air is supplied into the sleeve from an air inlet provided in the sleeve, and this air is supplied to the sleeve, the cylinder, and the partition plate. There is provided a cylinder cooling method for a resin extruder, which is discharged from an air outlet provided in the sleeve after passing through a path.

これにより、仕切板によって、シリンダとスリーブとの間の空間においてシリンダの周方向の流れを積極的に形成できる。この結果、コンパクトな構成で、シリンダの周方向の冷却ムラが生じにくい構成とできる。また、仕切板によって流路が狭くなる分、流速が増大するので、冷却効率を向上させ得る。従って、補助的な熱交換手段を設ける必要性を小さくでき、コスト及び製造工数の低減が容易で且つコンパクトな構成とできる。   Thereby, the flow of the circumferential direction of a cylinder can be actively formed in the space between a cylinder and a sleeve with a partition plate. As a result, with a compact configuration, it is possible to achieve a configuration in which uneven cooling in the circumferential direction of the cylinder hardly occurs. Moreover, since the flow rate increases as the flow path becomes narrower by the partition plate, the cooling efficiency can be improved. Therefore, the necessity for providing auxiliary heat exchange means can be reduced, and the cost and the number of manufacturing steps can be easily reduced and the configuration can be made compact.

◆前記の樹脂押出機のシリンダ冷却方法においては、前記仕切板は複数枚設けられるとともに、隣り合う仕切板で挟まれた空気流路をシリンダ軸を含む平面で切った流路断面積をS1、当該空気流路をシリンダ軸に垂直な平面で切った流路断面積をS2としたときに、S1<S2であることが好ましい。   ◆ In the cylinder cooling method of the resin extruder, a plurality of the partition plates are provided, and a flow path cross-sectional area obtained by cutting an air flow path sandwiched between adjacent partition plates by a plane including the cylinder shaft is S1, It is preferable that S1 <S2, where S2 is a cross-sectional area of the air channel cut by a plane perpendicular to the cylinder axis.

これにより、仕切板で挟まれた空気流路において、空気の周方向の流速を軸方向の流速よりも大きくできる(確実に周方向の空気の流れを形成できる)。従って、シリンダの周方向の冷却ムラを一層確実に低減できる。   Thereby, in the air flow path sandwiched between the partition plates, the circumferential flow velocity of the air can be made larger than the axial flow velocity (a circumferential air flow can be reliably formed). Therefore, the uneven cooling in the circumferential direction of the cylinder can be reduced more reliably.

次に、発明の実施の形態を説明する。図1は本発明の一実施形態に係るシリンダ冷却装置の全体的な構成を示した斜視図、図2は図1のA−A断面矢視図、図3は仕切板の構成を示す図である。   Next, embodiments of the invention will be described. 1 is a perspective view showing an overall configuration of a cylinder cooling device according to an embodiment of the present invention, FIG. 2 is a cross-sectional view taken along the line AA of FIG. 1, and FIG. 3 is a diagram showing a configuration of a partition plate. is there.

図1、図2において、冷却装置1は、その軸を水平に向けて配置された押出装置のシリンダ2に取り付けられている。このシリンダ2内には加熱されて流動状を呈した樹脂が注入されており、図示しない押出スクリューによって樹脂がシリンダの軸方向に押し出される構成になっている。   1 and 2, the cooling device 1 is attached to a cylinder 2 of an extrusion device arranged with its axis oriented horizontally. The cylinder 2 is filled with a resin that is heated and fluidized, and the resin is extruded in the axial direction of the cylinder by an unillustrated extrusion screw.

冷却装置1は、このシリンダ2の長さの一部を囲む有底円筒状のスリーブ3を備える。スリーブ3の内部(シリンダ2の外周面とスリーブ3の内周面との間)には筒状空間7が形成され、この筒状空間7に相当する領域が冷却ゾーンとされている。前記スリーブ3の軸方向一端側の底部には空気入口4が形成され、軸方向他端側の底部には空気出口5が形成される。空気入口4には空気供給手段としてのブロワ6が接続されており、前記筒状空間7に対し前記空気入口4を通じて低温の空気を導入できるようになっている。   The cooling device 1 includes a bottomed cylindrical sleeve 3 that surrounds a part of the length of the cylinder 2. A cylindrical space 7 is formed inside the sleeve 3 (between the outer peripheral surface of the cylinder 2 and the inner peripheral surface of the sleeve 3), and a region corresponding to the cylindrical space 7 is a cooling zone. An air inlet 4 is formed at the bottom of one end of the sleeve 3 in the axial direction, and an air outlet 5 is formed at the bottom of the other end in the axial direction. A blower 6 as air supply means is connected to the air inlet 4 so that low-temperature air can be introduced into the cylindrical space 7 through the air inlet 4.

スリーブ3の内部には、前記筒状空間7をシリンダ軸方向に仕切るように、5枚の仕切板11〜15が設置される。この仕切板11〜15により、前記筒状空間7は、シリンダ軸方向に並ぶ環状の6つの空間R1〜R6に区画される。仕切板11の形状を代表して図3に示すが、仕切板11はシリンダ軸に垂直な円弧状の平板として構成されている。図1や図3に示すように、この仕切板11は、いわばドーナツを円弧状ないし扇状に切り欠いた如くの形状に構成しており、この切り欠かれた部分は空気流通口8を構成している。なお、5枚の仕切板11〜15は同一の形状に構成している。また仕切板11〜15は、その内周縁を前記シリンダ2の外周面に接触させた状態で、シリンダ2及びスリーブ3に取り付けられる。   Inside the sleeve 3, five partition plates 11 to 15 are installed so as to partition the cylindrical space 7 in the cylinder axial direction. The cylindrical space 7 is partitioned by the partition plates 11 to 15 into six annular spaces R1 to R6 arranged in the cylinder axial direction. Although the shape of the partition plate 11 is shown in FIG. 3 as a representative, the partition plate 11 is configured as an arc-shaped flat plate perpendicular to the cylinder axis. As shown in FIGS. 1 and 3, the partition plate 11 has a shape like a donut cut out in an arc shape or a fan shape, and the cut out portion constitutes an air circulation port 8. ing. In addition, the five partition plates 11-15 are comprised in the same shape. The partition plates 11 to 15 are attached to the cylinder 2 and the sleeve 3 with their inner peripheral edges in contact with the outer peripheral surface of the cylinder 2.

なお、前記筒状空間7は上述のとおり仕切板11〜15によって各空間R1〜R6に仕切られるのであるが、各仕切板11〜15には空気流通口8が形成されており、各空間R1〜R6の空気は空気流通口8を介して相互流通可能である。従って、筒状空間7は仕切板11〜15によって完全に仕切られるのではなく、部分的に仕切られるということができる。なお、前記空気入口4は空間R1に、前記空気出口5は空間R6に、それぞれ形成されている。   In addition, although the said cylindrical space 7 is partitioned off into each space R1-R6 by the partition plates 11-15 as above-mentioned, the air circulation port 8 is formed in each partition plate 11-15, and each space R1. The air of .about.R6 can be circulated through the air circulation port 8. Accordingly, it can be said that the cylindrical space 7 is not completely partitioned by the partition plates 11 to 15 but partially partitioned. The air inlet 4 is formed in the space R1, and the air outlet 5 is formed in the space R6.

図1や図2に示すように、隣り合う仕切板(11と12、12と13、・・・)において、空気流通口8同士はシリンダ軸を挟んで交互に(互い違いに)配置されている。即ち、一側に空気流通口8を有する仕切板11〜15は、その向き(位相)を180°ずつ変えながら、シリンダ2の軸方向に連設している。この結果、隣り合う仕切板同士の空気流通口8は、シリンダ軸方向にみたときに互いに重複しないように配置される。   As shown in FIG. 1 and FIG. 2, in the adjacent partition plates (11 and 12, 12 and 13,...), The air circulation ports 8 are arranged alternately (alternately) with the cylinder shaft in between. . That is, the partition plates 11 to 15 having the air circulation port 8 on one side are connected in the axial direction of the cylinder 2 while changing the direction (phase) by 180 °. As a result, the air circulation ports 8 between the adjacent partition plates are arranged so as not to overlap each other when viewed in the cylinder axial direction.

以上の構成で、図2の太線矢印に示すように、ブロワ6から空気入口4を介して空間R1へ導入された空気は、当該空間R1内においてシリンダ2の両側を周方向に流れ、仕切板11の空気流通口8を通過して空間R2に入る。次に、空間R2内においてシリンダ2の両側を周方向に流れ、仕切板12の空気流通口8を通過して空間R3へ入る。このように、筒状空間7に空気入口4から導入された空気は、シリンダ2とスリーブ3と仕切板11〜15により構成される流路に沿って、シリンダ2の周方向→軸方向→周方向→軸方向→・・・と向きを変えながら流れ、最終的に空間R6から空気出口5を通じて排出される。   With the above configuration, as shown by the thick arrow in FIG. 2, the air introduced into the space R1 from the blower 6 through the air inlet 4 flows in the circumferential direction on both sides of the cylinder 2 in the space R1. 11 passes through the air circulation port 8 and enters the space R2. Next, it flows in the circumferential direction on both sides of the cylinder 2 in the space R2, passes through the air circulation port 8 of the partition plate 12, and enters the space R3. As described above, the air introduced from the air inlet 4 into the cylindrical space 7 flows along the flow path constituted by the cylinder 2, the sleeve 3, and the partition plates 11 to 15. It flows while changing the direction → axial direction →... And finally discharged from the space R6 through the air outlet 5.

本実施形態では以上に示すように、前記仕切板11〜15によって、筒状空間7において積極的にシリンダ2の周方向の流れを形成する構成となっている。この結果、コンパクトな構成で、シリンダ2の周方向の冷却ムラが生じにくい構成とできる。また、仕切板11〜15を設けた分、筒状空間7の流路が狭くなるので、筒状空間7を流れる空気の流速が増大し、シリンダ2の外周面の冷却効率が良好である。従って、要求される冷却能力にもよるが、冷却フィン等の補助的な熱交換手段を設ける必要性を小さくでき、低コストで製造が容易な構成とできる。   In the present embodiment, as described above, the partition plates 11 to 15 are configured to positively form a flow in the circumferential direction of the cylinder 2 in the cylindrical space 7. As a result, it is possible to achieve a configuration in which the cooling unevenness in the circumferential direction of the cylinder 2 hardly occurs with a compact configuration. Moreover, since the flow path of the cylindrical space 7 becomes narrow by the amount of the partition plates 11 to 15 provided, the flow velocity of the air flowing through the cylindrical space 7 increases, and the cooling efficiency of the outer peripheral surface of the cylinder 2 is good. Therefore, although it depends on the required cooling capacity, the necessity for providing auxiliary heat exchange means such as cooling fins can be reduced, and the structure can be easily manufactured at low cost.

なお、本実施形態では、隣り合う仕切板で挟まれた環状の空間R2〜R5は、以下の条件を満たす形状となっている。即ち、例えば空間R3について、シリンダ軸を含む平面で切った断面積(流路断面積)をS1とする(図2のB−B断面矢視図としての図4を参照)。また、当該空間R3についてシリンダ軸に垂直な平面で切った断面積(流路断面積)をS2とする(図2のC−C断面図としての図5を参照)。このとき、S1<S2である。   In the present embodiment, the annular spaces R2 to R5 sandwiched between adjacent partition plates have a shape that satisfies the following conditions. That is, for example, for the space R3, a cross-sectional area (flow path cross-sectional area) cut by a plane including the cylinder axis is S1 (see FIG. 4 as a cross-sectional view taken along the line BB in FIG. 2). Moreover, let S2 be the cross-sectional area (flow-path cross-sectional area) cut | disconnected by the plane perpendicular | vertical to a cylinder axis | shaft about the said space R3 (refer FIG. 5 as CC sectional drawing of FIG. 2). At this time, S1 <S2.

ここで、ブロワ6から供給される空気流量をQとすると、前記空間R3内の空気の軸方向の流速はU2=Q/S2であり、周方向の流速はU1=Q/S1である。即ち、前記空間R3内の空気の軸方向の流速U2よりも周方向の流速U1の方が大きくなるので(U1>U2)、当該空間R3内を空気は主に周方向に流れることになる。この結果、シリンダ2を周方向に均一に冷却できる。なお、上記のような断面積の関係となるように構成するには、当該空間R3を挟んで隣り合う仕切板12,13の間隔Lを、シリンダ2の外径及びスリーブ3の内径との関係で適宜定めれば良い。   Here, when the flow rate of air supplied from the blower 6 is Q, the axial flow velocity of the air in the space R3 is U2 = Q / S2, and the circumferential flow velocity is U1 = Q / S1. That is, since the circumferential flow velocity U1 is larger than the axial flow velocity U2 in the space R3 (U1> U2), air mainly flows in the circumferential direction in the space R3. As a result, the cylinder 2 can be uniformly cooled in the circumferential direction. In order to configure the cross-sectional area as described above, the distance L between the adjacent partition plates 12 and 13 with the space R3 interposed therebetween is related to the outer diameter of the cylinder 2 and the inner diameter of the sleeve 3. Can be determined as appropriate.

なお、上記では、断面積の関係について空間R3の場合を例に説明したが、本実施形態では、他の空間R2,R4,R5についても上述のS1<S2の関係が満たされている。なお特に、軸を含む平面で切った流路断面積S1が軸に垂直な平面で切った流路断面積S2の半分を下回る(S1<0.5×S2)ように各空間R2〜R5を形成すると、空気の周方向の流速を十分大きくでき好適である。   In the above description, the relationship between the cross-sectional areas has been described by taking the case of the space R3 as an example. However, in the present embodiment, the relationship of S1 <S2 is also satisfied for the other spaces R2, R4, and R5. In particular, each of the spaces R2 to R5 is set so that the channel cross-sectional area S1 cut along the plane including the axis is less than half of the channel cross-sectional area S2 cut along the plane perpendicular to the axis (S1 <0.5 × S2). If formed, the circumferential flow velocity of air can be sufficiently increased, which is preferable.

また、前記仕切板11〜15の空気流通口8は、その開口面積の比率(図3に示す開口面積Tの、前記空間R2〜R5を軸に垂直な平面で切った流路断面積S2(図5)に対する割合)が、30%以上50%以下となるように構成すると良い。この構成とすることで、スリーブ3内での空気の周方向の流れを確実に形成すると同時に、空気入口4から空気出口5までスムーズに冷却空気を通過させることができる。   In addition, the air circulation ports 8 of the partition plates 11 to 15 have a ratio of the opening area (the flow passage cross-sectional area S2 of the opening area T shown in FIG. 3 cut by a plane perpendicular to the spaces R2 to R5. It is preferable that the ratio of FIG. 5) is 30% to 50%. With this configuration, the air flow in the sleeve 3 can be reliably formed in the circumferential direction, and at the same time, the cooling air can be smoothly passed from the air inlet 4 to the air outlet 5.

更に本実施形態では、各仕切板11〜15は、前記シリンダ2の外周面に接触するように設けられている。この結果、前記仕切板11〜15に冷却フィンとしての役割を兼ねさせることができ、簡素な構成で冷却効率を向上させ得る。   Furthermore, in this embodiment, each partition plate 11-15 is provided so that the outer peripheral surface of the said cylinder 2 may be contacted. As a result, the partition plates 11 to 15 can also serve as cooling fins, and the cooling efficiency can be improved with a simple configuration.

また、本実施形態では図3に示すように、前記仕切板11〜15は、前記空気流通口8に相当する部分を切り欠いた円弧状の板として構成されている。即ち、空気流通口8の部分を円弧状ないし扇状に切り欠いて仕切板11〜15を構成するので、各空間R1〜R5の空気が下流側の空間R2〜R6へ空気流通口8を介してスムーズに流れることができ、冷却効率が一層向上する。   Moreover, in this embodiment, as shown in FIG. 3, the said partition plates 11-15 are comprised as an arc-shaped board which notched the part corresponded to the said air distribution port 8. FIG. That is, the air circulation port 8 is cut out in a circular arc shape or a fan shape to form the partition plates 11 to 15, so that the air in each of the spaces R 1 to R 5 passes through the air circulation port 8 to the downstream spaces R 2 to R 6. It can flow smoothly and the cooling efficiency is further improved.

更に本実施形態では、図1や図2に示すように、隣り合う仕切板(11と12、12と13、・・・)の空気流通口8同士は、シリンダ軸方向にみて互いに重複しない位置に配置されている。もっと言えば、隣り合う仕切板の空気流通口8は、シリンダ2を挟んで(シリンダ軸)を挟んで、交互に設けられている。従って、各仕切板11〜15によって挟まれた空間R2〜R5内で、空気を空気流通口8から空気流通口8へ、確実に周方向に流すことができる。この結果、シリンダ2の周方向の冷却ムラが一層低減される。   Further, in the present embodiment, as shown in FIGS. 1 and 2, the air circulation ports 8 of adjacent partition plates (11 and 12, 12 and 13,...) Do not overlap each other when viewed in the cylinder axial direction. Is arranged. More specifically, the air flow ports 8 of adjacent partition plates are alternately provided with the cylinder 2 (cylinder shaft) in between. Therefore, air can be reliably flowed in the circumferential direction from the air circulation port 8 to the air circulation port 8 in the spaces R2 to R5 sandwiched between the partition plates 11 to 15. As a result, the uneven cooling in the circumferential direction of the cylinder 2 is further reduced.

なお、空気入口4が設けられる空間R1に面する仕切板11の空気流通口8は、空気入口4から遠い位置に設けられている。従って、空気入口4から導入された空気は空間R1内でも周方向に確実に流れることになる。また同様に、空気出口5が設けられる空間R2に面する仕切板11の空気流通口8も、空気出口5から遠い位置に設けられている。従って、空気流通口8から空間R6へ導入された空気は、空間R6内で周方向に確実に流れて空気出口5から排出されることになる。   The air circulation port 8 of the partition plate 11 facing the space R <b> 1 where the air inlet 4 is provided is provided at a position far from the air inlet 4. Therefore, the air introduced from the air inlet 4 surely flows in the circumferential direction even in the space R1. Similarly, the air circulation port 8 of the partition plate 11 facing the space R <b> 2 where the air outlet 5 is provided is also provided at a position far from the air outlet 5. Therefore, the air introduced into the space R6 from the air circulation port 8 flows reliably in the circumferential direction in the space R6 and is discharged from the air outlet 5.

以上に本発明の好適な実施形態を示したが、本発明は更に例えば以下のように変更して実施することができる。   Although the preferred embodiment of the present invention has been described above, the present invention can be further modified as follows, for example.

(1)空気入口4及び空気出口5の数や配置は、図1に示したものに限定されない。例えば空気入口をスリーブ3の軸方向中央に設け、空気出口をスリーブ3の軸方向両端に1つずつ設けることが考えられる。この場合、仕切板は、空気入口とそれぞれの空気出口との間に設ければ良い。   (1) The number and arrangement of the air inlets 4 and the air outlets 5 are not limited to those shown in FIG. For example, it is conceivable that an air inlet is provided at the center of the sleeve 3 in the axial direction and one air outlet is provided at both ends of the sleeve 3 in the axial direction. In this case, the partition plate may be provided between the air inlet and each air outlet.

(2)仕切板11〜15の数は5枚に限らず、1〜4枚であっても良いし、6枚以上であっても良い。ただし、仕切板の数を2枚以上に構成して各空気流通口を互い違いに構成すると、図2に示すような折り返し状の空気の流れがはっきりと実現され、シリンダ2の表面の周方向の冷却ムラを確実に防止できる点で好ましい。   (2) The number of partition plates 11 to 15 is not limited to five, and may be one to four or six or more. However, if the number of partition plates is two or more and the air circulation ports are staggered, a folded air flow as shown in FIG. 2 is clearly realized, and the circumferential direction of the surface of the cylinder 2 is improved. This is preferable because uneven cooling can be reliably prevented.

(3)仕切板の空気流通口の形状は、図1や図3のように円弧状ないし扇状の切欠として形成することに限定されない。例えばそれぞれの仕切板に矩形穴状あるいは丸穴状の空気流通口を構成することが考えられる。   (3) The shape of the air circulation port of the partition plate is not limited to being formed as an arc shape or a fan-shaped notch as shown in FIGS. For example, it is conceivable to form a rectangular hole shape or a round hole shape air circulation port in each partition plate.

(4)隣り合う仕切板の空気流通口8は、必ずしも180°の角度差が生じるように設けられている必要はない。180°とするのが最も好ましいが、例えば150°以上210°以下の角度差を有するように配置しても、スリーブ3の内部で空気の周方向の流れを確実に形成することができる。   (4) The air circulation ports 8 of the adjacent partition plates do not necessarily have to be provided so that an angular difference of 180 ° is generated. Although it is most preferable to set it as 180 degrees, even if it arrange | positions so that it may have an angle difference of 150 degrees or more and 210 degrees or less, the flow of the circumferential direction of air can be reliably formed in the inside of the sleeve 3, for example.

本発明の一実施形態に係るシリンダ冷却装置の全体的な構成を示した斜視図。The perspective view which showed the whole structure of the cylinder cooling device which concerns on one Embodiment of this invention. 図1のA−A断面矢視図。FIG. 2 is a cross-sectional view taken along the line AA in FIG. 1. 仕切板の構成を示す図。The figure which shows the structure of a partition plate. 図2のB−B断面矢視図。The BB cross-sectional arrow figure of FIG. 図2のC−C断面矢視図。CC sectional view of FIG.

符号の説明Explanation of symbols

1 冷却装置
2 シリンダ
3 スリーブ
4 空気入口
5 空気出口
6 ブロワ
8 空気流通口
11〜15 仕切板
R1〜R6 空間(空気流路)
DESCRIPTION OF SYMBOLS 1 Cooling device 2 Cylinder 3 Sleeve 4 Air inlet 5 Air outlet 6 Blower 8 Air distribution port 11-15 Partition plate R1-R6 Space (air flow path)

Claims (10)

樹脂押出機のシリンダ冷却装置であって、シリンダを囲むスリーブと、このスリーブに設けられる空気入口及び空気出口と、前記空気入口から空気を供給するブロワと、前記シリンダと前記スリーブとの間の空間をシリンダ軸方向に仕切る少なくとも1枚の仕切板と、その仕切板に開口される空気流通口と、を有してなる樹脂押出機のシリンダ冷却装置。   A cylinder cooling device for a resin extruder, a sleeve surrounding the cylinder, an air inlet and an air outlet provided in the sleeve, a blower for supplying air from the air inlet, and a space between the cylinder and the sleeve A cylinder cooling device for a resin extruder comprising: at least one partition plate that partitions the cylinder in the cylinder axial direction; and an air circulation port that is opened in the partition plate. 請求項1に記載の樹脂押出機のシリンダ冷却装置であって、前記仕切板は複数枚設けられるとともに、隣り合う仕切板で挟まれた空気流路をシリンダ軸を含む平面で切った流路断面積をS1、当該空気流路をシリンダ軸に垂直な平面で切った流路断面積をS2としたときに、S1<S2であることを特徴とする、樹脂押出機のシリンダ冷却装置。   The cylinder cooling device for a resin extruder according to claim 1, wherein a plurality of the partition plates are provided, and the air flow path sandwiched between adjacent partition plates is cut by a plane including the cylinder shaft. A cylinder cooling apparatus for a resin extruder, wherein S1 <S2, where S1 is an area of the flow path and S2 is a cross-sectional area of the air flow path cut by a plane perpendicular to the cylinder axis. 請求項2に記載の樹脂押出機のシリンダ冷却装置であって、S1<0.5×S2であることを特徴とする、樹脂押出機のシリンダ冷却装置。   3. The cylinder cooling apparatus for a resin extruder according to claim 2, wherein S1 <0.5 * S2. 請求項1から請求項3までの何れか一項に記載の樹脂押出機のシリンダ冷却装置であって、前記仕切板の空気流通口は、その開口面積の比率が30%以上かつ50%以下であることを特徴とする樹脂押出機のシリンダ冷却装置。   It is a cylinder cooling device of the resin extruder as described in any one of Claim 1- Claim 3, Comprising: As for the air circulation port of the said partition plate, the ratio of the opening area is 30% or more and 50% or less A cylinder cooling device for a resin extruder, characterized in that there is. 請求項1から請求項4までの何れか一項に記載の樹脂押出機のシリンダ冷却装置であって、前記仕切板は前記シリンダの外周面に接触するように設けられていることを特徴とする樹脂押出機のシリンダ冷却装置。   It is a cylinder cooling device of the resin extruder as described in any one of Claim 1- Claim 4, Comprising: The said partition plate is provided so that the outer peripheral surface of the said cylinder may be contacted. Cylinder cooling device for resin extruder. 請求項1から請求項4までの何れか一項に記載の樹脂押出機のシリンダ冷却装置であって、前記仕切板は、前記空気流通口に相当する部分を切り欠いた円弧状の板として構成されていることを特徴とする樹脂押出機のシリンダ冷却装置。   It is a cylinder cooling device of the resin extruder as described in any one of Claim 1- Claim 4, Comprising: The said partition plate is comprised as an arc-shaped board which notched the part corresponded to the said air circulation port. A cylinder cooling device for a resin extruder, characterized in that 請求項1から請求項6までの何れか一項に記載の樹脂押出機のシリンダ冷却装置であって、前記仕切板は複数枚設けられるとともに、隣り合う仕切板の空気流通口同士は互いに重複しない位置に配置されていることを特徴とする、樹脂押出機のシリンダ冷却装置。   It is a cylinder cooling device of the resin extruder as described in any one of Claim 1- Claim 6, Comprising: While the said partition plate is provided with two or more sheets, the air circulation port of an adjacent partition plate does not mutually overlap. A cylinder cooling device for a resin extruder, which is disposed at a position. 請求項1から請求項6までの何れか一項に記載の樹脂押出機のシリンダ冷却装置であって、隣り合う仕切板の空気流通口同士はシリンダ軸を挟んで交互に設けられていることを特徴とする樹脂押出機のシリンダ冷却装置。   It is a cylinder cooling device of the resin extruder as described in any one of Claim 1- Claim 6, Comprising: Air flow-flow openings of the adjacent partition plate are provided alternately on both sides of a cylinder axis | shaft. A cylinder cooling device for a resin extruder. 樹脂押出機のシリンダ冷却方法であって、シリンダを囲むようにスリーブを設け、前記シリンダと前記スリーブとの間の空間をシリンダ軸方向に部分的に仕切るように少なくとも1枚の仕切板を設けた上で、前記スリーブに設けた空気入口から当該スリーブ内に空気を供給し、この空気を、前記スリーブと前記シリンダと前記仕切板によって構成される流路を通過させた後に前記スリーブに設けた空気出口から排出させることを特徴とする、樹脂押出機のシリンダ冷却方法。   A cylinder cooling method for a resin extruder, wherein a sleeve is provided so as to surround the cylinder, and at least one partition plate is provided so as to partially partition the space between the cylinder and the sleeve in the cylinder axial direction. The air provided in the sleeve after supplying air into the sleeve from the air inlet provided in the sleeve and passing the air through the flow path constituted by the sleeve, the cylinder, and the partition plate. A method for cooling a cylinder of a resin extruder, wherein the cylinder is discharged from an outlet. 請求項9に記載の樹脂押出機のシリンダ冷却方法であって、前記仕切板は複数枚設けられるとともに、隣り合う仕切板で挟まれた空気流路をシリンダ軸を含む平面で切った流路断面積をS1、当該空気流路をシリンダ軸に垂直な平面で切った流路断面積をS2としたときに、S1<S2であることを特徴とする、樹脂押出機のシリンダ冷却方法。   The cylinder cooling method for a resin extruder according to claim 9, wherein a plurality of the partition plates are provided, and the air flow path sandwiched between adjacent partition plates is cut by a plane including the cylinder shaft. A cylinder cooling method for a resin extruder, wherein S1 <S2, where S1 is an area of the flow path and S2 is a cross-sectional area of a flow path obtained by cutting the air flow path along a plane perpendicular to the cylinder axis.
JP2004208042A 2004-07-15 2004-07-15 Cylinder cooling device for resin extruder Active JP4347152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004208042A JP4347152B2 (en) 2004-07-15 2004-07-15 Cylinder cooling device for resin extruder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004208042A JP4347152B2 (en) 2004-07-15 2004-07-15 Cylinder cooling device for resin extruder

Publications (2)

Publication Number Publication Date
JP2006027031A true JP2006027031A (en) 2006-02-02
JP4347152B2 JP4347152B2 (en) 2009-10-21

Family

ID=35893943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004208042A Active JP4347152B2 (en) 2004-07-15 2004-07-15 Cylinder cooling device for resin extruder

Country Status (1)

Country Link
JP (1) JP4347152B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101064892B1 (en) * 2009-06-12 2011-09-16 송인호 Extruder
CN103402720A (en) * 2011-12-06 2013-11-20 三菱重工机械科技株式会社 Kneading rotor and kneader
JP2015024574A (en) * 2013-07-26 2015-02-05 東洋機械金属株式会社 Injection molding machine
US20210121717A1 (en) * 2019-10-24 2021-04-29 Dräger Safety AG & Co. KGaA Cooling element system for use within a cooling device of a closed-circuit respirator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101064892B1 (en) * 2009-06-12 2011-09-16 송인호 Extruder
CN103402720A (en) * 2011-12-06 2013-11-20 三菱重工机械科技株式会社 Kneading rotor and kneader
DE112012000784B4 (en) * 2011-12-06 2020-10-01 Mitsubishi Heavy Industries Machinery Systems, Ltd. Mixing rotor and mixer
JP2015024574A (en) * 2013-07-26 2015-02-05 東洋機械金属株式会社 Injection molding machine
US20210121717A1 (en) * 2019-10-24 2021-04-29 Dräger Safety AG & Co. KGaA Cooling element system for use within a cooling device of a closed-circuit respirator

Also Published As

Publication number Publication date
JP4347152B2 (en) 2009-10-21

Similar Documents

Publication Publication Date Title
JP4031761B2 (en) Heat exchanger suction tube with flow dispersion stirrer
US20090050302A1 (en) Cooling device for an internal combustion engine
US20120031598A1 (en) Plate heat exchanger
JP2007143247A (en) Water-cooled motor, and method of processing waterway in its motor frame
JP2006207948A (en) Air-cooled oil cooler
JP2008235725A (en) Water-cooled heat sink
KR20170096185A (en) Heat exchanger and air device having said heat exchanger
US20070215330A1 (en) Heat exchanger
JP2004177060A (en) Egr air-conditioner
WO2015132920A1 (en) Heat exchanger and method for manufacturing heat exchanger
SE0850182A1 (en) A ventilation device
KR20160147475A (en) Can-type heat exchanger
JP4347152B2 (en) Cylinder cooling device for resin extruder
WO2014069175A1 (en) Heat exchanger tube
US10094619B2 (en) Heat exchanger having arcuately and linearly arranged heat exchange tubes
JPS6285946A (en) Ink roller for printer
JP2005214545A (en) Heat exchanger
JP2005083622A (en) Heat exchanger
JP2007003080A (en) Evaporator
JP6104107B2 (en) Heat exchanger
KR101611096B1 (en) Heat exchanger for exhaust gas
JP2837396B2 (en) Heat exchanger
JPH0473599A (en) Heat exchanger
JP2010209878A (en) Egr cooler
WO2020153106A1 (en) Heat exchange device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090715

R150 Certificate of patent or registration of utility model

Ref document number: 4347152

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4