JP2006024707A - Solid electrolytic capacitor and manufacturing method thereof - Google Patents

Solid electrolytic capacitor and manufacturing method thereof Download PDF

Info

Publication number
JP2006024707A
JP2006024707A JP2004200962A JP2004200962A JP2006024707A JP 2006024707 A JP2006024707 A JP 2006024707A JP 2004200962 A JP2004200962 A JP 2004200962A JP 2004200962 A JP2004200962 A JP 2004200962A JP 2006024707 A JP2006024707 A JP 2006024707A
Authority
JP
Japan
Prior art keywords
salt
room temperature
solid electrolytic
electrolytic capacitor
temperature molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004200962A
Other languages
Japanese (ja)
Inventor
Kimio Takase
公男 高瀬
Yasufumi Yamaguchi
容史 山口
Hideo Yamamoto
秀雄 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Carlit Co Ltd
Original Assignee
Japan Carlit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Carlit Co Ltd filed Critical Japan Carlit Co Ltd
Priority to JP2004200962A priority Critical patent/JP2006024707A/en
Publication of JP2006024707A publication Critical patent/JP2006024707A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid electrolytic capacitor that has a high rate of capacitance impregnation, is compact, has large capacitance, and has improved electric characteristics in the solid electrolytic capacitor using TCNQ complex salt for a cathode layer, and to provide a method for manufacturing the solid electrolytic capacitor. <P>SOLUTION: In the solid electrolytic capacitor, the cathode layer made of normal temperature fused salt in which a decomposition point illustrated by 1-butylpyridinium salt and/or 1-ethyl-3-methylimidazolium salt is at least at 300°C, and the TCNQ complex salt is formed. In the solid electrolytic capacitor, the cathode layer is formed by impregnating the normal temperature fused salt in a capacitor element and then dipping it in the melted solution of the TCNQ complex salt, or dipping it in the mixed fused solution of the normal temperature melted salt and the TCNQ complex salt. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、小型大容量の固体電解コンデンサ及びその製造方法に関し、より詳しくは、誘電体酸化皮膜を形成させた陽極箔と、対向陰極箔とを、セパレータを介して巻回させたコンデンサ素子に、7,7,8,8−テトラシアノキノジメタン(以下、「TCNQ」と略記する。)錯塩を含有する陰極層が形成された固体電解コンデンサ及びその製造方法に関する。   The present invention relates to a small-sized and large-capacity solid electrolytic capacitor and a method for manufacturing the same, and more specifically, to a capacitor element in which an anode foil formed with a dielectric oxide film and a counter cathode foil are wound through a separator. , 7,7,8,8-tetracyanoquinodimethane (hereinafter abbreviated as “TCNQ”) complex cathode and a method of manufacturing the same.

従来、有機半導体であるTCNQ錯塩や導電性高分子を陰極層として用いた固体電解コンデンサが種々提案されている。これらの陰極層は、固体電解質とも称され、従来の電解液型コンデンサの電解液と同様に、真の陰極として作用するものである。   Conventionally, various solid electrolytic capacitors using an organic semiconductor TCNQ complex salt or a conductive polymer as a cathode layer have been proposed. These cathode layers are also referred to as solid electrolytes, and act as true cathodes as with the electrolytes of conventional electrolyte type capacitors.

特許文献1には、陽極箔に、N−アルキル置換イソキノリンとTCNQとの錯塩を、溶融、液化させ、該溶融液中にコンデンサ素子を含浸させた後、冷却、固化して、陰極層を形成させた固体電解コンデンサが開示されている。   In Patent Document 1, a complex salt of N-alkyl-substituted isoquinoline and TCNQ is melted and liquefied on an anode foil, and a capacitor element is impregnated in the melt, followed by cooling and solidification to form a cathode layer. A solid electrolytic capacitor is disclosed.

近年電子機器の小型化にともない、コンデンサ特性としては、小型大容量化が要求されており、この対策として、固体電解コンデンサでは、表面を高倍率化させた陽極箔が用いられている。   In recent years, with the downsizing of electronic equipment, capacitor characteristics are required to have a small size and large capacity. As a countermeasure, a solid electrolytic capacitor uses an anode foil whose surface has a high magnification.

一般に、表面を高倍率化させた陽極箔を用いて高容量の固体電解コンデンサを得るためには、表面の微細化された細孔内に固体電解質を十分に充填させる必要があり、固体電解質の充填が不十分な場合、容量含浸率(電解液を用いたときの静電容量値に対する固体電解質を用いたときの静電容量値の百分率)が低下することが知られている。   In general, in order to obtain a high-capacity solid electrolytic capacitor using an anode foil whose surface has a high magnification, it is necessary to sufficiently fill the solid electrolyte in fine pores on the surface. It is known that when the filling is insufficient, the capacity impregnation rate (percentage of the capacitance value when using the solid electrolyte with respect to the capacitance value when using the electrolytic solution) decreases.

固体電解コンデンサは、電解液型コンデンサに比べて、高周波数特性に優れ、製造工程が比較的簡便であり、安価なコンデンサが得られる反面、容量含浸率が未だ不十分であり、表面を高倍率化させた陽極箔の特性が十分に引き出されてなく、静電容量や誘電損失などの電気特性の点で、改善すべき課題が残されていた。   Solid electrolytic capacitors are superior in high frequency characteristics compared to electrolytic capacitors, have a relatively simple manufacturing process, and provide an inexpensive capacitor. However, the capacity impregnation rate is still insufficient, and the surface has a high magnification. The characteristics of the anode foil thus made are not sufficiently drawn out, and there remains a problem to be improved in terms of electrical characteristics such as capacitance and dielectric loss.

特開昭58−191414号公報JP 58-191414 A

本発明の目的とするところは、陰極層にTCNQ錯塩を用いた固体電解コンデンサにおいて、容量含浸率が高く、小型で静電容量が大きく、かつ電気特性に優れた固体電解コンデンサ及びその製造方法を提供することである。   An object of the present invention is to provide a solid electrolytic capacitor using a TCNQ complex salt as a cathode layer, a high capacity impregnation rate, a small size, a large capacitance, and excellent electrical characteristics, and a method for manufacturing the same. Is to provide.

本発明者らは鋭意検討した結果、常温溶融塩及びTCNQ錯塩からなる陰極層を形成させた固体電解コンデンサが、上記課題を解決し得ることを見いだし、本発明を完成するに至った。   As a result of intensive studies, the present inventors have found that a solid electrolytic capacitor in which a cathode layer made of a room temperature molten salt and a TCNQ complex salt can solve the above problems, and has completed the present invention.

すなわち、本発明は、誘電体酸化皮膜を形成させた陽極箔上に、常温溶融塩及びTCNQ錯塩からなる陰極層を形成させてなることを特徴とする固体電解コンデンサである。   That is, the present invention is a solid electrolytic capacitor characterized in that a cathode layer made of a room temperature molten salt and a TCNQ complex salt is formed on an anode foil on which a dielectric oxide film is formed.

また、本発明は、上記常温溶融塩が、1−ブチルピリジニウム塩及び/または1−エチル−3−メチルイミダゾリウム塩であることを特徴とする固体電解コンデンサである。   In addition, the present invention provides the solid electrolytic capacitor, wherein the room temperature molten salt is 1-butylpyridinium salt and / or 1-ethyl-3-methylimidazolium salt.

また、本発明は、常温溶融塩が、少なくとも300℃の分解温度を有する常温溶融塩であることを特徴とする固体電解コンデンサである。   The present invention is also a solid electrolytic capacitor, wherein the room temperature molten salt is a room temperature molten salt having a decomposition temperature of at least 300 ° C.

さらに、本発明は、誘電体酸化皮膜を形成させた陽極箔と、対向陰極箔とを、セパレータを介して巻回させたコンデンサ素子に、常温溶融塩を含浸させ、ついで、溶融液化させたTCNQ錯塩中に浸漬させた後、該TCNQ錯塩を冷却、固化させて、該陽極箔上に、常温溶融塩及びTCNQ錯塩からなる陰極層を形成させることを特徴とする固体電解コンデンサの製造方法である。   Furthermore, the present invention provides a capacitor element in which an anode foil on which a dielectric oxide film is formed and a counter cathode foil are wound through a separator, impregnated with a room temperature molten salt, and then melted and liquefied TCNQ. A method for producing a solid electrolytic capacitor comprising: dipping in a complex salt; and cooling and solidifying the TCNQ complex salt to form a cathode layer composed of a room temperature molten salt and a TCNQ complex salt on the anode foil. .

また、本発明は、誘電体酸化皮膜を形成させた陽極箔と、対向陰極箔とを、セパレータを介して巻回させたコンデンサ素子を、常温溶融塩及びTCNQ錯塩の混合溶融液中に浸漬させた後、該混合液を冷却、固化させて、誘電体酸化皮膜上に、常温溶融塩及びTCNQ錯塩からなる陰極層を形成させることを特徴とする固体電解コンデンサの製造方法である。   In addition, the present invention immerses a capacitor element in which an anode foil having a dielectric oxide film formed thereon and a counter cathode foil are wound via a separator in a mixed melt of room temperature molten salt and TCNQ complex salt. Then, the mixed solution is cooled and solidified, and a cathode layer made of a room temperature molten salt and a TCNQ complex salt is formed on the dielectric oxide film.

また、本発明は、常温溶融塩が、1−ブチルピリジニウム塩及び/または1−エチル−3−メチルイミダゾリウム塩のいずれかであることを特徴とする固体電解コンデンサの製造方法である。   The present invention is also the method for producing a solid electrolytic capacitor, wherein the room temperature molten salt is any one of 1-butylpyridinium salt and / or 1-ethyl-3-methylimidazolium salt.

また、本発明は、常温溶融塩が、少なくとも300℃の分解温度を有する常温溶融塩であることを特徴とする固体電解コンデンサの製造方法である。   The present invention is also a method for producing a solid electrolytic capacitor, wherein the room temperature molten salt is a room temperature molten salt having a decomposition temperature of at least 300 ° C.

本発明は、常温溶融塩及びTCNQ錯塩からなる陰極層が形成された固体電解コンデンサであり、本発明により形成された陰極層は、従来、TCNQ錯塩のみでは、固体電解質の充填が不十分であった高倍率化させた陽極箔表面のエッチング細孔内に、常温溶融塩を十分に滲入させることができるため、容量含浸率が高く、小型で静電容量が大きく、かつ電気特性に優れた固体電解コンデンサが得られ、また、本発明に用いられる常温溶融塩は、分解温度が高いため、耐熱性、耐久性に優れた固体電解コンデンサを提供することができる。   The present invention is a solid electrolytic capacitor in which a cathode layer made of a room temperature molten salt and a TCNQ complex salt is formed, and the cathode layer formed by the present invention has hitherto been insufficiently filled with a solid electrolyte only with a TCNQ complex salt. Because the molten salt at room temperature can be sufficiently infiltrated into the etching pores on the surface of the anode foil that has been increased in magnification, it has a high capacity impregnation rate, is small, has a large capacitance, and has excellent electrical characteristics. An electrolytic capacitor is obtained, and the room temperature molten salt used in the present invention has a high decomposition temperature, so that a solid electrolytic capacitor excellent in heat resistance and durability can be provided.

また、本発明の固体電解コンデンサの製造方法によれば、上記陰極層を有する固体電解コンデンサを、容易に、効率的に作製することができる。   Moreover, according to the method for producing a solid electrolytic capacitor of the present invention, the solid electrolytic capacitor having the cathode layer can be easily and efficiently produced.

本発明の固体電解コンデンサは、誘電体酸化皮膜を形成させた陽極箔上に、常温溶融塩及びTCNQ錯塩からなる陰極層を形成させてなるものである。   The solid electrolytic capacitor of the present invention is obtained by forming a cathode layer made of a room temperature molten salt and a TCNQ complex salt on an anode foil on which a dielectric oxide film is formed.

上記陽極箔としては、アルミニウム、タンタル、チタン、ジルコニウム、ニオブなどの皮膜形成性金属単体またはその合金からなる金属箔があげられ、該金属箔にエッチングを施した後、化成処理により誘電体酸化皮膜を形成させて使用する。   Examples of the anode foil include a metal foil made of a film-forming metal simple substance such as aluminum, tantalum, titanium, zirconium, niobium or an alloy thereof, and after etching the metal foil, a dielectric oxide film is formed by chemical conversion treatment. To be used.

本発明に用いられる常温溶融塩は、イオン性液体とも呼ばれ、カチオン成分とアニオン成分とからなる常温付近で液体の塩である。カチオン成分としては、アルキルアンモニウム、アルキルホスホニウム、アルキルピリジニウム、アルキルイミダゾリウム等があげられ、また、アニオン成分としては、テトラフルオロホウ酸、ヘキサフルオロりん酸、トリフルオロメタンスルホン酸、トリフルオロメタンスルホンイミド、環状パーフルオロアルキレンイミド、ヒドロフッ化物等があげられる。   The room temperature molten salt used in the present invention is also called an ionic liquid, and is a salt that is liquid around room temperature and consists of a cation component and an anion component. Examples of the cation component include alkylammonium, alkylphosphonium, alkylpyridinium, alkylimidazolium, and examples of the anion component include tetrafluoroboric acid, hexafluorophosphoric acid, trifluoromethanesulfonic acid, trifluoromethanesulfonimide, and cyclic. Examples thereof include perfluoroalkylene imide and hydrofluoride.

上記化合物としては、1−ブチルピリジニウムテトラフルオロホウ酸、1−エチル−3−メチルイミダゾリウムトリフルオロメタンスルホンイミド、トリメチルヘキシルアンモニムヘキサフルオロりん酸などを例示することができる。   Examples of the compound include 1-butylpyridinium tetrafluoroboric acid, 1-ethyl-3-methylimidazolium trifluoromethanesulfonimide, and trimethylhexyl ammonium hexafluorophosphoric acid.

一般的に、TCNQ錯塩を陰極とする固体電解コンデンサは、製造工程や実装時において、高温に曝されることがあり、また、長寿命化の観点からも耐熱性が要求される。従って、耐熱性に優れた常温溶融塩、すなわち、分解温度が少なくとも300℃の常温溶融塩が好ましく、特に、約400℃の分解温度を有する1−ブチルピリジニウム塩及び/または1−エチル−3−メチルイミダゾリウム塩が好ましい。   In general, a solid electrolytic capacitor using a TCNQ complex salt as a cathode may be exposed to a high temperature during the manufacturing process or mounting, and is required to have heat resistance from the viewpoint of extending the life. Therefore, a room temperature molten salt having excellent heat resistance, that is, a room temperature molten salt having a decomposition temperature of at least 300 ° C. is preferable, and in particular, 1-butylpyridinium salt and / or 1-ethyl-3- having a decomposition temperature of about 400 ° C. Methyl imidazolium salt is preferred.

本発明に用いられるTCNQ錯塩としては、従来公知のTCNQ錯塩を用いることができ、例えば、N位を置換した一般式〔1〕で表されるイソキノリンTCNQ錯塩や、一般式〔2〕で表されるルチジニウムTCNQ錯塩などがあげられる。具体的には、イソキノリンTCNQ錯塩としては、N−n−ブチルイソキノリニウムTCNQ、N−n−イソアミルイソキノリニウムTCNQなどがあげられ、ルチジニウムTCNQ錯塩としては、N、N’−オクタメチレン−ジ−3、5−ルチジニウムTCNQなどがあげられる。   As the TCNQ complex salt used in the present invention, a conventionally known TCNQ complex salt can be used. For example, an isoquinoline TCNQ complex salt represented by the general formula [1] substituted at the N-position or a general formula [2] is used. Rutidinium TCNQ complex salt. Specific examples of isoquinoline TCNQ complex salts include Nn-butylisoquinolinium TCNQ and Nn-isoamylisoquinolinium TCNQ. Examples of lutidinium TCNQ complex salts include N, N′-octamethylene. -Di-3,5-lutidinium TCNQ and the like.

Figure 2006024707
Figure 2006024707

一般式〔1〕中、nは、1〜20の正整数を表す。   In general formula [1], n represents a positive integer of 1 to 20.

Figure 2006024707
Figure 2006024707

一般式〔2〕中、nは、1〜20の正整数を表す。   In general formula [2], n represents a positive integer of 1-20.

本発明の固体電解コンデンサは、常温溶融塩及びTCNQ錯塩からなる陰極層が形成されてなり、以下、本発明の固体電解コンデンサの製造方法について、陽極金属としてアルミニウム箔を用いた場合を例にとり、詳細に説明する。   The solid electrolytic capacitor of the present invention is formed with a cathode layer composed of a room temperature molten salt and a TCNQ complex salt.Hereinafter, as an example of the method for producing the solid electrolytic capacitor of the present invention, an aluminum foil is used as the anode metal, This will be described in detail.

まず、陽極箔であるアルミニウム箔にエッチングを施した後、化成処理を施して誘電体酸化皮膜を形成させる。本発明を実施する上では、エッチング倍率の大きな箔を用いることにより、静電容量の大きなコンデンサを得ることができ、好ましい。   First, after etching the aluminum foil which is an anode foil, a chemical conversion treatment is performed to form a dielectric oxide film. In practicing the present invention, it is preferable to use a foil having a large etching magnification, whereby a capacitor having a large capacitance can be obtained.

対向陰極箔としては、上記陽極箔と同種の金属箔を用いることができ、陽極箔と対向陰極箔との間に、マニラ紙等のセパレータを挟み込み、円筒状に巻き取り、ついで、熱処理により該セパレータを炭化させて、コンデンサ素子を準備する。   As the counter cathode foil, a metal foil of the same kind as the above anode foil can be used, and a separator such as manila paper is sandwiched between the anode foil and the counter cathode foil, wound into a cylindrical shape, and then subjected to heat treatment. The separator is carbonized to prepare a capacitor element.

本発明の固体電解コンデンサの製造方法の第1の実施態様は、上記コンデンサ素子を、常温溶融塩中に浸漬させて、アルミニウム箔表面の微細化されたエッチング細孔内に常温溶融塩を十分に含浸させ、ついで溶融液化させたTCNQ錯塩中に浸漬させた後、冷却、固化させて、陽極箔上に常温溶融塩及びTCNQ錯塩からなる陰極層を形成させることを特徴とする固体電解コンデンサの製造方法である。   In a first embodiment of the method for producing a solid electrolytic capacitor of the present invention, the capacitor element is immersed in a room temperature molten salt, and the room temperature molten salt is sufficiently contained in the refined etching pores on the surface of the aluminum foil. Manufacturing of a solid electrolytic capacitor characterized by impregnating and then immersing in a melted and liquefied TCNQ complex salt, followed by cooling and solidification to form a cathode layer made of a room temperature molten salt and a TCNQ complex salt on the anode foil Is the method.

上記製造方法において、まず、陽極アルミニウム箔表面を、エッチングして粗面化させた後、陽極リードを接続させ、ついでアジピン酸二アンモニウム等の水溶液中で化成処理して、誘電体酸化皮膜を形成させる。   In the above manufacturing method, the surface of the anode aluminum foil is first roughened by etching, and then the anode lead is connected, followed by chemical conversion treatment in an aqueous solution such as diammonium adipate to form a dielectric oxide film. Let

別途、陰極リードを接続させた、対向アルミニウム陰極箔と、上記陽極箔との間に、マニラ紙等のセパレータを挟み込み、円筒状に巻き取り、ついで熱処理させて、セパレータを炭化させてコンデンサ素子を準備する。   Separately, a separator such as manila paper is sandwiched between the opposing aluminum cathode foil, to which the cathode lead is connected, and the anode foil, wound up in a cylindrical shape, and then heat treated to carbonize the separator to form a capacitor element. prepare.

次に、前記例示した常温溶融塩溶液に、上記コンデンサ素子を浸漬した後、不織布等を用いて、過剰に付着した常温溶融塩を軽く拭い取る。   Next, after immersing the capacitor element in the room temperature molten salt solution exemplified above, the room temperature molten salt adhering excessively is lightly wiped using a nonwoven fabric or the like.

次に、別途用意した有底円筒状のアルミニウム製コンデンサケースに、粉末状のTCNQ錯塩を、所要量詰め込み、温度250〜320℃に加熱して、該コンデンサケース内のTCNQ錯塩を溶融、液化させる。   Next, a necessary amount of powdered TCNQ complex salt is packed in a separately prepared cylindrical aluminum capacitor case with a bottom and heated to a temperature of 250 to 320 ° C. to melt and liquefy the TCNQ complex salt in the capacitor case. .

次に、予め加熱した常温溶融塩含浸コンデンサ素子を、上記溶融、液化させたTCNQ錯塩中に浸漬した後、直ちに冷却、固化させて、常温溶融塩及びTCNQ錯塩からなる陰極層を形成させる。   Next, the room temperature molten salt impregnated capacitor element heated in advance is immersed in the melted and liquefied TCNQ complex salt, and then immediately cooled and solidified to form a cathode layer composed of the room temperature molten salt and the TCNQ complex salt.

ついで、エポキシ樹脂等を用いて、該コンデンサケースを封口し、電圧を印加してエージングを行い、本発明の固体電解コンデンサを完成する。   Next, the capacitor case is sealed with an epoxy resin or the like, and a voltage is applied to perform aging to complete the solid electrolytic capacitor of the present invention.

本発明の固体電解コンデンサの製造方法の第2の実施態様は、コンデンサ素子を、常温溶融塩及びTCNQ錯塩の混合溶融液中に浸漬させた後、該溶融液を冷却、固化させて、陽極箔上に、常温溶融塩及びTCNQ錯塩からなる陰極層を形成させることを特徴とする製造方法である。   According to a second embodiment of the method for producing a solid electrolytic capacitor of the present invention, the capacitor element is immersed in a mixed molten solution of a room temperature molten salt and a TCNQ complex salt, and then the molten solution is cooled and solidified to form an anode foil. A production method is characterized in that a cathode layer comprising a room temperature molten salt and a TCNQ complex salt is formed on the top.

上記製造方法では、まず、有底円筒状のアルミニウム製コンデンサケースに、所要量の粉末状TCNQ錯塩及びTCNQ錯塩に対して0.1〜30質量%の常温溶融塩を詰め込み、温度250〜320℃に加熱して、該コンデンサケース内の常温溶融塩及びTCNQ錯塩を溶融、液化させる。   In the above manufacturing method, first, 0.1 to 30% by mass of a room temperature molten salt with respect to a required amount of powdered TCNQ complex salt and TCNQ complex salt is packed into a bottomed cylindrical aluminum capacitor case, and a temperature of 250 to 320 ° C. To melt and liquefy the room temperature molten salt and the TCNQ complex salt in the capacitor case.

TCNQ錯塩に対して、常温溶融塩の含有量が、0.1質量%未満では、容量含浸率を向上させる効果が不十分となり、また、30質量%超ではコンデンサの電気特性が悪化する場合があり、不都合である。   If the content of the room temperature molten salt is less than 0.1% by mass relative to the TCNQ complex salt, the effect of improving the capacity impregnation rate is insufficient, and if it exceeds 30% by mass, the electrical characteristics of the capacitor may be deteriorated. Yes, it is inconvenient.

次に、予め加熱した常温溶融塩含浸コンデンサ素子を、上記常温溶融塩及びTCNQ錯塩の混合溶融液中に浸漬した後、直ちに冷却、固化させることにより、常温溶融塩及びTCNQ錯塩からなる陰極層が形成される。   Next, after the preheated room temperature molten salt-impregnated capacitor element is immersed in the above-mentioned room temperature molten salt and TCNQ complex salt mixed melt, it is immediately cooled and solidified to form a cathode layer composed of the room temperature molten salt and the TCNQ complex salt. It is formed.

ついで、エポキシ樹脂等を用いて、該コンデンサケースを封口し、電圧を印加してエージングを行い、本発明の固体電解コンデンサを完成する。   Next, the capacitor case is sealed with an epoxy resin or the like, and a voltage is applied to perform aging to complete the solid electrolytic capacitor of the present invention.

上記固体電解コンデンサの製造方法によれば、陽極箔の微細なエッチング孔内に、常温溶融塩が隙間なく滲入し、さらに、TCNQ錯体からなる陰極層が形成されるため、容量含浸率が高く、小型で静電容量が大きく、かつ電気特性に優れた固体電解コンデンサを得ることができ、本発明の固体電解コンデンサは、従来のTCNQ錯塩のみを陰極として用いたコンデンサと比べ、容量含浸率が高く、小型大容量で、優れた電気特性を有している。   According to the above method for producing a solid electrolytic capacitor, the room temperature molten salt penetrates into the fine etching holes of the anode foil without gaps, and further, a cathode layer made of a TCNQ complex is formed. A solid electrolytic capacitor having a small size, large capacitance, and excellent electrical characteristics can be obtained. The solid electrolytic capacitor of the present invention has a higher capacity impregnation rate than a conventional capacitor using only a TCNQ complex salt as a cathode. Small size, large capacity and excellent electrical characteristics.

以下、本発明を実施例に基づいて詳細に説明する。なお、本発明は実施例によりなんら限定されるものではない。また、実施例中、「%」は、「質量%」を表し、静電容量(C)及び誘電損失(tanδ)は120Hzで、等価直列抵抗(ESR)は100kHzで測定した。容量含浸率は、15%アジピン酸アンモニウム水溶液中での静電容量を基準として測定した。   Hereinafter, the present invention will be described in detail based on examples. In addition, this invention is not limited at all by the Example. In the examples, “%” represents “% by mass”, the capacitance (C) and dielectric loss (tan δ) were measured at 120 Hz, and the equivalent series resistance (ESR) was measured at 100 kHz. The volume impregnation rate was measured based on the capacitance in a 15% ammonium adipate aqueous solution.

実施例1
アルミニウム箔の表面をエッチングして粗面化させた後、カシメ付けにより、陽極リードを接続させ、ついで、10%アジピン酸二アンモニウム水溶液中、電圧4Vで化成処理して、表面に誘電体酸化皮膜を形成させた。
Example 1
After roughening the surface of the aluminum foil by etching, the anode lead is connected by caulking, and then subjected to chemical conversion treatment in a 10% diammonium adipate aqueous solution at a voltage of 4 V, and a dielectric oxide film is formed on the surface. Formed.

ついで、上記陽極箔と、抵抗溶接により陰極リードを接続させた対向アルミニウム陰極箔との間に、厚さ50μmのマニラ紙をセパレータとして挟み込み、円筒状に巻き取り、ついで、温度400℃で4分間、熱処理して、マニラ紙を炭化させて、コンデンサ素子を作製した。得られたコンデンサ素子の水溶液中静電容量は40μFであった。   Next, 50 μm thick Manila paper is sandwiched as a separator between the anode foil and the opposing aluminum cathode foil to which the cathode lead is connected by resistance welding, and wound into a cylindrical shape, and then at a temperature of 400 ° C. for 4 minutes. Then, heat treatment was performed to carbonize the manila paper to produce a capacitor element. The capacitance of the obtained capacitor element in an aqueous solution was 40 μF.

次に、常温溶融塩である1−エチル−3−メチルイミダゾリウムテトラフルオロホウ酸(以下、「EMI−BF」と略記する。分解点:約391℃)を容器に採取し、該液に、先に作製したコンデンサ素子を室温で1分間浸漬した後、過剰の溶液を不織布で軽く拭い取った。 Next, 1-ethyl-3-methylimidazolium tetrafluoroboric acid (hereinafter abbreviated as “EMI-BF 4 ”, decomposition point: about 391 ° C.), which is a room temperature molten salt, is collected in a container, The capacitor element prepared above was immersed for 1 minute at room temperature, and then the excess solution was lightly wiped with a nonwoven fabric.

次に、有底円筒状のアルミニウム製コンデンサケース(直径6mmφ×高さ7mm)に、N−n−ブチルイソキノリニウムTCNQ錯塩(以下、「BIQ−TCNQ」と略記する。)を60mg詰め込み、該コンデンサケースを、温度300℃の熱板上に載置し、ケース内の電荷移動錯塩を溶融、液化させた。   Next, 60 mg of Nn-butylisoquinolinium TCNQ complex salt (hereinafter abbreviated as “BIQ-TCNQ”) is packed in a bottomed cylindrical aluminum capacitor case (diameter 6 mmφ × height 7 mm). The capacitor case was placed on a hot plate having a temperature of 300 ° C., and the charge transfer complex salt in the case was melted and liquefied.

次に、上記TCNQ錯塩溶融液中に、予熱した常温溶融塩含浸済みのコンデンサ素子を浸漬した後、直ちに冷却、固化させて、常温溶融塩及びTCNQ錯塩からなる陰極層を形成させた。   Next, a preheated capacitor element impregnated with a room temperature molten salt was immersed in the TCNQ complex salt melt, and then immediately cooled and solidified to form a cathode layer composed of the room temperature molten salt and the TCNQ complex salt.

ついで、エポキシ樹脂を用いて、該コンデンサケースを封口し、両極に電圧4Vを印加させてエージングを行い、固体電解コンデンサを完成させた。   Next, the capacitor case was sealed with an epoxy resin, and aging was performed by applying a voltage of 4 V to both electrodes to complete a solid electrolytic capacitor.

得られた固体電解コンデンサの初期電気特性、容量含浸率及び高温負荷(温度260℃の雰囲気に10秒間保持)後の電気特性を表1に示す。   Table 1 shows the initial electrical characteristics, the capacity impregnation rate, and the electrical characteristics after high-temperature loading (held in an atmosphere at a temperature of 260 ° C. for 10 seconds) of the obtained solid electrolytic capacitor.

実施例2
実施例1と同様にして、コンデンサ素子を作製した。
Example 2
A capacitor element was produced in the same manner as in Example 1.

次に、有底円筒状のアルミニウム製コンデンサケース(直径6mmφ×高さ7mm)に、BIQ−TCNQを60mg詰め込み、続いて、常温溶融塩である1−エチル−3−メチルイミダゾリウムビス(トリフルオロメタンスルホン)イミド(以下、「EMI−TFSI」と略記する。分解点:417℃)を、BIQ−TCNQに対して、5%となるよう添加した。   Next, 60 mg of BIQ-TCNQ was packed in a bottomed cylindrical aluminum capacitor case (diameter 6 mmφ × height 7 mm), followed by 1-ethyl-3-methylimidazolium bis (trifluoromethane) which is a room temperature molten salt. Sulfone) imide (hereinafter abbreviated as “EMI-TFSI”, decomposition point: 417 ° C.) was added to 5% with respect to BIQ-TCNQ.

次いで、該コンデンサケースを、温度300℃の熱板上に載置し、該ケース内の常温溶融塩及び電荷移動錯塩混合物を溶融、液化させた。   Next, the capacitor case was placed on a hot plate having a temperature of 300 ° C., and the room temperature molten salt and the charge transfer complex salt mixture in the case were melted and liquefied.

上記混合溶融液中に、予熱したコンデンサ素子を浸漬した後、直ちに冷却、固化させて、常温溶融塩及びTCNQ錯塩からなる陰極層を形成させた。   After the preheated capacitor element was immersed in the mixed melt, it was immediately cooled and solidified to form a cathode layer composed of a room temperature molten salt and a TCNQ complex salt.

ついで、エポキシ樹脂を用いて、該コンデンサケースを封口し、両極に電圧4Vを印加させてエージングを行い、固体電解コンデンサを完成した。   Next, the capacitor case was sealed with an epoxy resin, and aging was performed by applying a voltage of 4 V to both electrodes to complete a solid electrolytic capacitor.

得られた固体電解コンデンサの初期電気特性、容量含浸率及び高温負荷(温度260℃の雰囲気に10秒間保持)後の電気特性を表1に示す。   Table 1 shows the initial electrical characteristics, the capacity impregnation rate, and the electrical characteristics after high-temperature loading (held in an atmosphere at a temperature of 260 ° C. for 10 seconds) of the obtained solid electrolytic capacitor.

比較例
実施例1において、コンデンサ素子にEMI−BFを含浸させることなく、TCNQ錯塩のみを陰極層に形成させた以外は、実施例1と同様にして固体電解コンデンサを完成させた。
In Comparative Example 1, without impregnating the EMI-BF 4 in the capacitor element, except that only the TCNQ complex salt is formed in the cathode layer, thereby completing a solid electrolytic capacitor in the same manner as in Example 1.

得られた固体電解コンデンサの初期電気特性、容量含浸率及び高温負荷(温度260℃の雰囲気に10秒間保持)後の電気特性を表1に示す。   Table 1 shows the initial electrical characteristics, the capacity impregnation rate, and the electrical characteristics after high-temperature loading (held in an atmosphere at a temperature of 260 ° C. for 10 seconds) of the obtained solid electrolytic capacitor.

Figure 2006024707
Figure 2006024707

表1に示すように、常温溶融塩及びTCNQ錯塩からなる陰極層を形成させた本発明の固体電解コンデンサ(実施例1及び実施例2)は、従来のTCNQ錯塩のみを陰極層に形成させた比較例の固体電解コンデンサに比べ、容量含浸率が高く、優れた電気特性を有することがわかる。また、本発明の固体電解コンデンサによれば、耐熱性に優れた常温溶融塩を用いることにより、高温負荷後に電気特性が低下することがなく、耐熱性、耐久性に優れたコンデンサである。   As shown in Table 1, the solid electrolytic capacitors (Examples 1 and 2) of the present invention in which the cathode layer composed of the room temperature molten salt and the TCNQ complex salt was formed by forming only the conventional TCNQ complex salt in the cathode layer. Compared with the solid electrolytic capacitor of the comparative example, it can be seen that the capacity impregnation rate is high and has excellent electrical characteristics. In addition, according to the solid electrolytic capacitor of the present invention, by using a room temperature molten salt excellent in heat resistance, the electric characteristics are not deteriorated after a high temperature load, and the capacitor is excellent in heat resistance and durability.

Claims (7)

誘電体酸化皮膜を形成させた陽極箔上に、常温溶融塩及びTCNQ錯塩からなる陰極層を形成させてなることを特徴とする固体電解コンデンサ。 A solid electrolytic capacitor, wherein a cathode layer made of a room temperature molten salt and a TCNQ complex salt is formed on an anode foil on which a dielectric oxide film is formed. 常温溶融塩が、少なくとも300℃の分解温度を有する常温溶融塩であることを特徴とする請求項1に記載の固体電解コンデンサ。 The solid electrolytic capacitor according to claim 1, wherein the room temperature molten salt is a room temperature molten salt having a decomposition temperature of at least 300 ° C. 常温溶融塩が、1−ブチルピリジニウム塩及び/または1−エチル−3−メチルイミダゾリウム塩であることを特徴とする請求項1または請求項2のいずれかに記載の固体電解コンデンサ。 The solid electrolytic capacitor according to claim 1, wherein the room temperature molten salt is 1-butylpyridinium salt and / or 1-ethyl-3-methylimidazolium salt. 誘電体酸化皮膜を形成させた陽極箔と、対向陰極箔とを、セパレータを介して巻回させたコンデンサ素子に、常温溶融塩を含浸させ、ついで、溶融、液化させたTCNQ錯塩中に浸漬した後、該TCNQ錯塩を冷却、固化させて、該陽極箔上に、常温溶融塩及びTCNQ錯塩からなる陰極層を形成させることを特徴とする固体電解コンデンサの製造方法。 A capacitor element in which an anode foil formed with a dielectric oxide film and a counter cathode foil are wound through a separator is impregnated with a room temperature molten salt, and then immersed in a molten and liquefied TCNQ complex salt. Thereafter, the TCNQ complex salt is cooled and solidified to form a cathode layer composed of a room temperature molten salt and a TCNQ complex salt on the anode foil. 誘電体酸化皮膜を形成させた陽極箔と、対向陰極箔とを、セパレータを介して巻回させたコンデンサ素子を、常温溶融塩及びTCNQ錯塩の混合溶融液中に浸漬させた後、該混合溶融液を冷却、固化させて、該陽極箔上に、常温溶融塩及びTCNQ錯塩からなる陰極層を形成させることを特徴とする固体電解コンデンサの製造方法。 A capacitor element in which an anode foil formed with a dielectric oxide film and a counter cathode foil are wound through a separator is immersed in a mixed melt of a room temperature molten salt and a TCNQ complex salt, and then mixed and melted. A method for producing a solid electrolytic capacitor, wherein the liquid is cooled and solidified to form a cathode layer composed of a room temperature molten salt and a TCNQ complex salt on the anode foil. 常温溶融塩が、少なくとも300℃の分解温度を有する常温溶融塩であることを特徴とする請求項4または請求項5のいずれかに記載の固体電解コンデンサの製造方法。 The method for producing a solid electrolytic capacitor according to claim 4, wherein the room temperature molten salt is a room temperature molten salt having a decomposition temperature of at least 300 ° C. 常温溶融塩が、1−ブチルピリジニウム塩及び/または1−エチル−3−メチルイミダゾリウム塩のいずれかであることを特徴とする請求項4から請求項6のいずれか一項に記載の固体電解コンデンサの製造方法。
The solid-state electrolysis according to any one of claims 4 to 6, wherein the room temperature molten salt is one of 1-butylpyridinium salt and / or 1-ethyl-3-methylimidazolium salt. Capacitor manufacturing method.
JP2004200962A 2004-07-07 2004-07-07 Solid electrolytic capacitor and manufacturing method thereof Pending JP2006024707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004200962A JP2006024707A (en) 2004-07-07 2004-07-07 Solid electrolytic capacitor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004200962A JP2006024707A (en) 2004-07-07 2004-07-07 Solid electrolytic capacitor and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2006024707A true JP2006024707A (en) 2006-01-26

Family

ID=35797773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004200962A Pending JP2006024707A (en) 2004-07-07 2004-07-07 Solid electrolytic capacitor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2006024707A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005012599A1 (en) * 2003-07-31 2005-02-10 Kaneka Corporation Method for forming oxide film on metal surface using ionic liquid, electrolytic capacitor and electrolyte thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005012599A1 (en) * 2003-07-31 2005-02-10 Kaneka Corporation Method for forming oxide film on metal surface using ionic liquid, electrolytic capacitor and electrolyte thereof

Similar Documents

Publication Publication Date Title
JP6935438B2 (en) Solid electrolytic capacitors and their manufacturing methods
JP2009267385A (en) Method of manufacturing solid-state electrolytic capacitor
JPH07235455A (en) Solid electrolytic capacitor and production thereof
JPH0456445B2 (en)
US9818550B2 (en) Solid electrolytic capacitor manufacturing method and solid electrolytic capacitor
JP2019110322A (en) Manufacturing method of electrolytic capacitor
JP4779277B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2006024707A (en) Solid electrolytic capacitor and manufacturing method thereof
JPH0553051B2 (en)
JPH02224316A (en) Manufacture of solid electrolytic capacitor
JPH0563009B2 (en)
JP2001284178A (en) Solid electrolytic capacitor and method of manufacturing the same
JP2002198266A (en) Method of manufacturing electrolytic capacitor
JP5015382B2 (en) Manufacturing method of solid electrolytic capacitor
JP2006093423A (en) Solid-state electrolytic capacitor and its manufacturing method
JP4334323B2 (en) Charge transfer complex salt mixture and solid electrolytic capacitor using the mixture
JPH09260215A (en) Manufacture of solid electrolytic capacitor
US8198126B2 (en) Method for producing solid electrolytic capacitor
JP3162738B2 (en) Solid electrolytic capacitors
JPH0337854B2 (en)
JPH0744131B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0666236B2 (en) Solid electrolytic capacitor
JP2004128047A (en) Solid electrolytic capacitor
JPH0666237B2 (en) Solid electrolytic capacitor
JPH02224314A (en) Manufacture of solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070703

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091110

A131 Notification of reasons for refusal

Effective date: 20091116

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100506