JP2006023530A - Zoom lens and imaging apparatus incorporating it - Google Patents
Zoom lens and imaging apparatus incorporating it Download PDFInfo
- Publication number
- JP2006023530A JP2006023530A JP2004201373A JP2004201373A JP2006023530A JP 2006023530 A JP2006023530 A JP 2006023530A JP 2004201373 A JP2004201373 A JP 2004201373A JP 2004201373 A JP2004201373 A JP 2004201373A JP 2006023530 A JP2006023530 A JP 2006023530A
- Authority
- JP
- Japan
- Prior art keywords
- lens
- lens group
- group
- wide
- angle end
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Lenses (AREA)
Abstract
Description
本発明は、ズームレンズ及びそれを搭載した撮像装置に関し、特に、CCD等の電子撮像素子に適した4倍以上の変倍比を持つズームレンズとそれを搭載した撮像装置に関するものである。 The present invention relates to a zoom lens and an image pickup apparatus including the zoom lens, and more particularly to a zoom lens having a zoom ratio of 4 times or more suitable for an electronic image pickup device such as a CCD and an image pickup apparatus including the zoom lens.
近年、デジタルカメラが普及している。さらに、それは業務用高機能タイプからポータブルな普及タイプまで幅広い範囲でいくつものカテゴリーを有するようになってきている。本発明においては、特にポータブルな普及タイプのカテゴリーに注目し、変倍比が比較的高く、高画質を確保しながら奥行きの薄い、ビデオカメラ、デジタルカメラを実現する技術を提供することを狙っている。 In recent years, digital cameras have become widespread. Furthermore, it has come to have a number of categories in a wide range from a high-function type for business use to a portable popular type. In the present invention, particularly focusing on the category of portable popular types, aiming to provide a technology for realizing a video camera and a digital camera with a relatively high zoom ratio and a thin depth while ensuring high image quality. Yes.
カメラの奥行き方向を薄くするのに最大のネックとなっているのは、光学系、特にズームレンズ系の最も物体側の面から撮像面までの厚みである。最近では、撮影時に光学系をカメラボディ内からせり出し、携帯時に光学系をカメラボディ内に収納するいわゆる沈胴式鏡筒を採用することが主流になっている。 The biggest bottleneck in reducing the depth direction of the camera is the thickness from the most object-side surface to the imaging surface of the optical system, particularly the zoom lens system. Recently, it has become a mainstream to employ a so-called collapsible lens barrel that projects an optical system from the camera body during shooting and stores the optical system in the camera body when carried.
薄型化小型化を実施するには、撮像素子を小さくすればよいが、同じ画素数とするためには画素ピッチを小さくする必要があり、感度不足を光学系でカバーしなければならない。回折の影響も然りである。したがって、F値の明るい光学系が必要となる。このような光学系として、物体側から順に、正の屈折力を持った第1群、負の屈折力を持った第2群、正の屈折力を持った第3群、正の屈折力を持った第4群の4つのレンズ群から構成され、ズーム時に各レンズ群の間隔を変化させる光学系が知られている。このような光学系の従来技術として、特許文献1、特許文献2、特許文献3、特許文献4、特許文献5に、変倍比が4倍から5倍程度の電子撮像装置に適し、比較的構成レンズ枚数が少ないズームレンズが開示されているが、全長が長い等コンパクト性が十分でない等の課題がある。また、変倍比が3倍程度の従来例として、特許文献6、特許文献7、特許文献8、特許文献9にそのようなレンズ系の開示がある。また、特許文献10には、変倍比は3倍程度の銀塩フィルムに適した光学系が開示されているが、F値が広角端で3.5程度と暗いという課題がある。
本発明は、従来技術のこのような問題点に鑑みてなされたものであり、その目的は、コンパクトで明るく高変倍比化を行いやすいズームレンズとそれを搭載した撮像装置を提供することである。より具体的には、構成枚数を少なくしやすく、F値が広角端で2. 8程度と明るく、ズーム比が4〜5倍程度と大きく、結像性能が高いコンパクトなズームレンズとそれを搭載した撮像装置を提供することを目的とする。 The present invention has been made in view of such problems of the prior art, and an object of the present invention is to provide a zoom lens that is compact, bright and easy to increase the zoom ratio, and an image pickup apparatus equipped with the zoom lens. is there. More specifically, it is easy to reduce the number of components, the F-number is as bright as about 2.8 at the wide-angle end, the zoom ratio is as large as about 4 to 5 times, and a compact zoom lens with high imaging performance and it is installed. An object of the present invention is to provide an imaging apparatus.
上記目的を達成するための本発明の第1のズームレンズは、物体側より順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4を有し、ズーム時に、広角端に対し望遠端で間隔が、第1レンズ群G1と第2レンズ群G2の間が拡大し、第2レンズ群G2と第3レンズ群G3の間が縮小し、第3レンズ群G3と第4レンズ群G4の間が拡大するように、少なくとも第1レンズ群G1、第2レンズ群G2、第3レンズ群G3が光軸上を移動し、
第1レンズ群G1は多くても2枚のレンズで構成され、
第2レンズ群G2は、物体側から順に、負レンズL21、負レンズL22、正レンズL23から構成され、前記負レンズL21は像面側が強い曲率の負レンズ、前記負レンズL22は像面側が強い曲率の負レンズ、前記正レンズL23は物体側が強い曲率の正レンズであり、
前記第3レンズ群G3は、物体側から順に、両凸レンズL31と、像面側に凹面を向けた正メニスカスレンズL32と、像面側に凹面を向けた負メニスカスレンズL33とから構成され、前記正メニスカスレンズL32と前記負メニスカスレンズL33は接合レンズであり、前記両凸レンズL31は、以下の条件式を満足することを特徴とするものである。
In order to achieve the above object, a first zoom lens of the present invention includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a positive The zoom lens has a third lens group G3 having a refractive power and a fourth lens group G4 having a positive refractive power, and at the time of zooming, the distance from the wide-angle end to the telephoto end is such that the first lens group G1 and the second lens group G2 Between the second lens group G2 and the third lens group G3, and the distance between the third lens group G3 and the fourth lens group G4 is expanded. The second lens group G2 and the third lens group G3 move on the optical axis;
The first lens group G1 is composed of at most two lenses,
The second lens group G2 includes, in order from the object side, a negative lens L21, a negative lens L22, and a positive lens L23. The negative lens L21 is a negative lens having a strong curvature on the image plane side, and the negative lens L22 is strong on the image plane side. A negative lens having a curvature, the positive lens L23 is a positive lens having a strong curvature on the object side,
The third lens group G3 includes, in order from the object side, a biconvex lens L31, a positive meniscus lens L32 having a concave surface facing the image surface, and a negative meniscus lens L33 having a concave surface facing the image surface. The positive meniscus lens L32 and the negative meniscus lens L33 are cemented lenses, and the biconvex lens L31 satisfies the following conditional expression.
−6<R31/F31<−1 ・・・(1)
ただし、F31:両凸レンズL31の光軸近傍での物体側の曲率半径、
R31:両凸レンズL31の光軸近傍での像面側の曲率半径、
である。
−6 <R 31 / F 31 <−1 (1)
Where F 31 : radius of curvature on the object side in the vicinity of the optical axis of the biconvex lens L 31 ,
R 31 : radius of curvature on the image plane side in the vicinity of the optical axis of the biconvex lens L 31 ,
It is.
以下、第1のズームレンズにおいて上記構成をとる理由と作用を説明する。 Hereinafter, the reason and effect | action which take the said structure in a 1st zoom lens are demonstrated.
物体側より順にレンズ群の屈折力が正負正正の順に並ぶ構成とすることにより、変倍比が4倍を越えても性能を維持することができる。 By adopting a configuration in which the refractive powers of the lens units are arranged in order of positive, negative and positive in order from the object side, the performance can be maintained even when the zoom ratio exceeds four times.
ズーム時に、広角端に対し望遠端で間隔を、第1レンズ群G1と第2レンズ群G2の間を拡大させ、第2レンズ群G2と第3レンズ群G3の間を縮小させ、第3レンズ群G3と第4レンズ群G4の間を拡大させることにより、第2レンズ群G2と第3レンズ群G3に変倍の負担を分担させて効率的な変倍をさせることができる。さらに、第2レンズ群G2と第3レンズ群G3に加え、第1レンズ群G1を移動させることにより、コンパクトな光学系で変倍比を大きくさせやすくなる。 During zooming, the distance between the first lens group G1 and the second lens group G2 is enlarged, and the distance between the second lens group G2 and the third lens group G3 is reduced, and the third lens is separated from the wide angle end at the telephoto end. By enlarging the space between the group G3 and the fourth lens group G4, it is possible to share the burden of zooming between the second lens group G2 and the third lens group G3 and to perform efficient zooming. Furthermore, by moving the first lens group G1 in addition to the second lens group G2 and the third lens group G3, it becomes easy to increase the zoom ratio with a compact optical system.
ここで、第1レンズ群G1は、広角端に対し望遠端で物体側に位置させるようにするのが望ましい。それにより、広角端での全長が小さくでき、また、望遠端の焦点距離を長くするのに有利となる。 Here, it is desirable that the first lens group G1 is positioned on the object side at the telephoto end with respect to the wide angle end. Thereby, the total length at the wide-angle end can be reduced, and it is advantageous for increasing the focal length at the telephoto end.
若しくは、第2レンズ群G2は、広角端と望遠端の間で最も像側に近づけるようにするのが望ましい。つまり、第2レンズ群G2は、広角端から望遠端にて像側の凸状の軌跡で移動することが好ましい。それにより、広角側での変倍負担を担い、一方、望遠側では第3レンズ群G3の移動範囲を確保し、高変倍比化に有利となる。 Alternatively, it is desirable that the second lens group G2 be closest to the image side between the wide-angle end and the telephoto end. That is, it is preferable that the second lens group G2 moves along a convex locus on the image side from the wide-angle end to the telephoto end. This bears a zooming burden on the wide-angle side, while securing a moving range of the third lens group G3 on the telephoto side, which is advantageous for achieving a high zooming ratio.
若しくは、第3レンズ群G3は、広角端から望遠端にほぼ単調に物体側に移動させるようにするのが望ましい。つまり、第3レンズ群G3は、広角端から望遠端までのズーミングの間物体側にのみ移動することが好ましい。 Alternatively, it is desirable that the third lens group G3 is moved from the wide-angle end to the telephoto end almost monotonously toward the object side. That is, it is preferable that the third lens group G3 moves only to the object side during zooming from the wide-angle end to the telephoto end.
上述の第1レンズ群G1、第2レンズ群G2、第3レンズ群G3が共に上述の移動を行うことにより、広角域では第3レンズ群G3に、望遠域では第2レンズ群G2に変倍負担が大きくなり、高変倍でも結像性能の確保がしやすくなる。 When the first lens group G1, the second lens group G2, and the third lens group G3 are moved as described above, the magnification is changed to the third lens group G3 in the wide angle range and to the second lens group G2 in the telephoto range. This increases the burden and makes it easy to ensure imaging performance even at high zoom ratios.
また、第1レンズ群G1は、多くても2枚のレンズで構成することにより、第1レンズ群G1のレンズ径をコンパクトにすることができる。これは結果として、第1レンズ群G1の厚さを小さくすることができる。 In addition, the first lens group G1 is composed of at most two lenses, so that the lens diameter of the first lens group G1 can be made compact. As a result, the thickness of the first lens group G1 can be reduced.
さらに、第1レンズ群G1は、1枚の正レンズから構成するのが望ましい。これは、全長短縮、第1レンズ群G1のコスト低減上、好ましい。 Furthermore, it is desirable that the first lens group G1 is composed of one positive lens. This is preferable for shortening the overall length and reducing the cost of the first lens group G1.
あるいは、物体側より順に、1枚の負レンズと1枚の正レンズから構成するのが望ましい。こうすることにより、第1レンズ群G1での色収差等の補正に効果がある。 Alternatively, it is desirable to form one negative lens and one positive lens in order from the object side. By doing so, it is effective in correcting chromatic aberration and the like in the first lens group G1.
さらには、1枚の負レンズと1枚の正レンズからなる接合レンズから構成するのが望ましい。こうすることにより、2つのレンズ面間での反射光が抑えら、ゴースト低減しやすくなる。 Further, it is desirable to form a cemented lens composed of one negative lens and one positive lens. By doing so, the reflected light between the two lens surfaces is suppressed, and the ghost is easily reduced.
第2レンズ群G2は、物体側より順に、負レンズL21、負レンズL22、正レンズL23から構成することにより、変倍比を稼ぎ、かつ、パワーを持ちつつ、第2レンズ群G2の厚さを薄くして変倍のためのスペースを確保することができる。 The second lens group G2 includes, in order from the object side, a negative lens L21, a negative lens L22, and a positive lens L23, so that the zoom ratio is increased and the thickness of the second lens group G2 is maintained while having power. It is possible to secure a space for zooming by reducing the thickness.
また、第2レンズ群G2の負レンズL21は像面側が強い曲率の負レンズ、負レンズL22は像面側が強い曲率の負レンズ、正レンズL23は物体側が強い曲率の正レンズにすることにより、第2レンズ群G2の主点位置を物体側に配置することができ、広角端での全長を効率良くコンパクトにすることができる
一方、第2レンズ群G2で発散された光束を効率的に収斂光束とするために、第3レンズ群G3は、条件式(1)を満たす両凸レンズL31と、主に色収差の補正を行い軸外収差のコントロールも行う像面側に凹面を向けた正メニスカスレンズL32と像面側に凹面を向けた負メニスカスレンズL33を接合とすることにより、正メニスカスレンズL32と負メニスカスレンズL33の間隔や心ずれを精度良く管理することができる。また、正レンズL32と負レンズL33をメニスカスレンズとしたことにより、収差を良好に抑えつつ、接合レンズの厚さを薄くすることができる。
The negative lens L21 of the second lens group G2 is a negative lens having a strong curvature on the image side, the negative lens L22 is a negative lens having a strong curvature on the image side, and the positive lens L23 is a positive lens having a strong curvature on the object side. The principal point position of the second lens group G2 can be arranged on the object side, and the total length at the wide-angle end can be made compact efficiently. On the other hand, the light beam diverged by the second lens group G2 is efficiently converged. In order to obtain a luminous flux, the third lens group G3 includes a biconvex lens L31 that satisfies the conditional expression (1), and a positive meniscus lens having a concave surface directed toward the image plane that mainly corrects chromatic aberration and also controls off-axis aberrations. By joining L32 and the negative meniscus lens L33 with the concave surface facing the image surface side, the distance and misalignment between the positive meniscus lens L32 and the negative meniscus lens L33 can be accurately managed. The In addition, since the positive lens L32 and the negative lens L33 are meniscus lenses, it is possible to reduce the thickness of the cemented lens while suppressing aberrations favorably.
条件式(1)の上限の−1を越えると、両凸レンズL31の物体側の面で入射光束へ十分収斂作用を与えることができず、第3レンズ群G3の外径をコンパクトにすることができない。第3レンズ群G3はズーム時の移動量が比較的大きく、駆動機構も考慮すると外径が大きいのは好ましくない。下限の−6を越えると、両凸レンズL31の物体側の面の曲率がきつくなり、収差の発生が大きくなりすぎ好ましくない。 If the upper limit of −1 in conditional expression (1) is exceeded, the object-side surface of the biconvex lens L31 cannot sufficiently converge the incident light beam, and the outer diameter of the third lens group G3 can be made compact. Can not. The third lens group G3 has a relatively large movement amount during zooming, and it is not preferable that the outer diameter is large in consideration of the driving mechanism. If the lower limit of −6 is exceeded, the curvature of the object-side surface of the biconvex lens L31 becomes tight, and the occurrence of aberrations becomes too large.
また、条件式(1)の下限値を−4、さらには−3としてもよい。 Further, the lower limit value of the conditional expression (1) may be set to −4, and further to −3.
また、条件式(1)の上限値を−2.5、さらには−2.0としてもよい。 In addition, the upper limit value of conditional expression (1) may be set to −2.5, or further −2.0.
また、この両凸レンズL31は、非球面レンズであることが望ましく、さらに、両面非球面レンズであることが望ましい。 The biconvex lens L31 is preferably an aspheric lens, and more preferably a double-sided aspheric lens.
本発明の第2のズームレンズは、第1のズームレンズにおいて、以下の条件式を満足することを特徴とするものである。 The second zoom lens of the present invention is characterized in that the following conditional expression is satisfied in the first zoom lens.
5.8<f1 /fW <8.0 ・・・(2)
ただし、fW :広角端での全系の焦点距離、
f1 :第1レンズ群の焦点距離、
である。
5.8 <f 1 / f W <8.0 (2)
Where f W is the focal length of the entire system at the wide-angle end,
f 1 : focal length of the first lens group,
It is.
以下、第2のズームレンズにおいて上記構成をとる理由と作用を説明する。 Hereinafter, the reason and effect | action which take the said structure in a 2nd zoom lens are demonstrated.
条件式(2)は、第1レンズ群G1の屈折力を適切に定めた条件である。条件式(2)の上限の8.0を越えてf1 が大きくなると、小型化を維持しつつ、後ろの群で変倍を行うのが難しくなる。下限の5.8を越えると、第1レンズ群G1で発生する収差量が増えて、良好な結像性能を得るのが難しくなる。 Conditional expression (2) is a condition that appropriately determines the refractive power of the first lens group G1. If f 1 increases beyond the upper limit of 8.0 in conditional expression (2), it becomes difficult to perform zooming in the rear group while maintaining miniaturization. When the lower limit of 5.8 is exceeded, the amount of aberration generated in the first lens group G1 increases, making it difficult to obtain good imaging performance.
また、条件式(2)の下限値を5.95、さらには6.05としてもよい。 Further, the lower limit value of conditional expression (2) may be 5.95, or even 6.05.
また、条件式(2)の上限値を7.5、さらには7.0としてもよい。 In addition, the upper limit value of conditional expression (2) may be 7.5, or 7.0.
本発明の第3のズームレンズは、第1、第2のズームレンズにおいて、以下の条件式を満足することを特徴とするものである。 The third zoom lens of the present invention is characterized in that the following conditional expressions are satisfied in the first and second zoom lenses.
2<D2W/D3W<2.6 ・・・(3)
ただし、D2W:広角端での第2レンズ群−第3レンズ群間隔、
D3W:広角端での第3レンズ群−第4レンズ群間隔、
である。
2 <D 2W / D 3W <2.6 (3)
Where D 2W is the distance between the second lens group and the third lens group at the wide-angle end,
D 3W : Third lens group-fourth lens group spacing at the wide-angle end,
It is.
以下、第3のズームレンズにおいて上記構成をとる理由と作用を説明する。 Hereinafter, the reason and effect | action which take the said structure in a 3rd zoom lens are demonstrated.
条件式(3)は、広角端における第2レンズ群G2、第3レンズ群G3、第4レンズ群G4の適切な群間隔比を定めたものである。条件式(3)の上限の2.6より大きくなると、広角時の第1レンズ群G1、第2レンズ群G2が物体側に寄って、軸外光線の高さが大きくなり、レンズ径の大型化を招きやすくなる。若しくは、明るさ絞りを、第3レンズ群G3と共に移動させる場合、第2レンズ群G2−第3レンズ群G3間が狭まることによって像面への射出角度が大きくなりやすく、シェーディング特性の悪化を招く。条件式(3)の下限値2より小さくなると、第2レンズ群G2−第3レンズ群G3間の間隔が小さくなり、変倍に必要なスペースが確保し難くなる。
Conditional expression (3) defines an appropriate group spacing ratio of the second lens group G2, the third lens group G3, and the fourth lens group G4 at the wide angle end. When the value exceeds the upper limit of 2.6 in the conditional expression (3), the first lens group G1 and the second lens group G2 at the wide angle are closer to the object side, the height of off-axis rays is increased, and the lens diameter is increased. It becomes easy to invite. Alternatively, when the aperture stop is moved together with the third lens group G3, the angle between the second lens group G2 and the third lens group G3 is narrowed, so that the exit angle to the image surface is likely to increase, resulting in deterioration of shading characteristics. . When the value is smaller than the
また、条件式(3)の下限値を2.05、さらには2.07としてもよい。 Further, the lower limit value of conditional expression (3) may be set to 2.05, and further 2.07.
また、条件式(3)の上限値を2.55、さらには2.52としてもよい。 Further, the upper limit value of conditional expression (3) may be set to 2.55, and further to 2.52.
本発明の第4のズームレンズは、第1〜第3のズームレンズにおいて、以下の条件式を満足することを特徴とするものである。 The fourth zoom lens of the present invention is characterized in that, in the first to third zoom lenses, the following conditional expression is satisfied.
3<(β2T/β2W)*(β3T/β3W)*(β4T/β4W)<12 ・・・(4)
1.8<D2W/fW <2.8 ・・・(5)
ただし、β2T,β3T,β4T:それぞれ第2レンズ群、第3レンズ群、第4レンズ群の望遠 端での倍率、
β2W,β3W,β4W:それぞれ第2レンズ群、第3レンズ群、第4レンズ群の広角 端での倍率、
fW :広角端での全系の焦点距離、
D2W:広角端での第2レンズ群−第3レンズ群間隔、
である。
3 <(β 2T / β 2W ) * (β 3T / β 3W ) * (β 4T / β 4W ) <12 (4)
1.8 <D 2W / f W <2.8 (5)
Where β 2T , β 3T , β 4T : magnifications at the telephoto end of the second lens group, the third lens group, and the fourth lens group,
β 2W , β 3W , β 4W : magnifications at the wide angle end of the second lens group, the third lens group, and the fourth lens group,
f W : the focal length of the entire system at the wide-angle end,
D 2W : second lens group-third lens group spacing at the wide-angle end,
It is.
以下、第4のズームレンズにおいて上記構成をとる理由と作用を説明する。 Hereinafter, the reason and effect | action which take the said structure in a 4th zoom lens are demonstrated.
条件式(4)は基本的な変倍比に関するものである。条件式(4)を満足し、条件式(5)の上限の2.8を越えると、広角時の第1レンズ群G1、第2レンズ群G2が物体側に寄って、軸外光線の高さが大きくなりレンズ径の大型化を招くか、第2レンズ群G2−第3レンズ群G3間が狭まることによって像面への射出角度が大きくなり、シェーディング特性の悪化を招く。条件式(5)の下限の1.8を超えると、第2レンズ群G2−第3レンズ群G3間の間隔の変化量が確保できず、結像性能を確保した上で条件式(4)を満足するのが難しくなる。 Conditional expression (4) relates to a basic zoom ratio. When the conditional expression (4) is satisfied and the upper limit of 2.8 of the conditional expression (5) is exceeded, the first lens group G1 and the second lens group G2 at the wide angle are close to the object side, and the height of off-axis rays is increased. Increases the lens diameter, or the distance between the second lens group G2 and the third lens group G3 is narrowed, resulting in an increase in the angle of emission to the image plane, resulting in deterioration of shading characteristics. If the lower limit of 1.8 of the conditional expression (5) is exceeded, the amount of change in the distance between the second lens group G2 and the third lens group G3 cannot be ensured, and conditional expression (4) is ensured while ensuring imaging performance. It becomes difficult to satisfy.
条件式(4)、(5)何れか一方若しくは双方について、以下の数値範囲としてもよい。 One or both of conditional expressions (4) and (5) may be in the following numerical ranges.
3<(β2T/β2W)*(β3T/β3W)*(β4T/β4W)<7 ・・・(4)’
2.0<D2W/fW <2.8 ・・・(5)’
また、条件式(4)の下限値を3.3、さらには3.5としてもよい。
3 <(β 2T / β 2W ) * (β 3T / β 3W ) * (β 4T / β 4W ) <7 (4) ′
2.0 <D 2W / f W <2.8 (5) ′
Further, the lower limit value of conditional expression (4) may be 3.3, or 3.5.
また、条件式(4)の上限値を7.0、さらには6.3としてもよい。 Further, the upper limit value of conditional expression (4) may be set to 7.0, or even 6.3.
また、条件式(5)の下限値を2.2、さらには2.35としてもよい。 In addition, the lower limit value of conditional expression (5) may be set to 2.2, or even 2.35.
また、条件式(5)の上限値を2.75、さらには2.7としてもよい。 Further, the upper limit value of conditional expression (5) may be 2.75, or 2.7.
本発明の第5のズームレンズは、第1〜第4のズームレンズにおいて、第2レンズ群G2の2枚の負レンズの硝材の屈折率が何れも1.81以上で、かつ、第2レンズ群G2の正レンズの硝材の屈折率が1.9以上であることを特徴とするものである。 According to a fifth zoom lens of the present invention, in the first to fourth zoom lenses, the refractive indexes of the glass materials of the two negative lenses in the second lens group G2 are both 1.81 or more, and the second lens The refractive index of the glass material of the positive lens in group G2 is 1.9 or more.
第5のズームレンズにおいて上記構成をとる理由と作用を説明すると、第2レンズ群G2の2枚の負レンズの硝材の屈折率が何れも1.81以下であり、かつ、第2レンズ群G2の正レンズの硝材の屈折率が1.9以下であると、実在する硝材の組み合わせにおいて色収差の補正が難しくなる。また、ペッツバール和が負方向に大きくなり、像面湾曲が大きくなってしまう。 The reason and action of the fifth zoom lens having the above configuration will be described. The refractive index of the glass material of the two negative lenses in the second lens group G2 is 1.81 or less, and the second lens group G2. If the refractive index of the glass material of the positive lens is 1.9 or less, it becomes difficult to correct chromatic aberration in a combination of existing glass materials. In addition, the Petzval sum increases in the negative direction, and the field curvature increases.
本発明の第6のズームレンズは、第1〜第5のズームレンズにおいて、以下の条件式を満足することを特徴とするものである。 The sixth zoom lens of the present invention is characterized in that, in the first to fifth zoom lenses, the following conditional expression is satisfied.
0.8<ΔT1G /ΔT3G <1.3 ・・・(6)
ただし、ΔT1G :広角端から望遠端の間での第1レンズ群の移動量、
ΔT3G :広角端から望遠端の間での第3レンズ群の移動量、
である。
0.8 <Δ T1G / Δ T3G <1.3 (6)
Where Δ T1G is the amount of movement of the first lens unit between the wide-angle end and the telephoto end,
Δ T3G : the amount of movement of the third lens group from the wide-angle end to the telephoto end,
It is.
以下、第6のズームレンズにおいて上記構成をとる理由と作用を説明する。 Hereinafter, the reason and effect | action which take the said structure in a 6th zoom lens are demonstrated.
条件式(6)の上限の1.3を越えると、変倍による第1レンズ群G1の移動量が大きくなり、第1レンズ群G1の径を広げないと、望遠端での周辺光量の低下が顕著になる。また、下限の0.8を越えると、第3レンズ群G3での変倍負担が増えて、開放Fナンバーの変動が大きくなり、絞り径固定の場合、望遠端におけるFナンバーが大きくなり暗くなってしまう。又は、開放絞り径をズーミングで変化させると、機構が複雑になり、又は、スペース効率が悪くなる。また、第1レンズ群G1の有効径を広角端で設定すると、広角端での入射瞳位置が深くなり、望遠端で第1レンズ群G1の周辺部を使用しないため、第1レンズ群G1の利用効率が悪く、コンパクト化に不利となる。 When the upper limit of 1.3 of conditional expression (6) is exceeded, the amount of movement of the first lens group G1 due to zooming increases, and the peripheral light amount at the telephoto end decreases unless the diameter of the first lens group G1 is increased. Becomes prominent. If the lower limit of 0.8 is exceeded, the zooming burden on the third lens group G3 increases, and the fluctuation of the open F-number increases. When the aperture is fixed, the F-number at the telephoto end increases and becomes dark. End up. Or, when the open aperture diameter is changed by zooming, the mechanism becomes complicated or the space efficiency becomes worse. If the effective diameter of the first lens group G1 is set at the wide-angle end, the entrance pupil position at the wide-angle end becomes deep, and the periphery of the first lens group G1 is not used at the telephoto end. Use efficiency is poor, and it is disadvantageous for downsizing.
また、条件式(6)の下限値を0.85、さらには0.9としてもよい。 Further, the lower limit value of conditional expression (6) may be set to 0.85, further 0.9.
また、条件式(6)の上限値を1.25、さらには1.2としてもよい。 In addition, the upper limit value of conditional expression (6) may be 1.25, or 1.2.
本発明の第7のズームレンズは、第6のズームレンズにおいて、以下の条件式を満足することを特徴とするものである。 The seventh zoom lens of the present invention is characterized in that, in the sixth zoom lens, the following conditional expression is satisfied.
−0.20<ΔS1G /ΔS3G <0.8 ・・・(7)
ただし、ΔS1G :広角端から中間焦点距離状態の間での第1レンズ群の移動量、
ΔT3G :広角端から中間焦点距離状態の間での第3レンズ群の移動量、
である。ただし、中間焦点距離状態は、ズームレンズの広角端焦点距離fW と望遠端焦点距離fT としたときに、fS =√(fW ・fT )で表される焦点距離fS となる状態である。
-0.20 <Δ S1G / Δ S3G <0.8 (7)
Where Δ S1G is the amount of movement of the first lens unit between the wide-angle end and the intermediate focal length state,
Δ T3G : the amount of movement of the third lens unit between the wide-angle end and the intermediate focal length state,
It is. However, the intermediate focal length state is a focal length f S represented by f S = √ (f W · f T ) when the zoom lens has a wide-angle end focal length f W and a telephoto end focal length f T. State.
以下、第7のズームレンズにおいて上記構成をとる理由と作用を説明する。 Hereinafter, the reason and effect | action which take the said structure in a 7th zoom lens are demonstrated.
条件式(7)の上限の0.8を越えると、中間領域で入射瞳位置が深くなることにより、第1レンズ群G1の入射光線高が高くなるため、第1レンズ群G1のレンズ径が増大する。また、下限の−0.20を越えると、中間焦点距離から望遠端までの間の第1レンズ群G1の移動量が大きくなりすぎるため、機構上の負担が大きくなる。 If the upper limit of 0.8 of conditional expression (7) is exceeded, the entrance pupil position becomes deeper in the intermediate region, and the incident light height of the first lens group G1 becomes higher, so the lens diameter of the first lens group G1 becomes larger. Increase. If the lower limit of −0.20 is exceeded, the amount of movement of the first lens group G1 from the intermediate focal length to the telephoto end becomes too large, which increases the mechanical burden.
また、条件式(7)の下限値を−0.1、さらには0、さらには0.1としてもよい。 In addition, the lower limit value of conditional expression (7) may be set to −0.1, further 0, and further 0.1.
また、条件式(7)の上限値を0.75、さらには0.7としてもよい。 In addition, the upper limit value of conditional expression (7) may be set to 0.75, or 0.7.
本発明の第8のズームレンズは、第1〜第7のズームレンズにおいて、以下の条件式を満足することを特徴とするものである。 The eighth zoom lens of the present invention is characterized in that, in the first to seventh zoom lenses, the following conditional expression is satisfied.
3<(β2T/β2W)*(β3T/β3W)*(β4T/β4W)<12 ・・・(4)
1.1<|f2 /fW |<1.8 ・・・(8)
ただし、fW :広角端での全系の焦点距離、
f2 :第2レンズ群の焦点距離、
β2T,β3T,β4T:それぞれ第2レンズ群、第3レンズ群、第4レンズ群の望遠 端での倍率、
β2W,β3W,β4W:それぞれ第2レンズ群、第3レンズ群、第4レンズ群の広角 端での倍率、
である。
3 <(β 2T / β 2W ) * (β 3T / β 3W ) * (β 4T / β 4W ) <12 (4)
1.1 <| f 2 / f W | <1.8 (8)
Where f W is the focal length of the entire system at the wide-angle end,
f 2 : focal length of the second lens group,
β 2T , β 3T , β 4T : magnifications at the telephoto end of the second lens group, the third lens group, and the fourth lens group,
β 2W , β 3W , β 4W : magnifications at the wide angle end of the second lens group, the third lens group, and the fourth lens group,
It is.
以下、第8のズームレンズにおいて上記構成をとる理由と作用を説明する。 Hereinafter, the reason and effect of the above configuration in the eighth zoom lens will be described.
条件式(4)は基本的な変倍比に関するものである。条件式(4)を満足した上で、条件式(8)の上限の1.8を越えると、第2レンズ群G2の変倍負担が大きくなり、全長の増加及び前玉径の増大を招きやすい。下限の1.1を越えると、第3レンズ群G3の変倍による移動量が大きくなり、望遠端のFナンバーが暗くなる。また、CCD等撮像素子への入射角変動が大きくなる。若しくは、第3レンズ群G3のパワーが大きくなり、収差量が増大して結像性能の確保が難しくなる。 Conditional expression (4) relates to a basic zoom ratio. If conditional formula (4) is satisfied and the upper limit of 1.8 to conditional formula (8) is exceeded, the zooming burden on the second lens group G2 will increase, leading to an increase in overall length and an increase in front lens diameter. Cheap. When the lower limit of 1.1 is exceeded, the amount of movement due to zooming of the third lens group G3 increases, and the F-number at the telephoto end becomes dark. In addition, the incident angle fluctuation to the image pickup device such as a CCD becomes large. Alternatively, the power of the third lens group G3 increases, and the amount of aberration increases, making it difficult to ensure imaging performance.
また、条件式(4)の下限値を3.3、さらには3.5としてもよい。 Further, the lower limit value of conditional expression (4) may be 3.3, or 3.5.
また、条件式(4)の上限値を7.0、さらには6.3としてもよい。 Further, the upper limit value of conditional expression (4) may be set to 7.0, or even 6.3.
また、条件式(8)の下限値を1.3、さらには1.35としてもよい。 In addition, the lower limit value of conditional expression (8) may be set to 1.3, or even 1.35.
また、条件式(8)の上限値を1.7、さらには1.6としてもよい。 In addition, the upper limit value of conditional expression (8) may be 1.7, or 1.6.
本発明の第9のズームレンズは、第1〜第8のズームレンズにおいて、以下の条件式を満足することを特徴とするものである。 The ninth zoom lens of the present invention is characterized in that, in the first to eighth zoom lenses, the following conditional expression is satisfied.
1.2<f3 /fW <1.85 ・・・(9)
ただし、fW :広角端での全系の焦点距離、
f3 :第3レンズ群の焦点距離、
である。
1.2 <f 3 / f W <1.85 (9)
Where f W is the focal length of the entire system at the wide-angle end,
f 3 : focal length of the third lens group,
It is.
以下、第9のズームレンズにおいて上記構成をとる理由と作用を説明する。 Hereinafter, the reason and effect | action which take the said structure in a 9th zoom lens are demonstrated.
条件式(9)は、第3レンズ群G3の適正な屈折力を特定したものである。条件式(9)の上限の1.85を越えると、第3レンズ群G3での変倍作用が弱くなり、望遠端への変倍時の全長が長くなる。また、明るさ絞りを第3レンズ群G3と共に移動させる等の場合、射出瞳位置の変動量が大きくなるため、軸外の像面位置でCCD等撮像素子への入射角変動が大きくなり、シェーディング等に悪影響を及ぼす。条件式(9)の下限の1.2より小さくなると、枚数を増やしコンパクト性を損なわないと、収差発生量が増えて良好な結像性能を得るのが難しくなる。また、十分なバックフォーカスが得難くなる。 Conditional expression (9) specifies an appropriate refractive power of the third lens group G3. If the upper limit of 1.85 in conditional expression (9) is exceeded, the zooming action at the third lens group G3 will be weakened, and the total length when zooming to the telephoto end will be long. In addition, when the aperture stop is moved together with the third lens group G3, the variation amount of the exit pupil position becomes large, so that the incident angle fluctuation to the image pickup device such as a CCD becomes large at the off-axis image plane position, and shading is performed. Adversely affected. If the lower limit of 1.2 of conditional expression (9) is not reached, the amount of aberration increases and it becomes difficult to obtain good imaging performance unless the number of sheets is increased and the compactness is not impaired. In addition, it is difficult to obtain sufficient back focus.
また、条件式(1)の下限値を1.4、さらには1.6としてもよい。 In addition, the lower limit value of conditional expression (1) may be 1.4, or 1.6.
また、条件式(1)の上限値を1.83、さらには1.81としてもよい。 In addition, the upper limit value of conditional expression (1) may be set to 1.83, or even 1.81.
本発明の第10のズームレンズは、第1〜第9のズームレンズにおいて、以下の条件式を満足することを特徴とするものである。 The tenth zoom lens of the present invention is characterized in that, in the first to ninth zoom lenses, the following conditional expression is satisfied.
6.4<LW /fW <7.4 ・・・(10)
ただし、LW :広角端での全長、
fW :広角端での全系の焦点距離、
である。
6.4 <L W / f W <7.4 (10)
Where L W is the total length at the wide-angle end,
f W : focal length of the entire system at the wide-angle end,
It is.
以下、第10のズームレンズにおいて上記構成をとる理由と作用を説明する。 Hereinafter, the reason and action of the tenth zoom lens having the above configuration will be described.
条件式(10)は、広角端での全系の焦点距離に対する全長(レンズ系第1面から像面までの長さ)の比を規定したもので、その上限の7.4を越えると、広角端での全長が長くなり、レンズユニットの大型化を招く。また、第1レンズ群G1での光線高が高くなるので、レンズ径の増大を招く。下限の6.4を越えると、結果的に第2レンズ群G2〜第3レンズ群G3の間隔が狭くなるため、変倍に必要なスペースを確保できなくなる。 Conditional expression (10) defines the ratio of the total length (length from the first surface of the lens system to the image plane) with respect to the focal length of the entire system at the wide angle end, and when the upper limit of 7.4 is exceeded, The overall length at the wide-angle end becomes longer, leading to an increase in the size of the lens unit. In addition, since the height of the light beam in the first lens group G1 increases, the lens diameter increases. If the lower limit of 6.4 is exceeded, as a result, the distance between the second lens group G2 and the third lens group G3 becomes narrow, and it becomes impossible to secure a space necessary for zooming.
また、条件式(9)の下限値を6.55、さらには6.5としてもよい。 In addition, the lower limit value of conditional expression (9) may be set to 6.55, or 6.5.
また、条件式(9)の上限値を7.2、さらには7.0としてもよい。 Also, the upper limit value of conditional expression (9) may be set to 7.2, or 7.0.
なお、以上の本発明において、駆動機構を含めてコンパクト性等の観点から、第4レンズ群G4は1枚のレンズで構成するのが好ましい。また、フォーカシングは第4レンズ群G4で行うのが好ましい。また、明るさ絞りは、第3レンズ群G3の物体側に配置し、第3レンズ群G3と一体として移動するのが好ましい。 In the present invention described above, it is preferable that the fourth lens group G4 includes a single lens from the viewpoint of compactness including the drive mechanism. Further, focusing is preferably performed by the fourth lens group G4. In addition, it is preferable that the aperture stop is disposed on the object side of the third lens group G3 and moves integrally with the third lens group G3.
また、本発明は、コンパクトにするため4群構成とするのが好ましいが、パワーの弱いレンズ群を加えてもよいし、また、本発明の作用効果を享受しながら、像面側にレンズ群を追加し、さらに高倍率なズームレンズとしたり、高性能としたり、機能を拡大しするようにしてもよい。 In order to make the present invention compact, it is preferable to adopt a four-group configuration. However, a lens group with low power may be added, and the lens group on the image plane side while enjoying the effects of the present invention. May be added to make a zoom lens with higher magnification, higher performance, or expanded functions.
また、本発明の撮像装置は、以上のようなズームレンズと、その像側に配置された撮像素子とを備えているとを備えている。上記のズームレンズは、コンパクトで明るく高変倍比のものである。よって、このようなズームレンズを撮像光学系として撮像装置に搭載すれば、小型化・高機能化を図ることができる。なお、撮像装置としては、デジタルカメラ以外に、ビデオカメラ、デジタルビデオユニット等がある。 The image pickup apparatus of the present invention includes the zoom lens as described above and an image pickup element arranged on the image side thereof. The zoom lens is compact, bright and has a high zoom ratio. Therefore, if such a zoom lens is mounted on an imaging apparatus as an imaging optical system, it is possible to reduce the size and increase the functionality. In addition to the digital camera, the imaging device includes a video camera, a digital video unit, and the like.
以上の本発明のズームレンズ及びそれを搭載した撮像装置によると、コンパクトで明るく高変倍比化を行いやすいズームレンズとそれを搭載した撮像装置を得ることができ、より具体的には、構成枚数を少なくしやすく、F値が広角端で2. 8程度と明るく、ズーム比が4〜5倍程度と大きく、結像性能が高いコンパクトなズームレンズとそれを搭載した撮像装置を得ることができる。 According to the zoom lens of the present invention and the image pickup apparatus equipped with the zoom lens, it is possible to obtain a zoom lens that is compact, bright and easy to achieve a high zoom ratio, and an image pickup apparatus equipped with the zoom lens. It is easy to reduce the number of images, and it is possible to obtain a compact zoom lens having a high F-number of about 2.8 at the wide-angle end, a large zoom ratio of about 4 to 5 times, and a high imaging performance, and an image pickup apparatus equipped with the zoom lens. it can.
以下、本発明のズームレンズの実施例1〜7について説明する。実施例1〜7の無限遠物点合焦時の広角端(a)、中間状態(b)、望遠端(c)のレンズ断面図をそれぞれ図1〜図7に示す。図中、第1レンズ群はG1、第2レンズ群はG2、開口絞りはS、第3レンズ群はG3、第4レンズ群はG4、IRカットコートを施したローパスフィルターを構成する平行平板はF、電子撮像素子のカバーガラスの平行平板はC、像面はIで示してある。なお、カバーガラスCGの表面に波長域制限用の多層膜を施してもよい。また、そのカバーガラスCGにローパスフィルター作用を持たせるようにしてもよい。 Examples 1 to 7 of the zoom lens according to the present invention will be described below. FIGS. 1 to 7 show lens cross-sectional views at the wide-angle end (a), the intermediate state (b), and the telephoto end (c) when focusing on an object point at infinity in Examples 1 to 7, respectively. In the figure, the first lens group is G1, the second lens group is G2, the aperture stop is S, the third lens group is G3, the fourth lens group is G4, and the parallel plates constituting the low-pass filter with IR cut coating are F, C is the parallel plate of the cover glass of the electronic image sensor, and I is the image plane. In addition, you may give the multilayer film for wavelength range limitation to the surface of the cover glass CG. Further, the cover glass CG may have a low-pass filter function.
実施例1のズーム光学系は、図1に示すように、物体側から順に、正の屈折力を有する第1レンズ群G1、負の屈折力を有する第2レンズ群G2、開口絞りS、正の屈折力を有する第3レンズ群G3、正の屈折力を有する第4レンズ群G4から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は物体側へ移動し、第2レンズ群G2は像側の凸の軌跡を描いて移動し、望遠端では広角端の位置より像側に位置する。開口絞りSと第3レンズ群G3は一体に物体側に単調に移動し、第4レンズ群G4は物体側に凸の軌跡を描いて移動し、望遠端では広角端の位置より物体側に位置する。 As shown in FIG. 1, the zoom optical system according to the first embodiment includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, an aperture stop S, a positive Is composed of a third lens group G3 having a refractive power of 4 and a fourth lens group G4 having a positive refractive power. When zooming from the wide-angle end to the telephoto end, the first lens group G1 The second lens group G2 moves along a convex locus on the image side, and is located closer to the image side at the telephoto end than at the wide-angle end. The aperture stop S and the third lens group G3 integrally move monotonically toward the object side, and the fourth lens group G4 moves along a locus convex toward the object side, and is positioned closer to the object side than the wide-angle end position at the telephoto end. To do.
物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズと物体側に凸面を向けた正メニスカスレンズの接合レンズからなり、第2レンズ群G2は、物体側に凸面を向けた負メニスカスレンズと、平凹負レンズと、物体側に凸面を向けた正メニスカスレンズとからなり、第3レンズ群G3は、両凸正レンズと、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズの接合レンズとからなり、第4レンズ群G4は、両凸正レンズ1枚からなる。 In order from the object side, the first lens group G1 includes a cemented lens of a negative meniscus lens having a convex surface facing the object side and a positive meniscus lens having a convex surface facing the object side, and the second lens group G2 has a convex surface facing the object side. A negative meniscus lens having a convex surface, a plano-concave negative lens, and a positive meniscus lens having a convex surface facing the object side. The third lens group G3 includes a biconvex positive lens and a positive meniscus having a convex surface facing the object side. The fourth lens group G4 includes a single biconvex positive lens. The fourth lens group G4 includes a lens and a cemented lens of a negative meniscus lens having a convex surface facing the object side.
非球面は、第3レンズ群G3の両凸正レンズの両面と、第4レンズ群G4の両凸正レンズの両面の4面に用いている。 The aspheric surfaces are used on both surfaces of the biconvex positive lens of the third lens group G3 and both surfaces of the biconvex positive lens of the fourth lens group G4.
実施例2のズーム光学系は、図2に示すように、物体側から順に、正の屈折力を有する第1レンズ群G1、負の屈折力を有する第2レンズ群G2、開口絞りS、正の屈折力を有する第3レンズ群G3、正の屈折力を有する第4レンズ群G4から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は物体側へ移動し、第2レンズ群G2は像側の凸の軌跡を描いて移動し、望遠端では広角端の位置より像側に位置する。開口絞りSと第3レンズ群G3は一体に物体側に単調に移動し、第4レンズ群G4は物体側に凸の軌跡を描いて移動し、望遠端では広角端の位置より物体側に位置する。 As shown in FIG. 2, the zoom optical system according to the second embodiment includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, an aperture stop S, a positive Is composed of a third lens group G3 having a refractive power of 4 and a fourth lens group G4 having a positive refractive power. When zooming from the wide-angle end to the telephoto end, the first lens group G1 The second lens group G2 moves along a convex locus on the image side, and is located closer to the image side at the telephoto end than at the wide-angle end. The aperture stop S and the third lens group G3 integrally move monotonically toward the object side, and the fourth lens group G4 moves along a locus convex toward the object side, and is positioned closer to the object side than the wide-angle end position at the telephoto end. To do.
物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズと両凸正レンズの接合レンズからなり、第2レンズ群G2は、物体側に凸面を向けた負メニスカスレンズ2枚と、物体側に凸面を向けた正メニスカスレンズとからなり、第3レンズ群G3は、両凸正レンズと、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズの接合レンズとからなり、第4レンズ群G4は、両凸正レンズ1枚からなる。 In order from the object side, the first lens group G1 is composed of a cemented lens of a negative meniscus lens having a convex surface facing the object side and a biconvex positive lens, and the second lens group G2 is a negative meniscus lens having a convex surface facing the object side. The third lens group G3 includes a biconvex positive lens, a positive meniscus lens having a convex surface on the object side, and a negative meniscus having a convex surface on the object side. The fourth lens group G4 is composed of a single biconvex positive lens.
非球面は、第3レンズ群G3の両凸正レンズの両面の2面に用いている。 Aspherical surfaces are used on both surfaces of the biconvex positive lens of the third lens group G3.
実施例3のズーム光学系は、図3に示すように、物体側から順に、正の屈折力を有する第1レンズ群G1、負の屈折力を有する第2レンズ群G2、開口絞りS、正の屈折力を有する第3レンズ群G3、正の屈折力を有する第4レンズ群G4から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は物体側へ移動し、第2レンズ群G2は像側の凸の軌跡を描いて移動し、望遠端では広角端の位置より像側に位置する。開口絞りSと第3レンズ群G3は一体に物体側に単調に移動し、第4レンズ群G4は物体側に凸の軌跡を描いて移動し、望遠端では広角端の位置より物体側に位置する。 As shown in FIG. 3, the zoom optical system according to the third embodiment includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, an aperture stop S, a positive Is composed of a third lens group G3 having a refractive power of 4 and a fourth lens group G4 having a positive refractive power. When zooming from the wide-angle end to the telephoto end, the first lens group G1 The second lens group G2 moves along a convex locus on the image side, and is located closer to the image side at the telephoto end than at the wide-angle end. The aperture stop S and the third lens group G3 integrally move monotonically toward the object side, and the fourth lens group G4 moves along a locus convex toward the object side, and is positioned closer to the object side than the wide-angle end position at the telephoto end. To do.
物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズと両凸正レンズの接合レンズからなり、第2レンズ群G2は、物体側に凸面を向けた負メニスカスレンズ2枚と、物体側に凸面を向けた正メニスカスレンズとからなり、第3レンズ群G3は、両凸正レンズと、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズの接合レンズとからなり、第4レンズ群G4は、両凸正レンズ1枚からなる。 In order from the object side, the first lens group G1 is composed of a cemented lens of a negative meniscus lens having a convex surface facing the object side and a biconvex positive lens, and the second lens group G2 is a negative meniscus lens having a convex surface facing the object side. The third lens group G3 includes a biconvex positive lens, a positive meniscus lens having a convex surface on the object side, and a negative meniscus having a convex surface on the object side. The fourth lens group G4 is composed of a single biconvex positive lens.
非球面は、第3レンズ群G3の両凸正レンズの両面の2面に用いている。 Aspherical surfaces are used on both surfaces of the biconvex positive lens of the third lens group G3.
実施例4のズーム光学系は、図4に示すように、物体側から順に、正の屈折力を有する第1レンズ群G1、負の屈折力を有する第2レンズ群G2、開口絞りS、正の屈折力を有する第3レンズ群G3、正の屈折力を有する第4レンズ群G4から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は物体側へ移動し、第2レンズ群G2は像側の凸の軌跡を描いて移動し、望遠端では広角端の位置より像側に位置する。開口絞りSと第3レンズ群G3は一体に物体側に単調に移動し、第4レンズ群G4は第3レンズ群G3との間隔を広げながら物体側に移動する。 As shown in FIG. 4, the zoom optical system according to the fourth embodiment includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, an aperture stop S, a positive Is composed of a third lens group G3 having a refractive power of 4 and a fourth lens group G4 having a positive refractive power. When zooming from the wide-angle end to the telephoto end, the first lens group G1 The second lens group G2 moves along a convex locus on the image side, and is located closer to the image side at the telephoto end than at the wide-angle end. The aperture stop S and the third lens group G3 integrally move monotonically toward the object side, and the fourth lens group G4 moves toward the object side while increasing the distance from the third lens group G3.
物体側から順に、第1レンズ群G1は、両凸正レンズ1枚からなり、第2レンズ群G2は、物体側に凸面を向けた負メニスカスレンズ2枚と、物体側に凸面を向けた正メニスカスレンズとからなり、第3レンズ群G3は、両凸正レンズと、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズの接合レンズとからなり、第4レンズ群G4は、両凸正レンズ1枚からなる。 In order from the object side, the first lens group G1 includes one biconvex positive lens, and the second lens group G2 includes two negative meniscus lenses having a convex surface on the object side and a positive surface having a convex surface on the object side. The third lens group G3 includes a biconvex positive lens, a cemented lens of a positive meniscus lens having a convex surface facing the object side, and a negative meniscus lens having a convex surface facing the object side. The group G4 is composed of one biconvex positive lens.
非球面は、第3レンズ群G3の両凸正レンズの両面と、第4レンズ群G4の両凸正レンズの物体側の面の3面に用いている。 The aspheric surfaces are used for the three surfaces of the biconvex positive lens of the third lens group G3 and the object side surface of the biconvex positive lens of the fourth lens group G4.
実施例5のズーム光学系は、図5に示すように、物体側から順に、正の屈折力を有する第1レンズ群G1、負の屈折力を有する第2レンズ群G2、開口絞りS、正の屈折力を有する第3レンズ群G3、正の屈折力を有する第4レンズ群G4から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は物体側へ移動し、第2レンズ群G2は像側の凸の軌跡を描いて移動し、望遠端では広角端の位置より像側に位置する。開口絞りSと第3レンズ群G3は一体に物体側に単調に移動し、第4レンズ群G4は物体側に凸の軌跡を描いて移動し、望遠端では広角端の位置より物体側に位置する。 As shown in FIG. 5, the zoom optical system according to the fifth embodiment includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, an aperture stop S, a positive Is composed of a third lens group G3 having a refractive power of 4 and a fourth lens group G4 having a positive refractive power. When zooming from the wide-angle end to the telephoto end, the first lens group G1 The second lens group G2 moves along a convex locus on the image side, and is located closer to the image side at the telephoto end than at the wide-angle end. The aperture stop S and the third lens group G3 integrally move monotonically toward the object side, and the fourth lens group G4 moves along a locus convex toward the object side, and is positioned closer to the object side than the wide-angle end position at the telephoto end. To do.
物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズと両凸正レンズの接合レンズからなり、第2レンズ群G2は、物体側に凸面を向けた負メニスカスレンズ2枚と、物体側に凸面を向けた正メニスカスレンズとからなり、第3レンズ群G3は、両凸正レンズと、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズの接合レンズとからなり、第4レンズ群G4は、両凸正レンズ1枚からなる。 In order from the object side, the first lens group G1 is composed of a cemented lens of a negative meniscus lens having a convex surface facing the object side and a biconvex positive lens, and the second lens group G2 is a negative meniscus lens having a convex surface facing the object side. The third lens group G3 includes a biconvex positive lens, a positive meniscus lens having a convex surface on the object side, and a negative meniscus having a convex surface on the object side. The fourth lens group G4 is composed of a single biconvex positive lens.
非球面は、第3レンズ群G3の両凸正レンズの両面と、第4レンズ群G4の両凸正レンズの物体側の面の3面に用いている。 The aspheric surfaces are used for the three surfaces of the biconvex positive lens of the third lens group G3 and the object side surface of the biconvex positive lens of the fourth lens group G4.
実施例6のズーム光学系は、図6に示すように、物体側から順に、正の屈折力を有する第1レンズ群G1、負の屈折力を有する第2レンズ群G2、開口絞りS、正の屈折力を有する第3レンズ群G3、正の屈折力を有する第4レンズ群G4から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は物体側へ移動し、第2レンズ群G2は像側の凸の軌跡を描いて移動し、望遠端では広角端の位置より像側に位置する。開口絞りSと第3レンズ群G3は一体に物体側に単調に移動し、第4レンズ群G4は物体側に凸の軌跡を描いて移動し、望遠端では広角端の位置より物体側に位置する。 As shown in FIG. 6, the zoom optical system according to the sixth embodiment includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, an aperture stop S, a positive Is composed of a third lens group G3 having a refractive power of 4 and a fourth lens group G4 having a positive refractive power. When zooming from the wide-angle end to the telephoto end, the first lens group G1 The second lens group G2 moves along a convex locus on the image side, and is located closer to the image side at the telephoto end than at the wide-angle end. The aperture stop S and the third lens group G3 integrally move monotonically toward the object side, and the fourth lens group G4 moves along a locus convex toward the object side, and is positioned closer to the object side than the wide-angle end position at the telephoto end. To do.
物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズと物体側に凸面を向けた正メニスカスレンズの接合レンズからなり、第2レンズ群G2は、物体側に凸面を向けた負メニスカスレンズと、平凹負レンズと、物体側に凸面を向けた正メニスカスレンズとからなり、第3レンズ群G3は、両凸正レンズと、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズの接合レンズとからなり、第4レンズ群G4は、物体側に凸面を向けた正メニスカスレンズ1枚からなる。 In order from the object side, the first lens group G1 includes a cemented lens of a negative meniscus lens having a convex surface facing the object side and a positive meniscus lens having a convex surface facing the object side, and the second lens group G2 has a convex surface facing the object side. A negative meniscus lens having a convex surface, a plano-concave negative lens, and a positive meniscus lens having a convex surface facing the object side. The third lens group G3 includes a biconvex positive lens and a positive meniscus having a convex surface facing the object side. The fourth lens group G4 is composed of one positive meniscus lens having a convex surface facing the object side and a cemented lens of a negative meniscus lens having a convex surface facing the object side.
非球面は、第3レンズ群G3の両凸正レンズの両面と、第4レンズ群G4の正メニスカスレンズの両面の4面に用いている。 The aspheric surfaces are used on the four surfaces of the biconvex positive lens of the third lens group G3 and the both surfaces of the positive meniscus lens of the fourth lens group G4.
実施例7のズーム光学系は、図7に示すように、物体側から順に、正の屈折力を有する第1レンズ群G1、負の屈折力を有する第2レンズ群G2、開口絞りS、正の屈折力を有する第3レンズ群G3、正の屈折力を有する第4レンズ群G4から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は物体側へ移動し、第2レンズ群G2は像側へ移動する。開口絞りSと第3レンズ群G3は一体に物体側に単調に移動し、第4レンズ群G4は物体側に凸の軌跡を描いて移動し、望遠端では広角端の位置より物体側に位置する。 As shown in FIG. 7, the zoom optical system according to the seventh embodiment includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, an aperture stop S, a positive Is composed of a third lens group G3 having a refractive power of 4 and a fourth lens group G4 having a positive refractive power. When zooming from the wide-angle end to the telephoto end, the first lens group G1 The second lens group G2 moves to the image side. The aperture stop S and the third lens group G3 integrally move monotonically toward the object side, and the fourth lens group G4 moves along a locus convex toward the object side, and is positioned closer to the object side than the wide-angle end position at the telephoto end. To do.
物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズと両凸正レンズの接合レンズからなり、第2レンズ群G2は、物体側に凸面を向けた負メニスカスレンズ2枚と、物体側に凸面を向けた正メニスカスレンズとからなり、第3レンズ群G3は、両凸正レンズと、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズの接合レンズとからなり、第4レンズ群G4は、物体側に凸面を向けた正メニスカスレンズ1枚からなる。 In order from the object side, the first lens group G1 is composed of a cemented lens of a negative meniscus lens having a convex surface facing the object side and a biconvex positive lens, and the second lens group G2 is a negative meniscus lens having a convex surface facing the object side. The third lens group G3 includes a biconvex positive lens, a positive meniscus lens having a convex surface on the object side, and a negative meniscus having a convex surface on the object side. The fourth lens group G4 is composed of one positive meniscus lens having a convex surface facing the object side.
非球面は、第3レンズ群G3の両凸正レンズの両面の2面に用いている。 Aspherical surfaces are used on both surfaces of the biconvex positive lens of the third lens group G3.
以下に、上記各実施例の数値データを示すが、記号は上記の外、fは全系焦点距離、FNOはFナンバー、ωは半画角、WEは広角端、STは中間状態、TEは望遠端、r1 、r2 …は各レンズ面の曲率半径、d1 、d2 …は各レンズ面間の間隔、nd1、nd2…は各レンズのd線の屈折率、νd1、νd2…は各レンズのアッベ数である。なお、非球面形状は、xを光の進行方向を正とした光軸とし、yを光軸と直交する方向にとると、下記の式にて表される。 The numerical data of each of the above embodiments are shown below. Symbols are the above, f is the total focal length, FNO is the F number, ω is the half angle of view, WE is the wide angle end, ST is the intermediate state, TE telephoto end, r 1, r 2 ... curvature radius of each lens surface, d 1, d 2 ... the spacing between the lens surfaces, n d1, n d2 ... d-line refractive index of each lens, [nu d1 , Ν d2 ... Is the Abbe number of each lens. The aspherical shape is represented by the following formula, where x is an optical axis with the light traveling direction being positive, and y is a direction orthogonal to the optical axis.
x=(y2 /r)/[1+{1−(K+1)(y/r)2 }1/2 ]
+A4y4 +A6y6 +A8y8 + A10y10+ A12y12+ A14y14
ただし、rは近軸曲率半径、Kは円錐係数、A4、A6、A8、A10 、A12 、A14 はそれぞれ4次、6次、8次、10次、12次、14次の非球面係数である。
x = (y 2 / r) / [1+ {1- (K + 1) (y / r) 2 } 1/2 ]
+ A 4 y 4 + A 6 y 6 + A 8 y 8 + A 10 y 10 + A 12 y 12 + A 14 y 14
Where r is the paraxial radius of curvature, K is the conic coefficient, A 4 , A 6 , A 8 , A 10 , A 12 , A 14 are 4th, 6th, 8th, 10th, 12th, 14th, respectively. Is the aspheric coefficient.
実施例1
r1 = 26.052 d1 = 1.00 nd1 =1.84666 νd1 =23.78
r2 = 18.749 d2 = 3.20 nd2 =1.71300 νd2 =53.87
r3 = 129.413 d3 = (可変)
r4 = 44.225 d4 = 0.90 nd3 =1.88300 νd3 =40.76
r5 = 8.187 d5 = 2.50
r6 = ∞ d6 = 0.85 nd4 =1.88300 νd4 =40.76
r7 = 15.273 d7 = 1.09
r8 = 13.756 d8 = 2.00 nd5 =1.92286 νd5 =20.88
r9 = 56.639 d9 = (可変)
r10= ∞(絞り) d10= 1.00
r11= 13.960 (非球面) d11= 2.00 nd6 =1.74330 νd6 =49.33
r12= -35.983 (非球面) d12= 0.50
r13= 6.486 d13= 2.25 nd7 =1.69680 νd7 =55.53
r14= 21.204 d14= 0.01 nd8 =1.56384 νd8 =60.67
r15= 21.204 d15= 0.80 nd9 =1.84666 νd9 =23.78
r16= 4.830 d16= (可変)
r17= 11.548 (非球面) d17= 2.74 nd10=1.52542 νd10=55.78
r18= 218.908 (非球面) d18= (可変)
r19= ∞ d19= 0.95 nd11=1.54771 νd11=62.84
r20= ∞ d20= 0.60
r21= ∞ d21= 0.50 nd12=1.51633 νd12=64.14
r22= ∞ d22= 1.00
r23= ∞
非球面係数
第11面
K = -0.392
A4 = -5.42519×10-5
A6 = -7.99687×10-6
A8 = 6.60675×10-7
A10= -1.95317×10-8
第12面
K = 0.000
A4 = 4.18583×10-6
A6 = -9.94224×10-6
A8 = 8.61195×10-7
A10= -2.49912×10-8
第17面
K = 0.000
A4 = -2.11365×10-4
A6 = -2.70713×10-6
A8 = 3.48360×10-7
A10= -1.13679×10-8
A12= -1.43708×10-10
A14= 6.12273×10-12
第18面
K = 0.000
A4 = -2.44874×10-4
A6 = 6.46769×10-6
A8 = -2.13764×10-7
A10= -7.27999×10-11
A12= 3.72890×10-11
A14= -6.98251×10-13
ズームデータ(∞)
WE ST TE
f (mm) 8.026 17.475 38.830
FNO 2.88 3.34 4.39
ω (°) 30.46 14.51 6.43
d3 0.80 10.39 19.17
d9 18.16 6.64 1.67
d16 8.63 10.11 19.99
d18 2.68 5.70 3.48 。
Example 1
r 1 = 26.052 d 1 = 1.00 n d1 = 1.84666 ν d1 = 23.78
r 2 = 18.749 d 2 = 3.20 n d2 = 1.71300 ν d2 = 53.87
r 3 = 129.413 d 3 = (variable)
r 4 = 44.225 d 4 = 0.90 n d3 = 1.88300 ν d3 = 40.76
r 5 = 8.187 d 5 = 2.50
r 6 = ∞ d 6 = 0.85 n d4 = 1.88300 ν d4 = 40.76
r 7 = 15.273 d 7 = 1.09
r 8 = 13.756 d 8 = 2.00 n d5 = 1.92286 ν d5 = 20.88
r 9 = 56.639 d 9 = (variable)
r 10 = ∞ (aperture) d 10 = 1.00
r 11 = 13.960 (aspherical surface) d 11 = 2.00 n d6 = 1.74330 ν d6 = 49.33
r 12 = -35.983 (aspherical surface) d 12 = 0.50
r 13 = 6.486 d 13 = 2.25 n d7 = 1.69680 ν d7 = 55.53
r 14 = 21.204 d 14 = 0.01 n d8 = 1.56384 ν d8 = 60.67
r 15 = 21.204 d 15 = 0.80 n d9 = 1.84666 ν d9 = 23.78
r 16 = 4.830 d 16 = (variable)
r 17 = 11.548 (aspherical surface) d 17 = 2.74 n d10 = 1.52542 ν d10 = 55.78
r 18 = 218.908 (aspherical surface) d 18 = (variable)
r 19 = ∞ d 19 = 0.95 n d11 = 1.54771 ν d11 = 62.84
r 20 = ∞ d 20 = 0.60
r 21 = ∞ d 21 = 0.50 n d12 = 1.51633 ν d12 = 64.14
r 22 = ∞ d 22 = 1.00
r 23 = ∞
Aspheric coefficient 11th surface K = -0.392
A 4 = -5.42519 × 10 -5
A 6 = -7.99687 × 10 -6
A 8 = 6.60675 × 10 -7
A 10 = -1.95317 × 10 -8
Surface 12 K = 0.000
A 4 = 4.18583 × 10 -6
A 6 = -9.94224 × 10 -6
A 8 = 8.61195 × 10 -7
A 10 = -2.49912 × 10 -8
Surface 17 K = 0.000
A 4 = -2.11365 × 10 -4
A 6 = -2.70713 × 10 -6
A 8 = 3.48360 × 10 -7
A 10 = -1.13679 × 10 -8
A 12 = -1.43708 × 10 -10
A 14 = 6.12273 × 10 -12
18th face K = 0.000
A 4 = -2.44874 × 10 -4
A 6 = 6.46769 × 10 -6
A 8 = -2.13764 × 10 -7
A 10 = -7.27999 × 10 -11
A 12 = 3.72890 × 10 -11
A 14 = -6.98251 × 10 -13
Zoom data (∞)
WE ST TE
f (mm) 8.026 17.475 38.830
F NO 2.88 3.34 4.39
ω (°) 30.46 14.51 6.43
d 3 0.80 10.39 19.17
d 9 18.16 6.64 1.67
d 16 8.63 10.11 19.99
d 18 2.68 5.70 3.48.
実施例2
r1 = 29.488 d1 = 1.00 nd1 =1.84666 νd1 =23.78
r2 = 19.156 d2 = 3.60 nd2 =1.67790 νd2 =50.72
r3 =-390894.267 d3 = (可変)
r4 = 177.797 d4 = 0.85 nd3 =1.88300 νd3 =40.76
r5 = 9.237 d5 = 2.00
r6 = 2214.408 d6 = 0.80 nd4 =1.72916 νd4 =54.68
r7 = 14.895 d7 = 1.20
r8 = 13.788 d8 = 2.20 nd5 =1.84666 νd5 =23.78
r9 = 60.326 d9 = (可変)
r10= ∞(絞り) d10= 1.00
r11= 10.975 (非球面) d11= 2.30 nd6 =1.69350 νd6 =53.20
r12= -33.341 (非球面) d12= 0.10
r13= 5.712 d13= 2.50 nd7 =1.49700 νd7 =81.54
r14= 10.692 d14= 0.01 nd8 =1.56384 νd8 =60.67
r15= 10.692 d15= 0.80 nd9 =1.84666 νd9 =23.78
r16= 4.300 d16= (可変)
r17= 11.921 d17= 2.20 nd10=1.48749 νd10=70.23
r18=-10407.303 d18= (可変)
r19= ∞ d19= 0.95 nd11=1.54771 νd11=62.84
r20= ∞ d20= 0.60
r21= ∞ d21= 0.50 nd12=1.51633 νd12=64.14
r22= ∞ d22= 0.60
r23= ∞
非球面係数
第11面
K = -1.149
A4 = -1.22308×10-8
A6 = 8.10316×10-9
A8 = -5.55681×10-9
第12面
K =-10.109
A4 = 3.71688×10-11
A6 = 2.51887×10-7
ズームデータ(∞)
WE ST TE
f (mm) 7.843 15.841 39.635
FNO 2.80 3.13 4.50
ω (°) 30.67 15.37 6.17
d3 0.80 9.57 18.65
d9 20.01 8.14 1.50
d16 8.69 8.91 20.02
d18 1.98 5.16 2.67 。
Example 2
r 1 = 29.488 d 1 = 1.00 n d1 = 1.84666 ν d1 = 23.78
r 2 = 19.156 d 2 = 3.60 n d2 = 1.67790 ν d2 = 50.72
r 3 = -390894.267 d 3 = (variable)
r 4 = 177.797 d 4 = 0.85 n d3 = 1.88300 ν d3 = 40.76
r 5 = 9.237 d 5 = 2.00
r 6 = 2214.408 d 6 = 0.80 n d4 = 1.72916 ν d4 = 54.68
r 7 = 14.895 d 7 = 1.20
r 8 = 13.788 d 8 = 2.20 n d5 = 1.84666 ν d5 = 23.78
r 9 = 60.326 d 9 = (variable)
r 10 = ∞ (aperture) d 10 = 1.00
r 11 = 10.975 (aspherical surface) d 11 = 2.30 n d6 = 1.69350 ν d6 = 53.20
r 12 = -33.341 (aspherical surface) d 12 = 0.10
r 13 = 5.712 d 13 = 2.50 n d7 = 1.49700 ν d7 = 81.54
r 14 = 10.692 d 14 = 0.01 n d8 = 1.56384 ν d8 = 60.67
r 15 = 10.692 d 15 = 0.80 n d9 = 1.84666 ν d9 = 23.78
r 16 = 4.300 d 16 = (variable)
r 17 = 11.921 d 17 = 2.20 n d10 = 1.48749 ν d10 = 70.23
r 18 = -10407.303 d 18 = (variable)
r 19 = ∞ d 19 = 0.95 n d11 = 1.54771 ν d11 = 62.84
r 20 = ∞ d 20 = 0.60
r 21 = ∞ d 21 = 0.50 n d12 = 1.51633 ν d12 = 64.14
r 22 = ∞ d 22 = 0.60
r 23 = ∞
Aspheric coefficient 11th surface K = -1.149
A 4 = -1.22308 × 10 -8
A 6 = 8.10316 × 10 -9
A 8 = -5.55681 × 10 -9
Surface 12 K = -10.109
A 4 = 3.71688 × 10 -11
A 6 = 2.51887 × 10 -7
Zoom data (∞)
WE ST TE
f (mm) 7.843 15.841 39.635
F NO 2.80 3.13 4.50
ω (°) 30.67 15.37 6.17
d 3 0.80 9.57 18.65
d 9 20.01 8.14 1.50
d 16 8.69 8.91 20.02
d 18 1.98 5.16 2.67.
実施例3
r1 = 26.986 d1 = 1.00 nd1 =1.84666 νd1 =23.78
r2 = 16.515 d2 = 3.80 nd2 =1.67003 νd2 =47.23
r3 =-244257.033 d3 = (可変)
r4 = 112.654 d4 = 0.85 nd3 =1.88300 νd3 =40.76
r5 = 9.347 d5 = 2.00
r6 = 18401.111 d6 = 0.80 nd4 =1.72916 νd4 =54.68
r7 = 11.494 d7 = 1.20
r8 = 12.358 d8 = 2.20 nd5 =1.84666 νd5 =23.78
r9 = 53.415 d9 = (可変)
r10= ∞(絞り) d10= 1.00
r11= 9.677 (非球面) d11= 2.30 nd6 =1.58313 νd6 =59.46
r12= -25.547 (非球面) d12= 0.10
r13= 5.680 d13= 2.30 nd7 =1.49700 νd7 =81.54
r14= 8.984 d14= 0.01 nd8 =1.56384 νd8 =60.67
r15= 8.984 d15= 0.80 nd9 =1.84666 νd9 =23.78
r16= 4.272 d16= (可変)
r17= 12.940 d17= 2.20 nd10=1.49700 νd10=81.54
r18=-23190.917 d18= (可変)
r19= ∞ d19= 0.95 nd11=1.54771 νd11=62.84
r20= ∞ d20= 0.60
r21= ∞ d21= 0.50 nd12=1.51633 νd12=64.14
r22= ∞ d22= 0.59
r23= ∞
非球面係数
第11面
K = -1.239
A4 = -6.46005×10-9
A6 = 1.85826×10-8
A8 = -2.59108×10-8
第12面
K = -4.428
A4 = 2.79009×10-10
A6 = 3.14257×10-7
ズームデータ(∞)
WE ST TE
f (mm) 7.853 15.765 45.985
FNO 2.80 3.18 4.84
ω (°) 30.47 15.46 5.32
d3 0.80 8.80 19.39
d9 20.04 8.14 1.50
d16 9.33 8.60 22.68
d18 2.21 6.37 2.35 。
Example 3
r 1 = 26.986 d 1 = 1.00 n d1 = 1.84666 ν d1 = 23.78
r 2 = 16.515 d 2 = 3.80 n d2 = 1.67003 ν d2 = 47.23
r 3 = -244257.033 d 3 = (variable)
r 4 = 112.654 d 4 = 0.85 n d3 = 1.88300 ν d3 = 40.76
r 5 = 9.347 d 5 = 2.00
r 6 = 18401.111 d 6 = 0.80 n d4 = 1.72916 ν d4 = 54.68
r 7 = 11.494 d 7 = 1.20
r 8 = 12.358 d 8 = 2.20 n d5 = 1.84666 ν d5 = 23.78
r 9 = 53.415 d 9 = (variable)
r 10 = ∞ (aperture) d 10 = 1.00
r 11 = 9.677 (aspherical surface) d 11 = 2.30 n d6 = 1.58313 ν d6 = 59.46
r 12 = -25.547 (aspherical surface) d 12 = 0.10
r 13 = 5.680 d 13 = 2.30 n d7 = 1.49700 ν d7 = 81.54
r 14 = 8.984 d 14 = 0.01 n d8 = 1.56384 ν d8 = 60.67
r 15 = 8.984 d 15 = 0.80 n d9 = 1.84666 ν d9 = 23.78
r 16 = 4.272 d 16 = (variable)
r 17 = 12.940 d 17 = 2.20 n d10 = 1.49700 ν d10 = 81.54
r 18 = -23190.917 d 18 = (variable)
r 19 = ∞ d 19 = 0.95 n d11 = 1.54771 ν d11 = 62.84
r 20 = ∞ d 20 = 0.60
r 21 = ∞ d 21 = 0.50 n d12 = 1.51633 ν d12 = 64.14
r 22 = ∞ d 22 = 0.59
r 23 = ∞
Aspheric coefficient 11th surface K = -1.239
A 4 = -6.46005 × 10 -9
A 6 = 1.85826 × 10 -8
A 8 = -2.59108 × 10 -8
Surface 12 K = -4.428
A 4 = 2.79009 × 10 -10
A 6 = 3.14257 × 10 -7
Zoom data (∞)
WE ST TE
f (mm) 7.853 15.765 45.985
F NO 2.80 3.18 4.84
ω (°) 30.47 15.46 5.32
d 3 0.80 8.80 19.39
d 9 20.04 8.14 1.50
d 16 9.33 8.60 22.68
d 18 2.21 6.37 2.35.
実施例4
r1 = 25.729 d1 = 3.30 nd1 =1.48749 νd1 =70.23
r2 =-195211.986 d2 = (可変)
r3 = 62.315 d3 = 0.85 nd2 =1.88300 νd2 =40.76
r4 = 8.171 d4 = 2.00
r5 = 11064.958 d5 = 0.80 nd3 =1.72916 νd3 =54.68
r6 = 16.294 d6 = 1.15
r7 = 13.261 d7 = 2.20 nd4 =1.84666 νd4 =23.78
r8 = 54.781 d8 = (可変)
r9 = ∞(絞り) d9 = 1.00
r10= 11.449 (非球面) d10= 2.40 nd5 =1.69350 νd5 =53.20
r11= -24.146 (非球面) d11= 0.10
r12= 5.500 d12= 2.60 nd6 =1.48749 νd6 =70.23
r13= 18.893 d13= 0.01 nd7 =1.56384 νd7 =60.67
r14= 18.893 d14= 0.80 nd8 =1.84666 νd8 =23.78
r15= 4.313 d15= (可変)
r16= 19.027 (非球面) d16= 2.20 nd9 =1.84666 νd9 =23.78
r17=-12117.666 d17= (可変)
r18= ∞ d18= 0.95 nd10=1.54771 νd10=62.84
r19= ∞ d19= 0.60
r20= ∞ d20= 0.50 nd11=1.51633 νd11=64.14
r21= ∞ d21= 0.59
r22= ∞
非球面係数
第10面
K = -1.005
A4 = 3.59202×10-9
A6 = 1.69640×10-8
A8 = -1.84829×10-8
第11面
K = -8.581
A4 = -2.03082×10-11
A6 = 4.48326×10-10
第16面
K = 0.002
A4 = -3.12266×10-10
A6 = 1.67936×10-8
A8 = 9.76314×10-9
ズームデータ(∞)
WE ST TE
f (mm) 7.823 15.672 31.181
FNO 2.80 3.28 4.28
ω (°) 30.41 15.32 7.89
d2 0.80 10.32 16.18
d8 19.10 8.70 1.81
d15 8.45 10.63 17.69
d17 1.94 3.58 4.37 。
Example 4
r 1 = 25.729 d 1 = 3.30 n d1 = 1.48749 ν d1 = 70.23
r 2 = -195211.986 d 2 = (variable)
r 3 = 62.315 d 3 = 0.85 n d2 = 1.88300 ν d2 = 40.76
r 4 = 8.171 d 4 = 2.00
r 5 = 11064.958 d 5 = 0.80 n d3 = 1.72916 ν d3 = 54.68
r 6 = 16.294 d 6 = 1.15
r 7 = 13.261 d 7 = 2.20 n d4 = 1.84666 ν d4 = 23.78
r 8 = 54.781 d 8 = (variable)
r 9 = ∞ (aperture) d 9 = 1.00
r 10 = 11.449 (aspherical surface) d 10 = 2.40 n d5 = 1.69350 ν d5 = 53.20
r 11 = -24.146 (aspherical surface) d 11 = 0.10
r 12 = 5.500 d 12 = 2.60 n d6 = 1.48749 ν d6 = 70.23
r 13 = 18.893 d 13 = 0.01 n d7 = 1.56384 ν d7 = 60.67
r 14 = 18.893 d 14 = 0.80 n d8 = 1.84666 ν d8 = 23.78
r 15 = 4.313 d 15 = (variable)
r 16 = 19.027 (aspherical surface) d 16 = 2.20 n d9 = 1.84666 ν d9 = 23.78
r 17 = -12117.666 d 17 = (variable)
r 18 = ∞ d 18 = 0.95 n d10 = 1.54771 ν d10 = 62.84
r 19 = ∞ d 19 = 0.60
r 20 = ∞ d 20 = 0.50 n d11 = 1.51633 ν d11 = 64.14
r 21 = ∞ d 21 = 0.59
r 22 = ∞
Aspheric coefficient 10th surface K = -1.005
A 4 = 3.59202 × 10 -9
A 6 = 1.69640 × 10 -8
A 8 = -1.84829 × 10 -8
11th surface K = -8.581
A 4 = -2.03082 × 10 -11
A 6 = 4.48326 × 10 -10
16th surface K = 0.002
A 4 = -3.12266 × 10 -10
A 6 = 1.67936 × 10 -8
A 8 = 9.76314 × 10 -9
Zoom data (∞)
WE ST TE
f (mm) 7.823 15.672 31.181
F NO 2.80 3.28 4.28
ω (°) 30.41 15.32 7.89
d 2 0.80 10.32 16.18
d 8 19.10 8.70 1.81
d 15 8.45 10.63 17.69
d 17 1.94 3.58 4.37.
実施例5
r1 = 33.302 d1 = 1.00 nd1 =1.84666 νd1 =23.78
r2 = 19.902 d2 = 3.60 nd2 =1.71700 νd2 =47.92
r3 =-10505.082 d3 = (可変)
r4 = 197.422 d4 = 0.85 nd3 =1.81600 νd3 =46.62
r5 = 8.612 d5 = 2.00
r6 = 65.254 d6 = 0.80 nd4 =1.90366 νd4 =31.31
r7 = 13.669 d7 = 0.80
r8 = 12.087 d8 = 2.20 nd5 =1.92286 νd5 =20.88
r9 = 43.061 d9 = (可変)
r10= ∞(絞り) d10= 1.00
r11= 10.627 (非球面) d11= 2.30 nd6 =1.69350 νd6 =53.20
r12= -33.162 (非球面) d12= 0.10
r13= 5.800 d13= 2.50 nd7 =1.49700 νd7 =81.54
r14= 11.640 d14= 0.01 nd8 =1.56384 νd8 =60.67
r15= 11.640 d15= 0.80 nd9 =1.84666 νd9 =23.78
r16= 4.350 d16= (可変)
r17= 12.332 (非球面) d17= 2.30 nd10=1.52542 νd10=55.78
r18=-260808.000 d18= (可変)
r19= ∞ d19= 0.95 nd11=1.54771 νd11=62.84
r20= ∞ d20= 0.60
r21= ∞ d21= 0.50 nd12=1.51633 νd12=64.14
r22= ∞ d22= 1.00
r23= ∞
非球面係数
第11面
K = -0.806
A4 = -1.99973×10-9
A6 = 1.19364×10-8
A8 = -3.01523×10-8
第12面
K =-22.194
A4 = -1.02289×10-11
A6 = 1.12572×10-8
A8 = -1.88817×10-9
第17面
K = 0.000
A4 = -4.79706×10-13
A6 = 8.43506×10-14
A8 = -2.26626×10-12
A10= 1.27028×10-10
ズームデータ(∞)
WE ST TE
f (mm) 7.964 17.453 38.463
FNO 2.81 3.33 4.30
ω (°) 30.56 14.05 6.41
d3 0.80 11.18 20.49
d9 19.10 7.68 1.80
d16 7.64 9.77 17.57
d18 2.18 4.37 2.83 。
Example 5
r 1 = 33.302 d 1 = 1.00 n d1 = 1.84666 ν d1 = 23.78
r 2 = 19.902 d 2 = 3.60 n d2 = 1.71700 ν d2 = 47.92
r 3 = -10505.082 d 3 = (variable)
r 4 = 197.422 d 4 = 0.85 n d3 = 1.81600 ν d3 = 46.62
r 5 = 8.612 d 5 = 2.00
r 6 = 65.254 d 6 = 0.80 n d4 = 1.90366 ν d4 = 31.31
r 7 = 13.669 d 7 = 0.80
r 8 = 12.087 d 8 = 2.20 n d5 = 1.92286 ν d5 = 20.88
r 9 = 43.061 d 9 = (variable)
r 10 = ∞ (aperture) d 10 = 1.00
r 11 = 10.627 (aspherical surface) d 11 = 2.30 n d6 = 1.69350 ν d6 = 53.20
r 12 = -33.162 (aspherical surface) d 12 = 0.10
r 13 = 5.800 d 13 = 2.50 n d7 = 1.49700 ν d7 = 81.54
r 14 = 11.640 d 14 = 0.01 n d8 = 1.56384 ν d8 = 60.67
r 15 = 11.640 d 15 = 0.80 n d9 = 1.84666 ν d9 = 23.78
r 16 = 4.350 d 16 = (variable)
r 17 = 12.332 (aspherical surface) d 17 = 2.30 n d10 = 1.52542 ν d10 = 55.78
r 18 = -260808.000 d 18 = (variable)
r 19 = ∞ d 19 = 0.95 n d11 = 1.54771 ν d11 = 62.84
r 20 = ∞ d 20 = 0.60
r 21 = ∞ d 21 = 0.50 n d12 = 1.51633 ν d12 = 64.14
r 22 = ∞ d 22 = 1.00
r 23 = ∞
Aspheric coefficient 11th surface K = -0.806
A 4 = -1.99973 × 10 -9
A 6 = 1.19364 × 10 -8
A 8 = -3.01523 × 10 -8
Surface 12 K = -22.194
A 4 = -1.02289 × 10 -11
A 6 = 1.12572 × 10 -8
A 8 = -1.88817 × 10 -9
Surface 17 K = 0.000
A 4 = -4.79706 × 10 -13
A 6 = 8.43506 × 10 -14
A 8 = -2.26626 × 10 -12
A 10 = 1.27028 × 10 -10
Zoom data (∞)
WE ST TE
f (mm) 7.964 17.453 38.463
F NO 2.81 3.33 4.30
ω (°) 30.56 14.05 6.41
d 3 0.80 11.18 20.49
d 9 19.10 7.68 1.80
d 16 7.64 9.77 17.57
d 18 2.18 4.37 2.83.
実施例6
r1 = 26.272 d1 = 1.00 nd1 =1.84666 νd1 =23.78
r2 = 18.575 d2 = 3.40 nd2 =1.74100 νd2 =52.64
r3 = 130.489 d3 = (可変)
r4 = 57.666 d4 = 0.90 nd3 =1.88300 νd3 =40.76
r5 = 8.282 d5 = 2.40
r6 = ∞ d6 = 0.85 nd4 =1.88300 νd4 =40.76
r7 = 15.434 d7 = 0.99
r8 = 13.647 d8 = 2.30 nd5 =1.92286 νd5 =20.88
r9 = 60.518 d9 = (可変)
r10= ∞(絞り) d10= 1.00
r11= 14.164 (非球面) d11= 2.00 nd6 =1.74330 νd6 =49.33
r12= -33.166 (非球面) d12= 0.20
r13= 5.685 d13= 2.20 nd7 =1.58913 νd7 =61.14
r14= 16.732 d14= 0.01 nd8 =1.56384 νd8 =60.67
r15= 16.732 d15= 0.80 nd9 =1.84666 νd9 =23.78
r16= 4.631 d16= (可変)
r17= 15.194 d17= 2.00 nd10=1.74330 νd10=49.33
r18= 149.038 (非球面) d18= (可変)
r19= ∞ d19= 0.95 nd11=1.54771 νd11=62.84
r20= ∞ d20= 0.60
r21= ∞ d21= 0.50 nd12=1.51633 νd12=64.14
r22= ∞ d22= 1.00
r23= ∞
非球面係数
第11面
K = 1.826
A4 = -1.43848×10-4
A6 = 3.29825×10-7
A8 = 1.52442×10-7
第12面
K = 0.000
A4 = 3.01488×10-5
A6 = 8.15030×10-7
A8 = 2.16546×10-7
第18面
K = 0.000
A4 = 3.59845×10-5
A6 = -1.74722×10-5
A8 = 7.23073×10-7
A10= -1.56839×10-8
ズームデータ(∞)
WE ST TE
f (mm) 8.048 17.491 38.757
FNO 2.88 3.29 4.32
ω (°) 30.66 14.47 6.46
d3 0.80 10.10 18.34
d9 18.15 6.59 1.71
d16 8.62 9.60 19.76
d18 3.58 6.73 4.40 。
Example 6
r 1 = 26.272 d 1 = 1.00 n d1 = 1.84666 ν d1 = 23.78
r 2 = 18.575 d 2 = 3.40 n d2 = 1.74100 ν d2 = 52.64
r 3 = 130.489 d 3 = (variable)
r 4 = 57.666 d 4 = 0.90 n d3 = 1.88300 ν d3 = 40.76
r 5 = 8.282 d 5 = 2.40
r 6 = ∞ d 6 = 0.85 n d4 = 1.88300 ν d4 = 40.76
r 7 = 15.434 d 7 = 0.99
r 8 = 13.647 d 8 = 2.30 n d5 = 1.92286 ν d5 = 20.88
r 9 = 60.518 d 9 = (variable)
r 10 = ∞ (aperture) d 10 = 1.00
r 11 = 14.164 (aspherical surface) d 11 = 2.00 n d6 = 1.74330 ν d6 = 49.33
r 12 = -33.166 (aspherical surface) d 12 = 0.20
r 13 = 5.685 d 13 = 2.20 n d7 = 1.58913 ν d7 = 61.14
r 14 = 16.732 d 14 = 0.01 n d8 = 1.56384 ν d8 = 60.67
r 15 = 16.732 d 15 = 0.80 n d9 = 1.84666 ν d9 = 23.78
r 16 = 4.631 d 16 = (variable)
r 17 = 15.194 d 17 = 2.00 n d10 = 1.74330 ν d10 = 49.33
r 18 = 149.038 (aspherical surface) d 18 = (variable)
r 19 = ∞ d 19 = 0.95 n d11 = 1.54771 ν d11 = 62.84
r 20 = ∞ d 20 = 0.60
r 21 = ∞ d 21 = 0.50 n d12 = 1.51633 ν d12 = 64.14
r 22 = ∞ d 22 = 1.00
r 23 = ∞
Aspheric coefficient 11th surface K = 1.826
A 4 = -1.43848 × 10 -4
A 6 = 3.29825 × 10 -7
A 8 = 1.52442 × 10 -7
Surface 12 K = 0.000
A 4 = 3.01488 × 10 -5
A 6 = 8.15030 × 10 -7
A 8 = 2.16546 × 10 -7
18th face K = 0.000
A 4 = 3.59845 × 10 -5
A 6 = -1.74722 × 10 -5
A 8 = 7.23073 × 10 -7
A 10 = -1.56839 × 10 -8
Zoom data (∞)
WE ST TE
f (mm) 8.048 17.491 38.757
F NO 2.88 3.29 4.32
ω (°) 30.66 14.47 6.46
d 3 0.80 10.10 18.34
d 9 18.15 6.59 1.71
d 16 8.62 9.60 19.76
d 18 3.58 6.73 4.40.
実施例7
r1 = 44.684 d1 = 1.00 nd1 =1.84666 νd1 =23.78
r2 = 27.973 d2 = 3.74 nd2 =1.74100 νd2 =52.64
r3 = -643.282 d3 = (可変) r4 = 119.597 d4 = 0.85 nd3 =1.88300 νd3 =40.76
r5 = 9.920 d5 = 2.10
r6 = 53.716 d6 = 0.83 nd4 =1.78800 νd4 =47.37
r7 = 14.713 d7 = 1.20
r8 = 13.156 d8 = 2.20 nd5 =1.84666 νd5 =23.78
r9 = 39.828 d9 = (可変) r10= ∞(絞り) d10= 1.00
r11= 8.405 (非球面) d11= 2.30 nd6 =1.69350 νd6 =53.20
r12= -49.248 (非球面) d12= 0.10
r13= 6.781 d13= 2.50 nd7 =1.49700 νd7 =81.54
r14= 12.794 d14= 0.01 nd8 =1.56384 νd8 =60.67
r15= 12.794 d15= 0.80 nd9 =1.84666 νd9 =23.78
r16= 4.300 d16= (可変) r17= 11.359 d17= 2.24 nd10=1.51633 νd10=64.14
r18= 94.7262 d18= (可変) r19= ∞ d19= 0.95 nd11=1.54771 νd11=62.84
r20= ∞ d20= 0.60 r21= ∞ d21= 0.50 nd12=1.51633 νd12=64.14
r22= ∞ d22= 0.99
r23= ∞
非球面係数
第11面
K = -1.9589
A4 = 2.6247 ×10-4
A6 = 7.9242 ×10-7
A8 = -1.6930 ×10-8
第12面
K = -7.3788
A4 = 7.1656 ×10-5
A6 = 1.6614 ×10-6
ズームデータ(∞)
WE ST TE
f (mm) 7.61 16.9 37.26
FNO 2.8 3.2 4.3
ω (°) 31.10 14.21 6.54
d3 0.80 13.35 23.09
d9 23.67 8.63 1.5
d16 7.91 8.36 16.64
d18 1.17 4.09 2.54 。
Example 7
r 1 = 44.684 d 1 = 1.00 n d1 = 1.84666 ν d1 = 23.78
r 2 = 27.973 d 2 = 3.74 n d2 = 1.74100 ν d2 = 52.64
r 3 = -643.282 d 3 = (variable) r 4 = 119.597 d 4 = 0.85 n d3 = 1.88300 ν d3 = 40.76
r 5 = 9.920 d 5 = 2.10
r 6 = 53.716 d 6 = 0.83 n d4 = 1.78800 ν d4 = 47.37
r 7 = 14.713 d 7 = 1.20
r 8 = 13.156 d 8 = 2.20 n d5 = 1.84666 ν d5 = 23.78
r 9 = 39.828 d 9 = (variable) r 10 = ∞ (aperture) d 10 = 1.00
r 11 = 8.405 (aspherical surface) d 11 = 2.30 n d6 = 1.69350 ν d6 = 53.20
r 12 = -49.248 (aspherical surface) d 12 = 0.10
r 13 = 6.781 d 13 = 2.50 n d7 = 1.49700 ν d7 = 81.54
r 14 = 12.794 d 14 = 0.01 n d8 = 1.56384 ν d8 = 60.67
r 15 = 12.794 d 15 = 0.80 n d9 = 1.84666 ν d9 = 23.78
r 16 = 4.300 d 16 = (variable) r 17 = 11.359 d 17 = 2.24 n d10 = 1.51633 ν d10 = 64.14
r 18 = 94.7262 d 18 = (variable) r 19 = ∞ d 19 = 0.95 n d11 = 1.54771 ν d11 = 62.84
r 20 = ∞ d 20 = 0.60 r 21 = ∞ d 21 = 0.50 n d12 = 1.51633 ν d12 = 64.14
r 22 = ∞ d 22 = 0.99
r 23 = ∞
Aspheric coefficient 11th surface K = -1.9589
A 4 = 2.6247 × 10 -4
A 6 = 7.9242 × 10 -7
A 8 = -1.6930 × 10 -8
Surface 12 K = -7.3788
A 4 = 7.1656 × 10 -5
A 6 = 1.6614 × 10 -6
Zoom data (∞)
WE ST TE
f (mm) 7.61 16.9 37.26
F NO 2.8 3.2 4.3
ω (°) 31.10 14.21 6.54
d 3 0.80 13.35 23.09
d 9 23.67 8.63 1.5
d 16 7.91 8.36 16.64
d 18 1.17 4.09 2.54.
以上の実施例1〜7の無限遠物点合焦時の収差図をそれぞれ図8〜図14に示す。これらの収差図において、(a)は広角端、(b)は中間状態、(c)は望遠端におけるの球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す。 Aberration diagrams at the time of focusing on an object point at infinity in Examples 1 to 7 are shown in FIGS. In these aberration diagrams, (a) is a wide angle end, (b) is an intermediate state, (c) is a spherical aberration (SA), astigmatism (AS), distortion (DT), and lateral chromatic aberration at a telephoto end ( CC).
上記実施例1〜7の条件式(1)〜(10)の絶対値記号を除いた値は次の通りである。
条件式 実施例1 実施例2 実施例3 実施例4 実施例5 実施例6 実施例7
1 -2.58 -3.04 -2.64 -2.11 -3.12 -2.34 -5.8
2 6.12 6.36 6.10 6.75 6.59 5.82 8.05
3 2.10 2.30 2.15 2.26 2.50 2.10 3.1
4 4.84 5.05 5.86 3.99 4.83 4.82 4.89
5 2.39 2.68 2.68 2.57 2.52 2.38 3.24
6 1.15 0.95 1.00 0.84 1.22 1.09 1.11
7 0.57 0.09 -0.13 0.77 0.76 0.45 0.26
8 0.96 0.82 0.90 0.62 0.94 1.01 0.78
9 6.75 6.97 7.08 6.69 6.66 6.74 1.86
10 1.81 1.77 1.78 1.74 1.72 1.82 7.54
。
Values excluding the absolute value symbols in the conditional expressions (1) to (10) of Examples 1 to 7 are as follows.
Conditional Example Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7
1 -2.58 -3.04 -2.64 -2.11 -3.12 -2.34 -5.8
2 6.12 6.36 6.10 6.75 6.59 5.82 8.05
3 2.10 2.30 2.15 2.26 2.50 2.10 3.1
4 4.84 5.05 5.86 3.99 4.83 4.82 4.89
5 2.39 2.68 2.68 2.57 2.52 2.38 3.24
6 1.15 0.95 1.00 0.84 1.22 1.09 1.11
7 0.57 0.09 -0.13 0.77 0.76 0.45 0.26
8 0.96 0.82 0.90 0.62 0.94 1.01 0.78
9 6.75 6.97 7.08 6.69 6.66 6.74 1.86
10 1.81 1.77 1.78 1.74 1.72 1.82 7.54
.
以上の実施例1〜7において、フォーカシングは第4レンズ群G4の物体側への繰り出しで行っている。 In Examples 1 to 7 above, focusing is performed by extending the fourth lens group G4 to the object side.
さて、以上のような本発明のズームレンズで物体像を形成しその像をCCD等の撮像素子に受光させて撮影を行う撮影装置、とりわけデジタルカメラやビデオカメラ等に用いることができる。以下に、その実施形態を例示する。 The zoom lens of the present invention as described above forms an object image, and the image is received by an image pickup device such as a CCD, and can be used for a photographing apparatus, particularly a digital camera or a video camera. The embodiment is illustrated below.
図15〜図17は、本発明によるズーム光学系をデジタルカメラの撮影光学系41に組み込んだ構成の概念図を示す。図15はデジタルカメラ40の外観を示す前方斜視図、図16は同後方正面図、図17はデジタルカメラ40の構成を示す模式的な透視平面図である。ただし、図15と図17においては、撮影光学系41の非沈胴時を示している。デジタルカメラ40は、この例の場合、撮影用光路42を有する撮影光学系41、ファインダー用光路44を有するファインダー光学系43、シャッター45、フラッシュ46、液晶表示モニター47、焦点距離変更ボタン61、設定変更スイッチ62等を含み、撮影光学系41の沈胴時には、カバー60をスライドすることにより、撮影光学系41とファインダー光学系43とフラッシュ46はそのカバー60で覆われる。そして、カバー60を開いてカメラ40を撮影状態に設定すると、撮影光学系41は図17の非沈胴状態になり、カメラ40の上部に配置されたシャッター45を押圧すると、それに連動して撮影光学系41、例えば実施例1のズームレンズを通して撮影が行われる。撮影光学系41によって形成された物体像が、IRカットコートを施したローパスフィルターLFとカバーガラスCGを介してCCD49の撮像面上に形成される。このCCD49で受光された物体像は、処理手段51を介し、電子画像としてカメラ背面に設けられた液晶表示モニター47に表示される。また、この処理手段51には記録手段52が接続され、撮影された電子画像を記録することもできる。なお、この記録手段52は処理手段51と別体に設けてもよいし、フロッピーディスクやメモリーカード、MO等により電子的に記録書込を行うように構成してもよい。また、CCD49に代わって銀塩フィルムを配置した銀塩カメラとして構成してもよい。
FIGS. 15 to 17 are conceptual diagrams of structures in which the zoom optical system according to the present invention is incorporated in the photographing optical system 41 of a digital camera. 15 is a front perspective view showing the appearance of the digital camera 40, FIG. 16 is a rear front view thereof, and FIG. 17 is a schematic perspective plan view showing the configuration of the digital camera 40. However, FIGS. 15 and 17 show a state in which the photographing optical system 41 is not retracted. In this example, the digital camera 40 includes a photographing optical system 41 having a photographing optical path 42, a finder optical system 43 having a finder optical path 44, a shutter 45, a flash 46, a liquid crystal display monitor 47, a focal length change button 61, a setting. When the photographing optical system 41 is retracted, including the change switch 62, the photographing optical system 41, the finder optical system 43 and the flash 46 are covered with the cover 60 by sliding the cover 60. Then, when the cover 60 is opened and the camera 40 is set to the photographing state, the photographing optical system 41 enters the non-collapsed state of FIG. 17, and when the shutter 45 disposed on the upper portion of the camera 40 is pressed, the photographing optical system is interlocked therewith. Photographing is performed through the system 41, for example, the zoom lens of the first embodiment. An object image formed by the photographing optical system 41 is formed on the imaging surface of the
さらに、ファインダー用光路44上にはファインダー用対物光学系53が配置してある。ファインダー用対物光学系53は、複数のレンズ群(図の場合は3群)と2つのプリズムからなり、撮影光学系41のズームレンズに連動して焦点距離が変化するズーム光学系からなり、このファインダー用対物光学系53によって形成された物体像は、像正立部材である正立プリズム55の視野枠57上に形成される。この正立プリズム55の後方には、正立正像にされた像を観察者眼球Eに導く接眼光学系59が配置されている。なお、接眼光学系59の射出側にカバー部材50が配置されている。 Further, a finder objective optical system 53 is disposed on the finder optical path 44. The finder objective optical system 53 includes a plurality of lens groups (three groups in the figure) and two prisms, and includes a zoom optical system whose focal length changes in conjunction with the zoom lens of the photographing optical system 41. The object image formed by the finder objective optical system 53 is formed on the field frame 57 of the erecting prism 55 that is an image erecting member. Behind the erecting prism 55, an eyepiece optical system 59 for guiding the erect image to the observer eyeball E is disposed. A cover member 50 is disposed on the exit side of the eyepiece optical system 59.
このように構成されたデジタルカメラ40は、撮影光学系41が高性能で小型で沈胴収納が可能であるあるので、高性能・小型化が実現できる。 In the digital camera 40 configured in this manner, the photographing optical system 41 has a high performance and a small size and can be retracted, so that a high performance and a small size can be realized.
G1…第1レンズ群
G2…第2レンズ群
G3…第3レンズ群
G4…第4レンズ群
S…開口絞り
F…ローパスフィルターを構成する平行平板
C…カバーガラス
I…像面
LF…ローパスフィルター
CG…カバーガラス
E…観察者眼球
40…デジタルカメラ
41…撮影光学系
42…撮影用光路
43…ファインダー光学系
44…ファインダー用光路
45…シャッター
46…フラッシュ
47…液晶表示モニター
49…CCD
50…カバー部材
51…処理手段
52…記録手段
53…ファインダー用対物光学系
55…正立プリズム
57…視野枠
59…接眼光学系
60…カバー
61…焦点距離変更ボタン
62…設定変更スイッチ
G1 ... first lens group G2 ... second lens group G3 ... third lens group G4 ... fourth lens group S ... aperture stop F ... parallel plate C constituting a low-pass filter ... cover glass I ... image plane LF ... low-pass filter CG ... cover glass E ... observer eyeball 40 ... digital camera 41 ... photographing optical system 42 ... photographing optical path 43 ... finder optical system 44 ... finder optical path 45 ... shutter 46 ... flash 47 ... liquid crystal display monitor 49 ... CCD
DESCRIPTION OF SYMBOLS 50 ...
Claims (10)
第1レンズ群G1は多くても2枚のレンズで構成され、
第2レンズ群G2は、物体側から順に、負レンズL21、負レンズL22、正レンズL23から構成され、前記負レンズL21は像面側が強い曲率の負レンズ、前記負レンズL22は像面側が強い曲率の負レンズ、前記正レンズL23は物体側が強い曲率の正レンズであり、
前記第3レンズ群G3は、物体側から順に、両凸レンズL31と、像面側に凹面を向けた正メニスカスレンズL32と、像面側に凹面を向けた負メニスカスレンズL33とから構成され、前記正メニスカスレンズL32と前記負メニスカスレンズL33は接合レンズであり、前記両凸レンズL31は、以下の条件式を満足することを特徴とするズームレンズ。
−6<R31/F31<−1 ・・・(1)
ただし、F31:両凸レンズL31の光軸近傍での物体側の曲率半径、
R31:両凸レンズL31の光軸近傍での像面側の曲率半径、
である。 In order from the object side, the first lens group G1 having a positive refractive power, the second lens group G2 having a negative refractive power, the third lens group G3 having a positive refractive power, and a positive refractive power. The zoom lens has a fourth lens group G4. During zooming, the distance between the first lens group G1 and the second lens group G2 is increased at the telephoto end with respect to the wide-angle end, and the second lens group G2 and the third lens group G3 are expanded. At least the first lens group G1, the second lens group G2, and the third lens group G3 move on the optical axis so that the distance between the third lens group G3 and the fourth lens group G4 increases. ,
The first lens group G1 is composed of at most two lenses,
The second lens group G2 includes, in order from the object side, a negative lens L21, a negative lens L22, and a positive lens L23. The negative lens L21 is a negative lens having a strong curvature on the image plane side, and the negative lens L22 is strong on the image plane side. A negative lens having a curvature, the positive lens L23 is a positive lens having a strong curvature on the object side,
The third lens group G3 includes, in order from the object side, a biconvex lens L31, a positive meniscus lens L32 having a concave surface facing the image surface, and a negative meniscus lens L33 having a concave surface facing the image surface. The zoom lens characterized in that the positive meniscus lens L32 and the negative meniscus lens L33 are cemented lenses, and the biconvex lens L31 satisfies the following conditional expression.
−6 <R 31 / F 31 <−1 (1)
Where F 31 : radius of curvature on the object side in the vicinity of the optical axis of the biconvex lens L 31 ,
R 31 : radius of curvature on the image plane side in the vicinity of the optical axis of the biconvex lens L 31 ,
It is.
5.8<f1 /fW <8.0 ・・・(2)
ただし、fW :広角端での全系の焦点距離、
f1 :第1レンズ群の焦点距離、
である。 The zoom lens according to claim 1, wherein the following conditional expression is satisfied.
5.8 <f 1 / f W <8.0 (2)
Where f W is the focal length of the entire system at the wide-angle end,
f 1 : focal length of the first lens group,
It is.
2<D2W/D3W<2.6 ・・・(3)
ただし、D2W:広角端での第2レンズ群−第3レンズ群間隔、
D3W:広角端での第3レンズ群−第4レンズ群間隔、
である。 The zoom lens according to claim 1, wherein the following conditional expression is satisfied.
2 <D 2W / D 3W <2.6 (3)
Where D 2W is the distance between the second lens group and the third lens group at the wide-angle end,
D 3W : Third lens group-fourth lens group spacing at the wide-angle end,
It is.
3<(β2T/β2W)*(β3T/β3W)*(β4T/β4W)<12 ・・・(4)
1.8<D2W/fW <2.8 ・・・(5)
ただし、β2T,β3T,β4T:それぞれ第2レンズ群、第3レンズ群、第4レンズ群の望遠 端での倍率、
β2W,β3W,β4W:それぞれ第2レンズ群、第3レンズ群、第4レンズ群の広角 端での倍率、
fW :広角端での全系の焦点距離、
D2W:広角端での第2レンズ群−第3レンズ群間隔、
である。 The zoom lens according to any one of claims 1 to 3, wherein the following conditional expression is satisfied.
3 <(β 2T / β 2W ) * (β 3T / β 3W ) * (β 4T / β 4W ) <12 (4)
1.8 <D 2W / f W <2.8 (5)
Where β 2T , β 3T , β 4T : magnifications at the telephoto end of the second lens group, the third lens group, and the fourth lens group,
β 2W , β 3W , β 4W : magnifications at the wide angle end of the second lens group, the third lens group, and the fourth lens group,
f W : focal length of the entire system at the wide-angle end,
D 2W : second lens group-third lens group spacing at the wide-angle end,
It is.
0.8<ΔT1G /ΔT3G <1.3 ・・・(6)
ただし、ΔT1G :広角端から望遠端の間での第1レンズ群の移動量、
ΔT3G :広角端から望遠端の間での第3レンズ群の移動量、
である。 The zoom lens according to claim 1, wherein the following conditional expression is satisfied.
0.8 <Δ T1G / Δ T3G <1.3 (6)
Where Δ T1G is the amount of movement of the first lens unit between the wide-angle end and the telephoto end,
Δ T3G : the amount of movement of the third lens group from the wide-angle end to the telephoto end,
It is.
−0.20<ΔS1G /ΔS3G <0.8 ・・・(7)
ただし、ΔS1G :広角端から中間焦点距離状態の間での第1レンズ群の移動量、
ΔT3G :広角端から中間焦点距離状態の間での第3レンズ群の移動量、
である。ただし、中間焦点距離状態は、ズームレンズの広角端焦点距離fW と望遠端焦点距離fT としたときに、fS =√(fW ・fT )で表される焦点距離fS となる状態である。 The zoom lens according to claim 6, wherein the following conditional expression is satisfied.
-0.20 <Δ S1G / Δ S3G <0.8 (7)
Where Δ S1G is the amount of movement of the first lens unit between the wide-angle end and the intermediate focal length state,
Δ T3G : the amount of movement of the third lens unit between the wide-angle end and the intermediate focal length state,
It is. However, the intermediate focal length state is a focal length f S represented by f S = √ (f W · f T ) when the zoom lens has a wide-angle end focal length f W and a telephoto end focal length f T. State.
3<(β2T/β2W)*(β3T/β3W)*(β4T/β4W)<12 ・・・(4)
1.1<|f2 /fW |<1.8 ・・・(8)
ただし、fW :広角端での全系の焦点距離、
f2 :第2レンズ群の焦点距離、
β2T,β3T,β4T:それぞれ第2レンズ群、第3レンズ群、第4レンズ群の望遠 端での倍率、
β2W,β3W,β4W:それぞれ第2レンズ群、第3レンズ群、第4レンズ群の広角 端での倍率、
である。 The zoom lens according to claim 1, wherein the following conditional expression is satisfied.
3 <(β 2T / β 2W ) * (β 3T / β 3W ) * (β 4T / β 4W ) <12 (4)
1.1 <| f 2 / f W | <1.8 (8)
Where f W is the focal length of the entire system at the wide-angle end,
f 2 : focal length of the second lens group,
β 2T , β 3T , β 4T : magnifications at the telephoto end of the second lens group, the third lens group, and the fourth lens group,
β 2W , β 3W , β 4W : magnifications at the wide angle end of the second lens group, the third lens group, and the fourth lens group,
It is.
1.2<f3 /fW <1.85 ・・・(9)
ただし、fW :広角端での全系の焦点距離、
f3 :第3レンズ群の焦点距離、
である。 The zoom lens according to claim 1, wherein the following conditional expression is satisfied.
1.2 <f 3 / f W <1.85 (9)
Where f W is the focal length of the entire system at the wide-angle end,
f 3 : focal length of the third lens group,
It is.
6.4<LW /fW <7.4 ・・・(10)
ただし、LW :広角端での全長、
fW :広角端での全系の焦点距離、
である。 The zoom lens according to any one of claims 1 to 9, wherein the following conditional expression is satisfied.
6.4 <L W / f W <7.4 (10)
Where L W is the total length at the wide-angle end,
f W : the focal length of the entire system at the wide-angle end,
It is.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004201373A JP2006023530A (en) | 2004-07-08 | 2004-07-08 | Zoom lens and imaging apparatus incorporating it |
US11/114,039 US7283310B2 (en) | 2004-04-30 | 2005-04-26 | Zoom lens, and imaging system incorporating it |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004201373A JP2006023530A (en) | 2004-07-08 | 2004-07-08 | Zoom lens and imaging apparatus incorporating it |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006023530A true JP2006023530A (en) | 2006-01-26 |
JP2006023530A5 JP2006023530A5 (en) | 2007-06-21 |
Family
ID=35796830
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004201373A Pending JP2006023530A (en) | 2004-04-30 | 2004-07-08 | Zoom lens and imaging apparatus incorporating it |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006023530A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007212537A (en) * | 2006-02-07 | 2007-08-23 | Canon Inc | Zoom lens and imaging apparatus having same |
JP2008096924A (en) * | 2006-10-16 | 2008-04-24 | Ricoh Co Ltd | Zoom lens, imaging apparatus and personal digital assistant device |
JP2008112013A (en) * | 2006-10-31 | 2008-05-15 | Olympus Imaging Corp | Wide-angle high variable power zoom lens and imaging apparatus using the same |
JP2009251343A (en) * | 2008-04-08 | 2009-10-29 | Canon Inc | Zoom lens and image pickup apparatus including the same |
US7848029B2 (en) | 2008-02-21 | 2010-12-07 | Sony Corporation | Retractable zoom lens |
JP2011028260A (en) * | 2009-07-03 | 2011-02-10 | Panasonic Corp | Zoom lens system, imaging device and camera |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001356269A (en) * | 2000-06-13 | 2001-12-26 | Casio Comput Co Ltd | Zoom lens |
JP2003315676A (en) * | 2002-04-19 | 2003-11-06 | Pentax Corp | Zoom lens system |
JP2004094233A (en) * | 2002-08-13 | 2004-03-25 | Pentax Corp | Zoom lens system |
JP2004109653A (en) * | 2002-09-19 | 2004-04-08 | Canon Inc | Zoom lens and camera with same |
-
2004
- 2004-07-08 JP JP2004201373A patent/JP2006023530A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001356269A (en) * | 2000-06-13 | 2001-12-26 | Casio Comput Co Ltd | Zoom lens |
JP2003315676A (en) * | 2002-04-19 | 2003-11-06 | Pentax Corp | Zoom lens system |
JP2004094233A (en) * | 2002-08-13 | 2004-03-25 | Pentax Corp | Zoom lens system |
JP2004109653A (en) * | 2002-09-19 | 2004-04-08 | Canon Inc | Zoom lens and camera with same |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007212537A (en) * | 2006-02-07 | 2007-08-23 | Canon Inc | Zoom lens and imaging apparatus having same |
JP2008096924A (en) * | 2006-10-16 | 2008-04-24 | Ricoh Co Ltd | Zoom lens, imaging apparatus and personal digital assistant device |
JP2008112013A (en) * | 2006-10-31 | 2008-05-15 | Olympus Imaging Corp | Wide-angle high variable power zoom lens and imaging apparatus using the same |
US7848029B2 (en) | 2008-02-21 | 2010-12-07 | Sony Corporation | Retractable zoom lens |
JP2009251343A (en) * | 2008-04-08 | 2009-10-29 | Canon Inc | Zoom lens and image pickup apparatus including the same |
JP2011028260A (en) * | 2009-07-03 | 2011-02-10 | Panasonic Corp | Zoom lens system, imaging device and camera |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7961409B2 (en) | Zoom lens system, optical apparatus, and method for zooming | |
US8144403B2 (en) | Zoom lens system, optical apparatus, and method for zooming | |
JP3847506B2 (en) | Zoom lens | |
JP4901270B2 (en) | Zoom lens | |
US7283310B2 (en) | Zoom lens, and imaging system incorporating it | |
JP4690069B2 (en) | Zoom lens and electronic imaging apparatus using the same | |
JP4912828B2 (en) | Zoom lens and imaging apparatus having the same | |
JP2006098686A (en) | Zoom lens and electronic imaging apparatus using the same | |
JP2012208378A (en) | Zoom lens and imaging apparatus using the same | |
JP4911679B2 (en) | Zoom lens and image pickup apparatus including the same | |
JP5025232B2 (en) | Imaging device using variable magnification optical system | |
JP2008083125A (en) | Zoom lens and imaging apparatus using the same | |
JP4766929B2 (en) | Image pickup apparatus having an optical path folding zoom lens | |
JP2006301154A (en) | Zoom lens and electronic imaging apparatus using the same | |
JP2006133632A (en) | Zoom lens | |
JP4690052B2 (en) | Zoom lens and imaging apparatus using the same | |
US7277233B2 (en) | Zoom lens and imaging system incorporating it | |
JP2006220715A (en) | Zoom lens and imaging apparatus using the same | |
JP2008083503A (en) | Zoom lens equipped with reflection surface for reflecting optical path, and imaging apparatus equipped with same | |
JP4605698B2 (en) | Zoom lens and image pickup apparatus equipped with the same | |
JP2006308649A (en) | Imaging apparatus | |
JP2008203643A (en) | Real image type variable power finder optical system and image pickup apparatus | |
JP4624730B2 (en) | Zoom lens and image pickup apparatus equipped with the same | |
JP2006171055A (en) | Zoom lens and imaging apparatus using same | |
JP5031318B2 (en) | Zoom lens and imaging apparatus having the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Effective date: 20070508 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070508 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100712 |
|
A131 | Notification of reasons for refusal |
Effective date: 20100721 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Effective date: 20101208 Free format text: JAPANESE INTERMEDIATE CODE: A02 |