JP2006024709A - Method of cleaning chamber - Google Patents

Method of cleaning chamber Download PDF

Info

Publication number
JP2006024709A
JP2006024709A JP2004200966A JP2004200966A JP2006024709A JP 2006024709 A JP2006024709 A JP 2006024709A JP 2004200966 A JP2004200966 A JP 2004200966A JP 2004200966 A JP2004200966 A JP 2004200966A JP 2006024709 A JP2006024709 A JP 2006024709A
Authority
JP
Japan
Prior art keywords
chamber
cleaning
pressure
hexafluoropropene
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004200966A
Other languages
Japanese (ja)
Other versions
JP4531467B2 (en
Inventor
Ryuichiro Isaki
隆一郎 伊崎
Manabu Jinriki
学 神力
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2004200966A priority Critical patent/JP4531467B2/en
Publication of JP2006024709A publication Critical patent/JP2006024709A/en
Application granted granted Critical
Publication of JP4531467B2 publication Critical patent/JP4531467B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of cleaning a chamber capable of cleaning the inside of the chamber efficiently in a short time by optimizing the kinds and the mixing ratio of gas which are mixed to hexafluoride propene and also by finding out the optimum conditions in cleaning treatment. <P>SOLUTION: Mixed gas of oxygen containing hexafluoride propene of 15-25% is introduced into the chamber so that it may be made to plasma within the chamber. Then, the mixed gas pressure in the chamber is set as 530-933Pa so as to perform a high-pressure cleaning process. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、チャンバーのクリーニング方法に関し、詳しくは、シリコン酸化膜等を製造する半導体製造装置のチャンバー内に付着した堆積物を除去する方法に関する。   The present invention relates to a chamber cleaning method, and more particularly, to a method for removing deposits attached to a chamber of a semiconductor manufacturing apparatus for manufacturing a silicon oxide film or the like.

従来から、フッ素化ガスを主とするガスをチャンバー内に導入してプラズマ化させることにより、チャンバー内に付着した堆積物を除去するクリーニング処理が行われている。前記フッ素化ガスとしては、六フッ化エタンが広く用いられてきたが、地球温暖化対策として六フッ化プロペンをクリーニングガスに用いることが提案されている(例えば、特許文献1参照。)。
特開平10−27781号公報
Conventionally, a cleaning process for removing deposits adhering to the chamber has been performed by introducing a gas, mainly a fluorinated gas, into the chamber and turning it into plasma. Although hexafluoroethane has been widely used as the fluorinated gas, it has been proposed to use hexafluoropropene as a cleaning gas as a countermeasure against global warming (see, for example, Patent Document 1).
JP-A-10-27781

前記特許文献には、六フッ化プロペンにHe,Ne,Ar,H,N,O等の単体ガスを適切な割合で混合してもよいとは記載されているものの、具体的な混合比やクリーニング処理の条件は記載されておらず、これらの詳細な検討は全くなされていない。特に、六フッ化プロペンは、分子内に二重結合を有しているため、ポリマー形成反応が進行しやすいという問題があり、ポリマー形成反応が起きないようにしながら、クリーニングに必要なフッ素ラジカルを効率よく生成させる必要がある。 Although the above-mentioned patent document describes that a simple gas such as He, Ne, Ar, H 2 , N 2 , or O 2 may be mixed with hexafluoropropene at an appropriate ratio, The mixing ratio and the conditions for the cleaning treatment are not described, and these detailed examinations are not made at all. In particular, hexafluoropropene has a problem that the polymer formation reaction is likely to proceed because it has a double bond in the molecule, and the fluorine radical necessary for cleaning is removed while preventing the polymer formation reaction from occurring. It is necessary to generate efficiently.

そこで本発明は、六フッ化プロペンに混合するガスの種類及び混合比の最適化を図り、さらに、クリーニング処理における最適条件を見出すことによって効率よくチャンバー内をクリーニングすることができるチャンバーのクリーニング方法を提供することを目的としている。   Therefore, the present invention provides a chamber cleaning method capable of efficiently cleaning the inside of the chamber by optimizing the type and mixing ratio of the gas mixed with hexafluoropropene and finding the optimum conditions in the cleaning process. It is intended to provide.

上記目的を達成するため、本発明のチャンバーのクリーニング方法は、六フッ化プロペンを15〜25%含む酸素との混合ガスをチャンバー内に導入し、該チャンバー内でプラズマ化させることを特徴としている。さらに、前記チャンバー内における前記混合ガスの圧力を530〜933Paとして行う高圧クリーニング工程を含むことを特徴としている。   In order to achieve the above object, the chamber cleaning method of the present invention is characterized in that a gas mixture with oxygen containing 15 to 25% of hexafluoropropene is introduced into the chamber and is plasmatized in the chamber. . Furthermore, it is characterized by including a high-pressure cleaning process in which the pressure of the mixed gas in the chamber is set to 530 to 933 Pa.

六フッ化プロペンと酸素との混合ガス中の六フッ化プロペン濃度を15〜25%の範囲に設定することにより、効果的なクリーニングを行うことができる。特に、クリーニング処理中に圧力を530〜933Paに上昇させることにより、さらに効果的なクリーニング処理を行える。   Effective cleaning can be performed by setting the hexafluoropropene concentration in the mixed gas of hexafluoropropene and oxygen to a range of 15 to 25%. In particular, a more effective cleaning process can be performed by increasing the pressure to 530 to 933 Pa during the cleaning process.

図1は本発明方法を実施するための半導体薄膜形成装置の一例を示す概略系統図である。この半導体薄膜形成装置は、高周波やマイクロ波を印加するプラズマ発生手段を備えたチャンバー11に、原料ガス導入管12と、クリーニングガスである六フッ化プロペン及び酸素を導入するための六フッ化プロペン導入管13及び酸素導入管14と、真空ポンプ15を備えた排気管16とが設けられている。   FIG. 1 is a schematic system diagram showing an example of a semiconductor thin film forming apparatus for carrying out the method of the present invention. This semiconductor thin film forming apparatus includes a raw material gas introduction pipe 12, a hexafluoropropene as a cleaning gas, and a hexafluoride propene for introducing oxygen into a chamber 11 having a plasma generating means for applying high frequency and microwaves. An introduction pipe 13 and an oxygen introduction pipe 14 and an exhaust pipe 16 provided with a vacuum pump 15 are provided.

薄膜の形成は、チャンバー11内に基板を配置し、原料ガス導入管12から原料ガスをチャンバー11内に導入するとともに、プラズマ発生手段を作動させてチャンバー11内にプラズマを発生することにより行われる。チャンバー11内のガスは、真空ポンプ15に吸引されて排気管16から排出される。   The thin film is formed by disposing a substrate in the chamber 11, introducing a source gas into the chamber 11 from the source gas introduction pipe 12, and generating a plasma in the chamber 11 by operating a plasma generating means. . The gas in the chamber 11 is sucked into the vacuum pump 15 and discharged from the exhaust pipe 16.

チャンバー11内のクリーニングを行う際には、六フッ化プロペン導入管13及び酸素導入管14から所定流量で六フッ化プロペン及び酸素をそれぞれ導入し、所定の混合状態でチャンバー11内に導入するとともに、プラズマ発生手段を作動させてチャンバー11内にプラズマを発生することにより行われる。このときのチャンバー11内のガスも、真空ポンプ15に吸引されて排気管16から排出される。なお、クリーニングガスとなる六フッ化プロペンと酸素との混合ガスは、六フッ化プロペン導入管13及び酸素導入管14にそれぞれ設けた流量調節器13F,14Fにより流量調節を行って所定の混合比としてもよく、あらかじめ設定された混合比で混合した状態の混合ガスを容器内に充填しておき、これをチャンバー11内に導入するようにしてもよい。   When cleaning the inside of the chamber 11, the hexafluoropropene and oxygen are respectively introduced at a predetermined flow rate from the hexafluoropropene introduction pipe 13 and the oxygen introduction pipe 14 and introduced into the chamber 11 in a predetermined mixed state. The plasma generating means is operated to generate plasma in the chamber 11. The gas in the chamber 11 at this time is also sucked into the vacuum pump 15 and discharged from the exhaust pipe 16. The mixed gas of hexafluoropropene and oxygen serving as the cleaning gas is adjusted in flow rate by flow rate adjusters 13F and 14F provided in the hexafluoropropene introduction tube 13 and the oxygen introduction tube 14, respectively, and has a predetermined mixing ratio. Alternatively, a mixed gas in a state of being mixed at a preset mixing ratio may be filled in the container and introduced into the chamber 11.

六フッ化プロペンと酸素との混合比は、混合ガス中の六フッ化プロペン濃度が15〜25%の範囲が最適であり、この濃度範囲の上でも、下でもクリーニング効果が低下する。   The mixing ratio of hexafluoropropene and oxygen is optimal when the concentration of hexafluoropropene in the mixed gas is 15 to 25%, and the cleaning effect is lowered both above and below this concentration range.

また、クリーニング処理は、相対的に高い圧力で行う高圧クリーニング工程と、相対的に低い圧力で行う低圧クリーニング工程とで行われ、低圧クリーニング工程時の圧力は、通常200Pa付近で行われる。一方、高圧クリーニング工程時の圧力が低い場合には十分なクリーニングが行えず、高すぎるとチャンバー11内に炭素を主とするフッ化炭素の固形物が付着するようになるので、高圧クリーニング工程時の圧力は530〜933Paの範囲が適当である。   The cleaning process is performed in a high-pressure cleaning process performed at a relatively high pressure and a low-pressure cleaning process performed at a relatively low pressure, and the pressure in the low-pressure cleaning process is normally performed around 200 Pa. On the other hand, when the pressure during the high-pressure cleaning process is low, sufficient cleaning cannot be performed. When the pressure is too high, solids such as carbon fluoride, mainly carbon, adhere to the chamber 11. The pressure of 530 to 933 Pa is appropriate.

このような条件、すなわち、混合ガス中の六フッ化プロペン濃度を15〜25%の範囲とし、高圧クリーニング工程時の圧力を530〜933Paの範囲に設定することにより、六フッ化プロペンのポリマー形成反応が起きないようにしながら、チャンバー11内のクリーニングに最も重要な活性種であるフッ素ラジカルを効率よく生成することができ、クリーニング効果を向上させることができる。なお、プラズマの発生条件は従来と同様に設定できる。   Under such conditions, that is, by setting the hexafluoropropene concentration in the mixed gas in the range of 15 to 25% and setting the pressure during the high-pressure cleaning step in the range of 530 to 933 Pa, polymer formation of hexafluoropropene While preventing the reaction from occurring, fluorine radicals that are the most important active species for cleaning in the chamber 11 can be efficiently generated, and the cleaning effect can be improved. The plasma generation conditions can be set in the same manner as in the prior art.

半導体薄膜形成装置として、テトラエトキシシランによるシリコン酸化膜成膜用平行平板型プラズマ装置(アプライドマテリアルズ社製:Precision5000、5インチウエハ)を用い、シリコン酸化膜を約8000A成長させた後にクリーニングを行った。クリーニング処理中にチャンバーから排出されるガスをフーリエ変換赤外分光器に採取し、クリーニング処理によって発生する四フッ化ケイ素の発生量の推移を測定した。なお、クリーニング処理の基本条件として、高周波印加電力は750W、高圧クリーニングの時間は45秒、低圧クリーニングは200Paで25秒、基板温度は400℃に設定した。   As a semiconductor thin film forming apparatus, a parallel plate type plasma apparatus for film formation of silicon oxide film using tetraethoxysilane (Applied Materials Co., Ltd .: Precision5000, 5-inch wafer) is used, and after cleaning the silicon oxide film by about 8000A, cleaning is performed. It was. The gas discharged from the chamber during the cleaning process was collected in a Fourier transform infrared spectrometer, and the transition of the amount of silicon tetrafluoride generated by the cleaning process was measured. As basic conditions for the cleaning process, the high frequency applied power was 750 W, the high pressure cleaning time was 45 seconds, the low pressure cleaning was 200 Pa for 25 seconds, and the substrate temperature was 400 ° C.

比較例1
六フッ化エタンと酸素との混合ガスをクリーニングガスとして使用し、高圧クリーニングの圧力、六フッ化エタン濃度総流量を変化させてクリーニング処理を行った。その結果、上記クリーニングガスを使用したときは、高圧時の圧力が467〜600Pa、六フッ化エタン濃度が45〜50%、総流量が750sccm以上で良好なクリーニングを70秒で行えることが分かった。
Comparative Example 1
Cleaning treatment was performed by using a mixed gas of hexafluoroethane and oxygen as a cleaning gas and changing the pressure of high-pressure cleaning and the total flow rate of hexafluoroethane concentration. As a result, it was found that when the cleaning gas was used, good cleaning could be performed in 70 seconds with a high pressure of 467 to 600 Pa, a hexafluoroethane concentration of 45 to 50%, and a total flow rate of 750 sccm or more. .

また、六フッ化エタン濃度を15〜25%と低くした場合にはクリーニング処理の時間が長くなり、六フッ化エタン濃度を55%以上にしたり、圧力を667Pa以上にしたりすると、チャンバー内に炭素を主とするフッ化炭素の固形物が付着するようになり、良好なクリーニング処理を行うことはできなかった。   Further, when the hexafluoroethane concentration is lowered to 15 to 25%, the cleaning process time becomes longer. When the hexafluoroethane concentration is increased to 55% or higher, or the pressure is increased to 667 Pa or higher, carbon is contained in the chamber. As a result, a solid substance of fluorinated carbon, mainly composed of No. 1, became attached, and good cleaning treatment could not be performed.

実施例1
六フッ化プロペンと酸素との混合ガス系において、チャンバー内に導入するガスの混合比や総ガス流量等を変化させてクリーニング処理を行った。混合ガス中の六フッ化プロペン濃度と流量と四フッ化ケイ素の発生総量との関係を図2に、高圧クリーニング工程における圧力と流量と四フッ化ケイ素の発生総量との関係を図3にそれぞれ示す。なお、四フッ化ケイ素の発生総量は、比較例1における最適条件でクリーニング処理を行ったときの四フッ化ケイ素の発生総量を100とした相対値で表している。
Example 1
In the mixed gas system of hexafluoropropene and oxygen, the cleaning process was performed by changing the mixing ratio of gas introduced into the chamber, the total gas flow rate, and the like. FIG. 2 shows the relationship between the concentration of hexafluoropropene in the mixed gas, the flow rate, and the total generation amount of silicon tetrafluoride, and FIG. 3 shows the relationship between the pressure, flow rate, and total generation amount of silicon tetrafluoride in the high-pressure cleaning process. Show. The total amount of silicon tetrafluoride generated is expressed as a relative value with the total amount of silicon tetrafluoride generated when the cleaning process is performed under the optimum conditions in Comparative Example 1 being 100.

図2及び図3から明らかなように、六フッ化プロペンと酸素との混合ガスによるクリーニングでは、六フッ化プロペン濃度が15〜25%の範囲、高圧クリーニング時の圧力が530〜933Paの範囲で良好なクリーニング処理を行えることがわかる。また、混合ガスの総流量は、本実施例で使用した装置の場合には、300〜800sccm、特に、450〜600sccmの範囲が最適であることがわかる。このときの処理時間は、六フッ化エタンを使用したときと略同じ約70秒であった。   As is apparent from FIGS. 2 and 3, in the cleaning with a mixed gas of hexafluoropropene and oxygen, the concentration of hexafluoropropene is in the range of 15 to 25%, and the pressure during high pressure cleaning is in the range of 530 to 933 Pa. It can be seen that a good cleaning process can be performed. Further, it is understood that the total flow rate of the mixed gas is optimal in the range of 300 to 800 sccm, particularly 450 to 600 sccm in the case of the apparatus used in this example. The treatment time at this time was about 70 seconds, which is substantially the same as when hexafluoroethane was used.

このように、六フッ化エタンと六フッ化プロペンとでは、分子構造や化学反応性が大きく異なるため、六フッ化エタンの最適条件をそのまま六フッ化プロペンに適用することはできず、六フッ化プロペンを使用する場合は、六フッ化エタンに比べて流量が少なく、圧力が高いときに良好なクリーニング処理を行えることがわかる。   Thus, since the molecular structure and chemical reactivity of hexafluoroethane and hexafluoropropene differ greatly, the optimum conditions for hexafluoroethane cannot be applied to hexafluoropropene as they are. In the case of using propylene fluoride, it can be seen that a good cleaning process can be performed when the flow rate is low and the pressure is high compared to hexafluoroethane.

なお、六フッ化プロペンと酸素との混合比及び使用圧力が最適化された場合、窒素、亜酸化窒素、アルゴン、ヘリウムを総流量の10%まで添加しても、クリーニング特性が向上することはなかった。   In addition, when the mixing ratio of hexafluoropropene and oxygen and the working pressure are optimized, even if nitrogen, nitrous oxide, argon, and helium are added up to 10% of the total flow rate, the cleaning characteristics can be improved. There wasn't.

実施例2
実施例1で導き出された条件により、薄膜生成とクリーニングとを100回繰り返して行い、チャンバー内に残渣物が残らないか確認した。この結果、チャンバー内に成膜残渣は認められず、正常なクリーニングが行われていることが分かった。また、生成した薄膜の膜厚均一性を比較例1の六フッ化エタンを用いた場合と比較したが、膜厚均一性はどちらも平均1.5と変化なく、実施例1で導き出された条件で六フッ化プロペンを使用すれば、六フッ化エタンを使用した場合と同じレベルのクリーニング性能が得られることがわかる。
Example 2
Under the conditions derived in Example 1, thin film generation and cleaning were repeated 100 times, and it was confirmed that no residue remained in the chamber. As a result, it was found that no film formation residue was observed in the chamber and normal cleaning was performed. Moreover, although the film thickness uniformity of the produced thin film was compared with the case of using the hexafluoroethane of Comparative Example 1, the film thickness uniformity was not changed from an average of 1.5 and was derived in Example 1. It can be seen that if hexafluoropropene is used under the conditions, the same level of cleaning performance as when hexafluoroethane is used can be obtained.

本発明方法を実施するための半導体薄膜形成装置の一例を示す概略系統図である。It is a schematic system diagram which shows an example of the semiconductor thin film formation apparatus for enforcing the method of this invention. 混合ガス中の六フッ化プロペン濃度と流量と四フッ化ケイ素の発生総量との関係を示す図である。It is a figure which shows the relationship between the hexafluoride propene density | concentration in mixed gas, a flow volume, and the generation amount of silicon tetrafluoride. 高圧クリーニング工程における圧力と流量と四フッ化ケイ素の発生総量との関係を示す図である。It is a figure which shows the relationship between the pressure and flow volume in a high-pressure cleaning process, and the generation amount of silicon tetrafluoride.

符号の説明Explanation of symbols

11…チャンバー、12…原料ガス導入管、13…六フッ化プロペン導入管、14…酸素導入管、15…真空ポンプ、16…排気管   DESCRIPTION OF SYMBOLS 11 ... Chamber, 12 ... Source gas introduction pipe, 13 ... Hexafluoropropene introduction pipe, 14 ... Oxygen introduction pipe, 15 ... Vacuum pump, 16 ... Exhaust pipe

Claims (2)

六フッ化プロペンを15〜25%含む酸素との混合ガスをチャンバー内に導入し、該チャンバー内でプラズマ化させることを特徴とするチャンバーのクリーニング方法。   A method for cleaning a chamber, comprising introducing a mixed gas of oxygen containing 15 to 25% of hexafluoropropene into oxygen into the chamber and generating plasma in the chamber. 前記チャンバー内における前記混合ガスの圧力を530〜933Paとして行う高圧クリーニング工程を含むことを特徴とする請求項1記載のチャンバーのクリーニング方法。   The chamber cleaning method according to claim 1, further comprising a high-pressure cleaning step in which a pressure of the mixed gas in the chamber is set to 530 to 933 Pa.
JP2004200966A 2004-07-07 2004-07-07 Cleaning method in chamber of semiconductor thin film forming apparatus Expired - Fee Related JP4531467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004200966A JP4531467B2 (en) 2004-07-07 2004-07-07 Cleaning method in chamber of semiconductor thin film forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004200966A JP4531467B2 (en) 2004-07-07 2004-07-07 Cleaning method in chamber of semiconductor thin film forming apparatus

Publications (2)

Publication Number Publication Date
JP2006024709A true JP2006024709A (en) 2006-01-26
JP4531467B2 JP4531467B2 (en) 2010-08-25

Family

ID=35797776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004200966A Expired - Fee Related JP4531467B2 (en) 2004-07-07 2004-07-07 Cleaning method in chamber of semiconductor thin film forming apparatus

Country Status (1)

Country Link
JP (1) JP4531467B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009266884A (en) * 2008-04-22 2009-11-12 Taiyo Nippon Sanso Corp Cleaning method of plasma film forming apparatus
JP2014074215A (en) * 2012-10-05 2014-04-24 Taiyo Nippon Sanso Corp Cleaning method for gas-phase growth apparatus piping, and gas-phase growth apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09296271A (en) * 1996-05-02 1997-11-18 Samuko Internatl Kenkyusho:Kk Method for cleaning plasma cvd reaction chamber and plasma etching method
JPH1027781A (en) * 1996-07-10 1998-01-27 Daikin Ind Ltd Etching gas and cleaning gas
JP2004002944A (en) * 2002-03-27 2004-01-08 Research Institute Of Innovative Technology For The Earth Cvd apparatus and method for cleaning cvd apparatus with it

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09296271A (en) * 1996-05-02 1997-11-18 Samuko Internatl Kenkyusho:Kk Method for cleaning plasma cvd reaction chamber and plasma etching method
JPH1027781A (en) * 1996-07-10 1998-01-27 Daikin Ind Ltd Etching gas and cleaning gas
JP2004002944A (en) * 2002-03-27 2004-01-08 Research Institute Of Innovative Technology For The Earth Cvd apparatus and method for cleaning cvd apparatus with it

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009266884A (en) * 2008-04-22 2009-11-12 Taiyo Nippon Sanso Corp Cleaning method of plasma film forming apparatus
JP2014074215A (en) * 2012-10-05 2014-04-24 Taiyo Nippon Sanso Corp Cleaning method for gas-phase growth apparatus piping, and gas-phase growth apparatus

Also Published As

Publication number Publication date
JP4531467B2 (en) 2010-08-25

Similar Documents

Publication Publication Date Title
TW546707B (en) Plasma cleaning of processing chamber residues using duo-step wafer-less auto clean method
US6923189B2 (en) Cleaning of CVD chambers using remote source with cxfyoz based chemistry
JP5491170B2 (en) Etching method
US20070207275A1 (en) Enhancement of remote plasma source clean for dielectric films
US20060144820A1 (en) Remote chamber methods for removing surface deposits
EP1619269A2 (en) Method for enhancing fluorine utilization
US20050258137A1 (en) Remote chamber methods for removing surface deposits
TWI284929B (en) Remote chamber methods for removing surface deposits
JPWO2016068004A1 (en) Plasma etching method
TW201216355A (en) Plasma processing method and plasma processing apparatus
JP2004006554A (en) Cvd equipment and its cleaning method
JPS6313334A (en) Dry etching
JP2004002944A (en) Cvd apparatus and method for cleaning cvd apparatus with it
US6209483B1 (en) Apparatus and method for removing silicon dioxide residues from CVD reactors
WO2020195559A1 (en) Dry etching method and method for producing semiconductor device
JPH0936089A (en) Ashing method and device
JP4531467B2 (en) Cleaning method in chamber of semiconductor thin film forming apparatus
JP5214316B2 (en) Cleaning method of plasma film forming apparatus
KR20050043601A (en) Cleaning gas and cleaning method
JP2003178986A (en) Cleaning gas and cleaning method of semiconductor manufacturing apparatus
TW200416804A (en) Cleaning method of apparatus for manufacturing semiconductor device
JP4320389B2 (en) CVD chamber cleaning method and cleaning gas used therefor
US20060144819A1 (en) Remote chamber methods for removing surface deposits
JP3014368B2 (en) Cleaning gas
JP2008223093A (en) Cleaning method for film deposition system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100609

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees