JP2006023350A - Antireflection film, polarizing plate and image display device - Google Patents

Antireflection film, polarizing plate and image display device Download PDF

Info

Publication number
JP2006023350A
JP2006023350A JP2004199073A JP2004199073A JP2006023350A JP 2006023350 A JP2006023350 A JP 2006023350A JP 2004199073 A JP2004199073 A JP 2004199073A JP 2004199073 A JP2004199073 A JP 2004199073A JP 2006023350 A JP2006023350 A JP 2006023350A
Authority
JP
Japan
Prior art keywords
group
layer
refractive index
mass
antistatic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004199073A
Other languages
Japanese (ja)
Inventor
Yuzo Muramatsu
雄造 村松
Kenichi Nakamura
謙一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2004199073A priority Critical patent/JP2006023350A/en
Publication of JP2006023350A publication Critical patent/JP2006023350A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an antireflection film which has excellent anti-dazzling property, high transparency, little coloring, high physical strength such as scratch resistance and excellent anti-sticking property of dirt (dust or the like), and to provide a polarizing plate subjected to anti-reflection treatment according to a proper means and an image display device. <P>SOLUTION: The antireflection film is made by applying at least a light diffusion layer, an antistatic layer and a low refractive index layer having a refractive index lower than that of an transparent substrate in this order on the transparent substrate. Therein, the antireflection film is constituted such that the value obtained by dividing a center line average roughness Ra2 on the antistatic layer surface after applying the antistatic layer with a center line average roughness Ra1 on the light diffusion layer surface before applying the antistatic layer falls into 0.5 to 1.0. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、反射防止フィルム、それを用いた偏光板およびび画像表示装置に関する。   The present invention relates to an antireflection film, a polarizing plate using the same, and an image display device.

近年、液晶表示装置(LCD)は大画面化が進み、反射防止フィルムを配置した液晶表示装置が増大している。
反射防止フィルムは、液晶表示装置(LCD)、プラズマディスプレイパネル(PDP)、エレクトロルミネッセンスディスプレイ(ELD)や陰極管表示装置(CRT)のような様々な画像表示装置において、外光の反射や像の映り込みによるコントラスト低下を防止するために、ディスプレイの表面に配置される。そのため、反射防止フィルムには高い物理強度(耐擦傷性など)、透明性、耐薬品性、耐候性(耐湿熱性、耐光性など)が要求される。さらにまた、ディスプレイの視認性を低下させる塵埃(埃など)が、反射防止フィルムの表面に付着するのを防止する対策も要求される。
In recent years, liquid crystal display devices (LCDs) have become larger in screen size, and liquid crystal display devices provided with antireflection films are increasing.
Antireflection films are used in various image display devices such as liquid crystal display devices (LCD), plasma display panels (PDP), electroluminescence displays (ELD), and cathode ray tube display devices (CRT) to reflect external light and In order to prevent a decrease in contrast due to reflection, it is arranged on the surface of the display. Therefore, the antireflection film is required to have high physical strength (such as scratch resistance), transparency, chemical resistance, and weather resistance (such as moisture and heat resistance). Furthermore, measures are required to prevent dust (such as dust) that reduces the visibility of the display from adhering to the surface of the antireflection film.

反射防止フィルムに用いる反射防止層(高屈折率層、中屈折率層、低屈折率層など)としては、金属酸化物の透明薄膜を積層させた多層膜が従来から普通に用いられている。金属酸化物の透明薄膜は、化学蒸着(CVD)法や物理蒸着(PVD)法、特に物理蒸着法の一種である真空蒸着法により形成することが通常に行われてきた。しかし、蒸着による金属酸化物の透明薄膜の形成方法は生産性が低く大量生産に適しておらず、生産性が高い塗布により形成する方法が提案されている(例えば、特許文献1〜4参照)。
塗布方式によって作製される反射防止フィルムの塵埃付着防止性を向上させるためには、導電性を塗設層のいずれかに持たせることが有効であり、また、汚れ付着防止には例えば最外層に含フッ素化合物を含有することが有効である。
フィルムの透明性を損なうことなく導電性を付与するために、例えば帯電防止層を塗設層のうちの支持体側に位置する層に含有させる方法が種々検討されてきている。(特許文献5、同6)この層配置は、帯電防止層の上に光学特性を制御するための諸機能層を設置できるために、帯電防止層を表面側に設置することによる光学特性の目減りを回避できるという点で有利であるが、導電性が発現されにくい欠点があった。この欠点を改良するために、帯電防止層が支持体側に位置する構成において、粒径のかなり大きい極少量の導電性の高い機能粒子を帯電防止層と表面の間に渡って位置するように含有させて、帯電防止層と表面との導電パスを作る方法も提案されている(特許文献7)が、コストアップやヘイズ上昇等の問題があった。
さらに、3層以上からなる反射防止膜において、導電層を表面の低屈折率層に隣接させる層構成も開示されている(特許文献8)が、凹凸を有する光拡散層が用いられておらず、防眩性と導電性とを両立する技術ではなかった。
As an antireflection layer (a high refractive index layer, a medium refractive index layer, a low refractive index layer, etc.) used for an antireflection film, a multilayer film obtained by laminating a transparent thin film of metal oxide has been conventionally used. The metal oxide transparent thin film has been usually formed by a chemical vapor deposition (CVD) method or a physical vapor deposition (PVD) method, particularly a vacuum vapor deposition method which is a kind of physical vapor deposition method. However, the method of forming a transparent thin film of metal oxide by vapor deposition is not suitable for mass production because of low productivity, and a method of forming by high productivity coating has been proposed (for example, see Patent Documents 1 to 4). .
In order to improve the dust adhesion prevention property of the antireflection film produced by the coating method, it is effective to give conductivity to any of the coating layers. It is effective to contain a fluorine-containing compound.
In order to impart conductivity without impairing the transparency of the film, various methods for incorporating an antistatic layer into a layer located on the support side of the coating layer have been studied. (Patent Documents 5 and 6) In this layer arrangement, since various functional layers for controlling the optical characteristics can be installed on the antistatic layer, the optical characteristics are reduced by installing the antistatic layer on the surface side. However, there is a drawback that the conductivity is difficult to be expressed. In order to remedy this drawback, in a configuration in which the antistatic layer is located on the support side, a very small amount of highly conductive functional particles having a considerably large particle size are contained so as to be located between the antistatic layer and the surface. A method of making a conductive path between the antistatic layer and the surface has been proposed (Patent Document 7), but there are problems such as an increase in cost and an increase in haze.
Furthermore, in the antireflection film composed of three or more layers, a layer configuration in which the conductive layer is adjacent to the low refractive index layer on the surface is also disclosed (Patent Document 8), but a light diffusion layer having unevenness is not used. It was not a technology that achieved both antiglare and electrical conductivity.

一方、液晶表示装置において偏光板は不可欠な光学材料であり、一般に、偏光膜が2枚の保護フィルムによって保護されている構造をしている。
これらの保護フィルムに反射防止機能を付与することができれば、大幅なコスト削減、表示装置の薄手化が可能となる。
偏光板に用いる保護フィルムは、偏光膜と貼り合わせるうえで十分な密着性を有していることが必要である。偏光膜との密着性を改良する手法として、保護フィルムを鹸化処理して保護フィルムの表面を親水化処理することが通常行われている。
On the other hand, a polarizing plate is an indispensable optical material in a liquid crystal display device, and generally has a structure in which a polarizing film is protected by two protective films.
If an antireflection function can be imparted to these protective films, significant cost reduction and thinning of the display device can be achieved.
The protective film used for the polarizing plate needs to have sufficient adhesion to be bonded to the polarizing film. As a method for improving the adhesion to the polarizing film, it is common practice to saponify the protective film to hydrophilize the surface of the protective film.

特開2002−116323号公報JP 2002-116323 A 特開2002−156508号公報JP 2002-156508 A 特開2002−361769号公報JP 2002-361769 A 特開2003−4903号公報JP 2003-4903 A 特開2000−233467号公報JP 2000-233467 A 特開2002−254573号公報JP 2002-254573 A 特開2003−39586号公報JP 2003-39586 A 特開平11−138677号公報Japanese Patent Laid-Open No. 11-138777

本発明の目的は、防眩性に優れ、透明性が高く、着色の少ない、耐擦傷性など高い物理強度を有し、塵埃(埃など)の付着防止性に優れた反射防止フィルムを提供することである。さらに、適切な手段により反射防止処理がされている偏光板、画像表示装置を提供することを目的とする。   An object of the present invention is to provide an antireflection film that has excellent antiglare properties, high transparency, low coloration, high physical strength such as scratch resistance, and excellent dust and dust adhesion prevention properties. That is. It is another object of the present invention to provide a polarizing plate and an image display device that have been subjected to antireflection treatment by appropriate means.

上記課題は、下記構成の反射防止フィルム、偏光板、画像表示装置により達成された。   The above object has been achieved by an antireflection film, a polarizing plate and an image display device having the following constitution.

(1)透明支持体上に、少なくとも光拡散層、帯電防止層、透明支持体よりも屈折率が低い低屈折率層をこの順に塗設した反射防止フィルムであって、かつ帯電防止層を塗設する前の光拡散層表面の中心線平均粗さRa1で帯電防止層塗設後の帯電防止層表面の中心線平均粗さRa2を除した値が、0.5〜1.0であることを特徴とする反射防止フィルム。
(2)帯電防止層を塗設する前の光拡散層表面の中心線平均粗さRa1が0.03〜0.30μmであり、帯電防止層塗設後の帯電防止層表面のRa2が、0.02〜0.25μmであることを特徴とする(1)に記載の反射防止フィルム。
(3)帯電防止層および/または低屈折率層が、少なくとも塗布と電離放射線硬化を含む工程によって形成されたことを特徴とする(1)または(2)に記載の反射防止フィルム。
(4)低屈折率層が下記一般式(1)で表される含フッ素化合の架橋または重合反応により形成されたことを特徴とする(1)〜(3)のいずれかに記載の反射防止フィルム。
一般式(1)
(1) An antireflection film in which at least a light diffusion layer, an antistatic layer, and a low refractive index layer having a lower refractive index than that of the transparent support are coated in this order on the transparent support, and the antistatic layer is applied. The value obtained by dividing the center line average roughness Ra2 on the surface of the antistatic layer after coating the antistatic layer by the centerline average roughness Ra1 on the surface of the light diffusing layer is 0.5 to 1.0. Antireflection film characterized by
(2) The center line average roughness Ra1 of the light diffusion layer surface before coating of the antistatic layer is 0.03 to 0.30 μm, and Ra2 of the surface of the antistatic layer after coating of the antistatic layer is 0. The antireflection film as described in (1), which has a thickness of 0.02 to 0.25 μm.
(3) The antireflection film as described in (1) or (2), wherein the antistatic layer and / or the low refractive index layer is formed by a process including at least coating and ionizing radiation curing.
(4) The antireflection according to any one of (1) to (3), wherein the low refractive index layer is formed by crosslinking or polymerization reaction of a fluorine-containing compound represented by the following general formula (1) the film.
General formula (1)

Figure 2006023350
Figure 2006023350

一般式(1)中、Lは炭素数1〜10の連結基を表し、mは0または1を表す。Xは水素原子またはメチル基を表す。Aは任意のビニルモノマーの重合単位を表し、単一成分であっても複数の成分で構成されていてもよい。x、y、zはそれぞれの構成成分のモル%を表し、30≦x≦60、5≦y≦70、0≦z≦65を満たす値を表す。
(5)低屈折率層に中空シリカ微粒子を含有することを特徴とする(1)〜(4)のいずれかに記載の反射防止フィルム。
(6)低屈折率層を有する側の表面抵抗が1×1012Ω/□以下であることを特徴とする(1)〜(5)のいずれかに記載の反射防止フィルム。
(7)帯電防止層に含有される導電材が金属酸化物であることを特徴とする(1)〜(6)のいずれかに記載の反射防止フィルム。
(8)帯電防止層の層厚みが60〜200nmであることを特徴とする(1)〜(7)のいずれかに記載の反射防止フィルム。
(9)帯電防止層に含有される導電材が10〜400m2/gの比表面積を有する微粒子であることを特徴とする上記(1)〜(8)のいずれかに記載の反射防止フィルム。
(10)帯電防止層に含有される導電材が平均粒径1〜200nmの微粒子であることを特徴とする上記(1)〜(9)のいずれかに記載の反射防止フィルム。
(11)帯電防止層に含有される導電材がアニオン性基を有する分散剤で分散されたことを特徴とする上記(1)〜(10)のいずれかに記載の反射防止フィルム。
(12)帯電防止層の導電材の含有率が帯電防止層の全固形分の20〜60質量%であることを特徴とする上記(1)〜(11)のいずれかに記載の反射防止フィルム。
In General Formula (1), L represents a C1-C10 coupling group, m represents 0 or 1. X represents a hydrogen atom or a methyl group. A represents a polymerization unit of any vinyl monomer, and may be a single component or a plurality of components. x, y, and z represent mol% of each constituent component, and represent values satisfying 30 ≦ x ≦ 60, 5 ≦ y ≦ 70, and 0 ≦ z ≦ 65.
(5) The antireflection film as described in any one of (1) to (4), wherein the low refractive index layer contains hollow silica fine particles.
(6) The antireflection film as described in any one of (1) to (5), wherein the surface resistance on the side having the low refractive index layer is 1 × 10 12 Ω / □ or less.
(7) The antireflection film as described in any one of (1) to (6), wherein the conductive material contained in the antistatic layer is a metal oxide.
(8) The antistatic film according to any one of (1) to (7), wherein the antistatic layer has a thickness of 60 to 200 nm.
(9) The antireflection film as described in any one of (1) to (8) above, wherein the conductive material contained in the antistatic layer is fine particles having a specific surface area of 10 to 400 m 2 / g.
(10) The antireflection film as described in any one of (1) to (9) above, wherein the conductive material contained in the antistatic layer is fine particles having an average particle diameter of 1 to 200 nm.
(11) The antireflection film as described in any one of (1) to (10) above, wherein the conductive material contained in the antistatic layer is dispersed with a dispersant having an anionic group.
(12) The antireflection film as described in any one of (1) to (11) above, wherein the content of the conductive material in the antistatic layer is 20 to 60% by mass of the total solid content of the antistatic layer. .

(13)光拡散層が平均粒径が0.5〜8μmの透光性粒子を含有することを特徴とする(1)〜(12)のいずれかに記載の反射防止フィルム。
(14)光拡散層のバインダーマトリックスの屈折率が1.45〜1.90であり、さらに光拡散層のバインダーマトリックスと透光性粒子の屈折率差が0.02〜0.30であることを特徴とする(1)〜(13)のいずれかに記載の反射防止フィルム。
(15)前記低屈折率層を有する側の表面に凹凸が形成されており、防眩性を有することを特徴とする上記(1)〜(14)のいずれかに記載の反射防止フィルム。
(13) The antireflection film as described in any one of (1) to (12), wherein the light diffusion layer contains translucent particles having an average particle diameter of 0.5 to 8 μm.
(14) The refractive index of the binder matrix of the light diffusing layer is 1.45 to 1.90, and the refractive index difference between the binder matrix of the light diffusing layer and the translucent particles is 0.02 to 0.30. The antireflection film according to any one of (1) to (13).
(15) The antireflection film as described in any one of (1) to (14) above, wherein irregularities are formed on the surface having the low refractive index layer and have antiglare properties.

(16)低屈折率層が、下記一般式(A)で表わされるポリシロキサン化合物及び/又はその誘導体を含有することを特徴とする上記(1)〜(15)のいずれかに記載の反射防止フィルム。
一般式(A)
(16) The antireflection according to any one of (1) to (15) above, wherein the low refractive index layer contains a polysiloxane compound represented by the following general formula (A) and / or a derivative thereof: the film.
Formula (A)

Figure 2006023350
Figure 2006023350

一般式(A)中、R1〜R4はそれぞれ独立に炭素数1〜20の置換基を表し、それぞれの基が複数ある場合それらは互いに同じであっても異なっていてもよく、R1、R3、R4
のうち少なくとも一つの基が架橋又は重合性の官能基を表す。pは1≦p≦4を満たす整数を表す。qは10≦q≦500を満たす整数を表し、rは0≦r≦500を満たす整数を表し、ランダム共重合体であってもブロック共重合体であってもよい。
(17)透明支持体上のいずれかの層に、下記一般式(a)で表されるオルガノシラン化合物及び/又はその誘導体を含有することを特徴とする上記(1)〜(16)のいずれかに記載の反射防止フィルム。
In general formula (A), R 1 to R 4 each independently represent a substituent having 1 to 20 carbon atoms, and when there are a plurality of each group, they may be the same or different from each other, R 1 , R 3 , R 4
At least one of the groups represents a crosslinkable or polymerizable functional group. p represents an integer satisfying 1 ≦ p ≦ 4. q represents an integer satisfying 10 ≦ q ≦ 500, r represents an integer satisfying 0 ≦ r ≦ 500, and may be a random copolymer or a block copolymer.
(17) Any one of the above (1) to (16), wherein any layer on the transparent support contains an organosilane compound represented by the following general formula (a) and / or a derivative thereof: An antireflection film according to claim 1.

一般式(a) (R10s−Si(Z)4-s Formula (a) (R 10) s -Si (Z) 4-s

一般式(a)中、R10は置換もしくは無置換のアルキル基または置換もしくは無置換のアリール基を表す。Zは水酸基または加水分解可能な基を表す。sは1〜3の整数を表す。
(18)透明支持体上のいずれかの層が、酸素濃度が4体積%以下の雰囲気で形成されていることを特徴とする上記(1)〜(17)のいずれかに記載の反射防止フィルム。
(19)(1)〜(18)のいずれかに記載の反射防止フィルムを偏光膜の2枚の保護フィルムの少なくとも一方に有することを特徴とする偏光板。
(20)(1)〜(18)のいずれかに記載の反射防止フィルム、または(19)に記載の偏光板が画像表示面に配置されていることを特徴とする画像表示装置。
(21)画像表示装置が、TN、STN、IPS、VA又はOCBモードの、透過型、反射型又は半透過型の液晶表示装置であることを特徴とする(22)に記載の画像表示装置。
In general formula (a), R 10 represents a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group. Z represents a hydroxyl group or a hydrolyzable group. s represents an integer of 1 to 3.
(18) The antireflection film as described in any one of (1) to (17) above, wherein any layer on the transparent support is formed in an atmosphere having an oxygen concentration of 4% by volume or less. .
(19) A polarizing plate comprising the antireflection film according to any one of (1) to (18) on at least one of two protective films of a polarizing film.
(20) An image display device, wherein the antireflection film according to any one of (1) to (18) or the polarizing plate according to (19) is disposed on an image display surface.
(21) The image display apparatus according to (22), wherein the image display apparatus is a TN, STN, IPS, VA, or OCB mode transmissive, reflective, or transflective liquid crystal display apparatus.

本発明の反射防止フィルムの特徴は、帯電防止層を低屈折率層に接して(低屈折率層の直下に)設けたことである。この層構成にすることによって帯電防止層の厚みを薄くしても予想外に大きい帯電防止効果が維持され、かつ光拡散層が更に下層であるにも拘わらずその凹凸が反射防止フィルム表面に反映されて良好な光拡散性も発揮できることが判明した。このような優れた効果を発揮できる条件としては光拡散層の上に帯電防止層などの上層を塗設しても、その表面粗さは、上層の塗設前の光拡散層の表面粗さの0.5〜1.0の範囲に維持されることであり、上記層構成による薄層・高導電効果の寄与によっている。
また、帯電防止層の表面の表面粗さが、光拡散層の表面粗さを反映して上記の粗さ比率範囲に入るためには、上層厚みの均一性の寄与が大きいが、そのような均一性は、光拡散層表面の中心線平均粗さRa1が0.03〜0.30μmであり、帯電防止層塗設後の帯電防止層表面のRa2が、0.02〜0.25μmであるときに確保されることも判明した。
本発明の上記特徴により、次項に要約される効果が得られている。
The antireflection film of the present invention is characterized in that the antistatic layer is provided in contact with the low refractive index layer (directly below the low refractive index layer). With this layer structure, an unexpectedly large antistatic effect is maintained even when the antistatic layer is thinned, and the unevenness is reflected on the antireflection film surface even though the light diffusion layer is a lower layer. As a result, it was found that good light diffusibility can also be exhibited. Even if an antistatic layer or the like is coated on the light diffusing layer as a condition for exhibiting such an excellent effect, the surface roughness is the surface roughness of the light diffusing layer before the upper layer is coated. Is maintained within the range of 0.5 to 1.0, and this is due to the contribution of the thin layer and the high conductivity effect by the above layer configuration.
Further, in order for the surface roughness of the surface of the antistatic layer to fall within the above-mentioned roughness ratio range reflecting the surface roughness of the light diffusion layer, the contribution of uniformity of the upper layer thickness is large. The uniformity is such that the center line average roughness Ra1 on the surface of the light diffusion layer is 0.03 to 0.30 μm, and Ra2 on the surface of the antistatic layer after coating the antistatic layer is 0.02 to 0.25 μm. It was also found that sometimes secured.
The effects summarized in the next section are obtained by the above features of the present invention.

本発明によれば、耐擦傷性が高く、埃など塵埃に対する防塵性や防汚性に優れた反射防止フィルムを提供することができる。
さらにこれらにより、上記特徴を有する偏光板、画像表示装置を提供することができる。
According to the present invention, it is possible to provide an antireflection film having high scratch resistance and excellent dust resistance and antifouling properties against dust such as dust.
Furthermore, the polarizing plate and image display apparatus which have the said characteristics can be provided by these.

以下に、本発明について更に詳細に説明する。
(帯電防止層)
本発明における帯電防止層について説明する。
本発明の反射防止フィルムにおいて、帯電防止層を構築することで、反射防止フィルム表面に塵埃(埃など)が付着するのを防止する、すなわち優れた防塵性を発現させることができる。防塵性は、反射防止フィルム表面の表面抵抗値を下げることで発現され、帯電防止層の導電性が高いほど高い効果が得られる。本発明の反射防止フィルムにおいては、含フッ素化合物を含有する低屈折率層を有する側の表面の表面抵抗値が、1×1013Ω/□以下であることが好ましく、1×1012Ω/□以下であることがより好ましく、1×1010Ω/□以下であることが更に好ましく、1×108Ω/□以下であることが特に好ましい。
Hereinafter, the present invention will be described in more detail.
(Antistatic layer)
The antistatic layer in the present invention will be described.
In the antireflection film of the present invention, by constructing an antistatic layer, it is possible to prevent dust (dust etc.) from adhering to the surface of the antireflection film, that is, to exhibit an excellent dustproof property. Dust resistance is expressed by lowering the surface resistance value of the antireflection film surface, and the higher the conductivity of the antistatic layer, the higher the effect. In the antireflection film of the present invention, the surface resistance value of the surface having the low refractive index layer containing the fluorine-containing compound is preferably 1 × 10 13 Ω / □ or less, and preferably 1 × 10 12 Ω / □. □ or less is more preferable, 1 × 10 10 Ω / □ or less is further preferable, and 1 × 10 8 Ω / □ or less is particularly preferable.

本発明の反射防止フィルムにおいて、支持体上に塗布(コーティング)方式で層を設置することを塗設と称する。帯電防止層は、透明支持体上に少なくとも1層以上が塗設される。帯電防止層は、光拡散層と含フッ素化合物を有する低屈折率層との間に塗設される。   In the antireflection film of the present invention, setting a layer on a support by a coating (coating) method is called coating. At least one layer of the antistatic layer is coated on the transparent support. The antistatic layer is applied between the light diffusion layer and the low refractive index layer having a fluorine-containing compound.

帯電防止層を塗設する場合、導電材(電子伝導型の導電性粒子、イオン伝導型の有機化合物など)を結着剤(バインダーなど)に含有させて、帯電防止層を作製することが好ましい。特に、電子伝導型の導電材は、環境の変化を受け難く導電性能が安定し、特に低湿環境下でも良好な導電性能を発現する点で好ましい。
以下、塗布法で帯電防止層を作製する好ましい方法について記載する。
In the case of coating the antistatic layer, it is preferable to prepare the antistatic layer by incorporating a conductive material (electroconductive particles, electron conductive organic compounds, etc.) in a binder (binder, etc.). . In particular, an electron conductive type conductive material is preferable in that it is less susceptible to environmental changes, has stable conductive performance, and exhibits excellent conductive performance even in a low-humidity environment.
Hereinafter, a preferable method for producing an antistatic layer by a coating method will be described.

〈導電材〉
帯電防止層に用いられる好ましい導電材としては、π共役系導電性有機化合物、導電性微粒子などの電子伝導型の導電材が好ましい。
π共役系導電性有機化合物としては、脂肪族共役系のポリアセチレン、芳香族共役系のポリ(パラフェニレン)、複素環式共役系のポリピロール、ポリチオフェン、含ヘテロ原子共役系のポリアニリン、混合型共役系のポリ(フェニレンビニレン)等が挙げられる。
<Conductive material>
As a preferable conductive material used for the antistatic layer, an electron conductive conductive material such as a π-conjugated conductive organic compound or conductive fine particles is preferable.
Examples of π-conjugated conductive organic compounds include aliphatic conjugated polyacetylene, aromatic conjugated poly (paraphenylene), heterocyclic conjugated polypyrrole, polythiophene, heteroatom-containing polyaniline, and mixed conjugated systems. And poly (phenylene vinylene).

導電性微粒子としては、カーボン系、金属系、金属酸化物系、導電被覆系微粒子等が挙げられる。
カーボン系微粒子としては、カーボンブラック、ケッチェンブラック、アセチレンブラック等のカーボン粉末、PAN系炭素繊維、ピッチ系炭素繊維等のカーボン繊維、膨張化黒鉛粉砕品のカーボンフレーク等が挙げられる。
金属系微粒子としては、アルミニウム、銅、金、銀、ニッケル、クロム、鉄、モリブデン、チタン、タングステン、タンタル等の金属、及び、それらの金属を含有する合金の粉末や、金属フレーク、鉄、銅、ステンレス、銀メッキ銅、黄銅等の金属繊維等が挙げられる。
金属酸化物系微粒子としては、酸化錫、アンチモンをドープした酸化錫(ATO)、酸化インジウム、スズをドープした酸化インジウム(ITO)、酸化亜鉛、アルミニウムをドープした酸化亜鉛、アンチモン酸亜鉛、五酸化アンチモンなどが挙げられる。
導電被覆系微粒子としては、例えば、酸化チタン(球状、針状)、チタン酸カリウム、ホウ酸アルミニウム、硫酸バリウム、マイカ、シリカ等の各種微粒子表面を、酸化錫、ATO、ITO等の導電材で被覆した導電性微粒子、金及び/又はニッケルなどの金属で表面処理されたポリスチレン、アクリル樹脂、エポキシ樹脂、ポリアミド樹脂、ポリウレタン樹脂等の樹脂ビーズが好ましい。
Examples of the conductive fine particles include carbon-based, metal-based, metal oxide-based, and conductive coating-based fine particles.
Examples of the carbon-based fine particles include carbon powders such as carbon black, ketjen black, and acetylene black, carbon fibers such as PAN-based carbon fibers and pitch-based carbon fibers, and carbon flakes of pulverized expanded graphite.
Metal fine particles include metals such as aluminum, copper, gold, silver, nickel, chromium, iron, molybdenum, titanium, tungsten, tantalum, and powders of alloys containing these metals, metal flakes, iron, copper And metal fibers such as stainless steel, silver-plated copper and brass.
Metal oxide fine particles include tin oxide, antimony-doped tin oxide (ATO), indium oxide, tin-doped indium oxide (ITO), zinc oxide, aluminum-doped zinc oxide, zinc antimonate, pentoxide And antimony.
As the conductive coated fine particles, for example, the surface of various fine particles such as titanium oxide (spherical, needle-shaped), potassium titanate, aluminum borate, barium sulfate, mica, silica, etc. can be formed with a conductive material such as tin oxide, ATO, or ITO. Resin beads such as coated conductive fine particles, polystyrene, acrylic resin, epoxy resin, polyamide resin, polyurethane resin and the like surface-treated with a metal such as gold and / or nickel are preferable.

帯電防止層の導電材としては、π共役系導電性有機化合物(特に、ポリチオフェン系導電性ポリマー)、導電性微粒子としては金属系微粒子(特に、金、銀、銀/パラジウム合金、銅、ニッケル、アルミニウム)や金属酸化物系微粒子(特に、酸化錫、ATO、ITO、酸化亜鉛、アルミニウムをドープした酸化亜鉛)が好ましい。特に、金属や金属酸化物などの電子伝導型の導電材が好ましく、なかでも金属酸化物系微粒子が特に好ましい。   As the conductive material of the antistatic layer, π-conjugated conductive organic compound (especially polythiophene-based conductive polymer), and as conductive fine particles, metal-based fine particles (especially gold, silver, silver / palladium alloy, copper, nickel, Aluminum) and metal oxide fine particles (in particular, tin oxide, ATO, ITO, zinc oxide, aluminum-doped zinc oxide) are preferable. In particular, an electroconductive conductive material such as a metal or metal oxide is preferable, and metal oxide fine particles are particularly preferable.

導電材の一次粒子の質量平均粒径は1〜200nmであることが好ましく、より好ましくは1〜150nm、さらに好ましくは1〜100nm、特に好ましくは1〜80nmである。導電材の平均粒径は、光散乱法や電子顕微鏡写真により測定できる。
導電材の比表面積は、10〜400m2/gであることが好ましく、20〜200m2/gであることがさらに好ましく、30〜150m2/gであることが最も好ましい。
導電材の形状は、米粒状、球形状、立方体状、紡錘形状、鱗片状、針状あるいは不定形状であることが好ましく、特に好ましくは、不定形状、針状、鱗片状である。
The mass average particle size of the primary particles of the conductive material is preferably 1 to 200 nm, more preferably 1 to 150 nm, still more preferably 1 to 100 nm, and particularly preferably 1 to 80 nm. The average particle diameter of the conductive material can be measured by a light scattering method or an electron micrograph.
The specific surface area of the conductive material is preferably 10 to 400 m 2 / g, more preferably from 20 to 200 m 2 / g, and most preferably from 30 to 150 m 2 / g.
The shape of the conductive material is preferably a rice grain shape, a spherical shape, a cubic shape, a spindle shape, a scale shape, a needle shape, or an indefinite shape, and particularly preferably an indefinite shape, a needle shape, or a scale shape.

〈帯電防止層の形成法〉
帯電防止層を塗布法で作製する場合、導電材は、分散物の状態で帯電防止層の形成に使用することが好ましい。
導電材の分散においては、分散剤の存在下で、分散媒体中に分散することが好ましい。
分散剤を用いて分散することにより、導電材は極めて微細に分散することができ、透明な帯電防止層の作製を可能にする。特に、帯電防止層を光学干渉層として用いて層に反射防止機能ももたせる場合には、導電材を微細に分散することで層の透明性が上がり、反射防止性能も向上させることができる点で好ましい。
<Method for forming antistatic layer>
When the antistatic layer is produced by a coating method, the conductive material is preferably used for forming the antistatic layer in a dispersion state.
In dispersing the conductive material, it is preferable to disperse in the dispersion medium in the presence of a dispersant.
By dispersing using a dispersant, the conductive material can be dispersed extremely finely, making it possible to produce a transparent antistatic layer. In particular, when an antistatic layer is used as an optical interference layer and the layer also has an antireflection function, it is possible to improve the antireflection performance by improving the transparency of the layer by finely dispersing the conductive material. preferable.

本発明に係る導電材の分散には、アニオン性基を有する分散剤を用いることが好ましい。アニオン性基としては、カルボキシル基、スルホン酸基(スルホ基)、リン酸基(ホスホノ基)、スルホンアミド基等の酸性プロトンを有する基、またはその塩が有効であり、特にカルボキシル基、スルホン酸基、リン酸基またはその塩が好ましく、カルボキシル基、リン酸基が特に好ましい。1分子当たりの分散剤に含有されるアニオン性基の数は、1個以上が含有されていればよい。導電材の分散性をさらに改良する目的で分散材にはアニオン性基が1分子当たり複数個含有されていてもよい。1分子当たり平均で2個以上であることが好ましく、より好ましくは5個以上、特に好ましくは10個以上である。また、分散剤に含有されるアニオン性基は、1分子中に複数種類が含有されていてもよい。
アニオン性の極性基を有する分散剤としては、ホスファノール(PE−510、PE−610、LB−400、EC−6103、RE−410など;東邦化学工業(株)製)、Disperbyk(−110、−111、−116、−140、−161、−162、−163、−164、−164、−170、−171など;ビックケミー・ジャパン社製)、アロニックスM5300など;東亞合成(株)製、KAYAMER(PM-21、PM-2など;日本化薬(株)製)などが挙げられる。
For dispersing the conductive material according to the present invention, it is preferable to use a dispersant having an anionic group. As the anionic group, a group having an acidic proton such as a carboxyl group, a sulfonic acid group (sulfo group), a phosphoric acid group (phosphono group), a sulfonamide group, or a salt thereof is effective. Group, phosphoric acid group or a salt thereof is preferable, and carboxyl group and phosphoric acid group are particularly preferable. The number of anionic groups contained in the dispersant per molecule may be one or more. For the purpose of further improving the dispersibility of the conductive material, the dispersion material may contain a plurality of anionic groups per molecule. The average number per molecule is preferably 2 or more, more preferably 5 or more, and particularly preferably 10 or more. Moreover, the anionic group contained in a dispersing agent may contain multiple types in 1 molecule.
Examples of the dispersant having an anionic polar group include phosphanol (PE-510, PE-610, LB-400, EC-6103, RE-410, etc .; manufactured by Toho Chemical Industry Co., Ltd.), Disperbyk (-110, − 111, -116, -140, -161, -162, -163, -164, -164, -170, -171, etc .; manufactured by Big Chemie Japan), Aronix M5300, etc .; manufactured by Toagosei Co., Ltd., KAYAMER ( PM-21, PM-2, etc .; manufactured by Nippon Kayaku Co., Ltd.).

分散剤は、さらに架橋又は重合性の官能基を含有することが好ましい。架橋又は重合性の官能基としては、ラジカル種による架橋反応・重合反応が可能なエチレン性不飽和基(例えば(メタ)アクリロイル基、アリル基、スチリル基、ビニルオキシ基等)、カチオン重合性基(エポキシ基、オキサタニル基、ビニルオキシ基等)、重縮合反応性基(加水分解性シリル基等、N−メチロール基)等が挙げられ、好ましくはエチレン性不飽和基を有する官能基である。   The dispersant preferably further contains a crosslinkable or polymerizable functional group. Examples of the crosslinkable or polymerizable functional group include an ethylenically unsaturated group (for example, a (meth) acryloyl group, an allyl group, a styryl group, a vinyloxy group, etc.), a cationic polymerizable group ( Epoxy group, oxatanyl group, vinyloxy group, etc.), polycondensation reactive groups (hydrolyzable silyl group, etc., N-methylol group), etc., and the like, preferably a functional group having an ethylenically unsaturated group.

本発明に係る帯電防止層に用いる導電材の分散に用いる分散剤は、アニオン性基、及び、架橋又は重合性の官能基を有し、かつ該架橋又は重合性の官能基を側鎖に有する分散剤であることが特に好ましい。   The dispersant used for dispersing the conductive material used in the antistatic layer according to the present invention has an anionic group and a crosslinkable or polymerizable functional group, and has the crosslinkable or polymerizable functional group in the side chain. A dispersant is particularly preferred.

アニオン性基、及び、架橋又は重合性の官能基を有し、かつ、該架橋又は重合性の官能基を側鎖に有する分散剤の質量平均分子量(Mw)は、特に限定されないが1000以上であることが好ましい。該分散剤のより好ましい質量平均分子量(Mw)は2000〜1000000であり、さらに好ましくは5000〜200000、特に好ましくは10000〜100000である。   The weight average molecular weight (Mw) of the dispersant having an anionic group and a crosslinkable or polymerizable functional group and having the crosslinkable or polymerizable functional group in the side chain is not particularly limited, but is 1000 or more. Preferably there is. The dispersant preferably has a mass average molecular weight (Mw) of 2,000 to 1,000,000, more preferably 5,000 to 200,000, and particularly preferably 10,000 to 100,000.

分散剤の導電材に対する使用量は、1〜50質量%の範囲であることが好ましく、5〜30質量%の範囲であることがより好ましく、5〜20質量%であることが最も好ましい。また、分散剤は2種類以上を併用してもよい。
導電材は分散剤の存在下で、分散媒体中に分散することが好ましい。
The amount of the dispersant used relative to the conductive material is preferably in the range of 1 to 50% by mass, more preferably in the range of 5 to 30% by mass, and most preferably 5 to 20% by mass. Two or more dispersants may be used in combination.
The conductive material is preferably dispersed in a dispersion medium in the presence of a dispersant.

分散媒体は、沸点が60〜170℃の液体を用いることが好ましい。分散媒体の例には、水、アルコール(例、メタノール、エタノール、イソプロパノール、ブタノール、ベンジルアルコール)、ケトン(例、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン)、エステル(例、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、蟻酸メチル、蟻酸エチル、蟻酸プロピル、蟻酸ブチル)、脂肪族炭化水素(例、ヘキサン、シクロヘキサン)、ハロゲン化炭化水素(例、メチレンクロライド、クロロホルム、四塩化炭素)、芳香族炭化水素(例、ベンゼン、トルエン、キシレン)、アミド(例、ジメチルホルムアミド、ジメチルアセトアミド、n−メチルピロリドン)、エーテル(例、ジエチルエーテル、ジオキサン、テトラヒドロフラン)、エーテルアルコール(例、1−メトキシ−2−プロパノール)が含まれる。トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンおよびブタノールが好ましい。
特に好ましい分散媒体は、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンである。
As the dispersion medium, a liquid having a boiling point of 60 to 170 ° C. is preferably used. Examples of dispersion media include water, alcohol (eg, methanol, ethanol, isopropanol, butanol, benzyl alcohol), ketone (eg, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone), ester (eg, methyl acetate, ethyl acetate, Propyl acetate, butyl acetate, methyl formate, ethyl formate, propyl formate, butyl formate), aliphatic hydrocarbons (eg, hexane, cyclohexane), halogenated hydrocarbons (eg, methylene chloride, chloroform, carbon tetrachloride), aromatic Hydrocarbon (eg, benzene, toluene, xylene), amide (eg, dimethylformamide, dimethylacetamide, n-methylpyrrolidone), ether (eg, diethyl ether, dioxane, tetrahydrofuran), ether alcohol (eg, 1-meth Shi-2-propanol) are included. Toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and butanol are preferred.
Particularly preferred dispersion media are methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.

導電材は、分散機を用いて分散することが好ましい。分散機の例には、サンドグラインダーミル(例、ピン付きビーズミル)、ダイノミル、高速インペラーミル、アイガーミル、ペッブルミル、ローラーミル、アトライターおよびコロイドミルなどが含まれる。サンドグラインダーミル、ダイノミルなどのメディア分散機が特に好ましい。また、予備分散処理を実施してもよい。予備分散処理に用いる分散機の例には、ボールミル、三本ロールミル、ニーダーおよびエクストルーダーが含まれる。
導電材は、分散媒体中でなるべく微細化されていることが好ましく、質量平均粒径は1〜200nmである。好ましくは5〜150nmであり、さらに好ましくは10〜100nm、特に好ましくは10〜80nmである。
導電材を200nm以下に微細化することで透明性を損なわない帯電防止層を作製できる。
The conductive material is preferably dispersed using a disperser. Examples of the disperser include a sand grinder mill (eg, a bead mill with pins), a dyno mill, a high-speed impeller mill, an Eiger mill, a pebble mill, a roller mill, an attritor and a colloid mill. A media disperser such as a sand grinder mill or a dyno mill is particularly preferable. Further, preliminary dispersion processing may be performed. Examples of the disperser used for the preliminary dispersion treatment include a ball mill, a three-roll mill, a kneader, and an extruder.
The conductive material is preferably made as fine as possible in the dispersion medium, and the mass average particle diameter is 1 to 200 nm. Preferably it is 5-150 nm, More preferably, it is 10-100 nm, Most preferably, it is 10-80 nm.
By miniaturizing the conductive material to 200 nm or less, an antistatic layer that does not impair the transparency can be produced.

本発明において、帯電防止層は、上記導電材以外に有機化合物のバインダーを含有することが好ましく、該バインダーにより層のマトリックスを形成し、導電材を分散させることが好ましい。このため帯電防止層は、分散媒体中に導電材を分散した分散液に、好ましくは、バインダーまたはバインダー前駆体を添加して作製することが好ましい。バインダーまたはバインダー前駆体としては、非硬化系の熱可塑性樹脂、あるいは熱硬化性樹脂、電離放射線硬化性樹脂のような硬化系樹脂等を用いることができる。
バインダーまたはバインダー前駆体の軟化温度又はガラス転移点は、50℃以上であることが好ましく、70℃以上であることがより好ましく、100℃以上であることが特に好ましい。
In the present invention, the antistatic layer preferably contains an organic compound binder in addition to the conductive material, and it is preferable to form a matrix of the layer with the binder and disperse the conductive material. Therefore, the antistatic layer is preferably prepared by adding a binder or a binder precursor to a dispersion liquid in which a conductive material is dispersed in a dispersion medium. As the binder or binder precursor, a non-curable thermoplastic resin, or a curable resin such as a thermosetting resin or an ionizing radiation curable resin can be used.
The softening temperature or glass transition point of the binder or binder precursor is preferably 50 ° C. or higher, more preferably 70 ° C. or higher, and particularly preferably 100 ° C. or higher.

本発明において、帯電防止層は、分散液にバインダー前駆体(架橋又は重合性の官能基を有する化合物)に、光重合開始剤等を加えて帯電防止層形成用の塗料とし、透明支持体上に該帯電防止層形成用の塗料を塗布して、バインダー前駆体の架橋又は重合反応により硬化させて作製することが特に好ましい。バインダー前駆体としての架橋又は重合性の官能基を有する化合物としては、電離放射線硬化性化合物が好ましく、例えば、後述する電離放射線硬化性の多官能モノマーや多官能オリゴマーなどが好ましい。
上記作製法において帯電防止層のバインダーは、架橋又は重合性の官能基を有する化合物の硬化物として形成される。さらに、帯電防止層のバインダーを層の塗布と同時または塗布後に、分散剤と架橋反応又は重合反応させて硬化させて形成することが好ましい。
このようにして作製した帯電防止層のバインダーは、例えば、上記の分散剤と電離放射線硬化性の多官能モノマーや多官能オリゴマーとが、架橋又は重合反応し、バインダーに分散剤のアニオン性基が取りこまれた形となり、アニオン性基が導電材の分散状態を維持する機能を有し、架橋又は重合構造がバインダーに皮膜形成能を付与して、導電材を含有する帯電防止層の物理強度、耐薬品性、耐候性を改良できるので好ましい。
In the present invention, the antistatic layer is prepared by adding a photopolymerization initiator or the like to a binder precursor (compound having a crosslinkable or polymerizable functional group) in a dispersion to form a coating for forming an antistatic layer. It is particularly preferable that the antistatic layer-forming coating material is applied to the substrate and cured by crosslinking or polymerization reaction of the binder precursor. As the compound having a crosslinkable or polymerizable functional group as the binder precursor, an ionizing radiation curable compound is preferable. For example, an ionizing radiation curable polyfunctional monomer or polyfunctional oligomer described later is preferable.
In the above production method, the binder of the antistatic layer is formed as a cured product of a compound having a crosslinkable or polymerizable functional group. Furthermore, it is preferable to form the binder of the antistatic layer by curing it by crosslinking reaction or polymerization reaction with the dispersing agent at the same time or after coating of the layer.
The binder of the antistatic layer produced in this way is, for example, the above-mentioned dispersant and an ionizing radiation-curable polyfunctional monomer or polyfunctional oligomer cross-linked or polymerized, and the binder has an anionic group of the dispersant. The physical strength of the antistatic layer containing the conductive material, in which the anionic group has the function of maintaining the dispersed state of the conductive material, and the crosslinked or polymerized structure imparts a film-forming ability to the binder. It is preferable because chemical resistance and weather resistance can be improved.

電離放射線硬化性の多官能モノマーや多官能オリゴマーの官能基としては、光、電子線、放射線重合性のものが好ましく、中でも光重合性官能基が好ましい。
光重合性官能基としては、(メタ)アクリロイル基、ビニル基、スチリル基、アリル基等の不飽和の重合性官能基等が挙げられ、中でも、(メタ)アクリロイル基が好ましい。
The functional group of the ionizing radiation-curable polyfunctional monomer or polyfunctional oligomer is preferably a light, electron beam, or radiation polymerizable group, and among them, a photopolymerizable functional group is preferable.
Examples of the photopolymerizable functional group include unsaturated polymerizable functional groups such as a (meth) acryloyl group, a vinyl group, a styryl group, and an allyl group. Among them, a (meth) acryloyl group is preferable.

光重合性官能基を有する光重合性多官能モノマーの具体例としては、ネオペンチルグリコールアクリレート、1,6−ヘキサンジオール(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート等のアルキレングリコールの(メタ)アクリル酸ジエステル類、トリエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等のポリオキシアルキレングリコールの(メタ)アクリル酸ジエステル類、ペンタエリスリトールジ(メタ)アクリレート等の多価アルコールの(メタ)アクリル酸ジエステル類、2,2−ビス{4−(アクリロキシ・ジエトキシ)フェニル}プロパン、2−2−ビス{4−(アクリロキシ・ポリプロポキシ)フェニル}プロパン等のエチレンオキシドあるいはプロピレンオキシド付加物の(メタ)アクリル酸ジエステル類、等を挙げることができる。   Specific examples of the photopolymerizable polyfunctional monomer having a photopolymerizable functional group include (meth) alkylene glycols such as neopentyl glycol acrylate, 1,6-hexanediol (meth) acrylate, and propylene glycol di (meth) acrylate. (Meth) acrylic acid of polyoxyalkylene glycols such as acrylic acid diesters, triethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate Diesters, (meth) acrylic acid diesters of polyhydric alcohols such as pentaerythritol di (meth) acrylate, 2,2-bis {4- (acryloxy-diethoxy) phenyl} propane, 2--2-bi {4- (acryloxy · polypropoxy) phenyl} (meth) acrylic acid diesters of ethylene oxide or propylene oxide adducts such as propane, and the like.

さらにはエポキシ(メタ)アクリレート類、ウレタン(メタ)アクリレート類、ポリエステル(メタ)アクリレート類も、光重合性多官能モノマーとして、好ましく用いられる。   Furthermore, epoxy (meth) acrylates, urethane (meth) acrylates, and polyester (meth) acrylates are also preferably used as the photopolymerizable polyfunctional monomer.

中でも、多価アルコールと(メタ)アクリル酸とのエステル類が好ましい。さらに好ましくは、1分子中に3個以上の(メタ)アクリロイル基を有する多官能モノマーが好ましい。具体的には、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、1,2,4−シクロヘキサンテトラ(メタ)アクリレート、ペンタグリセロールトリアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、(ジ)ペンタエリスリトールトリアクリレート、(ジ)ペンタエリスリトールペンタアクリレート、(ジ)ペンタエリスリトールテトラ(メタ)アクリレート、(ジ)ペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールトリアクリレート、トリペンタエリスリトールヘキサトリアクリレート等が挙げられる。
多官能モノマーは、二種類以上を併用してもよい。
Among these, esters of polyhydric alcohol and (meth) acrylic acid are preferable. More preferably, a polyfunctional monomer having 3 or more (meth) acryloyl groups in one molecule is preferable. Specifically, trimethylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate, 1,2,4-cyclohexanetetra (meth) acrylate, pentaglycerol triacrylate, pentaerythritol tetra (meth) acrylate, penta Erythritol tri (meth) acrylate, (di) pentaerythritol triacrylate, (di) pentaerythritol pentaacrylate, (di) pentaerythritol tetra (meth) acrylate, (di) pentaerythritol hexa (meth) acrylate, tripentaerythritol triacrylate , Tripentaerythritol hexatriacrylate and the like.
Two or more polyfunctional monomers may be used in combination.

光重合性多官能モノマーの重合反応には、光重合開始剤を用いることが好ましい。光重合開始剤としては、光ラジカル重合開始剤と光カチオン重合開始剤が好ましく、特に好ましいのは光ラジカル重合開始剤である。
光ラジカル重合開始剤としては、例えば、アセトフェノン類、ベンゾフェノン類、ミヒラーのベンゾイルベンゾエート、α−アミロキシムエステル、テトラメチルチウラムモノサルファイドおよびチオキサントン類等が挙げられる。
It is preferable to use a photopolymerization initiator for the polymerization reaction of the photopolymerizable polyfunctional monomer. As the photopolymerization initiator, a photoradical polymerization initiator and a photocationic polymerization initiator are preferable, and a photoradical polymerization initiator is particularly preferable.
Examples of the photo radical polymerization initiator include acetophenones, benzophenones, Michler's benzoylbenzoate, α-amyloxime ester, tetramethylthiuram monosulfide, and thioxanthones.

市販の光ラジカル重合開始剤としては、日本化薬(株)製のKAYACURE(DETX-S、BP-100、BDMK、CTX、BMS、2-EAQ、ABQ、CPTX、EPD、ITX、QTX、BTC、MCAなど)、チバ・スペシャルティ・ケミカルズ(株)製のイルガキュア(651、184、500、907、369、1173、2959、4265、4263など)、サートマー社製のEsacure(KIP100F、KB1、EB3、BP、X33、KT046、KT37、KIP150、TZT)等が挙げられる。   Commercially available radical photopolymerization initiators include Kayacure (DETX-S, BP-100, BDMK, CTX, BMS, 2-EAQ, ABQ, CPTX, EPD, ITX, QTX, BTC, manufactured by Nippon Kayaku Co., Ltd. MCA, etc.), Irgacure (651, 184, 500, 907, 369, 1173, 2959, 4265, 4263, etc.) manufactured by Ciba Specialty Chemicals Co., Ltd., Esacure (KIP100F, KB1, EB3, BP, manufactured by Sartomer) X33, KT046, KT37, KIP150, TZT) and the like.

特に、光開裂型の光ラジカル重合開始剤が好ましい。光開裂型の光ラジカル重合開始剤については、高薄一弘著「最新UV硬化技術」((株)技術情報協会、159頁、1991年)に記載されている。
市販の光開裂型の光ラジカル重合開始剤としては、チバ・スペシャルティ・ケミカルズ(株)製のイルガキュア(651、184、907)等が挙げられる。
In particular, photocleavable photoradical polymerization initiators are preferred. The photocleavable photoradical polymerization initiator is described in Kazuhiro Takasashi “Latest UV Curing Technology” (Technical Information Association, Inc., page 159, 1991).
Examples of commercially available photocleavable photoradical polymerization initiators include Irgacure (651, 184, 907) manufactured by Ciba Specialty Chemicals.

光重合開始剤は、多官能モノマー100質量部に対して、0.1〜15質量部の範囲で使用することが好ましく、より好ましくは1〜10質量部の範囲である。
光重合開始剤に加えて、光増感剤を用いてもよい。光増感剤の具体例として、n−ブチルアミン、トリエチルアミン、トリ−n−ブチルホスフィン、ミヒラーのケトンおよびチオキサントンを挙げることができる。
市販の光増感剤としては、日本化薬(株)製のKAYACURE(DMBI、EPA)などが挙げられる。
光重合反応は、帯電防止層の塗布および乾燥後、紫外線照射により行うことが好ましい。
紫外線照射には、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、キセノンアーク、メタルハライドランプ等の光線から発する紫外線等が利用できる。
It is preferable to use a photoinitiator in the range of 0.1-15 mass parts with respect to 100 mass parts of polyfunctional monomers, More preferably, it is the range of 1-10 mass parts.
In addition to the photopolymerization initiator, a photosensitizer may be used. Specific examples of the photosensitizer include n-butylamine, triethylamine, tri-n-butylphosphine, Michler's ketone and thioxanthone.
Examples of commercially available photosensitizers include Kayacure (DMBI, EPA) manufactured by Nippon Kayaku Co., Ltd.
The photopolymerization reaction is preferably performed by ultraviolet irradiation after the antistatic layer is applied and dried.
For ultraviolet irradiation, ultraviolet rays emitted from light rays such as an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc, a xenon arc, a metal halide lamp, and the like can be used.

帯電防止層の架橋又は重合しているバインダーは、ポリマーの主鎖が架橋又は重合している構造を有することが好ましい。ポリマーの主鎖の例には、ポリオレフィン(飽和炭化水素)、ポリエーテル、ポリウレア、ポリウレタン、ポリエステル、ポリアミン、ポリアミドおよびメラミン樹脂が含まれる。ポリオレフィン主鎖、ポリエーテル主鎖およびポリウレア主鎖が好ましく、ポリオレフィン主鎖およびポリエーテル主鎖がさらに好ましく、ポリオレフィン主鎖が最も好ましい。   The binder in which the antistatic layer is crosslinked or polymerized preferably has a structure in which the main chain of the polymer is crosslinked or polymerized. Examples of the polymer main chain include polyolefin (saturated hydrocarbon), polyether, polyurea, polyurethane, polyester, polyamine, polyamide and melamine resin. A polyolefin main chain, a polyether main chain and a polyurea main chain are preferable, a polyolefin main chain and a polyether main chain are more preferable, and a polyolefin main chain is most preferable.

ポリオレフィン主鎖は、飽和炭化水素からなる。ポリオレフィン主鎖は、例えば、不飽和重合性基の付加重合反応により得られる。ポリエーテル主鎖は、エーテル結合(−O−)によって繰り返し単位が結合している。ポリエーテル主鎖は、例えば、エポキシ基の開環重合反応により得られる。ポリウレア主鎖は、ウレア結合(−NH−CO−NH−)によって、繰り返し単位が結合している。ポリウレア主鎖は、例えば、イソシアネート基とアミノ基との縮重合反応により得られる。ポリウレタン主鎖は、ウレタン結合(−NH−CO−O−)によって、繰り返し単位が結合している。ポリウレタン主鎖は、例えば、イソシアネート基と、水酸基(N−メチロール基を含む)との縮重合反応により得られる。ポリエステル主鎖は、エステル結合(−CO−O−)によって、繰り返し単位が結合している。ポリエステル主鎖は、例えば、カルボキシル基(酸ハライド基を含む)と水酸基(N−メチロール基を含む)との縮重合反応により得られる。ポリアミン主鎖は、イミノ結合(−NH−)によって、繰り返し単位が結合している。ポリアミン主鎖は、例えば、エチレンイミン基の開環重合反応により得られる。ポリアミド主鎖は、アミド結合(−NH−CO−)によって、繰り返し単位が結合している。ポリアミド主鎖は、例えば、イソシアネート基とカルボキシル基(酸ハライド基を含む)との反応により得られる。メラミン樹脂主鎖は、例えば、トリアジン基(例、メラミン)とアルデヒド(例、ホルムアルデヒド)との縮重合反応により得られる。なお、メラミン樹脂は、主鎖そのものが架橋又は重合構造を有する。   The polyolefin main chain is composed of a saturated hydrocarbon. The polyolefin main chain is obtained, for example, by an addition polymerization reaction of an unsaturated polymerizable group. The polyether main chain has repeating units bonded by an ether bond (—O—). The polyether main chain is obtained, for example, by a ring-opening polymerization reaction of an epoxy group. In the polyurea main chain, repeating units are bonded by a urea bond (—NH—CO—NH—). The polyurea main chain is obtained, for example, by a condensation polymerization reaction between an isocyanate group and an amino group. The polyurethane main chain has repeating units bonded by urethane bonds (—NH—CO—O—). The polyurethane main chain is obtained, for example, by a polycondensation reaction between an isocyanate group and a hydroxyl group (including an N-methylol group). The polyester main chain has repeating units bonded by an ester bond (—CO—O—). The polyester main chain is obtained, for example, by a polycondensation reaction between a carboxyl group (including an acid halide group) and a hydroxyl group (including an N-methylol group). In the polyamine main chain, repeating units are bonded by an imino bond (—NH—). The polyamine main chain is obtained, for example, by a ring-opening polymerization reaction of an ethyleneimine group. The polyamide main chain has repeating units bonded by an amide bond (—NH—CO—). The polyamide main chain is obtained, for example, by a reaction between an isocyanate group and a carboxyl group (including an acid halide group). The melamine resin main chain is obtained, for example, by a polycondensation reaction between a triazine group (eg, melamine) and an aldehyde (eg, formaldehyde). In the melamine resin, the main chain itself has a crosslinked or polymerized structure.

アニオン性基は、連結基を介してバインダーの側鎖として、主鎖に結合していることが好ましい。
アニオン性基とバインダーの主鎖とを結合する連結基は、−CO−、−O−、アルキレン基、アリーレン基、およびこれらの組み合わせから選ばれる二価の基であることが好ましい。架橋又は重合構造は、二つ以上の主鎖を化学的に結合(好ましくは共有結合)する。架橋又は重合構造は、三つ以上の主鎖を共有結合することが好ましい。架橋又は重合構造は、−CO−、−O−、−S−、窒素原子、リン原子、脂肪族残基、芳香族残基およびこれらの組み合わせから選ばれる二価以上の基からなることが好ましい。
The anionic group is preferably bonded to the main chain as a side chain of the binder via a linking group.
The linking group that binds the anionic group and the main chain of the binder is preferably a divalent group selected from —CO—, —O—, an alkylene group, an arylene group, and combinations thereof. The crosslinked or polymerized structure chemically bonds (preferably covalently bonds) two or more main chains. In the crosslinked or polymerized structure, it is preferable to covalently bond three or more main chains. The crosslinked or polymerized structure is preferably composed of a divalent or higher valent group selected from —CO—, —O—, —S—, a nitrogen atom, a phosphorus atom, an aliphatic residue, an aromatic residue, and combinations thereof. .

バインダーは、アニオン性基を有する繰り返し単位と、架橋又は重合構造を有する繰り返し単位とを有するコポリマーであることが好ましい。コポリマー中のアニオン性基を有する繰り返し単位の割合は、2〜96モル%であることが好ましく、4〜94モル%であることがさらに好ましく、6〜92モル%であることが最も好ましい。繰り返し単位は、二つ以上のアニオン性基を有していてもよい。コポリマー中の架橋又は重合構造を有する繰り返し単位の割合は、4〜98モル%であることが好ましく、6〜96モル%であることがさらに好ましく、8〜94モル%であることが最も好ましい。   The binder is preferably a copolymer having a repeating unit having an anionic group and a repeating unit having a crosslinked or polymerized structure. The proportion of the repeating unit having an anionic group in the copolymer is preferably 2 to 96 mol%, more preferably 4 to 94 mol%, and most preferably 6 to 92 mol%. The repeating unit may have two or more anionic groups. The proportion of the repeating unit having a crosslinked or polymerized structure in the copolymer is preferably 4 to 98 mol%, more preferably 6 to 96 mol%, and most preferably 8 to 94 mol%.

バインダーの繰り返し単位は、アニオン性基と架橋又は重合構造の双方を有していてもよい。バインダーには、その他の繰り返し単位(アニオン性基も架橋又は重合構造もない繰り返し単位)が含まれていてもよい。
架橋又は重合しているバインダーは、帯電防止層形成用の塗料を透明支持体上に塗布して、塗布と同時または塗布後に、架橋又は重合反応によって作製することが好ましい。
The repeating unit of the binder may have both an anionic group and a crosslinked or polymerized structure. The binder may contain other repeating units (repeating units having neither an anionic group nor a crosslinked or polymerized structure).
The crosslinked or polymerized binder is preferably prepared by applying a coating for forming an antistatic layer on a transparent support, and simultaneously with or after application, by a crosslinking or polymerization reaction.

帯電防止層における導電材の含有量は、帯電防止層の質量に対し30〜90質量%であることが好ましく、より好ましくは40〜80質量%、特に好ましくは50〜75質量%である。導電材は帯電防止層内で二種類以上を併用してもよい。   The content of the conductive material in the antistatic layer is preferably 30 to 90% by mass, more preferably 40 to 80% by mass, and particularly preferably 50 to 75% by mass with respect to the mass of the antistatic layer. Two or more kinds of conductive materials may be used in combination in the antistatic layer.

帯電防止層の好ましい塗布溶媒としては、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等)、エステル類(酢酸エチル、酢酸ブチル等)、エーテル類(テトラヒドロフラン、1,4−ジオキサン等)、アルコール類(メタノール、エタノール、イソプロピルアルコール、ブタノール、エチレングリコール、等)、芳香族炭化水素類(トルエン、キシレン等)、水などを挙げることができる。
特に好ましい塗布溶媒としては、ケトン類、芳香族炭化水素類、又は、エステル類であり、最も好ましい溶媒としては、ケトン類である。ケトン類の中でも、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンが特に好ましい。
塗布溶媒は、その他の溶媒を含んでいてもよい。例えば、脂肪族炭化水素(例、ヘキサン、シクロヘキサン)、ハロゲン化炭化水素(例、メチレンクロライド、クロロホルム、四塩化炭素)、アミド(例、ジメチルホルムアミド、ジメチルアセトアミド、n−メチルピロリドン)、エーテル(例、ジエチルエーテル、ジオキサン、テトラヒドロフラン)、エーテルアルコール(例、1−メトキシ−2−プロパノール)が含まれる。
Preferred coating solvents for the antistatic layer include ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, etc.), esters (ethyl acetate, butyl acetate, etc.), ethers (tetrahydrofuran, 1,4-dioxane, etc.), alcohols (Methanol, ethanol, isopropyl alcohol, butanol, ethylene glycol, etc.), aromatic hydrocarbons (toluene, xylene, etc.), water and the like.
Particularly preferred coating solvents are ketones, aromatic hydrocarbons, or esters, and the most preferred solvents are ketones. Of the ketones, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone are particularly preferable.
The coating solvent may contain other solvents. For example, aliphatic hydrocarbons (eg, hexane, cyclohexane), halogenated hydrocarbons (eg, methylene chloride, chloroform, carbon tetrachloride), amides (eg, dimethylformamide, dimethylacetamide, n-methylpyrrolidone), ethers (eg, , Diethyl ether, dioxane, tetrahydrofuran) and ether alcohol (eg, 1-methoxy-2-propanol).

塗布溶媒は、ケトン系溶媒の含有量が塗料に含まれる全溶媒の10質量%以上であることが好ましい。好ましくは30質量%以上、さらに好ましくは60質量%以上である。   The coating solvent preferably has a ketone solvent content of 10% by mass or more of the total solvent contained in the paint. Preferably it is 30 mass% or more, More preferably, it is 60 mass% or more.

帯電防止層の形成は、特に帯電防止層を電離放射線硬化性化合物の架橋又は重合反応により形成する場合には、酸素濃度が4体積%以下の雰囲気で実施することが好ましい。
帯電防止層を酸素濃度が4体積%以下の雰囲気で作製することにより、帯電防止層の物理強度(耐擦傷性など)、耐薬品性、耐候性、更には、帯電防止層と帯電防止層と隣接する層との接着性を改良することができる。
好ましくは酸素濃度が3体積%以下の雰囲気で電離放射線硬化性化合物の架橋又は重合反応により作製することであり、更に好ましくは酸素濃度が2体積%以下、特に好ましくは酸素濃度が1体積%以下、最も好ましくは0.5体積%以下である。
酸素濃度を4体積%以下にする手法としては、大気(窒素濃度約79体積%、酸素濃度約21体積%)を別の気体で置換することが好ましく、特に好ましくは窒素で置換(窒素パージ)することである。
Formation of the antistatic layer is preferably carried out in an atmosphere having an oxygen concentration of 4% by volume or less, particularly when the antistatic layer is formed by crosslinking or polymerization reaction of an ionizing radiation curable compound.
By preparing the antistatic layer in an atmosphere having an oxygen concentration of 4% by volume or less, the physical strength (such as scratch resistance), chemical resistance and weather resistance of the antistatic layer, as well as the antistatic layer and the antistatic layer, Adhesion between adjacent layers can be improved.
Preferably, it is prepared by crosslinking or polymerization reaction of an ionizing radiation curable compound in an atmosphere having an oxygen concentration of 3% by volume or less, more preferably 2% by volume or less, particularly preferably 1% by volume or less. Most preferably, it is 0.5 volume% or less.
As a method for reducing the oxygen concentration to 4% by volume or less, it is preferable to replace the atmosphere (nitrogen concentration of about 79% by volume, oxygen concentration of about 21% by volume) with another gas, particularly preferably replacement with nitrogen (nitrogen purge). It is to be.

帯電防止層の膜厚は用途により適切に設計することができる。優れた透明性を有する帯電防止層を作製する場合、膜厚は20〜1000nmであることが好ましく、より好ましくは40〜300nm、更に好ましくは60〜200nmである。   The film thickness of the antistatic layer can be appropriately designed depending on the application. When producing an antistatic layer having excellent transparency, the film thickness is preferably 20 to 1000 nm, more preferably 40 to 300 nm, and still more preferably 60 to 200 nm.

帯電防止層のヘイズは、低いほど好ましい。5%以下であることが好ましく、さらに好ましくは3%以下、特に好ましくは1%以下である。この場合のヘイズは平滑な透明支持体に帯電防止層のみを塗設・硬化することによって求めた値である。
帯電防止層は光拡散層の上に塗設され、塗設後の表面の中心線平均粗さRa2(他層のRaと区別するために、帯電防止層塗設後のRaをRa2と表現する)は0.02〜0.25μmであることが好ましく、0.04〜0.20μmがさらに好ましく、0.06〜0.17μmが最も好ましい。
帯電防止層の強度は、JIS K5400に従う鉛筆硬度試験で、H以上であることが好ましく、2H以上であることがさらに好ましく、3H以上であることが最も好ましい。
また、JIS K5400に従うテーバー試験で、試験前後の試験片の摩耗量が少ないほど好ましい。このために帯電防止層がハードコート処理されていることも好ましい。
The haze of the antistatic layer is preferably as low as possible. It is preferably 5% or less, more preferably 3% or less, and particularly preferably 1% or less. The haze in this case is a value obtained by coating and curing only an antistatic layer on a smooth transparent support.
The antistatic layer is coated on the light diffusing layer, and the centerline average roughness Ra2 of the surface after coating (in order to distinguish it from Ra of other layers, Ra after coating of the antistatic layer is expressed as Ra2. ) Is preferably 0.02 to 0.25 μm, more preferably 0.04 to 0.20 μm, and most preferably 0.06 to 0.17 μm.
The strength of the antistatic layer is preferably H or more, more preferably 2H or more, and most preferably 3H or more in a pencil hardness test according to JIS K5400.
Further, in the Taber test according to JIS K5400, the smaller the wear amount of the test piece before and after the test, the better. For this reason, it is also preferable that the antistatic layer is hard-coated.

帯電防止層には、前記の成分(導電材、重合開始剤、光増感剤、バインダーなど)以外に、樹脂、界面活性剤、カップリング剤、増粘剤、着色防止剤、着色剤(顔料、染料)、消泡剤、レベリング剤、難燃剤、紫外線吸収剤、赤外線吸収剤、接着付与剤、重合禁止剤、酸化防止剤、表面改質剤、などを添加することもできる。   In the antistatic layer, in addition to the above components (conductive material, polymerization initiator, photosensitizer, binder, etc.), resin, surfactant, coupling agent, thickener, anti-coloring agent, coloring agent (pigment) Dyes), antifoaming agents, leveling agents, flame retardants, ultraviolet absorbers, infrared absorbers, adhesion-imparting agents, polymerization inhibitors, antioxidants, surface modifiers, and the like.

(光拡散層)
光拡散層は、透光性ポリマーからなるバインダー、透光性粒子、および高屈折率化または低屈折率化、架橋収縮防止、高強度化のための微細無機フィラー、から形成される。
光拡散層の厚さは、通常0.5μm〜30μm程度で、好ましくは1μm〜15μm、さらに1.5μm〜10μmが好ましい。厚すぎると、カール、ヘイズ値、高コスト等の欠点がでて、逆に薄すぎると防眩性と光拡散効果の調整が難しくなる。
(Light diffusion layer)
The light diffusion layer is formed from a binder made of a light-transmitting polymer, light-transmitting particles, and a fine inorganic filler for increasing the refractive index or decreasing the refractive index, preventing crosslinking shrinkage, and increasing the strength.
The thickness of the light diffusion layer is usually about 0.5 μm to 30 μm, preferably 1 μm to 15 μm, and more preferably 1.5 μm to 10 μm. If it is too thick, there are disadvantages such as curl, haze value, and high cost. Conversely, if it is too thin, it becomes difficult to adjust the antiglare property and the light diffusion effect.

〈バインダー〉
バインダーとしては、飽和炭化水素鎖またはポリエーテル鎖を主鎖として有する透光性ポリマーであることが好ましく、飽和炭化水素鎖を主鎖として有するポリマーであることがさらに好ましい。また、バインダーポリマーは架橋構造を有することが好ましい。
飽和炭化水素鎖を主鎖として有するバインダーポリマーとしては、エチレン性不飽和モノマー(バインダー前駆体)の重合体が好ましい。飽和炭化水素鎖を主鎖として有し、かつ架橋構造を有するバインダーポリマーとしては、二個以上のエチレン性不飽和基を有するモノマーの(共)重合体が好ましい。
高屈折率にするには、このモノマーの構造中に芳香族環や、フッ素以外のハロゲン原子、硫黄原子、リン原子、及び窒素原子から選ばれた少なくとも1種の原子を含むことが好ましい。
<binder>
The binder is preferably a translucent polymer having a saturated hydrocarbon chain or a polyether chain as the main chain, and more preferably a polymer having a saturated hydrocarbon chain as the main chain. The binder polymer preferably has a crosslinked structure.
As the binder polymer having a saturated hydrocarbon chain as a main chain, a polymer of an ethylenically unsaturated monomer (binder precursor) is preferable. As the binder polymer having a saturated hydrocarbon chain as the main chain and having a crosslinked structure, a (co) polymer of monomers having two or more ethylenically unsaturated groups is preferable.
In order to obtain a high refractive index, the monomer structure preferably contains an aromatic ring or at least one atom selected from a halogen atom other than fluorine, a sulfur atom, a phosphorus atom, and a nitrogen atom.

二個以上のエチレン性不飽和基を有するモノマーとしては、多価アルコールと(メタ)アクリル酸とのエステル(例、エチレングリコールジ(メタ)アクリレート、1,4−シクロヘキサンジアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート)、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、1,2,3−クロヘキサンテトラメタクリレート、ポリウレタンポリアクリレート、ポリエステルポリアクリレート)、ビニルベンゼンおよびその誘導体(例、1,4−ビニルベンゼン、4−ビニル安息香酸−2−アクリロイルエチルエステル、1,4−ビニルシクロヘキサノン)、ビニルスルホン(例、ジビニルスルホン)、アクリルアミド(例、メチレンビスアクリルアミド)およびメタクリルアミドが挙げられる。
さらに、二個以上のエチレン性不飽和基を有する樹脂、例えば比較的低分子量のポリエステル樹脂、ポリエーテル樹脂、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジエン樹脂、ポリチオールポリエン樹脂、多価アルコール等の多官能化合物などのオリゴマーまたはプレポリマー等もあげられる。これらのモノマー、は2種以上併用してもよく、また、二個以上のエチレン性不飽和基を有する樹脂はバインダー全量に対して10〜70%含有することが好ましい。
Examples of the monomer having two or more ethylenically unsaturated groups include esters of polyhydric alcohol and (meth) acrylic acid (eg, ethylene glycol di (meth) acrylate, 1,4-cyclohexanediacrylate, pentaerythritol tetra ( (Meth) acrylate), pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, di Pentaerythritol hexa (meth) acrylate, pentaerythritol hexa (meth) acrylate, 1,2,3-chlorohexane tetramethacrylate, polyurethane polyacrylate, polyester poly Acrylate), vinylbenzene and derivatives thereof (eg, 1,4-vinylbenzene, 4-vinylbenzoic acid-2-acryloylethyl ester, 1,4-vinylcyclohexanone), vinylsulfone (eg, divinylsulfone), acrylamide (eg, , Methylenebisacrylamide) and methacrylamide.
Furthermore, resins having two or more ethylenically unsaturated groups, such as relatively low molecular weight polyester resins, polyether resins, acrylic resins, epoxy resins, urethane resins, alkyd resins, spiroacetal resins, polybutadiene resins, polythiol polyene resins And oligomers or prepolymers of polyfunctional compounds such as polyhydric alcohols. Two or more of these monomers may be used in combination, and the resin having two or more ethylenically unsaturated groups is preferably contained in an amount of 10 to 70% based on the total amount of the binder.

高屈折率モノマーの具体例としては、ビス(4−メタクリロイルチオフェニル)スルフィド、ビニルナフタレン、ビニルフェニルスルフィド、4−メタクリロキシフェニル−4'−メトキシフェニルチオエーテル等が挙げられる。これらのモノマーも2種以上併用してもよい。   Specific examples of the high refractive index monomer include bis (4-methacryloylthiophenyl) sulfide, vinyl naphthalene, vinyl phenyl sulfide, 4-methacryloxyphenyl-4′-methoxyphenyl thioether, and the like. Two or more of these monomers may be used in combination.

これらのエチレン性不飽和基を有するモノマーの重合は、光ラジカル開始剤あるいは熱ラジカル開始剤の存在下、電離放射線の照射または加熱により行うことができる。
従って、エチレン性不飽和基を有するモノマー、光ラジカル開始剤あるいは熱ラジカル開始剤、マット粒子および無機フィラーを含有する塗液を調製し、該塗液を透明支持体上に塗布後電離放射線または熱による重合反応により硬化して反射防止フィルムを形成することができる。
バインダーの屈折率は、好ましくは1.45〜2.00であり、より好ましくは1.48〜1.90であり、更に好ましくは1.50〜1.85であり、特に好ましくは1.51〜1.80である。なお、バインダーの屈折率は、光拡散層の成分から透光性粒子を除いて測定した値である。
光拡散層のバインダーは、該層の塗布組成物の固形分量に対して20〜95質量%の範囲で添加することが好ましい。
Polymerization of the monomer having an ethylenically unsaturated group can be performed by irradiation with ionizing radiation or heating in the presence of a photo radical initiator or a thermal radical initiator.
Accordingly, a coating liquid containing a monomer having an ethylenically unsaturated group, a photo radical initiator or a thermal radical initiator, mat particles, and an inorganic filler is prepared, and the coating liquid is applied on a transparent support and then ionizing radiation or heat is applied. It can be cured by a polymerization reaction to form an antireflection film.
The refractive index of the binder is preferably 1.45 to 2.00, more preferably 1.48 to 1.90, still more preferably 1.50 to 1.85, and particularly preferably 1.51. ~ 1.80. In addition, the refractive index of a binder is the value measured by remove | excluding translucent particle | grains from the component of the light-diffusion layer.
It is preferable to add the binder of a light-diffusion layer in 20-95 mass% with respect to the solid content of the coating composition of this layer.

光ラジカル重合開始剤としては、アセトフェノン類、ベンゾイン類、ベンゾフェノン類、ホスフィンオキシド類、ケタール類、アントラキノン類、チオキサントン類、アゾ化合物、過酸化物類、2,3−アルキルジオン化合物類、ジスルフィド化合物類、フルオロアミン化合物類や芳香族スルホニウム類が挙げられる。アセトフェノン類の例には、2,2−エトキシアセトフェノン、p−メチルアセトフェノン、1−ヒドロキシジメチルフェニルケトン、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−4−メチルチオ−2−モルフォリノプロピオフェノンおよび2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノンが含まれる。ベンゾイン類の例には、ベンゾインベンゼンスルホン酸エステル、ベンゾイントルエンスルホン酸エステル、ベンゾインメチルエーテル、ベンゾインエチルエーテルおよびベンゾインイソプロピルエーテルが含まれる。ベンゾフェノン類の例には、ベンゾフェノン、2,4−クロロベンゾフェノン、4,4−ジクロロベンゾフェノンおよびp−クロロベンゾフェノンが含まれる。ホスフィンオキシド類の例には、2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキシドが含まれる。
最新UV硬化技術(P.159,発行人;高薄一弘,発行所;(株)技術情報協会,1991年発行)にも種々の例が記載されており本発明に有用である。
市販の光開裂型の光ラジカル重合開始剤としては、チバ・スペシャルティ・ケミカルズ(株)製のイルガキュア(651,184,907)等が好ましい例として挙げられる。
光重合開始剤は、多官能モノマー100質量部に対して、0.1〜15質量部の範囲で使用することが好ましく、より好ましくは1〜10質量部の範囲である。
光重合開始剤に加えて、光増感剤を用いてもよい。光増感剤の具体例として、n−ブチルアミン、トリエチルアミン、トリ−n−ブチルホスフィン、ミヒラーのケトンおよびチオキサントンが挙げられる。
As radical photopolymerization initiators, acetophenones, benzoins, benzophenones, phosphine oxides, ketals, anthraquinones, thioxanthones, azo compounds, peroxides, 2,3-alkyldione compounds, disulfide compounds , Fluoroamine compounds and aromatic sulfoniums. Examples of acetophenones include 2,2-ethoxyacetophenone, p-methylacetophenone, 1-hydroxydimethylphenyl ketone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-4-methylthio-2-morpholinopropiophenone and 2- Benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone is included. Examples of benzoins include benzoin benzene sulfonate, benzoin toluene sulfonate, benzoin methyl ether, benzoin ethyl ether and benzoin isopropyl ether. Examples of the benzophenones include benzophenone, 2,4-chlorobenzophenone, 4,4-dichlorobenzophenone and p-chlorobenzophenone. Examples of phosphine oxides include 2,4,6-trimethylbenzoyldiphenylphosphine oxide.
Various examples are described in the latest UV curing technology (P.159, issuer; Kazuhiro Takasagi, publisher; Technical Information Association, Inc., published in 1991), which is useful for the present invention.
Preferable examples of commercially available photocleavable photoradical polymerization initiators include Irgacure (651, 184, 907) manufactured by Ciba Specialty Chemicals.
It is preferable to use a photoinitiator in the range of 0.1-15 mass parts with respect to 100 mass parts of polyfunctional monomers, More preferably, it is the range of 1-10 mass parts.
In addition to the photopolymerization initiator, a photosensitizer may be used. Specific examples of the photosensitizer include n-butylamine, triethylamine, tri-n-butylphosphine, Michler's ketone and thioxanthone.

熱ラジカル開始剤としては、有機あるいは無機過酸化物、有機アゾ及びジアゾ化合物等を用いることができる。
具体的には、有機過酸化物として過酸化ベンゾイル、過酸化ハロゲンベンゾイル、過酸化ラウロイル、過酸化アセチル、過酸化ジブチル、クメンヒドロぺルオキシド、ブチルヒドロぺルオキシド、無機過酸化物として、過酸化水素、過硫酸アンモニウム、過硫酸カリウム等、アゾ化合物として2,2’−アゾビス(イソブチロニトリル)、2,2’−アゾビス(プロピオニトリル)、1,1’−アゾビス(シクロヘキサンカルボニトリル)等、ジアゾ化合物としてジアゾアミノベンゼン、p−ニトロベンゼンジアゾニウム等が挙げられる。
As the thermal radical initiator, organic or inorganic peroxides, organic azo, diazo compounds, and the like can be used.
Specifically, benzoyl peroxide, halogen benzoyl peroxide, lauroyl peroxide, acetyl peroxide, dibutyl peroxide, cumene hydroperoxide, butyl hydroperoxide as organic peroxides, hydrogen peroxide, peroxides as inorganic peroxides. Diazo compounds such as ammonium sulfate, potassium persulfate and the like, 2,2′-azobis (isobutyronitrile), 2,2′-azobis (propionitrile), 1,1′-azobis (cyclohexanecarbonitrile), etc. And diazoaminobenzene, p-nitrobenzenediazonium and the like.

ポリエーテルを主鎖として有するポリマーは、多官能エポシキシ化合物の開環重合体が好ましい。多官能エポシキ化合物の開環重合は、光酸発生剤あるいは熱酸発生剤の存在下、電離放射線の照射または加熱により行うことができる。
従って、多官能エポシキシ化合物、光酸発生剤あるいは熱酸発生剤、透光性粒子および無機フィラーを含有する塗布液を調製し、該塗布液を透明支持体上に塗布後電離放射線または熱による重合反応により硬化して反射防止フィルムを形成することができる。
The polymer having a polyether as the main chain is preferably a ring-opening polymer of a polyfunctional epoxy compound. The ring-opening polymerization of the polyfunctional epoxy compound can be performed by irradiation with ionizing radiation or heating in the presence of a photoacid generator or a thermal acid generator.
Therefore, a coating solution containing a polyfunctional epoxy compound, a photoacid generator or a thermal acid generator, translucent particles and an inorganic filler is prepared, and the coating solution is applied onto a transparent support and then polymerized by ionizing radiation or heat. It can be cured by reaction to form an antireflection film.

二個以上のエチレン性不飽和基を有するモノマーの代わりにまたはそれに加えて、架橋性官能基を有するモノマーを用いてポリマー中に架橋性官能基を導入し、この架橋性官能基の反応により、架橋構造をバインダーポリマーに導入してもよい。
架橋性官能基の例には、イソシアナート基、エポキシ基、アジリジン基、オキサゾリン基、アルデヒド基、カルボニル基、ヒドラジン基、カルボキシル基、メチロール基および活性メチレン基が含まれる。また、ビニルスルホン酸、酸無水物、シアノアクリレート誘導体、メラミン、エーテル化メチロール、エステルおよびウレタン、テトラメトキシシランのような金属アルコキシドも、架橋構造を導入するためのモノマーとして利用できる。ブロックイソシアナート基のように、分解反応の結果として架橋性を示す官能基を用いてもよい。すなわち、本発明において架橋性官能基は、すぐには反応を示すものではなくとも、分解した結果反応性を示すものであってもよい。
これら架橋性官能基を有するバインダーポリマーは塗布後、加熱することによって架橋構造を形成することができる。
Instead of or in addition to a monomer having two or more ethylenically unsaturated groups, a monomer having a crosslinkable functional group is used to introduce a crosslinkable functional group into the polymer, and by reaction of this crosslinkable functional group, A crosslinked structure may be introduced into the binder polymer.
Examples of the crosslinkable functional group include isocyanate group, epoxy group, aziridine group, oxazoline group, aldehyde group, carbonyl group, hydrazine group, carboxyl group, methylol group and active methylene group. Vinylsulfonic acid, acid anhydrides, cyanoacrylate derivatives, melamine, etherified methylol, esters and urethanes, and metal alkoxides such as tetramethoxysilane can also be used as monomers for introducing a crosslinked structure. A functional group that exhibits crosslinkability as a result of the decomposition reaction, such as a block isocyanate group, may be used. That is, in the present invention, the crosslinkable functional group may not react immediately but may exhibit reactivity as a result of decomposition.
These binder polymers having a crosslinkable functional group can form a crosslinked structure by heating after coating.

〈透光性粒子〉
光拡散層には、後記の微細無機フィラー粒子より粒径が大きい、平均粒径が0.5〜8μm、好ましくは1〜6μmの透光性粒子、例えば無機化合物の粒子または樹脂粒子が含有される。これは、ディスプレイ表面で反射する外光を散らして弱めたり、液晶表示装置の視野角(特に下方向視野角)を拡大し、観察方向の視角が変化してもコントラスト低下、黒白反転または色相変化を起こりにくくしたりする目的で用いられる。平均粒径が0.5μm未満では光拡散効果が弱く、また8μm以上ではザラツキ感が目立ち好ましくない。
光拡散層塗設後の表面の中心線平均粗さRa1は0.03〜0.30μmであることが好ましく、0.05〜0.25μmがさらに好ましく、0.07〜0.20μmが最も好ましい。(光拡散層塗設後の表面の中心線平均粗さとは、本発明では、すなわち帯電防止層塗設前の表面の中心線平均粗さを指す。)
透光性粒子と透光性樹脂との間の屈折率差は0.02〜0.30であり、0.04〜0.20であることが特に好ましい。その差が0.30を超えると、フィルムが白濁し、0.02未満であると十分な光拡散効果を得ることができない。透光性粒子の透光性樹脂に対する添加量も屈折率同様、大きすぎるとフィルムが白濁し、小さすぎると十分な光拡散効果が得られないため、透光性粒子の層内含有率は、光拡散層全固形分中3〜40質量%であり、5〜25%であることが特に好ましい。
透光性粒子の塗布量は、形成された光拡散層中の粒子量が好ましくは10〜10000mg/m2、より好ましくは50〜4000mg/m2、最も好ましくは100〜1500mg/m2となるように拡散層に含有される。
粒子の粒度分布はコールターカウンター法により測定し、測定された分布を粒子数分布に換算する。
<Translucent particles>
The light diffusion layer contains translucent particles having a particle size larger than that of the fine inorganic filler particles described later and an average particle size of 0.5 to 8 μm, preferably 1 to 6 μm, such as inorganic compound particles or resin particles. The This is because the external light reflected on the display surface is scattered and weakened, or the viewing angle of the liquid crystal display device (especially the downward viewing angle) is enlarged, so that the contrast decreases, black / white inversion or hue changes even if the viewing angle in the viewing direction changes. It is used for the purpose of making it difficult to occur. If the average particle size is less than 0.5 μm, the light diffusing effect is weak, and if it is 8 μm or more, the rough feeling is noticeably undesirable.
The centerline average roughness Ra1 of the surface after coating the light diffusion layer is preferably 0.03 to 0.30 μm, more preferably 0.05 to 0.25 μm, and most preferably 0.07 to 0.20 μm. . (The centerline average roughness of the surface after coating of the light diffusion layer refers to the centerline average roughness of the surface before coating of the antistatic layer in the present invention.)
The difference in refractive index between the translucent particles and the translucent resin is 0.02 to 0.30, and particularly preferably 0.04 to 0.20. If the difference exceeds 0.30, the film becomes cloudy, and if it is less than 0.02, a sufficient light diffusion effect cannot be obtained. Similarly to the refractive index, the amount of the translucent particles added to the translucent resin is too large, the film becomes cloudy, and if it is too small, a sufficient light diffusion effect cannot be obtained. It is 3-40 mass% in a light-diffusion layer total solid, and it is especially preferable that it is 5-25%.
The coating amount of the light-transmitting particle is preferably a particle content in the light diffusion layer formed in 10~10000mg / m 2, more preferably 50~4000mg / m 2, and most preferably a 100~1500mg / m 2 So as to be contained in the diffusion layer.
The particle size distribution of the particles is measured by a Coulter counter method, and the measured distribution is converted into a particle number distribution.

透光性粒子は、異なる2種以上の透光性粒子を併用して用いてもよい。2種類以上の透光性粒子を用いる場合には、複数種類の粒子の混合による屈折率制御を効果的に発揮するために、最も屈折率の高い透光性粒子と最も屈折率の低い透光性粒子との間の屈折率の差が0.02以上、0.10以下であることが好ましく、0.03以上、0.07以下であることが特に好ましい。またより大きな粒子径の透光性粒子で防眩性を付与し、より小さな粒子径の透光性粒子で別の光学特性を付与することが可能である。例えば、133ppi以上の高精細ディスプレイに反射防止フィルムを貼り付けた場合に、ギラツキと呼ばれる光学性能上の不具合のないことが要求される。ギラツキは、フィルム表面に存在する凹凸(防眩性に寄与)により、画素が拡大もしくは縮小され、輝度の均一性を失うことに由来するが、防眩性を付与する透光性粒子より小さな粒子径で、透光性樹脂の屈折率と異なる透光性粒子を併用することにより大きく改善することができる。
上記透光性粒子の具体例としては、例えばシリカ粒子、中空シリカ粒子、アルミナ粒子、TiO2粒子等の無機化合物の粒子;ポリメチルメタアクリレート粒子、架橋ポリメチルメタアクリレート粒子、メチルメタアクリレート−スチレン共重合体粒子、ポリスチレン粒子、架橋ポリスチレン粒子、メラミン樹脂粒子、ベンゾグアナミン樹脂粒子、ポリカーボネート粒子、ポリ塩化ビニル粒子等の樹脂粒子が好ましく挙げられる。なかでも架橋スチレン粒子、架橋ポリメチルメタアクリレート粒子、シリカ粒子が好ましい。
透光性粒子の形状は、真球あるいは不定形のいずれも使用できるが、ヘイズ値と拡散性の制御性、塗布面状の均質性から単分散粒子が好ましい。例えば平均粒子径よりも20%以上粒子径が大きな粒子を粗大粒子と規定した場合、この粗大粒子の割合は全粒子数の1%以下であることが好ましく、より好ましくは0.1%以下であり、さらに好ましくは0.01%以下である。このような粒子径分布を持つ粒子は通常の合成反応後に、分級によって得られ、分級の回数を上げることやその程度を強くすることにより、より好ましい分布の粒子を得ることができる。
The translucent particles may be used in combination of two or more different translucent particles. When two or more kinds of translucent particles are used, the translucent particles having the highest refractive index and the translucent particles having the lowest refractive index are used to effectively exert the refractive index control by mixing a plurality of types of particles. The difference in refractive index with the active particles is preferably 0.02 or more and 0.10 or less, and particularly preferably 0.03 or more and 0.07 or less. Further, it is possible to impart an antiglare property with a light-transmitting particle having a larger particle diameter and to impart another optical characteristic with a light-transmitting particle having a smaller particle diameter. For example, when an antireflection film is attached to a high-definition display of 133 ppi or higher, it is required that there is no problem in optical performance called glare. Glare is derived from the fact that the unevenness of the film surface (which contributes to antiglare properties) causes the pixels to be enlarged or reduced and loses brightness uniformity, but is smaller than the light-transmitting particles that impart antiglare properties. The diameter can be greatly improved by using translucent particles different from the refractive index of the translucent resin.
Specific examples of the translucent particles include particles of inorganic compounds such as silica particles, hollow silica particles, alumina particles, and TiO 2 particles; polymethyl methacrylate particles, crosslinked polymethyl methacrylate particles, methyl methacrylate-styrene. Preferred examples include resin particles such as copolymer particles, polystyrene particles, crosslinked polystyrene particles, melamine resin particles, benzoguanamine resin particles, polycarbonate particles, and polyvinyl chloride particles. Of these, crosslinked styrene particles, crosslinked polymethyl methacrylate particles, and silica particles are preferred.
As the shape of the translucent particle, either a true sphere or an indeterminate shape can be used, but monodisperse particles are preferable from the viewpoint of controllability of haze value and diffusibility, and uniformity of the coated surface. For example, when a particle having a particle size of 20% or more than the average particle size is defined as a coarse particle, the proportion of the coarse particle is preferably 1% or less of the total number of particles, more preferably 0.1% or less. Yes, more preferably 0.01% or less. Particles having such a particle size distribution are obtained by classification after a normal synthesis reaction, and particles having a more preferable distribution can be obtained by increasing the number of classifications or increasing the degree of classification.

光拡散層には、層の屈折率を高めるため、上記の透光性粒子に加えて、チタン、ジルコニウム、アルミニウム、インジウム、亜鉛、錫、アンチモンのうちより選ばれる少なくとも1種の金属の酸化物からなり、一次粒子の平均粒径が0.2μm以下、好ましくは0.1μm以下、より好ましくは0.06μm以下である微細な無機フィラーが含有されることが好ましい。
また逆に、高屈折率の透光性粒子を用いた光拡散層では、透光性粒子との屈折率差を大きくするためにバインダーの屈折率を低くしなければならない。このためにシリカ微粒子、中空シリカ微粒子を用いることも好ましい。好ましい粒径は前記の高屈折率化微細無機フィラーと同じである。
光拡散層に用いられる微細無機フィラーの具体例としては、TiO2、ZrO2、Al23、In23、ZnO、SnO2、Sb23、ITOとSiO2等が挙げられる。TiO2およびZrO2が高屈折率化の点で特に好ましい。該無機フィラーは表面をシランカップリング処理又はチタンカップリング処理されることも好ましく、フィラー表面にバインダー種と反応できる官能基を有する表面処理剤が好ましく用いられる。
これらの微細無機フィラーの添加量は、光拡散層の全質量の10〜90%であることが好ましく、より好ましくは20〜80%であり、特に好ましくは30〜75%である。
なお、微細無機フィラーは、粒径が光の波長よりも十分短いために散乱が生じず、バインダーポリマーに該フィラーが分散した分散体は光学的に均一な物質の性質を有する。
The light diffusion layer has an oxide of at least one metal selected from titanium, zirconium, aluminum, indium, zinc, tin, and antimony in addition to the above light-transmitting particles in order to increase the refractive index of the layer. It is preferable that a fine inorganic filler having an average primary particle size of 0.2 μm or less, preferably 0.1 μm or less, more preferably 0.06 μm or less is contained.
Conversely, in a light diffusion layer using translucent particles having a high refractive index, the refractive index of the binder must be lowered in order to increase the difference in refractive index from the translucent particles. For this purpose, it is also preferable to use silica fine particles and hollow silica fine particles. The preferred particle size is the same as that of the high refractive index fine inorganic filler.
Specific examples of the fine inorganic filler used for the light diffusion layer include TiO 2 , ZrO 2 , Al 2 O 3 , In 2 O 3 , ZnO, SnO 2 , Sb 2 O 3 , ITO and SiO 2 . TiO 2 and ZrO 2 are particularly preferable from the viewpoint of increasing the refractive index. The surface of the inorganic filler is preferably subjected to a silane coupling treatment or a titanium coupling treatment, and a surface treatment agent having a functional group capable of reacting with a binder species on the filler surface is preferably used.
The addition amount of these fine inorganic fillers is preferably 10 to 90%, more preferably 20 to 80%, and particularly preferably 30 to 75% of the total mass of the light diffusion layer.
The fine inorganic filler does not scatter because the particle size is sufficiently shorter than the wavelength of light, and the dispersion in which the filler is dispersed in the binder polymer has the property of an optically uniform substance.

〈帯電防止層塗設前後の表面の凹凸〉
本発明の反射防止フィルムにおいて、効果的な防塵性を発現するためには、光拡散層塗設後の該層表面の中心線平均粗さRa1で、光拡散層の上にさらに帯電防止層を塗設した後の該層表面の中心線平均粗さRa2を除した値が0.5〜1.0であることが必要とされ、好ましくは0.55〜0.95、さらに好ましくは0.6〜0.9である。この値が1.0より大きいと防眩性やヘイズが高すぎて画像のコントラストが下がる欠点がでてくる。逆に0.5より小さいと防眩性が低すぎて表面反射が大きくなる欠点がでてくる。
光拡散層塗設後の中心線平均粗さRa1と、この上に帯電防止層を塗設した後の中心線平均粗さRa2の好ましい値に関しては、前記各層の項で記載したとおりであり、Raに関しては、奈良次郎著、テクノコンパクトシリーズ(6)「表面粗さの測定・評価法」((株)総合技術センター)に記載されている。
本発明の反射防止フィルムの各層表面のこのような凹凸形状は、原子間力顕微鏡(AFM)により評価することができる。
<Unevenness on the surface before and after coating the antistatic layer>
In the antireflection film of the present invention, in order to exhibit effective dust resistance, an antistatic layer is further formed on the light diffusion layer at the center line average roughness Ra1 of the surface of the layer after coating the light diffusion layer. The value obtained by dividing the center line average roughness Ra2 on the surface of the layer after coating is required to be 0.5 to 1.0, preferably 0.55 to 0.95, more preferably 0.8. 6-0.9. If this value is greater than 1.0, the antiglare property and haze are too high, and the image contrast is lowered. On the other hand, if it is less than 0.5, the antiglare property is too low and surface reflection increases.
Regarding the preferred value of the center line average roughness Ra1 after coating of the light diffusion layer and the centerline average roughness Ra2 after coating of the antistatic layer thereon, it is as described in the section of each layer. Ra is described in Jiro Nara, Techno Compact Series (6) “Measurement and Evaluation Method of Surface Roughness” (General Technology Center, Inc.).
Such an uneven shape on the surface of each layer of the antireflection film of the present invention can be evaluated by an atomic force microscope (AFM).

表面の凹凸の形成法としては公知の手法が用いられる。本発明では、フィルムの表面に高い圧力で凹凸の形状を有する版を押し当てる(例えば、エンボス加工)ことにより形成する手法、または反射防止フィルムの特定の塗設層に粒子を含有させる手法が好ましい。特に、後者の方法が容易に表面凹凸を形成できる点で好ましい。
エンボス加工により表面に凹凸を形成する方法では、公知の手法が適用できるが、特開2000−329905号公報に記載されている手法により凹凸を形成することが特に好ましい。
A well-known method is used as a method of forming surface irregularities. In the present invention, a method of forming by pressing a plate having a concavo-convex shape with high pressure on the surface of the film (for example, embossing), or a method of incorporating particles in a specific coating layer of the antireflection film is preferable. . In particular, the latter method is preferable because surface irregularities can be easily formed.
In the method of forming irregularities on the surface by embossing, a known method can be applied, but it is particularly preferable to form irregularities by the method described in Japanese Patent Application Laid-Open No. 2000-329905.

(低屈折率層)
本発明に用いられる低屈折率層は、含フッ素化合物を含有する。特に、含フッ素化合物を主体とする低屈折率層を構築することが好ましい。含フッ素化合物を主体とする低屈折率層は、通常反射防止フィルムの最外層として位置し、防汚層としての機能も有する。ここで、「含フッ素化合物を主体とする」とは、低屈折率層の中に含まれる構成成分のうち、含フッ素化合物の質量比が最も大きいことを意味し、含フッ素化合物の含有率が低屈折率層の全質量に対し50質量%以上であることが好ましく、60質量%以上含まれることがより好ましい。
(Low refractive index layer)
The low refractive index layer used in the present invention contains a fluorine-containing compound. In particular, it is preferable to construct a low refractive index layer mainly composed of a fluorine-containing compound. The low refractive index layer mainly composed of a fluorine-containing compound is usually positioned as the outermost layer of the antireflection film and also has a function as an antifouling layer. Here, “mainly containing a fluorine-containing compound” means that the mass ratio of the fluorine-containing compound is the largest among the components contained in the low refractive index layer, and the content of the fluorine-containing compound is It is preferable that it is 50 mass% or more with respect to the total mass of a low refractive index layer, and it is more preferable that 60 mass% or more is contained.

低屈折率層の含フッ素化合物は、架橋又は重合性の官能基を有する含フッ素化合物の架橋又は重合反応により形成することが好ましく、該架橋又は重合性の官能基は電離放射線硬化性の官能基であることが好ましい。以下、低屈折率層に含まれる含フッ素化合物について記載する。   The fluorine-containing compound of the low refractive index layer is preferably formed by a crosslinking or polymerization reaction of a fluorine-containing compound having a crosslinking or polymerizable functional group, and the crosslinking or polymerizable functional group is an ionizing radiation curable functional group. It is preferable that Hereinafter, the fluorine-containing compound contained in the low refractive index layer will be described.

〈含フッ素化合物〉
低屈折率層に含まれる含フッ素化合物の屈折率は1.35〜1.50であることが好ましい。より好ましくは1.36〜1.47、さらに好ましくは1.38〜1.45である。
含フッ素化合物には、含フッ素ポリマー、含フッ素シラン化合物、含フッ素界面活性剤、含フッ素エーテルなどが挙げられる。
含フッ素ポリマーとしては、フッ素原子を含むエチレン性不飽和モノマーの架橋又は重合反応により合成されたものが挙げられる。フッ素原子を含むエチレン性不飽和モノマーの例には、フルオロオレフィン(例、フルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロ−2,2−ジメチル−1,3−ジオキソール)、フッ素化ビニルエーテルおよびフッ素置換アルコールとアクリル酸またはメタクリル酸とのエステルが含まれる。
<Fluorine-containing compounds>
The refractive index of the fluorine-containing compound contained in the low refractive index layer is preferably 1.35 to 1.50. More preferably, it is 1.36-1.47, More preferably, it is 1.38-1.45.
Examples of the fluorine-containing compound include a fluorine-containing polymer, a fluorine-containing silane compound, a fluorine-containing surfactant, and a fluorine-containing ether.
Examples of the fluorine-containing polymer include those synthesized by crosslinking or polymerization reaction of ethylenically unsaturated monomers containing fluorine atoms. Examples of ethylenically unsaturated monomers containing fluorine atoms include fluoroolefins (eg, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene, perfluoro-2,2-dimethyl-1,3-dioxole), Fluorinated vinyl ethers and esters of fluorine-substituted alcohols with acrylic acid or methacrylic acid are included.

含フッ素ポリマーとしてフッ素原子を含む繰り返し構造単位とフッ素原子を含まない繰り返し構造単位からなる共重合体も用いることができる。
上記共重合体は、フッ素原子を含むエチレン性不飽和モノマーとフッ素原子を含まないエチレン性不飽和モノマーの重合反応により得ることができる。
フッ素原子を含まないエチレン性不飽和モノマーとしては、オレフィン(例、エチレン、プロピレン、イソプレン、塩化ビニル、塩化ビニリデン等)、アクリル酸エステル(例、アクリル酸メチル、アクリル酸エチル、アクリル酸−2−エチルヘキシル等)、メタクリル酸エステル(例、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、エチレングリコールジメタクリレート等)、スチレンおよびその誘導体(例、スチレン、ジビニルベンゼン、ビニルトルエン、α−メチルスチレン等)、ビニルエーテル(例、メチルビニルエーテル等)、ビニルエステル(例、酢酸ビニル、プロピオン酸ビニル、桂皮酸ビニル等)、アクリルアミド(例、N−tert−ブチルアクリルアミド、N−シクロヘキシルアクリルアミド等)、メタクリルアミドおよびアクリロニトリルが挙げられる。
As the fluorine-containing polymer, a copolymer comprising a repeating structural unit containing a fluorine atom and a repeating structural unit not containing a fluorine atom can also be used.
The copolymer can be obtained by a polymerization reaction of an ethylenically unsaturated monomer containing a fluorine atom and an ethylenically unsaturated monomer not containing a fluorine atom.
Examples of ethylenically unsaturated monomers not containing fluorine atoms include olefins (eg, ethylene, propylene, isoprene, vinyl chloride, vinylidene chloride, etc.), acrylate esters (eg, methyl acrylate, ethyl acrylate, acrylic acid-2- Ethyl hexyl, etc.), methacrylic acid esters (eg, methyl methacrylate, ethyl methacrylate, butyl methacrylate, ethylene glycol dimethacrylate, etc.), styrene and its derivatives (eg, styrene, divinylbenzene, vinyl toluene, α-methylstyrene, etc.) , Vinyl ether (eg, methyl vinyl ether), vinyl ester (eg, vinyl acetate, vinyl propionate, vinyl cinnamate, etc.), acrylamide (eg, N-tert-butylacrylamide, N-cyclohexylacrylamide, etc.), Ruamido and acrylonitrile, and the like.

含フッ素シラン化合物としては、パーフルオロアルキル基を含むシラン化合物などが挙げられる。   Examples of the fluorine-containing silane compound include silane compounds containing a perfluoroalkyl group.

含フッ素界面活性剤は、疎水性部分を構成する炭化水素の水素原子の一部または全部が、フッ素原子により置換されているもので、その親水性部分はアニオン性、カチオン性、ノニオン性および両性のいずれであってもよい。   Fluorine-containing surfactants are those in which part or all of the hydrocarbon hydrogen atoms constituting the hydrophobic part are replaced by fluorine atoms, and the hydrophilic part is anionic, cationic, nonionic and amphoteric. Any of these may be used.

含フッ素エーテルは、一般に潤滑剤として使用されている化合物である。含フッ素エーテルとしては、パーフルオロポリエーテル等が挙げられる。   The fluorine-containing ether is a compound generally used as a lubricant. Examples of the fluorinated ether include perfluoropolyether.

低屈折率層の含フッ素化合物としては、架橋又は重合構造が導入された含フッ素ポリマーが特に好ましい。架橋又は重合構造が導入された含フッ素ポリマーは、架橋又は重合性の官能基を有する含フッ素化合物を架橋又は重合させることにより得られる。   As the fluorine-containing compound of the low refractive index layer, a fluorine-containing polymer into which a crosslinked or polymerized structure is introduced is particularly preferable. The fluorine-containing polymer into which a crosslinked or polymerized structure is introduced can be obtained by crosslinking or polymerizing a fluorine-containing compound having a crosslinked or polymerizable functional group.

架橋又は重合性の官能基を有する含フッ素化合物は、架橋又は重合性の官能基を有さない含フッ素化合物に、架橋又は重合性の官能基を側鎖として導入することにより得ることができる。架橋又は重合性の官能基としては、光(好ましくは紫外線照射)、電子ビーム(EB)照射あるいは加熱などにより反応して含フッ素ポリマーが架橋又は重合構造を有するようになる官能基であることが好ましい。架橋又は重合性の官能基としては、(メタ)アクリロイル、イソシアナート、エポキシ、アジリジン、オキサゾリン、アルデヒド、カルボニル、ヒドラジン、カルボキシル、メチロールおよび活性メチレン等の基が挙げられる。架橋又は重合性の官能基を有する含フッ素化合物として、市販品を用いてもよい。   The fluorine-containing compound having a crosslinkable or polymerizable functional group can be obtained by introducing a crosslinkable or polymerizable functional group as a side chain into a fluorine-containing compound having no crosslinkable or polymerizable functional group. The crosslinkable or polymerizable functional group is a functional group that reacts with light (preferably ultraviolet irradiation), electron beam (EB) irradiation or heating to cause the fluorinated polymer to have a crosslinked or polymerized structure. preferable. Examples of the crosslinkable or polymerizable functional group include groups such as (meth) acryloyl, isocyanate, epoxy, aziridine, oxazoline, aldehyde, carbonyl, hydrazine, carboxyl, methylol, and active methylene. A commercially available product may be used as the fluorine-containing compound having a crosslinkable or polymerizable functional group.

低屈折率層の含フッ素化合物は、含フッ素ビニルモノマーから導かれる繰返し単位および側鎖に(メタ)アクリロイル基を有する繰返し単位をからなる共重合体を主成分として含有することが好ましい。該共重合体由来の成分は最外層の全質量に対し50質量%以上であることが好ましく、70質量%以上であることがより好ましく、90質量%以上であることが特に好ましい。以下に、低屈折率層に用いられるのに好ましい上記共重合体について説明する。   The fluorine-containing compound of the low refractive index layer preferably contains as a main component a copolymer comprising a repeating unit derived from a fluorine-containing vinyl monomer and a repeating unit having a (meth) acryloyl group in the side chain. The component derived from the copolymer is preferably 50% by mass or more, more preferably 70% by mass or more, and particularly preferably 90% by mass or more, based on the total mass of the outermost layer. Below, the said copolymer preferable to be used for a low refractive index layer is demonstrated.

含フッ素ビニルモノマーとしてはフルオロオレフィン類(例えばフルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン等)、(メタ)アクリル酸の部分または完全フッ素化アルキルエステル誘導体類(例えばビスコート6FM(商品名、大阪有機化学工業(株)製)やM−2020(商品名、ダイキン工業(株)製)等)、完全または部分フッ素化ビニルエーテル類等が挙げられるが、好ましくはパーフルオロオレフィン類であり、屈折率、溶解性、透明性、入手性等の観点から特に好ましくはヘキサフルオロプロピレンである。
共重合体のフッ素含率が20〜60質量%となるように含フッ素ビニルモノマーを導入することが好ましく、より好ましくは25〜55質量%であり、特に好ましくは30〜50質量%である。
Fluorine-containing vinyl monomers include fluoroolefins (eg, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoroethylene, hexafluoropropylene, etc.), (meth) acrylic acid moieties or fully fluorinated alkyl ester derivatives (eg, biscoat) 6FM (trade name, manufactured by Osaka Organic Chemical Industry Co., Ltd.), M-2020 (trade name, manufactured by Daikin Industries, Ltd.) and the like, and fully or partially fluorinated vinyl ethers, etc. are preferable. From the viewpoints of refractive index, solubility, transparency, availability, etc., hexafluoropropylene is particularly preferred.
The fluorine-containing vinyl monomer is preferably introduced so that the fluorine content of the copolymer is 20 to 60% by mass, more preferably 25 to 55% by mass, and particularly preferably 30 to 50% by mass.

上記共重合体は(メタ)アクリロイル基を有する繰返し単位を有する。(メタ)アクリロイル基の導入法は特に限定されるものではないが、例えば、(i)水酸基、アミノ基等の求核基を有するポリマーを合成した後に、(メタ)アクリル酸クロリド、(メタ)アクリル酸無水物、(メタ)アクリル酸とメタンスルホン酸の混合酸無水物等を作用させる方法、(ii)上記求核基を有するポリマーに、硫酸等の触媒存在下、(メタ)アクリル酸を作用させる方法、(iii)上記求核基を有するポリマーにメタクリロイルオキシプロピルイソシアネート等のイソシアネート基と(メタ)アクリロイル基を併せ持つ化合物を作用させる方法、(iv)エポキシ基を有するポリマーを合成した後に(メタ)アクリル酸を作用させる方法、(v)カルボキシル基を有するポリマーにグリシジルメタクリレート等のエポキシ基と(メタ)アクリロイル基を併せ持つ化合物を作用させる方法、(vi)3−クロロプロピオン酸エステル部位を有するビニルモノマーを重合させた後で脱塩化水素を行う方法などが挙げられる。これらの中で本発明では特に水酸基を含有するポリマーに対して(i)または(ii)の手法によって(メタ)アクリロイル基を導入することが好ましい。   The copolymer has a repeating unit having a (meth) acryloyl group. The method for introducing the (meth) acryloyl group is not particularly limited. For example, (i) after synthesizing a polymer having a nucleophilic group such as a hydroxyl group or an amino group, (meth) acrylic acid chloride, (meth) (Ii) a method in which acrylic acid anhydride, a mixed acid anhydride of (meth) acrylic acid and methanesulfonic acid, etc. are allowed to act, (ii) (meth) acrylic acid is added to the polymer having the nucleophilic group in the presence of a catalyst such as sulfuric acid. (Iii) a method of allowing a compound having both an isocyanate group such as methacryloyloxypropyl isocyanate and a (meth) acryloyl group to act on the polymer having the nucleophilic group, and (iv) after synthesizing a polymer having an epoxy group ( (V) a method of allowing meth) acrylic acid to act; (v) an epoxy group such as glycidyl methacrylate and (meth) acryloyl on a polymer having a carboxyl group Examples thereof include a method of allowing a compound having a group to act, and (vi) a method of dehydrochlorination after polymerizing a vinyl monomer having a 3-chloropropionic acid ester moiety. Among these, in the present invention, it is particularly preferable to introduce a (meth) acryloyl group by the method (i) or (ii) to a polymer containing a hydroxyl group.

側鎖に(メタ)アクリロイル基を有する繰返し単位は、上記共重合体中に5〜90質量%を占めることが好ましく、30〜70質量%を占めることがより好ましく、40〜60質量%を占めることが特に好ましい。   The repeating unit having a (meth) acryloyl group in the side chain preferably occupies 5 to 90% by mass, more preferably 30 to 70% by mass, and 40 to 60% by mass in the copolymer. It is particularly preferred.

上記共重合体には、上記含フッ素ビニルモノマーから導かれる繰返し単位および側鎖に(メタ)アクリロイル基を有する繰返し単位以外に、透明支持体など下層への密着性、ポリマーのTg(皮膜硬度に寄与する)、溶剤への溶解性、透明性、滑り性、防塵・防汚性等種々の観点から適宜他のビニルモノマーを共重合させることもできる。これらのビニルモノマーは目的に応じて複数を組み合わせてもよく、共重合体中の0〜65モル%の範囲で導入されていることが好ましく、より好ましくは0〜40モル%、特に好ましくは0〜30モル%である。   In addition to the repeating unit derived from the fluorine-containing vinyl monomer and the repeating unit having a (meth) acryloyl group in the side chain, the copolymer includes adhesion to a lower layer such as a transparent support, polymer Tg (for coating hardness). Other vinyl monomers can be suitably copolymerized from various viewpoints such as solubility in solvents, transparency, slipperiness, dust resistance and antifouling properties. A plurality of these vinyl monomers may be combined depending on the purpose, and are preferably introduced in the range of 0 to 65 mol% in the copolymer, more preferably 0 to 40 mol%, particularly preferably 0. ˜30 mol%.

併用可能なビニルモノマー単位には特に限定はなく、例えばオレフィン類(エチレン、プロピレン、イソプレン、塩化ビニル、塩化ビニリデン等)、アクリル酸エステル類(アクリル酸メチル、アクリル酸エチル、アクリル酸2−エチルヘキシル、アクリル酸2‐ヒドロキシエチル)、メタクリル酸エステル類(メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸2−ヒドロキシエチル等)、スチレン誘導体(スチレン、p−ヒドロキシメチルスチレン、p−メトキシスチレン等)、ビニルエーテル類(メチルビニルエーテル、エチルビニルエーテル、シクロヘキシルビニルエーテル、ヒドロキシエチルビニルエーテル、ヒドロキシブチルビニルエーテル等)、ビニルエステル類(酢酸ビニル、プロピオン酸ビニル、桂皮酸ビニル等)、不飽和カルボン酸類(アクリル酸、メタクリル酸、クロトン酸、マレイン酸、イタコン酸等)、アクリルアミド類(N,N−ジメチルアクリルアミド、N−tert−ブチルアクリルアミド、N−シクロヘキシルアクリルアミド等)、メタクリルアミド類(N,N−ジメチルメタクリルアミド)、アクリロニトリル誘導体等を挙げることができる。   The vinyl monomer unit that can be used in combination is not particularly limited. For example, olefins (ethylene, propylene, isoprene, vinyl chloride, vinylidene chloride, etc.), acrylic esters (methyl acrylate, ethyl acrylate, 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate), methacrylic acid esters (methyl methacrylate, ethyl methacrylate, butyl methacrylate, 2-hydroxyethyl methacrylate, etc.), styrene derivatives (styrene, p-hydroxymethyl styrene, p-methoxy styrene, etc.) ), Vinyl ethers (methyl vinyl ether, ethyl vinyl ether, cyclohexyl vinyl ether, hydroxyethyl vinyl ether, hydroxybutyl vinyl ether, etc.), vinyl esters (vinyl acetate, vinyl propionate) , Vinyl cinnamate, etc.), unsaturated carboxylic acids (acrylic acid, methacrylic acid, crotonic acid, maleic acid, itaconic acid, etc.), acrylamides (N, N-dimethylacrylamide, N-tert-butylacrylamide, N-cyclohexylacrylamide) Etc.), methacrylamides (N, N-dimethylmethacrylamide), acrylonitrile derivatives and the like.

本発明に用いられる含フッ素ビニルモノマーから導かれる繰返し単位および側鎖に(メタ)アクリロイル基を有する繰返し単位からなる共重合体の好ましい形態として、下記一般式(1)で表されるものが挙げられる。
一般式(1)
As a preferred form of a copolymer composed of a repeating unit derived from the fluorine-containing vinyl monomer used in the present invention and a repeating unit having a (meth) acryloyl group in the side chain, one represented by the following general formula (1) is exemplified. It is done.
General formula (1)

Figure 2006023350
Figure 2006023350

一般式(1)中、Lは炭素数1〜10の連結基を表し、より好ましくは炭素数1〜6の連結基であり、特に好ましくは2〜4の連結基であり、直鎖、分岐、環構造を有していてもよく、O、N、Sから選ばれるヘテロ原子を有していてもよい。
好ましい例としては、*−(CH2)2−O−**、*−(CH2)2−NH−**、*−(CH2)4−O−**、*−(CH2)6−O−**、*−(CH2)2−O−(CH2)2−O−**、−CONH−(CH2)3−O−**、*−CH2CH(OH)CH2−O−**、*−CH2CH2OCONH(CH2)3−O−**(*はポリマー主鎖側の連結部位を表し、**は(メタ)アクリロイル基側の連結部位を表す。)等が挙げられる。mは0または1を表わす。
In the general formula (1), L represents a linking group having 1 to 10 carbon atoms, more preferably a linking group having 1 to 6 carbon atoms, particularly preferably a linking group having 2 to 4 carbon atoms, linear or branched. , May have a ring structure, and may have a heteroatom selected from O, N, and S.
Preferred examples, * - (CH 2) 2 -O - **, * - (CH 2) 2 -NH - **, * - (CH 2) 4 -O - **, * - (CH 2) 6 −O − **, * − (CH 2 ) 2 −O− (CH 2 ) 2 −O − **, −CONH− (CH 2 ) 3 −O − **, * −CH 2 CH (OH) CH 2 —O — **, * —CH 2 CH 2 OCONH (CH 2 ) 3 —O — ** (* represents a connecting site on the polymer main chain side, and ** represents a connecting site on the (meth) acryloyl group side) And the like. m represents 0 or 1;

一般式(1)中、Xは水素原子またはメチル基を表す。硬化反応性の観点から、より好ましくは水素原子である。   In general formula (1), X represents a hydrogen atom or a methyl group. From the viewpoint of curing reactivity, a hydrogen atom is more preferable.

一般式(1)中、Aは任意のビニルモノマーから導かれる繰返し単位を表わし、ヘキサフルオロプロピレンと共重合可能な単量体の構成成分であれば特に制限はなく、透明支持体など下層への密着性、ポリマーのTg(皮膜硬度に寄与する)、溶剤への溶解性、透明性、滑り性、防塵・防汚性等種々の観点から適宜選択することができ、目的に応じて単一あるいは複数のビニルモノマーによって構成されていてもよい。   In general formula (1), A represents a repeating unit derived from an arbitrary vinyl monomer, and is not particularly limited as long as it is a constituent component of a monomer copolymerizable with hexafluoropropylene. It can be appropriately selected from various viewpoints such as adhesion, Tg of polymer (contributing to film hardness), solubility in solvent, transparency, slipperiness, dustproof / antifouling property, and can be selected according to the purpose. You may be comprised by the some vinyl monomer.

好ましい例としては、メチルビニルエーテル、エチルビニルエーテル、t−ブチルビニルエーテル、シクロへキシルビニルエーテル、イソプロピルビニルエーテル、ヒドロキシエチルビニルエーテル、ヒドロキシブチルビニルエーテル、グリシジルビニルエーテル、アリルビニルエーテル等のビニルエーテル類、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル等のビニルエステル類、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、グリシジルメタアクリレート、アリル(メタ)アクリレート、(メタ)アクリロイルオキシプロピルトリメトキシシラン等の(メタ)アクリレート類、スチレン、p−ヒドロキシメチルスチレン等のスチレン誘導体、クロトン酸、マレイン酸、イタコン酸等の不飽和カルボン酸およびその誘導体等を挙げることができるが、より好ましくはビニルエーテル誘導体、ビニルエステル誘導体であり、特に好ましくはビニルエーテル誘導体である。   Preferred examples include methyl vinyl ether, ethyl vinyl ether, t-butyl vinyl ether, cyclohexyl vinyl ether, isopropyl vinyl ether, hydroxyethyl vinyl ether, hydroxybutyl vinyl ether, glycidyl vinyl ether, vinyl ethers such as allyl vinyl ether, vinyl acetate, vinyl propionate, butyric acid. (Meth) such as vinyl esters such as vinyl, methyl (meth) acrylate, ethyl (meth) acrylate, hydroxyethyl (meth) acrylate, glycidyl methacrylate, allyl (meth) acrylate, (meth) acryloyloxypropyltrimethoxysilane Acrylates, styrene, styrene derivatives such as p-hydroxymethylstyrene, crotonic acid, maleic acid, itaconic acid Can be mentioned unsaturated carboxylic acids and derivatives thereof, more preferably ether derivatives, vinyl ester derivatives, particularly preferably a vinyl ether derivative.

x、y、zはそれぞれの構成成分のモル%を表わし、30≦x≦60、5≦y≦70、0≦z≦65を満たす値を表す。好ましくは、35≦x≦55、30≦y≦60、0≦z≦20であり、特に好ましくは40≦x≦55、40≦y≦55、0≦z≦10である。   x, y, and z represent mol% of each constituent component, and represent values satisfying 30 ≦ x ≦ 60, 5 ≦ y ≦ 70, and 0 ≦ z ≦ 65. Preferably, 35 ≦ x ≦ 55, 30 ≦ y ≦ 60, and 0 ≦ z ≦ 20, and particularly preferably 40 ≦ x ≦ 55, 40 ≦ y ≦ 55, and 0 ≦ z ≦ 10.

さらに上記共重合体の特に好ましい形態として一般式(2)で表されるものが挙げられる。
一般式(2)
Furthermore, what is represented by General formula (2) is mentioned as an especially preferable form of the said copolymer.
General formula (2)

Figure 2006023350
Figure 2006023350

一般式(2)中、X、x、yはそれぞれ一般式(1)と同義であり、好ましい範囲も同じである。
nは2≦n≦10の整数を表わし、2≦n≦6であることが好ましく、2≦n≦4であることが特に好ましい。
Bは任意のビニルモノマーから導かれる繰返し単位を表わし、単一組成であっても複数組成によって構成されていてもよい。例としては、前記一般式(1)におけるAの例として説明したものが当てはまる。
z1およびz2はそれぞれの繰返し単位のモル%を表わし、0≦z1≦65、0≦z2≦65を満たす値を表わす。それぞれ0≦z1≦30、0≦z2≦10であることが好ましく、0≦z1≦10、0≦z2≦5であることが特に好ましい。
一般式(2)で表される共重合体としては、40≦x≦60、30≦y≦60、z2=0を満たすものが特に好ましい。
In general formula (2), X, x, and y are each synonymous with general formula (1), and their preferable ranges are also the same.
n represents an integer of 2 ≦ n ≦ 10, preferably 2 ≦ n ≦ 6, and particularly preferably 2 ≦ n ≦ 4.
B represents a repeating unit derived from an arbitrary vinyl monomer, and may be composed of a single composition or a plurality of compositions. As an example, what was demonstrated as an example of A in the said General formula (1) is applicable.
z1 and z2 represent mol% of each repeating unit, and represent values satisfying 0 ≦ z1 ≦ 65 and 0 ≦ z2 ≦ 65. It is preferable that 0 ≦ z1 ≦ 30 and 0 ≦ z2 ≦ 10 respectively, and it is particularly preferable that 0 ≦ z1 ≦ 10 and 0 ≦ z2 ≦ 5.
As the copolymer represented by the general formula (2), those satisfying 40 ≦ x ≦ 60, 30 ≦ y ≦ 60, and z2 = 0 are particularly preferable.

一般式(1)又は一般式(2)で表わされる共重合体の好ましい具体例として、特開2004−45462号公報の[0043]〜[0047]に記載されたものが挙げられる。また、一般式(1)又は一般式(2)で表わされる共重合体の合成法も該公報に詳しく記載されている。   Preferable specific examples of the copolymer represented by the general formula (1) or the general formula (2) include those described in [0043] to [0047] of JP-A-2004-45462. Further, the method for synthesizing the copolymer represented by the general formula (1) or the general formula (2) is also described in detail in the publication.

本発明において、低屈折率層を作製するのに用いる組成物は、塗料の形態をとることが好ましく、含フッ素化合物を必須の構成成分とし、必要に応じて各種添加剤およびラジカル重合開始剤を適当な溶剤に溶解して作製される。この際固形分の濃度は、用途に応じて適宜選択されるが0.01〜60質量%が好ましく、より好ましくは0.5〜50質量%、特に好ましくは1%〜20質量%程度である。   In the present invention, the composition used for producing the low refractive index layer is preferably in the form of a paint, and a fluorine-containing compound is an essential constituent, and various additives and radical polymerization initiators are added as necessary. It is prepared by dissolving in an appropriate solvent. At this time, the concentration of the solid content is appropriately selected depending on the use, but is preferably 0.01 to 60% by mass, more preferably 0.5 to 50% by mass, and particularly preferably about 1% to 20% by mass. .

低屈折率層は、目的に応じて充填剤(例えば、無機微粒子や有機微粒子等)、滑り剤(ジメチルシリコーンなどのポリシロキサン化合物等)、オルガノシラン化合物及びその誘導体、バインダー、界面活性剤等の添加剤を含有することができる。特に、充填剤(例えば、無機微粒子や有機微粒子等)、滑り剤(ジメチルシリコーンなどのポリシロキサン化合物等)を添加することは好ましい。
以下に、低屈折率層に用いる好ましい充填剤、滑り剤等について記載する。
The low refractive index layer is made up of fillers (for example, inorganic fine particles and organic fine particles), slip agents (polysiloxane compounds such as dimethyl silicone), organosilane compounds and derivatives thereof, binders, surfactants, etc. Additives can be included. In particular, it is preferable to add a filler (for example, inorganic fine particles and organic fine particles) and a slipping agent (polysiloxane compound such as dimethyl silicone).
Hereinafter, preferred fillers, slip agents and the like used for the low refractive index layer will be described.

〈低屈折率層の好ましい充填剤〉
充填剤(例えば、無機微粒子や有機微粒子等)は、低屈折率層の物理強度(耐擦傷性など)を改良する点で、添加することが好ましい。低屈折率層に添加する充填剤としては無機微粒子が好ましく、中でも屈折率が低い二酸化珪素(シリカ)、中空のシリカ、細孔を有するシリカ、含フッ素粒子(フッ化マグネシウム、フッ化カルシウム、フッ化バリウム)などが好ましい。特に好ましいのは二酸化珪素(シリカ)、中空シリカである。
<Preferable filler for low refractive index layer>
It is preferable to add a filler (for example, inorganic fine particles or organic fine particles) in terms of improving the physical strength (such as scratch resistance) of the low refractive index layer. As the filler added to the low refractive index layer, inorganic fine particles are preferable. Among them, silicon dioxide (silica) having a low refractive index, hollow silica, silica having pores, fluorine-containing particles (magnesium fluoride, calcium fluoride, fluorine). Barium fluoride) and the like are preferable. Particularly preferred are silicon dioxide (silica) and hollow silica.

充填剤の一次粒子の質量平均粒径は、1〜150nmであることが好ましく、1〜100nmであることがさらに好ましく、1〜80nmであることが最も好ましい。低屈折率層において充填剤は、より微細に分散されていることが好ましい。充填剤の形状は米粒状、球形状、立方体状、紡錘形状、短繊維状、リング状、不定形状であることが好ましく、また、粒子構造として中空、細孔または微細空隙を有する構造であることがさらに好ましい。特に好ましい形状は、球形状、不定形状である。充填剤は、結晶質、非晶質のいずれでも良い。   The mass average particle diameter of the primary particles of the filler is preferably 1 to 150 nm, more preferably 1 to 100 nm, and most preferably 1 to 80 nm. It is preferable that the filler is more finely dispersed in the low refractive index layer. The shape of the filler is preferably a rice grain shape, a spherical shape, a cubic shape, a spindle shape, a short fiber shape, a ring shape, or an indefinite shape, and has a structure having hollow, fine pores or fine voids as a particle structure. Is more preferable. Particularly preferable shapes are a spherical shape and an indefinite shape. The filler may be crystalline or amorphous.

充填剤は、分散液中あるいは塗料中で、分散安定化を図るために、あるいは低屈折率層の構成成分との親和性、結合性を高めるために、プラズマ放電処理やコロナ放電処理のような物理的表面処理、界面活性剤やカップリング剤等による化学的表面処理がなされていてもよい。カップリング剤による表面処理が特に好ましい。カップリング剤としては、アルコキシ化合物(例、チタネートカップリング剤、シランカップリング剤)が好ましく用いられる。特に、シランカップリング剤処理が有効である。   The filler is used in plasma dispersion or corona discharge treatment in order to stabilize the dispersion in the dispersion or paint, or to increase the affinity and binding properties with the components of the low refractive index layer. Physical surface treatment, chemical surface treatment with a surfactant, a coupling agent, or the like may be performed. A surface treatment with a coupling agent is particularly preferred. As the coupling agent, an alkoxy compound (eg, titanate coupling agent, silane coupling agent) is preferably used. In particular, silane coupling agent treatment is effective.

充填剤の表面処理は、低屈折率層の塗料の調製前にあらかじめ表面処理を実施しておくことが好ましいが、カップリング剤による表面処理の場合、塗料の調製時に塗料中にカップリング剤を添加して実施することも好ましい。
充填剤は、媒体(溶媒など)中に予め分散されていることが好ましい。
As for the surface treatment of the filler, it is preferable to carry out the surface treatment in advance before preparing the paint for the low refractive index layer, but in the case of surface treatment with a coupling agent, a coupling agent is added to the paint at the time of preparation of the paint. It is also preferable to carry out the addition.
The filler is preferably dispersed in advance in a medium (such as a solvent).

充填剤の添加量は、低屈折率層の全質量に対し5〜70質量%であることが好ましく、より好ましくは10〜50質量%、特に好ましくは20〜40質量%である。少なすぎると物理強度(耐擦傷性など)の改良効果が減り、多すぎると低屈折率層が白濁することがある。   The addition amount of the filler is preferably 5 to 70% by mass, more preferably 10 to 50% by mass, and particularly preferably 20 to 40% by mass with respect to the total mass of the low refractive index layer. If the amount is too small, the effect of improving the physical strength (such as scratch resistance) decreases, and if it is too large, the low refractive index layer may become cloudy.

充填剤の平均粒径は、低屈折率層の膜厚に対し20〜100%が好ましく、より好ましくは30〜80%、特に好ましくは30%〜50%である。   The average particle diameter of the filler is preferably 20 to 100%, more preferably 30 to 80%, and particularly preferably 30% to 50% with respect to the film thickness of the low refractive index layer.

低屈折率層に添加する充填剤が二酸化珪素微粒子の場合、中空の二酸化珪素微粒子を用いることが特に好ましい。中空の二酸化珪素微粒子は、屈折率が1.17〜1.45であることが好ましく、より好ましくは1.17〜1.40、さらに好ましくは1.17〜1.37である。ここで、中空の二酸化珪素微粒子の屈折率は粒子全体としての屈折率を表し、中空の二酸化珪素微粒子を形成している外殻の二酸化珪素のみの屈折率を表わすものではない。中空の二酸化珪素微粒子を用いることで低屈折率層の屈折率を下げることができる。   When the filler added to the low refractive index layer is silicon dioxide fine particles, it is particularly preferable to use hollow silicon dioxide fine particles. The hollow silicon dioxide fine particles preferably have a refractive index of 1.17 to 1.45, more preferably 1.17 to 1.40, and still more preferably 1.17 to 1.37. Here, the refractive index of the hollow silicon dioxide fine particles represents the refractive index of the entire particles, and does not represent the refractive index of only the outer silicon dioxide forming the hollow silicon dioxide fine particles. The refractive index of the low refractive index layer can be lowered by using hollow silicon dioxide fine particles.

この時、粒子内の空洞の半径をa、粒子外殻の半径をbとすると、空隙率xは下記数式(1)で表される。   At this time, when the radius of the cavity in the particle is a and the radius of the particle outer shell is b, the porosity x is expressed by the following formula (1).

数式(1) x=(4πa3/3)/(4πb3/3)×100 Equation (1) x = (4πa 3 /3) / (4πb 3/3) × 100

空隙率xは10〜60%が好ましく、20〜60%がさらに好ましく、30〜60%であ
ることが最も好ましい。
The porosity x is preferably 10 to 60%, more preferably 20 to 60%, and most preferably 30 to 60%.

充填剤は、2種類以上を併用して用いることも好ましい。また、平均粒子径が異なる粒子も併用して用いることができる。   It is also preferable to use two or more fillers in combination. Further, particles having different average particle diameters can be used in combination.

〈低屈折率層の好ましい滑り剤〉
滑り剤は、低屈折率層の物理強度(耐擦傷性など)、防汚性を改良する点で添加することが好ましい。
滑り剤としては、含フッ素エーテル化合物(パーフルオロポリエーテル、及び、その誘導体など)、ポリシロキサン化合物(ジメチルポリシロキサン、及び、その誘導体など)などが挙げられる。ポリシロキサン化合物が好ましい。
<Preferable slip agent for low refractive index layer>
The slip agent is preferably added from the viewpoint of improving the physical strength (such as scratch resistance) and antifouling property of the low refractive index layer.
Examples of the slip agent include fluorine-containing ether compounds (perfluoropolyether and derivatives thereof), polysiloxane compounds (dimethylpolysiloxane and derivatives thereof), and the like. Polysiloxane compounds are preferred.

ポリシロキサン化合物の好ましい例としてはジメチルシリルオキシ単位を繰り返し単位として複数個含む化合物の末端、及び/又は、側鎖に置換基を有するものが挙げられる。
ジメチルシリルオキシ単位を繰り返し単位として含む化合物中にはジメチルシリルオキシ単位以外の構造単位(置換基)を含んでもよい。置換基は同一であっても異なっていても良く、複数個あることが好ましい。
Preferable examples of the polysiloxane compound include those having a substituent at the terminal and / or side chain of a compound containing a plurality of dimethylsilyloxy units as repeating units.
The compound containing a dimethylsilyloxy unit as a repeating unit may contain a structural unit (substituent) other than the dimethylsilyloxy unit. The substituents may be the same or different, and a plurality of substituents are preferable.

好ましい置換基の例としては(メタ)アクリロイル基、ビニル基、アリール基、シンナモイル基、エポキシ基、オキセタニル基、水酸基、フルオロアルキル基、ポリオキシアルキレン基、カルボキシル基、アミノ基などを含む基が挙げられる。   Examples of preferred substituents include groups containing (meth) acryloyl group, vinyl group, aryl group, cinnamoyl group, epoxy group, oxetanyl group, hydroxyl group, fluoroalkyl group, polyoxyalkylene group, carboxyl group, amino group and the like. It is done.

滑り剤の分子量に特に制限はないが、10万以下であることが好ましく、5万以下であることが特に好ましく、3000〜30000であることが最も好ましい。シロキサン化合物のSi原子含有量には特に制限はないが5質量%以上であることが好ましく、10〜60質量%であることが特に好ましく、15〜50質量%であることが最も好ましい。   Although there is no restriction | limiting in particular in the molecular weight of a slip agent, It is preferable that it is 100,000 or less, It is especially preferable that it is 50,000 or less, It is most preferable that it is 3000-30000. Although there is no restriction | limiting in particular in Si atom content of a siloxane compound, it is preferable that it is 5 mass% or more, it is especially preferable that it is 10-60 mass%, and it is most preferable that it is 15-50 mass%.

特に好ましい滑り剤は、下記一般式(A)で表わされる架橋又は重合性の官能基を有するポリシロキサン化合物及びその誘導体(誘導体とは、例えば、一般式(A)で表わされるポリシロキサン化合物の架橋又は重合体、一般式(A)で表わされるポリシロキサン化合物とポリシロキサン化合物以外の架橋又は重合可能な官能基を有する化合物との反応生成物など)である。   A particularly preferred slip agent is a polysiloxane compound having a crosslinkable or polymerizable functional group represented by the following general formula (A) and a derivative thereof (for example, a crosslink of a polysiloxane compound represented by the general formula (A)) Or a polymer, a reaction product of a polysiloxane compound represented by formula (A) and a compound having a crosslinkable or polymerizable functional group other than the polysiloxane compound).

一般式(A)

Figure 2006023350
Formula (A)
Figure 2006023350

一般式(A)中、R1〜R4はそれぞれ独立に炭素数1〜20の置換基を表し、それぞれの基が複数ある場合それらは互いに同じであっても異なっていてもよく、R1、R3、R4のうち少なくとも一つの基が架橋又は重合性の官能基を表す。
pは1≦p≦4を満たす整数を表す。qは10≦q≦500を満たす整数を表し、rは0≦r≦500を満たす整数を表し、{ }で囲われているポリシロキサン部分はランダム共重合体であってもブロック共重合体であってもよい。
In general formula (A), R 1 to R 4 each independently represent a substituent having 1 to 20 carbon atoms, and when there are a plurality of each group, they may be the same or different from each other, R 1 , R 3 and R 4 represent a cross-linkable or polymerizable functional group.
p represents an integer satisfying 1 ≦ p ≦ 4. q represents an integer satisfying 10 ≦ q ≦ 500, r represents an integer satisfying 0 ≦ r ≦ 500, and the polysiloxane portion surrounded by {} is a block copolymer even if it is a random copolymer. There may be.

本発明に用いられる低屈折率層は、一般式(A)で表わされる架橋又は重合性の官能基を有するポリシロキサン化合物及び/又はその誘導体と含フッ素化合物とを含む硬化物を含有することが好ましい。   The low refractive index layer used in the present invention may contain a cured product containing a polysiloxane compound having a crosslinkable or polymerizable functional group represented by the general formula (A) and / or a derivative thereof and a fluorine-containing compound. preferable.

ポリシロキサン化合物及び/又はその誘導体の含有量は、含フッ素化合物に対し、0.1〜30質量%であることが好ましく、より好ましくは0.5〜15質量%、特に好ましくは1〜10質量%である。   The content of the polysiloxane compound and / or derivative thereof is preferably 0.1 to 30% by mass, more preferably 0.5 to 15% by mass, and particularly preferably 1 to 10% by mass with respect to the fluorine-containing compound. %.

ポリシロキサン化合物及び/又はその誘導体において、好ましい架橋又は重合性の官能基は、最外層の他の構成成分(含フッ素化合物、バインダー、など)と架橋又は重合反応して結合を形成することができる官能基であればよく、例えば、活性水素原子を有する基(たとえば水酸基、カルボキシル基、アミノ基、カルバモイル基、メルカプト基、β−ケトエステル基、ヒドロシリル基、シラノール基等)、カチオン重合可能な基(エポキシ基、オキセタニル基、オキサゾリル基、ビニル基、ビニルオキシ基等)、ラジカル種による架橋または重合が可能な不飽和二重結合を有する基((メタ)アクリロイル基、アリル基等)、加水分解性シリル基(例えばアルコキシシリル基、アシルオキシシリル基等)、酸無水物、イソシアネート基、求核剤によって置換され得る基(活性ハロゲン原子、スルホン酸エステル等)等が挙げられる。   In the polysiloxane compound and / or derivative thereof, a preferable crosslinkable or polymerizable functional group can form a bond by crosslinking or polymerizing with other constituent components (fluorine-containing compound, binder, etc.) of the outermost layer. Any functional group may be used, for example, a group having an active hydrogen atom (for example, a hydroxyl group, a carboxyl group, an amino group, a carbamoyl group, a mercapto group, a β-ketoester group, a hydrosilyl group, a silanol group, etc.), a group capable of cationic polymerization ( Epoxy groups, oxetanyl groups, oxazolyl groups, vinyl groups, vinyloxy groups, etc.), groups having unsaturated double bonds that can be crosslinked or polymerized by radical species (such as (meth) acryloyl groups, allyl groups), hydrolyzable silyls Groups (eg alkoxysilyl groups, acyloxysilyl groups, etc.), acid anhydrides, isocyanate groups, Group (active halogen atom, a sulfonic acid ester, etc.) which may be substituted by agents.

これらの架橋又は重合性官能基は低屈折率層の構成成分に合わせて適宜選択される。好ましくは、電離放射線硬化性の官能基である。   These crosslinkable or polymerizable functional groups are appropriately selected according to the constituent components of the low refractive index layer. Preferably, it is an ionizing radiation curable functional group.

また、一般式(A)の架橋又は重合性の官能基は、含フッ素化合物が有する架橋又は、重合性の官能基と架橋又は重合反応することが好ましく、特に好ましい官能基はカチオン開環重合反応性基(特に、エポキシ基、オキセタニル基など)、ラジカル重合反応性基(特に、(メタ)アクリロイル基)である。   The crosslinkable or polymerizable functional group of the general formula (A) is preferably crosslinked or polymerized with the crosslinkable or polymerizable functional group of the fluorine-containing compound, and the particularly preferred functional group is a cationic ring-opening polymerization reaction. A reactive group (in particular, an epoxy group, an oxetanyl group, etc.) and a radical polymerization reactive group (in particular, a (meth) acryloyl group).

一般式(A)のR2が表す置換基は、炭素数1〜20の置換又は無置換の有機基であり、好ましくは炭素数1〜10のアルキル基(例えばメチル基、エチル基、ヘキシル基等)、フッ素化アルキル基(トリフルオロメチル基、ペンタフルオロエチル基等)または炭素数6〜20のアリール基(例えばフェニル基、ナフチル基等)であり、より好ましくは炭素数1〜5のアルキル基、フッ素化アルキル基またはフェニル基であり、特に好ましくはメチル基である。こららはさらにこれらの基で置換されていてもよい。
一般式(A)のR1、R3、R4が架橋又は重合性の官能基でない場合、上記有機基をとることができる。
The substituent represented by R 2 in the general formula (A) is a substituted or unsubstituted organic group having 1 to 20 carbon atoms, preferably an alkyl group having 1 to 10 carbon atoms (for example, a methyl group, an ethyl group, a hexyl group). Etc.), a fluorinated alkyl group (trifluoromethyl group, pentafluoroethyl group, etc.) or an aryl group having 6 to 20 carbon atoms (for example, a phenyl group, a naphthyl group, etc.), more preferably an alkyl having 1 to 5 carbon atoms. Group, a fluorinated alkyl group or a phenyl group, particularly preferably a methyl group. These may be further substituted with these groups.
When R 1 , R 3 , and R 4 in the general formula (A) are not cross-linked or polymerizable functional groups, the above organic groups can be taken.

pは1≦p≦4を満たす整数を表す。qは10≦q≦500を満たす整数を表し、好ましくは50≦q≦400であり、特に好ましくは100≦q≦300である。rは0≦r≦500を満たす整数を表わし、好ましくは0≦r≦qであり、特に好ましくは0≦r≦0.5qである。   p represents an integer satisfying 1 ≦ p ≦ 4. q represents an integer satisfying 10 ≦ q ≦ 500, preferably 50 ≦ q ≦ 400, and particularly preferably 100 ≦ q ≦ 300. r represents an integer satisfying 0 ≦ r ≦ 500, preferably 0 ≦ r ≦ q, and particularly preferably 0 ≦ r ≦ 0.5q.

一般式(A)で表わされる化合物のポリシロキサン構造は、その繰り返し単位(−OSi(R22−)が単一の置換基(R2)のみで構成された単独重合体であっても、異なる
置換基を有する繰り返し単位の組み合わせによって構成されたランダム共重合体であっても、ブロック共重合体であってもよい。
The polysiloxane structure of the compound represented by the general formula (A) may be a homopolymer in which the repeating unit (—OSi (R 2 ) 2 —) is composed of only a single substituent (R 2 ). A random copolymer constituted by a combination of repeating units having different substituents or a block copolymer may be used.

一般式(A)で表わされる化合物の質量平均分子量は、103〜106であることが好ましく、より好ましくは5×103〜5×105であり、特に好ましくは104〜105である。 The compound represented by the general formula (A) preferably has a mass average molecular weight of 10 3 to 10 6 , more preferably 5 × 10 3 to 5 × 10 5 , and particularly preferably 10 4 to 10 5 . is there.

一般式(A)で表されるポリシロキサン化合物は市販されているもの、例えば、KF-100T、X-22-169AS、KF-102、X-22-3701IE、X-22-164B、X-22-164C、X-22-5002、X-22-173B、X-22-174D、X-22-167B、X-22-161AS、X-22-174DX、X-22-2426、X-22-170DX、X-22-176D、X-22-1821(信越化学工業(株)製)、AK-5、AK-30、AK-32(東亜合成化学(株)製)、サイラプレーンFM-0275、FM-0721、FM-0725、FM-7725、DMS-U22、RMS-033、RMS-083、UMS-182(チッソ(株)製)等を用いることもできる。また、市販のポリシロキサン化合物が含有する水酸基、アミノ基、メルカプト基等に架橋、又は、重合性官能基を導入することで作製することもできる。   The polysiloxane compound represented by the general formula (A) is commercially available, for example, KF-100T, X-22-169AS, KF-102, X-22-3701IE, X-22-164B, X-22 -164C, X-22-5002, X-22-173B, X-22-174D, X-22-167B, X-22-161AS, X-22-174DX, X-22-2426, X-22-170DX , X-22-176D, X-22-1821 (manufactured by Shin-Etsu Chemical Co., Ltd.), AK-5, AK-30, AK-32 (manufactured by Toa Gosei Chemical Co., Ltd.), Silaplane FM-0275, FM -0721, FM-0725, FM-7725, DMS-U22, RMS-033, RMS-083, UMS-182 (manufactured by Chisso Corporation) and the like can also be used. Moreover, it can also produce by introduce | transducing a crosslinking or polymerizable functional group into the hydroxyl group, amino group, mercapto group, etc. which a commercially available polysiloxane compound contains.

以下に、一般式(A)で表わされる好ましいポリシロキサン化合物の好ましい具体例として特開2003−329804号公報の[0041]〜[0045]に記載されたものを挙げることができるが、これらに限定されるものではない。   Specific examples of preferable polysiloxane compounds represented by the general formula (A) include those described in JP-A 2003-329804 [0041] to [0045], but are not limited thereto. Is not to be done.

一般式(A)で表わされるポリシロキサン化合物及び/又はその誘導体の添加量は、最外層の全固形分に対し、0.05〜30質量%であることが好ましく、より好ましくは0.1〜20質量%、更に好ましくは0.5〜15質量%、特に好ましくは1〜10質量%である。   The addition amount of the polysiloxane compound represented by the general formula (A) and / or its derivative is preferably 0.05 to 30% by mass, more preferably 0.1 to 30% by mass with respect to the total solid content of the outermost layer. 20 mass%, More preferably, it is 0.5-15 mass%, Most preferably, it is 1-10 mass%.

〈低屈折率層及びその形成法〉
低屈折率層は、上記含フッ素化合物、さらに必要に応じて、上記充填剤、上記ポリシロキサン化合物及び/又はその誘導体、を溶媒に溶解、又は、分散した塗料を塗布することにより作製することが好ましい。
好ましい溶媒としては、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等)、エステル類(酢酸エチル、酢酸ブチル等)、エーテル類(テトラヒドロフラン、1,4−ジオキサン等)、アルコール類(メタノール、エタノール、イソプロピルアルコール、ブタノール、エチレングリコール、等)、芳香族炭化水素類(トルエン、キシレン等)、水などを挙げることができる。
特に好ましい溶媒としては、ケトン類、芳香族炭化水素類、エステル類であり、最も好ましい溶媒としては、ケトン類である。ケトン類の中でも、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンが特に好ましい。溶媒には、ケトン系溶媒の含有量が塗料に含まれる全溶媒の10質量%以上であることが好ましい。好ましくは30質量%以上、さらに好ましくは60質量%以上である。
2種類以上の溶剤を併用することもできる。
<Low refractive index layer and formation method thereof>
The low refractive index layer can be prepared by applying a paint in which the above-mentioned fluorine-containing compound and, if necessary, the above-mentioned filler, the above-mentioned polysiloxane compound and / or a derivative thereof are dissolved or dispersed in a solvent. preferable.
Preferred solvents include ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, etc.), esters (ethyl acetate, butyl acetate, etc.), ethers (tetrahydrofuran, 1,4-dioxane, etc.), alcohols (methanol, ethanol, etc.) Isopropyl alcohol, butanol, ethylene glycol, etc.), aromatic hydrocarbons (toluene, xylene, etc.), water and the like.
Particularly preferred solvents are ketones, aromatic hydrocarbons and esters, and most preferred solvents are ketones. Of the ketones, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone are particularly preferable. The solvent preferably has a ketone solvent content of 10% by mass or more based on the total solvent contained in the paint. Preferably it is 30 mass% or more, More preferably, it is 60 mass% or more.
Two or more kinds of solvents can be used in combination.

架橋又は重合性の官能基を有する含フッ素化合物であれば、低屈折率層の塗布と同時または塗布後に、含フッ素化合物を架橋又は重合反応させ、低屈折率層を作製することが好ましい。
含フッ素化合物が、ラジカルで架橋又は重合する官能基を有していれば、ラジカル重合開始剤、特に光ラジカル重合開始剤を用いて架橋又は重合反応させることが好ましい。また、カチオンで架橋又は重合する官能基を有していれば、カチオン重合開始剤、特に光カチオン重合開始剤を用いて架橋又は重合反応させることが好ましい。
In the case of a fluorine-containing compound having a crosslinkable or polymerizable functional group, it is preferable to produce a low refractive index layer by crosslinking or polymerizing the fluorine-containing compound simultaneously with or after the application of the low refractive index layer.
If the fluorine-containing compound has a functional group that crosslinks or polymerizes with a radical, it is preferable to perform a crosslinking or polymerization reaction using a radical polymerization initiator, particularly a photoradical polymerization initiator. Moreover, if it has a functional group which crosslinks or polymerizes with a cation, it is preferable to carry out a crosslinking or polymerization reaction using a cationic polymerization initiator, particularly a photocationic polymerization initiator.

ラジカル重合開始剤としては熱の作用によりラジカルを発生するもの、あるいは光の作用によりラジカルを発生するものが好ましい。特に好ましいのは光ラジカル重合開始剤である。   As the radical polymerization initiator, those that generate radicals by the action of heat or those that generate radicals by the action of light are preferable. Particularly preferred are radical photopolymerization initiators.

熱の作用によりラジカル重合を開始する化合物としては、有機あるいは無機過酸化物、有機アゾ及びジアゾ化合物等を用いることができる。
具体的には、有機過酸化物として過酸化ベンゾイル、過酸化ハロゲンベンゾイル、過酸化ラウロイル、過酸化アセチル、過酸化ジブチル、クメンヒドロぺルオキシド、ブチルヒドロぺルオキシド、無機過酸化物として、過酸化水素、過硫酸アンモニウム、過硫酸カリウム等、アゾ化合物として2−アゾ−ビス−イソブチロニトリル、2−アゾ−ビス−プロピオニトリル、2−アゾ−ビスーシクロヘキサンジニトリル等、ジアゾ化合物としてジアゾアミノベンゼン、p−ニトロベンゼンジアゾニウム等を挙げることができる。
As the compound that initiates radical polymerization by the action of heat, organic or inorganic peroxides, organic azo, diazo compounds, and the like can be used.
Specifically, benzoyl peroxide, halogen benzoyl peroxide, lauroyl peroxide, acetyl peroxide, dibutyl peroxide, cumene hydroperoxide, butyl hydroperoxide as organic peroxides, hydrogen peroxide, peroxides as inorganic peroxides. Ammonium sulfate, potassium persulfate, etc., 2-azo-bis-isobutyronitrile, 2-azo-bis-propionitrile, 2-azo-bis-cyclohexanedinitrile, etc. as diazo compounds, diazoaminobenzene, p- Nitrobenzenediazonium and the like can be mentioned.

光の作用によりラジカル重合を開始する化合物を使用する場合は、例えば紫外線など用いる化合物に応じた光の照射によって硬化させ、低屈折率層を作製することができる。
光ラジカル重合開始剤の例としては、アセトフェノン類、ベンゾイン類、ベンゾフェノン類、ホスフィンオキシド類、ケタール類、アントラキノン類、チオキサントン類、アゾ化合物、過酸化物類、2,3−ジアルキルジオン化合物類、ジスルフィド化合物類、フルオロアミン化合物類や芳香族スルホニウム類がある。アセトフェノン類の例には、2,2−ジエトキシアセトフェノン、p−ジメチルアセトフェノン、1−ヒドロキシジメチルフェニルケトン、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−4−メチルチオ−2−モルフォリノプロピオフェノンおよび2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノンが含まれる。ベンゾイン類の例には、ベンゾインベンゼンスルホン酸エステル、ベンゾイントルエンスルホン酸エステル、ベンゾインメチルエーテル、ベンゾインエチルエーテルおよびベンゾインイソプロピルエーテルが含まれる。ベンゾフェノン類の例には、ベンゾフェノン、2,4−ジクロロベンゾフェノン、4,4−ジクロロベンゾフェノンおよびp−クロロベンゾフェノンが含まれる。ホスフィンオキシド類の例には、2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキシドが含まれる。
特に、光開裂型の光ラジカル重合開始剤が好ましい。光開裂型の光ラジカル重合開始剤については、高薄一弘著「最新UV硬化技術」((株)技術情報協会、159頁、1991年)に記載されている。
市販の光ラジカル重合開始剤も好ましく用いることができ、帯電防止層で記載した開始剤等が挙げられる。
In the case of using a compound that initiates radical polymerization by the action of light, for example, it can be cured by irradiation with light according to the compound to be used such as ultraviolet rays to produce a low refractive index layer.
Examples of photo radical polymerization initiators include acetophenones, benzoins, benzophenones, phosphine oxides, ketals, anthraquinones, thioxanthones, azo compounds, peroxides, 2,3-dialkyldione compounds, disulfides There are compounds, fluoroamine compounds and aromatic sulfoniums. Examples of acetophenones include 2,2-diethoxyacetophenone, p-dimethylacetophenone, 1-hydroxydimethylphenyl ketone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-4-methylthio-2-morpholinopropiophenone and 2 -Benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone is included. Examples of benzoins include benzoin benzene sulfonate, benzoin toluene sulfonate, benzoin methyl ether, benzoin ethyl ether and benzoin isopropyl ether. Examples of the benzophenones include benzophenone, 2,4-dichlorobenzophenone, 4,4-dichlorobenzophenone and p-chlorobenzophenone. Examples of phosphine oxides include 2,4,6-trimethylbenzoyldiphenylphosphine oxide.
In particular, photocleavable photoradical polymerization initiators are preferred. The photocleavable photoradical polymerization initiator is described in Kazuhiro Takasashi “Latest UV Curing Technology” (Technical Information Association, Inc., page 159, 1991).
A commercially available radical photopolymerization initiator can also be preferably used, and examples include the initiator described in the antistatic layer.

光重合開始剤は、含フッ素化合物100質量部に対して、0.1〜15質量部の範囲で使用することが好ましく、より好ましくは1〜10質量部の範囲である。さらには、これらの光重合開始剤と併用して光増感剤も好ましく用いることができ、例えば、n−ブチルアミン、トリエチルアミン、トリ−n−ブチルホスフィン、ミヒラーのケトンおよびチオキサントンを挙げることができる。市販の光増感剤も好ましく用いることができ、帯電防止層で記載した増感剤等が挙げられる。   It is preferable to use a photoinitiator in the range of 0.1-15 mass parts with respect to 100 mass parts of fluorine-containing compounds, More preferably, it is the range of 1-10 mass parts. Furthermore, a photosensitizer can be preferably used in combination with these photopolymerization initiators, and examples thereof include n-butylamine, triethylamine, tri-n-butylphosphine, Michler's ketone and thioxanthone. Commercially available photosensitizers can also be preferably used, and examples include sensitizers described in the antistatic layer.

バインダーは、低屈折率層の物理強度(耐擦傷性など)、最外層と隣接する層との密着性を改良する点で、添加することが好ましい。
含フッ素化合物が、架橋又は重合性の官能基を有する化合物であれば、バインダーは含フッ素化合物と架橋又は重合する官能基を有するバインダーであることが好ましい。
特に、含フッ素化合物が、光架橋又は光重合性の官能基を有する化合物であれば、バインダーとして光架橋又は光重合性の官能基を有する多官能モノマーであることが好ましい。光重合性官能基を有する光重合性多官能モノマーの具体例としては、帯電防止層で記載したものが挙げられる。多官能モノマーは、二種類以上を併用してもよい。
低屈折率層の含フッ素化合物は、架橋又は重合性の官能基を有する含フッ素化合物と、一般式(A)で表されるポリシロキサン化合物及び/又はその誘導体、及び/又は、該架橋又は重合性の官能基を有する含フッ素化合物と架橋又は重合するバインダーとから形成される硬化物であることが好ましい。
The binder is preferably added in terms of improving the physical strength (such as scratch resistance) of the low refractive index layer and the adhesion between the outermost layer and the adjacent layer.
If the fluorine-containing compound is a compound having a crosslinkable or polymerizable functional group, the binder is preferably a binder having a functional group that crosslinks or polymerizes with the fluorine containing compound.
In particular, if the fluorine-containing compound is a compound having a photocrosslinkable or photopolymerizable functional group, the binder is preferably a polyfunctional monomer having a photocrosslinkable or photopolymerizable functional group. Specific examples of the photopolymerizable polyfunctional monomer having a photopolymerizable functional group include those described for the antistatic layer. Two or more polyfunctional monomers may be used in combination.
The fluorine-containing compound of the low refractive index layer includes a fluorine-containing compound having a crosslinking or polymerizable functional group, a polysiloxane compound represented by the general formula (A) and / or a derivative thereof, and / or the crosslinking or polymerization. It is preferably a cured product formed from a fluorine-containing compound having a functional group and a binder that crosslinks or polymerizes.

低屈折率層は、含フッ素化合物、その他最外層の構成成分を溶解あるいは分散させた塗料を、塗布と同時又は塗布後に、光照射、電子線ビーム照射、加熱処理などを実施して、架橋又は重合反応させ、作製することが好ましい。
紫外線照射の場合、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、キセノンアーク、メタルハライドランプ等の光線から発する紫外線等が利用できる。
The low-refractive index layer is formed by dissolving or dispersing a fluorine-containing compound and other constituents of the outermost layer at the same time as or after application, and then performing light irradiation, electron beam irradiation, heat treatment, etc. It is preferable to carry out a polymerization reaction.
In the case of ultraviolet irradiation, ultraviolet rays emitted from light such as an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc, a xenon arc, a metal halide lamp, and the like can be used.

低屈折率層の作製は、特に最外層を電離放射線硬化性化合物の架橋又は重合反応により形成する場合には、酸素濃度が4体積%以下の雰囲気で実施することが好ましい。
低屈折率層を酸素濃度が4体積%以下の雰囲気で作製することにより、低屈折率層の物理強度(耐擦傷性など)、耐薬品性、耐候性、更には、最外層と最外層と隣接する層との接着性を改良することができる。
好ましくは酸素濃度が3体積%以下の雰囲気で、電離放射線硬化性の化合物の架橋反応、又は、重合反応により作製することであり、更に好ましくは酸素濃度が2体積%以下、特に好ましくは酸素濃度が1体積%以下、最も好ましくは0.5体積%以下である。
酸素濃度を4体積%以下にする手法としては、大気(窒素濃度約79体積%、酸素濃度約21体積%)を別の気体で置換することが好ましく、特に好ましくは窒素で置換(窒素パージ)することである。
The production of the low refractive index layer is preferably carried out in an atmosphere having an oxygen concentration of 4% by volume or less, particularly when the outermost layer is formed by the crosslinking or polymerization reaction of an ionizing radiation curable compound.
By producing the low refractive index layer in an atmosphere having an oxygen concentration of 4% by volume or less, the physical strength (scratch resistance, etc.), chemical resistance and weather resistance of the low refractive index layer, and the outermost and outermost layers Adhesion between adjacent layers can be improved.
Preferably, it is produced by a crosslinking reaction or a polymerization reaction of an ionizing radiation curable compound in an atmosphere having an oxygen concentration of 3% by volume or less, more preferably an oxygen concentration of 2% by volume or less, particularly preferably an oxygen concentration. Is 1% by volume or less, most preferably 0.5% by volume or less.
As a method for reducing the oxygen concentration to 4% by volume or less, it is preferable to replace the atmosphere (nitrogen concentration of about 79% by volume, oxygen concentration of about 21% by volume) with another gas, particularly preferably replacement with nitrogen (nitrogen purge). It is to be.

低屈折率層の膜厚は30〜200nmが好ましく、より好ましくは50〜150nm、特に好ましくは60〜120nmである。低屈折率層を防汚層として用いる場合、膜厚は3〜50nmが好ましく、より好ましくは5〜35nm、特に好ましくは7〜25nmである。   The film thickness of the low refractive index layer is preferably 30 to 200 nm, more preferably 50 to 150 nm, and particularly preferably 60 to 120 nm. When the low refractive index layer is used as an antifouling layer, the film thickness is preferably 3 to 50 nm, more preferably 5 to 35 nm, and particularly preferably 7 to 25 nm.

低屈折率層は反射防止フィルムの物理強度を改良するために、表面の動摩擦係数が0.25以下であることが好ましい。ここで記載した動摩擦係数は、直径5mmのステンレス剛球に0.98Nの荷重をかけ、速度60cm/分で表面を移動させたときの、表面と直径5mmのステンレス剛球の間の動摩擦係数をいう。好ましくは0.17以下であり、特に好ましくは0.15以下である。   The low refractive index layer preferably has a surface dynamic friction coefficient of 0.25 or less in order to improve the physical strength of the antireflection film. The dynamic friction coefficient described here refers to a dynamic friction coefficient between a surface and a stainless steel hard sphere having a diameter of 5 mm when a load of 0.98 N is applied to a stainless steel hard sphere having a diameter of 5 mm and the surface is moved at a speed of 60 cm / min. Preferably it is 0.17 or less, Most preferably, it is 0.15 or less.

また、反射防止フィルムの防汚性能を改良するために、表面の水に対する接触角が90゜以上であることが好ましい。更に好ましくは95゜以上であり、特に好ましくは100゜以上である。
また、低屈折率層の表面の水に対する接触角は後述する鹸化処理の前後で変わらないことが望ましく、鹸化処理の前後で変化量が10°以内であることが好ましく、特に好ましくは5°以内である。
Further, in order to improve the antifouling performance of the antireflection film, it is preferable that the contact angle of the surface with respect to water is 90 ° or more. More preferably, it is 95 ° or more, and particularly preferably 100 ° or more.
Further, the contact angle of the surface of the low refractive index layer with water is preferably not changed before and after the saponification treatment, which will be described later. It is.

低屈折率層のヘイズは、低いほど好ましい。3%以下であることが好ましく、さらに好ましくは2%以下、特に好ましくは1%以下である。   The haze of the low refractive index layer is preferably as low as possible. It is preferably 3% or less, more preferably 2% or less, and particularly preferably 1% or less.

低屈折率層の強度は、JIS K5400に従う鉛筆硬度試験で、H以上であることが好ましく、2H以上であることがさらに好ましく、3H以上であることが最も好ましい。また、JIS K5400に従うテーバー試験で、試験前後の試験片の摩耗量が少ないほど好ましい。   The strength of the low refractive index layer is preferably H or more, more preferably 2H or more, and most preferably 3H or more in a pencil hardness test according to JIS K5400. Further, in the Taber test according to JIS K5400, the smaller the wear amount of the test piece before and after the test, the better.

低屈折率層には、前記の成分(含フッ素化合物、重合開始剤、光増感剤、充填剤、滑り剤、バインダーなど)以外に、界面活性剤、帯電防止剤、カップリング剤、増粘剤、着色防止剤、着色剤(顔料、染料)、消泡剤、レベリング剤、難燃剤、紫外線吸収剤、赤外線吸収剤、接着付与剤、重合禁止剤、酸化防止剤、表面改質剤、などを添加することもできる。   In addition to the above components (fluorine-containing compounds, polymerization initiators, photosensitizers, fillers, slip agents, binders, etc.), the low refractive index layer contains surfactants, antistatic agents, coupling agents, and thickeners. Agents, anti-coloring agents, coloring agents (pigments, dyes), antifoaming agents, leveling agents, flame retardants, ultraviolet absorbers, infrared absorbers, adhesion promoters, polymerization inhibitors, antioxidants, surface modifiers, etc. Can also be added.

低屈折率層の屈折率は1.20〜1.55であることが好ましい。より好ましくは1.30〜1.50、更に好ましくは1.35〜1.48、特に好ましくは1.37〜1.45である。
低屈折率層には、後述の一般式(a)で表されるオルガノシラン化合物、及び、その誘導体(加水分解物、および該加水分解物が縮合して生成した架橋ケイ素化合物など)からなる群から選ばれた化合物を含有することも好ましい。
The refractive index of the low refractive index layer is preferably 1.20 to 1.55. More preferably, it is 1.30-1.50, More preferably, it is 1.35-1.48, Most preferably, it is 1.37-1.45.
The low refractive index layer is composed of an organosilane compound represented by the following general formula (a) and a derivative thereof (hydrolyzate and a crosslinked silicon compound formed by condensation of the hydrolyzate). It is also preferable to contain the compound chosen from these.

(ハードコート層)
本発明の反射防止フィルムには、物理強度を付与するためにハードコート層を設けることができる。特に、透明支持体と前記最外層の間に設けることが好ましい。
ハードコート層は、電離放射線硬化性化合物の架橋又は重合反応により形成されることが好ましい。例えば、電離放射線硬化性の多官能モノマーや多官能オリゴマーを含む塗料を透明支持体上に塗布し、多官能モノマーや多官能オリゴマーを架橋又は重合反応させることにより形成することができる。
電離放射線硬化性の多官能モノマーや多官能オリゴマーの官能基としては、光、電子線、放射線重合性のものが好ましく、中でも光重合性官能基が好ましい。
光重合性官能基としては、(メタ)アクリロイル基、ビニル基、スチリル基、アリル基等の不飽和の重合性官能基等が挙げられ、中でも、(メタ)アクリロイル基が好ましい。
(Hard coat layer)
The antireflection film of the present invention can be provided with a hard coat layer in order to impart physical strength. In particular, it is preferably provided between the transparent support and the outermost layer.
The hard coat layer is preferably formed by a crosslinking or polymerization reaction of an ionizing radiation curable compound. For example, it can be formed by applying a coating containing an ionizing radiation-curable polyfunctional monomer or polyfunctional oligomer on a transparent support and crosslinking or polymerizing the polyfunctional monomer or polyfunctional oligomer.
The functional group of the ionizing radiation-curable polyfunctional monomer or polyfunctional oligomer is preferably a light, electron beam, or radiation polymerizable group, and among them, a photopolymerizable functional group is preferable.
Examples of the photopolymerizable functional group include unsaturated polymerizable functional groups such as a (meth) acryloyl group, a vinyl group, a styryl group, and an allyl group. Among them, a (meth) acryloyl group is preferable.

光重合性官能基を有する光重合性多官能モノマーの具体例としては、帯電防止層で例示したものが挙げられ、光重合開始剤、光増感剤を用いて重合することが好ましい。光重合反応は、ハードコート層の塗布および乾燥後、紫外線照射により行うことが好ましい。
ハードコート層は、透明支持体の表面に、ハードコート層形成用の塗料を塗布することで構築することが好ましい。
Specific examples of the photopolymerizable polyfunctional monomer having a photopolymerizable functional group include those exemplified for the antistatic layer, and it is preferable to polymerize using a photopolymerization initiator and a photosensitizer. The photopolymerization reaction is preferably performed by ultraviolet irradiation after the hard coat layer is applied and dried.
The hard coat layer is preferably constructed by applying a paint for forming a hard coat layer on the surface of the transparent support.

塗布溶媒としては、帯電防止層で例示したケトン類、エステル類、芳香族炭化水素類であることが好ましい。特に、ケトン系溶媒を用いることで、例えば、透明支持体(特に、トリアセチルセルロース支持体)の表面とハードコート層との接着性がさらに改良する。
特に好ましい塗布溶媒は、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンである。
塗布溶媒は、帯電防止層で例示したケトン系溶媒以外の溶媒を含んでいてもよい。
塗布溶媒は、ケトン系溶媒の含有量が塗布組成物に含まれる全溶媒の10質量%以上であることが好ましい。好ましくは30質量%以上、さらに好ましくは60質量%以上である。
As the coating solvent, ketones, esters, and aromatic hydrocarbons exemplified in the antistatic layer are preferable. In particular, by using a ketone solvent, for example, the adhesion between the surface of a transparent support (particularly, a triacetyl cellulose support) and the hard coat layer is further improved.
Particularly preferred coating solvents are methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
The coating solvent may contain a solvent other than the ketone solvent exemplified for the antistatic layer.
The coating solvent preferably has a ketone solvent content of 10% by mass or more of the total solvent contained in the coating composition. Preferably it is 30 mass% or more, More preferably, it is 60 mass% or more.

ハードコート層が電離放射線硬化性の化合物の架橋又は重合反応により作製される場合、架橋又は重合反応は酸素濃度が4体積%以下の雰囲気で実施することが好ましい。酸素濃度が4体積%以下の雰囲気で作製することにより、物理強度(耐擦傷性など)や耐薬品性に優れたハードコート層を作製することができる。
好ましくは酸素濃度が3体積%以下の雰囲気で電離放射線硬化性化合物の架橋反応、又は、重合反応により作製することであり、更に好ましくは酸素濃度が2体積%以下、特に好ましくは酸素濃度が1体積%以下、最も好ましくは0.5体積%以下である。
酸素濃度を4体積%以下にする手法としては、大気(窒素濃度約79体積%、酸素濃度約21体積%)を別の気体で置換することが好ましく、特に好ましくは窒素で置換(窒素パージ)することである。
When the hard coat layer is prepared by crosslinking or polymerization reaction of an ionizing radiation curable compound, the crosslinking or polymerization reaction is preferably performed in an atmosphere having an oxygen concentration of 4% by volume or less. By producing in an atmosphere having an oxygen concentration of 4% by volume or less, a hard coat layer excellent in physical strength (such as scratch resistance) and chemical resistance can be produced.
Preferably, it is prepared by a crosslinking reaction or a polymerization reaction of an ionizing radiation curable compound in an atmosphere having an oxygen concentration of 3% by volume or less, more preferably an oxygen concentration of 2% by volume or less, particularly preferably an oxygen concentration of 1 Volume% or less, most preferably 0.5 volume% or less.
As a method for reducing the oxygen concentration to 4% by volume or less, it is preferable to replace the atmosphere (nitrogen concentration of about 79% by volume, oxygen concentration of about 21% by volume) with another gas, particularly preferably replacement with nitrogen (nitrogen purge). It is to be.

ハードコート層の膜厚は用途により適切に設計することができる。ハードコート層の膜厚は、1〜10μmであることが好ましく、より好ましくは2〜7μm、特に好ましくは3〜5μmである。
ハードコート層の強度は、JIS K5400に従う鉛筆硬度試験で、H以上であることが好ましく、2H以上であることがさらに好ましく、3H以上であることが最も好ましい。また、JIS K5400に従うテーバー試験で、試験前後の試験片の摩耗量が少ないほど好ましい。
The film thickness of the hard coat layer can be appropriately designed depending on the application. The film thickness of the hard coat layer is preferably 1 to 10 μm, more preferably 2 to 7 μm, and particularly preferably 3 to 5 μm.
The strength of the hard coat layer is preferably H or higher, more preferably 2H or higher, and most preferably 3H or higher in a pencil hardness test according to JIS K5400. Further, in the Taber test according to JIS K5400, the smaller the wear amount of the test piece before and after the test, the better.

ハードコート層には樹脂、分散剤、界面活性剤、帯電防止剤、シランカップリング剤、増粘剤、着色防止剤、着色剤(顔料、染料)、消泡剤、レベリング剤、難燃剤、紫外線吸収剤、接着付与剤、重合禁止剤、酸化防止剤、表面改質剤、などを添加することもできる。また、ハードコート層の硬度を高くする、硬化収縮を抑える、屈折率を制御するなどの目的で、後述する一次粒子の平均粒径が1〜200nmの無機微粒子を添加することができる。
さらには、防眩機能、液晶表示装置の視野角拡大機能を付与する目的で後述する平均粒径0.2〜10μmの粒子を含有することもできる。
Resin, dispersant, surfactant, antistatic agent, silane coupling agent, thickener, anti-coloring agent, coloring agent (pigment, dye), antifoaming agent, leveling agent, flame retardant, UV Absorbers, adhesion promoters, polymerization inhibitors, antioxidants, surface modifiers, and the like can also be added. In addition, for the purpose of increasing the hardness of the hard coat layer, suppressing curing shrinkage, controlling the refractive index, and the like, inorganic fine particles having an average primary particle diameter of 1 to 200 nm described later can be added.
Furthermore, particles having an average particle size of 0.2 to 10 μm, which will be described later, may be contained for the purpose of imparting an antiglare function and a function of expanding the viewing angle of a liquid crystal display device.

(透明支持体)
透明支持体としては、プラスチックフィルムであることが好ましい。プラスチックフィルムとしてはセルロースエステル(例、トリアセチルセルロース、ジアセチルセルロース、プロピオニルセルロース、ブチリルセルロース、アセチルプロピオニルセルロース、ニトロセルロース)、ポリアミド、ポリカーボネート、ポリエステル(例、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリ−1,4−シクロヘキサンジメチレンテレフタレート、ポリエチレン−1,2−ジフェノキシエタン−4,4'−ジカルボキシレート、ポリブチレンテレフタレート)、ポリスチレン(例、シンジオタクチックポリスチレン)、ポリオレフィン(例、ポリプロピレン、ポリエチレン、ポリメチルペンテン)、ポリスルホン、ポリエーテルスルホン、ポリアリレート、ポリエーテルイミド、ポリメチルメタクリレートおよびポリエーテルケトンが含まれる。トリアセチルセルロース、ポリカーボネート、ポリエチレンテレフタレートおよびポリエチレンナフタレートが好ましく、特に、液晶表示装置に用いる場合、トリアセチルセルロースであることが好ましい。
(Transparent support)
The transparent support is preferably a plastic film. As the plastic film, cellulose ester (eg, triacetyl cellulose, diacetyl cellulose, propionyl cellulose, butyryl cellulose, acetyl propionyl cellulose, nitrocellulose), polyamide, polycarbonate, polyester (eg, polyethylene terephthalate, polyethylene naphthalate, poly-1, 4-cyclohexanedimethylene terephthalate, polyethylene-1,2-diphenoxyethane-4,4′-dicarboxylate, polybutylene terephthalate), polystyrene (eg, syndiotactic polystyrene), polyolefin (eg, polypropylene, polyethylene, poly Methylpentene), polysulfone, polyethersulfone, polyarylate, polyetherimide, polymethylmethacrylate And polyether ketones. Triacetyl cellulose, polycarbonate, polyethylene terephthalate and polyethylene naphthalate are preferred, and triacetyl cellulose is particularly preferred when used in a liquid crystal display device.

透明支持体がトリアセチルセルロースフィルムの場合、トリアセチルセルロースを溶剤に溶解することで調整したトリアセチルセルロースドープを単層流延、複数層共流延の何れかの流延方法により作製したトリアセチルセルロースフィルムが好ましい。   When the transparent support is a triacetyl cellulose film, a triacetyl cellulose dope prepared by dissolving triacetyl cellulose in a solvent is prepared by a single layer casting method or a multi-layer co-casting method. A cellulose film is preferred.

特に、環境保全の観点から、トリアセチルセルロースを低温溶解法あるいは高温溶解法によってジクロロメタンを実質的に含まない溶剤に溶解することで調整したトリアセチルセルロースドープを用いて作製したトリアセチルセルロースフィルムが好ましい。
本発明に好ましく用いられるトリアセチルセルロースフィルムについては、発明協会公開技報(公技番号2001−1745)に例示されている。
In particular, from the viewpoint of environmental conservation, a triacetyl cellulose film prepared using a triacetyl cellulose dope prepared by dissolving triacetyl cellulose in a solvent substantially free of dichloromethane by a low temperature dissolution method or a high temperature dissolution method is preferable. .
The triacetylcellulose film preferably used in the present invention is exemplified in the Japan Society for Invention and Innovation (public technical number 2001-1745).

上記の透明支持体の膜厚は特に限定されるものではないが、膜厚は1〜300μmがよく、好ましくは30〜150μm、特に好ましくは40〜120μm、最も好ましくは40〜100μmである。
透明支持体の光透過率は、80%以上であることが好ましく、86%以上であることがさらに好ましい。
透明支持体のヘイズは低い方が好ましい。2.0%以下であることが好ましく、1.0%以下であることがさらに好ましい。
透明支持体の屈折率は、1.40〜1.70であることが好ましい。
The film thickness of the transparent support is not particularly limited, but the film thickness is preferably 1 to 300 μm, preferably 30 to 150 μm, particularly preferably 40 to 120 μm, and most preferably 40 to 100 μm.
The light transmittance of the transparent support is preferably 80% or more, and more preferably 86% or more.
The haze of the transparent support is preferably low. It is preferably 2.0% or less, and more preferably 1.0% or less.
The refractive index of the transparent support is preferably 1.40 to 1.70.

透明支持体には、赤外線吸収剤あるいは紫外線吸収剤を添加してもよい。赤外線吸収剤の添加量は、透明支持体の0.01〜20質量%であることが好ましく、0.05〜10質量%であることがさらに好ましい。
また、透明支持体には、滑り剤として、不活性無機化合物の粒子を透明支持体に添加してもよい。無機化合物の例には、SiO2、TiO2、BaSO4、CaCO3、タルクおよびカオリンが含まれる。
An infrared absorber or an ultraviolet absorber may be added to the transparent support. The addition amount of the infrared absorber is preferably 0.01 to 20% by mass of the transparent support, and more preferably 0.05 to 10% by mass.
In addition, an inert inorganic compound particle may be added to the transparent support as a slipping agent. Examples of the inorganic compound, SiO 2, TiO 2, BaSO 4, CaCO 3, talc and kaolin.

透明支持体に、表面処理を実施してもよい。表面処理の例には、薬品処理、機械的処理、コロナ放電処理、火焔処理、紫外線照射処理、高周波処理、グロー放電処理、活性プラズマ処理、レーザー処理、混酸処理およびオゾン酸化処理が含まれる。グロー放電処理、紫外線照射処理、コロナ放電処理および火焔処理が好ましく、グロー放電処理とコロナ放電処理が特に好ましい。   A surface treatment may be performed on the transparent support. Examples of the surface treatment include chemical treatment, mechanical treatment, corona discharge treatment, flame treatment, ultraviolet irradiation treatment, high frequency treatment, glow discharge treatment, active plasma treatment, laser treatment, mixed acid treatment and ozone oxidation treatment. Glow discharge treatment, ultraviolet irradiation treatment, corona discharge treatment and flame treatment are preferred, and glow discharge treatment and corona discharge treatment are particularly preferred.

(オルガノシラン化合物)
本発明において、反射防止フィルムの各層に特に好ましく用いることができるオルガノシラン化合物について記載する。
皮膜の物理強度(耐擦傷性など)、皮膜と皮膜に隣接する層の密着性を改良する点でオルガノシラン化合物及び/又はその誘導体を透明支持体上のいずれかの層に添加することが好ましい。
(Organosilane compound)
In the present invention, an organosilane compound that can be particularly preferably used for each layer of the antireflection film will be described.
It is preferable to add an organosilane compound and / or a derivative thereof to any layer on the transparent support from the viewpoint of improving the physical strength of the film (such as scratch resistance) and the adhesion between the film and the layer adjacent to the film. .

オルガノシラン化合物及び/又はその誘導体としては、下記一般式(a)で表される化合物及び/又はその誘導体を用いることができる。好ましいのは、水酸基、メルカプト基、カルボキシル基、エポキシ基、アルキル基、アルコキシシリル基、アシルオキシ基、アシルアミノ基を含有するオルガノシラン化合物であり、特に好ましいのはエポキシ基、重合性のアシルオキシ基((メタ)アクリロイルなど)、重合性のアシルアミノ基(アクリルアミノ、メタクリルアミノなど)を含有するオルガノシラン化合物である。   As the organosilane compound and / or a derivative thereof, a compound represented by the following general formula (a) and / or a derivative thereof can be used. Preferred are organosilane compounds containing a hydroxyl group, a mercapto group, a carboxyl group, an epoxy group, an alkyl group, an alkoxysilyl group, an acyloxy group, and an acylamino group, and particularly preferred are an epoxy group and a polymerizable acyloxy group (( (Meth) acryloyl, etc.) and a polymerizable acylamino group (acrylamino, methacrylamino, etc.).

一般式(a) (R10s−Si(Z)4-s Formula (a) (R 10) s -Si (Z) 4-s

一般式(a)中、R10は置換もしくは無置換のアルキル基または置換もしくは無置換のアリール基を表す。アルキル基としてはメチル、エチル、プロピル、イソプロピル、t−ブチル、sec−ブチル、ヘキシル、デシル、ヘキサデシル等が挙げられる。アルキル基として好ましくは炭素数1〜30、より好ましくは炭素数1〜16、特に好ましくは1〜6である。アリール基としてはフェニル、ナフチル等が挙げられ、好ましくはフェニル基である。
Zは水酸基または加水分解可能な基を表す。例えばアルコキシ基(炭素数1〜5のアルコキシ基が好ましい。例えばメトキシ基、エトキシ基等が挙げられる)、ハロゲン原子(例えばCl、Br、I等)、及びR12COO(R12は水素原子または炭素数1〜5のアルキル基が好ましい。例えばCH3COO、C25COO等が挙げられる)で表される基が挙げられ、好ましくはアルコキシ基であり、特に好ましくはメトキシ基またはエトキシ基である。
sは1〜3の整数を表す。好ましくは1または2であり、特に好ましくは1である。
10あるいはZが複数存在するとき、複数のR10あるいはZはそれぞれ異なっていてもよい。
In general formula (a), R 10 represents a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group. Examples of the alkyl group include methyl, ethyl, propyl, isopropyl, t-butyl, sec-butyl, hexyl, decyl, hexadecyl and the like. The alkyl group preferably has 1 to 30 carbon atoms, more preferably 1 to 16 carbon atoms, and particularly preferably 1 to 6 carbon atoms. Examples of the aryl group include phenyl and naphthyl, and a phenyl group is preferable.
Z represents a hydroxyl group or a hydrolyzable group. For example, an alkoxy group (an alkoxy group having 1 to 5 carbon atoms is preferable. Examples thereof include a methoxy group and an ethoxy group), a halogen atom (for example, Cl, Br, I and the like), and R 12 COO (R 12 is a hydrogen atom or An alkyl group having 1 to 5 carbon atoms is preferred, and examples thereof include CH 3 COO, C 2 H 5 COO, etc., preferably an alkoxy group, particularly preferably a methoxy group or an ethoxy group. It is.
s represents an integer of 1 to 3. 1 or 2 is preferable, and 1 is particularly preferable.
When R 10 or Z there is a plurality, the plurality of R 10 or Z may be different.

10に含まれる置換基としては特に制限はないが、ハロゲン原子(フッ素、塩素、臭素等)、水酸基、メルカプト基、カルボキシル基、エポキシ基、アルキル基(メチル、エチル、i−プロピル、プロピル、t−ブチル等)、アリール基(フェニル、ナフチル等)、芳香族ヘテロ環基(フリル、ピラゾリル、ピリジル等)、アルコキシ基(メトキシ、エトキシ、i−プロポキシ、ヘキシルオキシ等)、アリールオキシ基(フェノキシ等)、アルキルチオ基(メチルチオ、エチルチオ等)、アリールチオ基(フェニルチオ等)、アルケニル基(ビニル、1−プロペニル等)、アルコキシシリル基(トリメトキシシリル、トリエトキシシリル等)、アシルオキシ基(アセトキシ、アクリロイルオキシ、メタクリロイルオキシ等)、アルコキシカルボニル基(メトキシカルボニル、エトキシカルボニル等)、アリールオキシカルボニル基(フェノキシカルボニル等)、カルバモイル基(カルバモイル、N−メチルカルバモイル、N,N−ジメチルカルバモイル、N−メチル−N−オクチルカルバモイル等)、アシルアミノ基(アセチルアミノ、ベンゾイルアミノ、アクリルアミノ、メタクリルアミノ等)等が挙げられ、これら置換基は更にこれらの置換基で置換されていてもよい。 The substituent contained in R 10 is not particularly limited, but a halogen atom (fluorine, chlorine, bromine, etc.), hydroxyl group, mercapto group, carboxyl group, epoxy group, alkyl group (methyl, ethyl, i-propyl, propyl, t-butyl etc.), aryl groups (phenyl, naphthyl etc.), aromatic heterocyclic groups (furyl, pyrazolyl, pyridyl etc.), alkoxy groups (methoxy, ethoxy, i-propoxy, hexyloxy etc.), aryloxy groups (phenoxy) Etc.), alkylthio groups (such as methylthio and ethylthio), arylthio groups (such as phenylthio), alkenyl groups (such as vinyl and 1-propenyl), alkoxysilyl groups (such as trimethoxysilyl and triethoxysilyl), acyloxy groups (acetoxy, acryloyl) Oxy, methacryloyloxy, etc.), alkoxycal Nyl group (methoxycarbonyl, ethoxycarbonyl, etc.), aryloxycarbonyl group (phenoxycarbonyl, etc.), carbamoyl group (carbamoyl, N-methylcarbamoyl, N, N-dimethylcarbamoyl, N-methyl-N-octylcarbamoyl, etc.), acylamino Groups (acetylamino, benzoylamino, acrylamino, methacrylamino and the like) and the like, and these substituents may be further substituted with these substituents.

これらのうちで更に好ましくは水酸基、メルカプト基、カルボキシル基、エポキシ基、アルキル基、アルコキシシリル基、アシルオキシ基、アシルアミノ基である。特に、架橋又は重合性の官能基が好ましく、エポキシ基、重合性のアシルオキシ基((メタ)アクリロイル)、重合性のアシルアミノ基(アクリルアミノ、メタクリルアミノ)が好ましい。またこれら置換基は更に上記の置換基で置換されていてもよい。   Of these, more preferred are a hydroxyl group, a mercapto group, a carboxyl group, an epoxy group, an alkyl group, an alkoxysilyl group, an acyloxy group, and an acylamino group. In particular, a crosslinked or polymerizable functional group is preferable, and an epoxy group, a polymerizable acyloxy group ((meth) acryloyl), and a polymerizable acylamino group (acrylamino, methacrylamino) are preferable. These substituents may be further substituted with the above-described substituents.

10が複数ある場合は、少なくとも一つが置換アルキル基もしくは置換アリール基であることが好ましい。一般式(a)で表されるオルガノシラン化合物及びその誘導体の中でも、下記一般式(b)で表されるビニル重合性の置換基を有するオルガノシラン化合物及び/又はその誘導体が好ましい。
一般式(b)
When there are a plurality of R 10 s , at least one is preferably a substituted alkyl group or a substituted aryl group. Among the organosilane compounds represented by the general formula (a) and derivatives thereof, organosilane compounds having a vinyl polymerizable substituent represented by the following general formula (b) and / or derivatives thereof are preferable.
General formula (b)

Figure 2006023350
Figure 2006023350

一般式(b)において、R11は水素原子、メチル基、メトキシ基、アルコキシカルボニル基、シアノ基、フッ素原子、又は塩素原子を表す。アルコキシカルボニル基としては、メトキシカルボニル基、エトキシカルボニル基などが挙げられる。水素原子、メチル基、メトキシ基、メトキシカルボニル基、シアノ基、フッ素原子、および塩素原子が好ましく、水素原子、メチル基、メトキシカルボニル基、フッ素原子、および塩素原子が更に好ましく、水素原子およびメチル基が特に好ましい。
Yは単結合、*−COO−**、*−CONH−**、*−O−**、又は*−NH−CO−NH−**を表し、単結合、*−COO−**、*−CONH−**が好ましく、単結合、*−COO−**が更に好ましく、*−COO−**が特に好ましい。ここで、*は=C(R11)−に結合する位置を、**はLに結合する位置を表す。
In the general formula (b), R 11 represents a hydrogen atom, a methyl group, a methoxy group, an alkoxycarbonyl group, a cyano group, a fluorine atom, or a chlorine atom. Examples of the alkoxycarbonyl group include a methoxycarbonyl group and an ethoxycarbonyl group. A hydrogen atom, a methyl group, a methoxy group, a methoxycarbonyl group, a cyano group, a fluorine atom and a chlorine atom are preferred, a hydrogen atom, a methyl group, a methoxycarbonyl group, a fluorine atom and a chlorine atom are more preferred, and a hydrogen atom and a methyl group Is particularly preferred.
Y represents a single bond, * -COO-**, * -CONH-**, * -O-**, or * -NH-CO-NH-**, and represents a single bond, * -COO-**, * -CONH-** is preferred, single bond, * -COO-** is more preferred, and * -COO-** is particularly preferred. Here, * represents a position bonded to ═C (R 11 ) —, and ** represents a position bonded to L.

1は2価の連結鎖を表す。具体的には、置換もしくは無置換のアルキレン基、置換もしくは無置換のアリーレン基、内部に連結基(例えば、エーテル、エステル、アミドなど)を有する置換もしくは無置換のアルキレン基、内部に連結基を有する置換もしくは無置換のアリーレン基が挙げられ、置換もしくは無置換のアルキレン基、置換もしくは無置換のアリーレン基、内部に連結基を有するアルキレン基が好ましく、無置換のアルキレン基、無置換のアリーレン基、内部にエーテルあるいはエステル連結基を有するアルキレン基が更に好ましく、無置換のアルキレン基、内部にエーテルあるいはエステル連結基を有するアルキレン基が特に好ましい。置換基は、ハロゲン、水酸基、メルカプト基、カルボキシル基、エポキシ基、アルキル基、アリール基等が挙げられ、これら置換基は更に置換されていてもよい。 L 1 represents a divalent linking chain. Specifically, a substituted or unsubstituted alkylene group, a substituted or unsubstituted arylene group, a substituted or unsubstituted alkylene group having a linking group (for example, ether, ester, amide, etc.) inside, and a linking group inside. A substituted or unsubstituted arylene group, a substituted or unsubstituted alkylene group, a substituted or unsubstituted arylene group, and an alkylene group having a linking group therein are preferred. An unsubstituted alkylene group and an unsubstituted arylene group Further, an alkylene group having an ether or ester linking group inside is more preferred, an unsubstituted alkylene group, and an alkylene group having an ether or ester linking group inside is particularly preferred. Examples of the substituent include a halogen, a hydroxyl group, a mercapto group, a carboxyl group, an epoxy group, an alkyl group, and an aryl group, and these substituents may be further substituted.

tは0または1を表す。tとして好ましくは0である。
10は一般式(a)と同義であり、置換もしくは無置換のアルキル基、無置換のアリール基が好ましく、無置換のアルキル基、無置換のアリール基が更に好ましい。
Zは一般式(a)と同義であり、ハロゲン原子、水酸基、無置換のアルコキシ基が好ましく、塩素原子、水酸基、無置換の炭素数1〜6のアルコキシ基が更に好ましく、水酸基、炭素数1〜3のアルコキシ基が更に好ましく、メトキシ基が特に好ましい。Zが複数存在するとき、複数のZはそれぞれ同じであっても異なっていてもよい。
t represents 0 or 1; t is preferably 0.
R 10 has the same meaning as in formula (a), preferably a substituted or unsubstituted alkyl group or an unsubstituted aryl group, and more preferably an unsubstituted alkyl group or an unsubstituted aryl group.
Z has the same meaning as in formula (a), preferably a halogen atom, a hydroxyl group or an unsubstituted alkoxy group, more preferably a chlorine atom, a hydroxyl group or an unsubstituted alkoxy group having 1 to 6 carbon atoms, a hydroxyl group or a carbon number of 1 -3 alkoxy groups are more preferred, and methoxy groups are particularly preferred. When a plurality of Z are present, the plurality of Z may be the same or different.

一般式(a)、一般式(b)の化合物、及びその誘導体は、2種類以上を併用してもよい。
以下に、一般式(a)、一般式(b)で表されるオルガノシラン化合物の具体例を示すが、本発明はこれらに限定されるものではない。
Two or more kinds of the compounds represented by the general formula (a) and the general formula (b) and their derivatives may be used in combination.
Although the specific example of the organosilane compound represented by general formula (a) and general formula (b) below is shown, this invention is not limited to these.

Figure 2006023350
Figure 2006023350

Figure 2006023350
Figure 2006023350

これらのうち、(M−1)、(M−2)、および(M−5)が特に好ましい。   Of these, (M-1), (M-2), and (M-5) are particularly preferable.

本発明において、一般式(a)、一般式(b)で表されるオルガノシラン化合物の誘導体とは、一般式(a)、一般式(b)で表されるオルガノシラン化合物の加水分解物、部分縮合物などを意味する。以下、本発明で用いるオルガノシラン化合物の好ましい誘導体(加水分解物及び/又は部分縮合物)について説明する。
オルガノシラン化合物の加水分解反応及び/又は縮合反応は、一般に触媒の存在下で行われる。触媒としては、塩酸、硫酸、硝酸等の無機酸類;シュウ酸、酢酸、ギ酸、メタンスルホン酸、トルエンスルホン酸等の有機酸類;水酸化ナトリウム、水酸化カリウム、アンモニア等の無機塩基類;トリエチルアミン、ピリジン等の有機塩基類;トリイソプロポキシアルミニウム、テトラブトキシジルコニウム等の金属アルコキシド類;Zr、Ti又はAlなどの金属を中心金属とする金属キレート化合物等が挙げられる。無機酸では塩酸、硫酸、有機酸では、水中での酸解離定数(pKa値(25℃))が4.5以下のものが好ましく、塩酸、硫酸、水中での酸解離定数が3.0以下の有機酸がより好ましく、塩酸、硫酸、水中での酸解離定数が2.5以下の有機酸が更に好ましく、水中での酸解離定数が2.5以下の有機酸が更に好ましく、メタンスルホン酸、シュウ酸、フタル酸、マロン酸が更に好ましく、シュウ酸が特に好ましい。
In the present invention, the derivative of the organosilane compound represented by the general formula (a) and the general formula (b) is a hydrolyzate of the organosilane compound represented by the general formula (a) and the general formula (b), It means a partial condensate. Hereinafter, preferred derivatives (hydrolyzate and / or partial condensate) of the organosilane compound used in the present invention will be described.
The hydrolysis reaction and / or condensation reaction of the organosilane compound is generally performed in the presence of a catalyst. Catalysts include inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid; organic acids such as oxalic acid, acetic acid, formic acid, methanesulfonic acid and toluenesulfonic acid; inorganic bases such as sodium hydroxide, potassium hydroxide and ammonia; triethylamine, Examples thereof include organic bases such as pyridine; metal alkoxides such as triisopropoxyaluminum and tetrabutoxyzirconium; metal chelate compounds having a metal such as Zr, Ti or Al as a central metal. Among inorganic acids, hydrochloric acid, sulfuric acid, and organic acids preferably have an acid dissociation constant (pKa value (25 ° C.)) of 4.5 or less in water, and an acid dissociation constant in hydrochloric acid, sulfuric acid, or water of 3.0 or less. More preferred is an organic acid having an acid dissociation constant of 2.5 or less in hydrochloric acid, sulfuric acid or water, more preferred is an organic acid having an acid dissociation constant of 2.5 or less in water, and methanesulfonic acid. Of these, oxalic acid, phthalic acid and malonic acid are more preferred, and oxalic acid is particularly preferred.

オルガノシランの加水分解・縮合反応は、無溶媒でも、溶媒中でも行うことができるが成分を均一に混合するために有機溶媒を用いることが好ましく、例えばアルコール類、芳香族炭化水素類、エーテル類、ケトン類、エステル類などが好適である。
溶媒はオルガノシランと触媒を溶解させるものが好ましい。また、有機溶媒を塗料あるいは塗料の一部として用いることが好ましく、その他の素材と混合した場合に、溶解性あるいは分散性を損なわないものが好ましい。
The organosilane hydrolysis / condensation reaction can be carried out in the absence of a solvent or in a solvent, but an organic solvent is preferably used in order to mix the components uniformly. For example, alcohols, aromatic hydrocarbons, ethers, Ketones and esters are preferred.
The solvent preferably dissolves the organosilane and the catalyst. Moreover, it is preferable to use an organic solvent as a paint or a part of the paint, and it is preferable that the solvent does not impair the solubility or dispersibility when mixed with other materials.

このうち、アルコール類としては、例えば1価アルコールまたは2価アルコールを挙げることができ、このうち1価アルコールとしては炭素数1〜8の飽和脂肪族アルコールが好ましい。
これらのアルコール類の具体例としては、メタノール、エタノール、n−プロピルアルコール、i−プロピルアルコール、n−ブチルアルコール、sec−ブチルアルコール、tert−ブチルアルコール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、エチレングリコールモノブチルエーテル、酢酸エチレングリコールモノエチルエーテルなどを挙げることができる。
Among these, examples of alcohols include monohydric alcohols and dihydric alcohols, and among these, monohydric alcohols are preferably saturated aliphatic alcohols having 1 to 8 carbon atoms.
Specific examples of these alcohols include methanol, ethanol, n-propyl alcohol, i-propyl alcohol, n-butyl alcohol, sec-butyl alcohol, tert-butyl alcohol, ethylene glycol, diethylene glycol, triethylene glycol, ethylene glycol. Examples thereof include monobutyl ether and ethylene glycol monoethyl ether acetate.

また、芳香族炭化水素類の具体例としては、ベンゼン、トルエン、キシレンなどを、エーテル類の具体例としては、テトラヒドロフラン、ジオキサンなど、ケトン類の具体例としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトンなどを、エステル類の具体例としては、酢酸エチル、酢酸プロピル、酢酸ブチル、炭酸プロピレンなどを挙げることができる。
これらの有機溶媒は、1種単独であるいは2種以上を混合して使用することもできる。該反応における固形分の濃度は特に限定されるものではないが通常1%〜90%の範囲であり、好ましくは20%〜70%の範囲である。
Specific examples of aromatic hydrocarbons include benzene, toluene, xylene and the like. Specific examples of ethers include tetrahydrofuran and dioxane. Specific examples of ketones include acetone, methyl ethyl ketone, methyl isobutyl ketone, Specific examples of esters such as diisobutyl ketone include ethyl acetate, propyl acetate, butyl acetate, and propylene carbonate.
These organic solvents can be used alone or in combination of two or more. The concentration of the solid content in the reaction is not particularly limited, but is usually in the range of 1% to 90%, preferably in the range of 20% to 70%.

オルガノシラン化合物の加水分解性基1モルに対して0.3〜2モル、好ましくは0.5〜1モルの水を添加し、上記溶媒の存在下あるいは非存在下に、そして触媒の存在下に、25〜100℃で、撹拌することにより行われる。
本発明では、一般式R13OH(式中、R13は炭素数1〜10のアルキル基を示す)で表されるアルコールと一般式R14COCH2COR15(式中、R14は炭素数1〜10のアルキル基、R15は炭素数1〜10のアルキル基または炭素数1〜10のアルコキシ基を示す)で表される化合物とを配位子とした、Zr、Ti及びAlから選ばれる金属を中心金属とする少なくとも1種の金属キレート化合物の存在下で、25〜100℃で撹拌することにより加水分解を行うことが好ましい。
0.3 to 2 mol, preferably 0.5 to 1 mol of water is added to 1 mol of the hydrolyzable group of the organosilane compound, in the presence or absence of the above solvent, and in the presence of a catalyst. And by stirring at 25 to 100 ° C.
In the present invention, (wherein, R 13 represents an alkyl group having 1 to 10 carbon atoms) Formula R 13 OH alcohol of the general formula R 14 COCH 2 COR 15 (wherein represented by, R 14 is the number of carbon atoms 1 to 10 alkyl groups, R 15 represents an alkyl group having 1 to 10 carbon atoms or a compound represented by an alkoxy group having 1 to 10 carbon atoms) and selected from Zr, Ti and Al. It is preferable to perform the hydrolysis by stirring at 25 to 100 ° C. in the presence of at least one metal chelate compound having a metal as a central metal.

金属キレート化合物は、一般式R13OH(式中、R13は炭素数1〜10のアルキル基を示す)で表されるアルコールと一般式R14COCH2COR15(式中、R14は炭素数1〜10のアルキル基、R15は炭素数1〜10のアルキル基または炭素数1〜10のアルコキシ基を示す)で表される化合物とを配位子とした、Zr、Ti、Alから選ばれる金属を中心金属とするものであれば特に制限なく好適に用いることができる。2種以上の金属キレート化合物を併用しても良い。本発明に用いられる金属キレート化合物は、一般式Zr(OR13p1(R14COCHCOR15p2、Ti(OR13q1(R14COCHCOR15q2、およびAl(OR13r1(R14COCHCOR15r2で表される化合物群から選ばれるものが好ましく、前記オルガノシラン化合物の加水分解物及び/又は部分縮合物の縮合反応を促進する作用をなす。
金属キレート化合物中のR13およびR14は、同一または異なってもよく炭素数1〜10のアルキル基、具体的にはエチル基、n−プロピル基、i−プロピル基、n−ブチル基、sec−ブチル基、t−ブチル基、n−ペンチル基、フェニル基などである。また、R15は、前記と同様の炭素数1〜10のアルキル基のほか、炭素数1〜10のアルコキシ基、例えばメトキシ基、エトキシ基、n−プロポキシ基、i−プロポキシ基、n−ブトキシ基、sec−ブトキシ基、t−ブトキシ基などである。また、金属キレート化合物中のp1、p2、q1、q2、r1およびr2は、それぞれ、p1+p2=4、q1+q2=4、r1+r2=3となる様に決定される整数を表す。
The metal chelate compound includes an alcohol represented by a general formula R 13 OH (wherein R 13 represents an alkyl group having 1 to 10 carbon atoms) and a general formula R 14 COCH 2 COR 15 (wherein R 14 is carbon. From Zr, Ti, and Al having a ligand represented by a compound represented by an alkyl group having 1 to 10 carbon atoms, R 15 represents an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms) Any metal having a selected metal as a central metal can be suitably used without particular limitation. Two or more metal chelate compounds may be used in combination. The metal chelate compound used in the present invention has the general formula Zr (OR 13 ) p1 (R 14 COCHCOR 15 ) p2 , Ti (OR 13 ) q1 (R 14 COCHCOR 15 ) q2 , and Al (OR 13 ) r1 (R 14 Those selected from the group of compounds represented by COCHCOR 15 ) r2 are preferred, and serve to promote the condensation reaction of the hydrolyzate and / or partial condensate of the organosilane compound.
R 13 and R 14 in the metal chelate compound may be the same or different and each is an alkyl group having 1 to 10 carbon atoms, specifically an ethyl group, n-propyl group, i-propyl group, n-butyl group, sec -Butyl group, t-butyl group, n-pentyl group, phenyl group and the like. R 15 represents an alkyl group having 1 to 10 carbon atoms as described above, or an alkoxy group having 1 to 10 carbon atoms such as a methoxy group, an ethoxy group, an n-propoxy group, an i-propoxy group, and n-butoxy. Group, sec-butoxy group, t-butoxy group and the like. Moreover, p1, p2, q1, q2, r1, and r2 in the metal chelate compound represent integers determined so as to be p1 + p2 = 4, q1 + q2 = 4, and r1 + r2 = 3, respectively.

これらの金属キレート化合物の具体例としては、トリ−n−ブトキシエチルアセトアセテートジルコニウム、ジ−n−ブトキシビス(エチルアセトアセテート)ジルコニウム、n−ブトキシトリス(エチルアセトアセテート)ジルコニウム、テトラキス(n−プロピルアセトアセテート)ジルコニウム、テトラキス(アセチルアセトアセテート)ジルコニウム、テトラキス(エチルアセトアセテート)ジルコニウムなどのジルコニウムキレート化合物;ジイソプロポキシ・ビス(エチルアセトアセテート)チタニウム、ジイソプロポキシ・ビス(アセチルアセテート)チタニウム、ジイソプロポキシ・ビス(アセチルアセトン)チタニウムなどのチタニウムキレート化合物;ジイソプロポキシエチルアセトアセテートアルミニウム、ジイソプロポキシアセチルアセトナートアルミニウム、イソプロポキシビス(エチルアセトアセテート)アルミニウム、イソプロポキシビス(アセチルアセトナート)アルミニウム、トリス(エチルアセトアセテート)アルミニウム、トリス(アセチルアセトナート)アルミニウム、モノアセチルアセトナート・ビス(エチルアセトアセテート)アルミニウムなどのアルミニウムキレート化合物などが挙げられる。
これらの金属キレート化合物のうち好ましいものは、トリ−n−ブトキシエチルアセトアセテートジルコニウム、ジイソプロポキシ・ビス(アセチルアセトナート)チタニウム、ジイソプロポキシエチルアセトアセテートアルミニウム、トリス(エチルアセトアセテート)アルミニウムである。これらの金属キレート化合物は、1種単独であるいは2種以上混合して使用することができる。また、これらの金属キレート化合物の部分加水分解物を使用することもできる。
Specific examples of these metal chelate compounds include tri-n-butoxyethylacetoacetate zirconium, di-n-butoxybis (ethylacetoacetate) zirconium, n-butoxytris (ethylacetoacetate) zirconium, tetrakis (n-propylacetate). Zirconium chelate compounds such as acetate) zirconium, tetrakis (acetylacetoacetate) zirconium, tetrakis (ethylacetoacetate) zirconium; diisopropoxy bis (ethylacetoacetate) titanium, diisopropoxy bis (acetylacetate) titanium, diiso Titanium chelate compounds such as propoxy bis (acetylacetone) titanium; diisopropoxyethyl acetoacetate aluminum, diisopropyl Poxyacetylacetonate aluminum, isopropoxybis (ethylacetoacetate) aluminum, isopropoxybis (acetylacetonate) aluminum, tris (ethylacetoacetate) aluminum, tris (acetylacetonate) aluminum, monoacetylacetonate bis (ethyl) An aluminum chelate compound such as acetoacetate) aluminum.
Among these metal chelate compounds, tri-n-butoxyethyl acetoacetate zirconium, diisopropoxy bis (acetylacetonate) titanium, diisopropoxyethyl acetoacetate aluminum, and tris (ethyl acetoacetate) aluminum are preferable. . These metal chelate compounds can be used individually by 1 type or in mixture of 2 or more types. Moreover, the partial hydrolyzate of these metal chelate compounds can also be used.

金属キレート化合物は、前記オルガノシラン化合物に対し、好ましくは0.01〜50質量%、より好ましくは0.1〜50質量%、さらに好ましくは0.5〜10質量%の割合で用いられる。0.01質量%未満では、オルガノシラン化合物の縮合反応が遅く、塗膜の耐久性が低下するおそれがあり、一方50質量%を超えると、オルガノシラン化合物の加水分解物及び/又は部分縮合物と金属キレート化合物を含有してなる組成物の保存安定性が低下するおそれがあり好ましくない。   The metal chelate compound is preferably used in a proportion of 0.01 to 50% by mass, more preferably 0.1 to 50% by mass, and still more preferably 0.5 to 10% by mass with respect to the organosilane compound. If it is less than 0.01% by mass, the condensation reaction of the organosilane compound is slow, and the durability of the coating film may be reduced. On the other hand, if it exceeds 50% by mass, the hydrolyzate and / or partial condensate of the organosilane compound And the storage stability of the composition containing the metal chelate compound may decrease, which is not preferable.

上記オルガノシラン化合物及び/又はその誘導体(加水分解物、部分縮合物)、さらに必要に応じて添加される金属キレート化合物などを含む組成物に、β−ジケトン化合物および/またはβ−ケトエステル化合物を添加することが好ましい。   A β-diketone compound and / or a β-ketoester compound is added to the composition containing the organosilane compound and / or derivative thereof (hydrolyzate, partial condensate) and a metal chelate compound added as necessary. It is preferable to do.

本発明では、一般式R14COCH2COR15で表されるβ−ジケトン化合物及び/又はβ−ケトエステル化合物が好ましく用いられ、組成物の安定性向上剤として作用するものである。すなわち、前記金属キレート化合物(ジルコニウム、チタニウム及び/又はアルミニウム化合物)中の金属原子に配位することにより、これらの金属キレート化合物によるオルガノシラン化合物の誘導体(加水分解物、部分縮合物等)などの縮合反応を促進する作用を抑制し、得られる組成物の保存安定性を向上させる作用をなすものと考えられる。 β−ジケトン化合物及び/又はβ−ケトエステル化合物を構成するR14及びR15は、前記金属キレート化合物を構成するR14及びR15と同様である。 In the present invention, a β-diketone compound and / or a β-ketoester compound represented by the general formula R 14 COCH 2 COR 15 is preferably used, and acts as a stability improver for the composition. That is, by coordinating to metal atoms in the metal chelate compounds (zirconium, titanium and / or aluminum compounds), organosilane compound derivatives (hydrolysates, partial condensates, etc.) by these metal chelate compounds It is considered that the action of accelerating the condensation reaction is suppressed and the action of improving the storage stability of the resulting composition is achieved. R 14 and R 15 constitute a β- diketone compound and / or β- ketoester compound are the same as R 14 and R 15 constituting the metal chelate compound.

このβ−ジケトン化合物及び/又はβ−ケトエステル化合物の具体例としては、アセチルアセトン、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸−n−プロピル、アセト酢酸−i−プロピル、アセト酢酸−n−ブチル、アセト酢酸−sec−ブチル、アセト酢酸−t−ブチル、2,4−ヘキサン−ジオン、2,4−ヘプタン−ジオン、3,5−ヘプタン−ジオン、2,4−オクタン−ジオン、2,4−ノナン−ジオン、5−メチル−ヘキサン−ジオンなどを挙げることができる。これらのうち、アセト酢酸エチルおよびアセチルアセトンが好ましく、特にアセチルアセトンが好ましい。これらのβ−ジケトン化合物及び/又はβ−ケトエステル化合物は、1種単独でまたは2種以上を混合して使用することもできる。本発明においてβ−ジケトン化合物及び/又はβ−ケトエステル化合物は、金属キレート化合物1モルに対し好ましくは2モル以上、より好ましくは3〜20モル用いられる。2モル未満では得られる組成物の保存安定性に劣るおそれがあり好ましいものではない。   Specific examples of the β-diketone compound and / or β-ketoester compound include acetylacetone, methyl acetoacetate, ethyl acetoacetate, acetoacetate-n-propyl, acetoacetate-i-propyl, acetoacetate-n-butyl, acetoacetate. Acetic acid-sec-butyl, acetoacetic acid-t-butyl, 2,4-hexane-dione, 2,4-heptane-dione, 3,5-heptane-dione, 2,4-octane-dione, 2,4-nonane -Dione, 5-methyl-hexane-dione and the like can be mentioned. Of these, ethyl acetoacetate and acetylacetone are preferred, and acetylacetone is particularly preferred. These β-diketone compounds and / or β-ketoester compounds may be used alone or in combination of two or more. In the present invention, the β-diketone compound and / or β-ketoester compound is preferably used in an amount of 2 mol or more, more preferably 3 to 20 mol, per 1 mol of the metal chelate compound. If it is less than 2 mol, the storage stability of the resulting composition may be inferior, which is not preferable.

上記オルガノシラン化合物及び/又はその誘導体の添加量は、添加する層により適宜調整される。添加量は層の全固形分に対し、0.1〜50質量%であることが好ましく、より好ましくは1〜30質量%、さらに好ましくは3〜25質量%、特に好ましくは5〜20質量%である。   The amount of the organosilane compound and / or derivative thereof added is appropriately adjusted depending on the layer to be added. The addition amount is preferably 0.1 to 50% by mass, more preferably 1 to 30% by mass, further preferably 3 to 25% by mass, and particularly preferably 5 to 20% by mass with respect to the total solid content of the layer. It is.

オルガノシラン化合物及び/又はその誘導体は、これらを含有する層の他の成分と架橋又は重合反応することが、皮膜の物理強度(耐擦傷性など)を極めて向上させることが可能となるので、好ましい。このため、オルガノシラン化合物が架橋又は重合する官能基を有したり、無機微粒子やバインダーなどにオルガノシラン化合物と架橋又は重合する官能基を有する化合物用いたりすることが好ましい。
例えば、電離放射線硬化性の架橋又は重合性の官能基を有するオルガノシラン化合物及び/又はその誘導体は、さらに、皮膜中の電離放射線硬化性の架橋又は重合性の官能基を有する他の化合物と架橋又は重合反応して硬化物を生成する。
Organosilane compounds and / or derivatives thereof are preferred because crosslinking or polymerization reaction with other components of the layer containing them can greatly improve the physical strength (scratch resistance, etc.) of the film. . For this reason, it is preferable that the organosilane compound has a functional group that crosslinks or polymerizes, or a compound having a functional group that crosslinks or polymerizes with the organosilane compound in an inorganic fine particle or a binder.
For example, an organosilane compound having an ionizing radiation-curable crosslinking or polymerizable functional group and / or a derivative thereof is further crosslinked with another compound having an ionizing radiation-curable crosslinking or polymerizable functional group in the film. Alternatively, a cured product is produced by a polymerization reaction.

オルガノシラン化合物を添加するのに好ましい層は、帯電防止層、ハードコート層、防眩層、光拡散層、高屈折率層、低屈折率層、最外層であり、より好ましくはハードコート層、防眩層、光拡散層、低屈折率層、最外層であり、特に好ましくは最外層及び/又は該最外層の隣接層である。   Preferred layers for adding the organosilane compound are an antistatic layer, a hard coat layer, an antiglare layer, a light diffusion layer, a high refractive index layer, a low refractive index layer, and an outermost layer, more preferably a hard coat layer, It is an antiglare layer, a light diffusion layer, a low refractive index layer, or an outermost layer, and particularly preferably an outermost layer and / or a layer adjacent to the outermost layer.

(反射防止フィルムの形成法等)
本発明において反射防止フィルムを構成する各層は、塗布法により作製したものが好ましい。塗布で形成する場合、各層はディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法、マイクログラビアコート法やエクストルージョンコート法(米国特許2,681,294号明細書記載)により作製することができる。2層以上を同時に塗布してもよい。同時塗布の方法については、米国特許2,761,791号、同2,941,898号、同3,508,947号、同3,526,528号の各明細書および原崎勇次著、「コーティング工学」、253頁、朝倉書店(1973年)に記載がある。ワイヤーバーコート法、グラビアコート法、マイクログラビアコート法が好ましい。特に、マイクログラビアコート法が好ましい。
マイクログラビアコート法とは、直径が約10〜100mm、好ましくは約20〜50mmで全周にグラビアパターンが刻印されたグラビアロールを支持体の下方に、かつ支持体の搬送方向に対してグラビアロールを逆回転させると共に、該グラビアロールの表面からドクターブレードによって余剰の塗布液を掻き落として、定量の塗布液を支持体に転写させて塗工することを特徴とする塗布法である。
(Anti-reflection film formation method, etc.)
In the present invention, each layer constituting the antireflection film is preferably prepared by a coating method. When formed by coating, each layer is formed by dip coating, air knife coating, curtain coating, roller coating, wire bar coating, gravure coating, micro gravure coating or extrusion coating (US Pat. No. 2,681, 294 specification). Two or more layers may be applied simultaneously. For the simultaneous application method, US Pat. Nos. 2,761,791, 2,941,898, 3,508,947, 3,526,528 and Yuji Harasaki, “Coating Engineering ", page 253, Asakura Shoten (1973). Wire bar coating, gravure coating, and micro gravure coating are preferred. In particular, the micro gravure coating method is preferable.
The micro gravure coating method is a gravure roll having a diameter of about 10 to 100 mm, preferably about 20 to 50 mm and having a gravure pattern engraved on the entire circumference, below the support and in the transport direction of the support. , Reversely rotating, scraping off excess coating liquid from the surface of the gravure roll with a doctor blade, and transferring a fixed amount of coating liquid onto a support and coating.

マイクログラビアコート法では、グラビアロールに刻印されたグラビアパターンの線数は50〜800本/インチが好ましく、より好ましくは100〜300本/インチである。グラビアパターンの深度は1〜600μmが好ましく、より好ましくは5〜200μmである。グラビアロールの回転数は3〜800rpmであることが好ましく、より好ましくは5〜200rpmである。支持体の搬送速度は0.5〜100m/分であることが好ましく、より好ましくは1〜50m/分である。   In the micro gravure coating method, the number of gravure patterns engraved on the gravure roll is preferably 50 to 800 lines / inch, more preferably 100 to 300 lines / inch. The depth of the gravure pattern is preferably 1 to 600 μm, more preferably 5 to 200 μm. The rotation speed of the gravure roll is preferably 3 to 800 rpm, more preferably 5 to 200 rpm. It is preferable that the conveyance speed of a support body is 0.5-100 m / min, More preferably, it is 1-50 m / min.

反射防止フィルムの各層を塗布法で作製する上で、層を作製するのに用いる塗料には、面状改良剤を添加することが好ましい。以下に、面状改良剤について説明する。   When each layer of the antireflection film is prepared by a coating method, it is preferable to add a surface conditioner to the coating material used for preparing the layer. Hereinafter, the surface conditioner will be described.

(面状改良剤)
本発明の透明支持体上のいずれかの層を作製するのに用いる塗料には、面状故障(塗布ムラ、乾燥ムラ、点欠陥など)を改良するために、フッ素系及び/又はシリコーン系の面状改良剤を添加することが好ましい。
(Surface improver)
In order to improve surface defects (coating irregularities, drying irregularities, point defects, etc.), the paint used for producing any layer on the transparent support of the present invention is a fluorine-based and / or silicone-based coating. It is preferable to add a surface improver.

面状改良剤は、塗料の表面張力を1mN/m以上変化させることが好ましい。ここで、塗料の表面張力が1mN/m以上変化するとは、面状改良剤を添加後の塗料の表面張力が、塗布/乾燥時での濃縮過程を含めて、面状改良剤を添加してない塗料の表面張力と比較して、1mN/m以上変化することを意味する。
好ましくは、塗料の表面張力を1mN/m以上下げる効果がある面状改良剤であり、更に好ましく2mN/m以上下げる面状改良剤、特に好ましくは3mN/m以上下げる面状改良剤である。
The surface improver preferably changes the surface tension of the paint by 1 mN / m or more. Here, the surface tension of the paint changes by 1 mN / m or more when the surface tension of the paint after the addition of the surface conditioner is added, including the concentration process during coating / drying. It means that it changes by 1 mN / m or more as compared with the surface tension of the paint.
Preferably, it is a surface improver that has the effect of lowering the surface tension of the paint by 1 mN / m or more, more preferably a surface improver that lowers by 2 mN / m or more, and particularly preferably a surface improver that lowers by 3 mN / m or more.

フッ素系の面状改良剤の好ましい例としては、フルオロ脂肪族基を含有する化合物(「フッ素系面状改良剤」と略記する)が挙げられる。特に、下記一般式(i)のモノマーに相当する繰り返し単位、及び、下記一般式(ii)のモノマーに相当する繰り返し単位を含むことを特徴とするアクリル樹脂、メタアクリル樹脂、及びこれらに共重合可能なビニル系モノマーとの共重合体が好ましい。
このような単量体としては、Polymer Handbook 2nd ed.,J.Brandrup,Wiley lnterscience(1975)Chapter 2,Page 1〜483記載のものを用いることが好ましい。
例えばアクリル酸、メタクリル酸、アクリル酸エステル類、メタクリル酸エステル類、アクリルアミド類、メタクリルアミド類、アリル化合物、ビニルエーテル類、ビニルエステル類等から選ばれる付加重合性不飽和結合を1個有する化合物等をあげることができる。
一般式(i)
Preferable examples of the fluorine-based surface improving agent include compounds containing a fluoroaliphatic group (abbreviated as “fluorine surface improving agent”). In particular, an acrylic resin, a methacrylic resin, and a copolymer thereof, including a repeating unit corresponding to the monomer of the following general formula (i) and a repeating unit corresponding to the monomer of the following general formula (ii) Copolymers with possible vinyl monomers are preferred.
Such monomers include Polymer Handbook 2nd ed. , J .; Brandrup, Wiley Interscience (1975) Chapter 2, Pages 1-483 are preferably used.
For example, a compound having one addition polymerizable unsaturated bond selected from acrylic acid, methacrylic acid, acrylic esters, methacrylic esters, acrylamides, methacrylamides, allyl compounds, vinyl ethers, vinyl esters, etc. I can give you.
Formula (i)

Figure 2006023350
Figure 2006023350

一般式(i)においてR21は水素原子、ハロゲン原子又はメチル基を表し、水素原子、メチル基がより好ましい。X2は酸素原子、イオウ原子又は−N(R22)−を表し、酸素原子又は−N(R22)−がより好ましく、特に酸素原子が好ましい。R22は水素原子又は、炭素数1〜8のアルキル基を表し、好ましくは水素原子又は炭素数1〜4のアルキル基、特に好ましくは水素原子又はメチル基である。aは1〜6の整数を表し、1〜3がより好ましく、1であることが特に好ましい。bは1〜18の整数を表し、4〜12がより好ましく、6〜8が特に好ましい。
フッ素系面状改良剤中に一般式(i)で表されるフルオロ脂肪族基含有モノマーが2種類以上構成成分として含まれていてもよい。
一般式(ii)
In the general formula (i), R 21 represents a hydrogen atom, a halogen atom or a methyl group, more preferably a hydrogen atom or a methyl group. X 2 represents an oxygen atom, a sulfur atom or —N (R 22 ) —, more preferably an oxygen atom or —N (R 22 ) —, and particularly preferably an oxygen atom. R 22 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, particularly preferably a hydrogen atom or a methyl group. a represents an integer of 1 to 6, more preferably 1 to 3, and particularly preferably 1. b represents an integer of 1 to 18, more preferably 4 to 12, and particularly preferably 6 to 8.
Two or more types of fluoroaliphatic group-containing monomers represented by the general formula (i) may be contained in the fluorine-based surface improver as a constituent component.
General formula (ii)

Figure 2006023350
Figure 2006023350

一般式(ii)において、R23は水素原子、ハロゲン原子又はメチル基を表し、水素原子、メチル基がより好ましい。Y2は酸素原子、イオウ原子又は−N(R25)−を表し、酸素原子又は−N(R25)−がより好ましく、特に酸素原子が好ましい。R25は水素原子又は炭素数1〜8のアルキル基を表し、好ましくは水素原子又は炭素数1〜4のアルキル基、特に好ましくは水素原子又はメチル基である。
24は水素原子、置換もしくは無置換の炭素数1〜20の直鎖、分岐もしくは環状のアルキル基、ポリ(アルキレンオキシ)基を含むアルキル基、又は置換もしくは無置換の芳香族基(例えば、フェニル基またはナフチル基)を表す。炭素数1〜12の直鎖、分岐もしくは環状のアルキル基、又は総炭素数6〜18の芳香族がより好ましく、炭素数1〜8の直鎖、分岐もしくは環状のアルキル基が更に好ましい。以下でポリ(アルキレンオキシ)基について説明する。
In the general formula (ii), R 23 represents a hydrogen atom, a halogen atom or a methyl group, and more preferably a hydrogen atom or a methyl group. Y 2 represents an oxygen atom, a sulfur atom or —N (R 25 ) —, more preferably an oxygen atom or —N (R 25 ) —, and particularly preferably an oxygen atom. R 25 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, particularly preferably a hydrogen atom or a methyl group.
R 24 represents a hydrogen atom, a substituted or unsubstituted linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, an alkyl group containing a poly (alkyleneoxy) group, or a substituted or unsubstituted aromatic group (for example, A phenyl group or a naphthyl group). A linear, branched or cyclic alkyl group having 1 to 12 carbon atoms or an aromatic group having 6 to 18 carbon atoms in total is more preferable, and a linear, branched or cyclic alkyl group having 1 to 8 carbon atoms is still more preferable. The poly (alkyleneoxy) group will be described below.

ポリ(アルキレンオキシ)基は、−(OR)−を繰り返し単位とした基であり、Rは2〜4個の炭素原子を有するアルキレン基、例えば−CH2CH2−、−CH2CH2CH2−、−CH(CH3)CH2−、−CH(CH3)CH(CH3)−が挙げられる。
前記のポリ(オキシアルキレン)基中のオキシアルキレン単位(前記−OR−)はポリ(オキシプロピレン)におけるように同一であってもよく、また互いに異なる2種以上のオキシアルキレンが不規則に分布されたものであってもよく、直鎖もしくは分岐状のオキシプロピレンもしくはオキシエチレン単位であったり、または直鎖もしくは分岐状のオキシプロピレン単位のブロックもしくはオキシエチレン単位のブロックのように存在するものであってもよい。
このポリ(オキシアルキレン)鎖は1つまたはそれ以上の連鎖結合(例えば−CONH−Ph−NHCO−、−S−など:Phはフェニレン基を表す)で連結されたものも含むことができる。連鎖の結合が3つまたはそれ以上の原子価を有する場合には、これは分岐鎖のオキシアルキレン単位を得るための手段を供する。またこの共重合体を本発明に用いる場合には、ポリ(オキシアルキレン)基の分子量は250〜3000が適当である。
ポリ(オキシアルキレン)アクリレート及びメタクリレートは、市販のヒドロキシポリ(オキシアルキレン)材料、例えば商品名"プルロニック"[Pluronic(旭電化工業(株)製)、アデカポリエーテル(旭電化工業(株)製)"カルボワックス"[Carbowax(グリコ・プロダクス)]、"トリトン"[Toriton(ローム・アンド・ハース(Rohm and Haas製))およびP.E.G(第一工業製薬(株)製)として販売されているものを公知の方法
でアクリル酸、メタクリル酸、アクリルクロリド、メタクリルクロリドまたは無水アクリル酸等と反応させることによって製造できる。別に、公知の方法で製造したポリ(オキシアルキレン)ジアクリレート等を用いることもできる。
Poly (alkyleneoxy) group, - (OR) - a group in which a repeating unit, R represents an alkylene group having 2 to 4 carbon atoms, such as -CH 2 CH 2 -, - CH 2 CH 2 CH 2- , -CH (CH 3 ) CH 2- , -CH (CH 3 ) CH (CH 3 )-.
The oxyalkylene units (-OR-) in the poly (oxyalkylene) group may be the same as in poly (oxypropylene), and two or more different oxyalkylenes are randomly distributed. It may be a linear or branched oxypropylene or oxyethylene unit, or a linear or branched oxypropylene unit block or an oxyethylene unit block. May be.
The poly (oxyalkylene) chain may also include those linked by one or more chain bonds (for example, —CONH—Ph—NHCO—, —S—, etc .: Ph represents a phenylene group). If the chain bond has a valence of 3 or more, this provides a means for obtaining branched oxyalkylene units. When this copolymer is used in the present invention, the molecular weight of the poly (oxyalkylene) group is suitably from 250 to 3,000.
Poly (oxyalkylene) acrylates and methacrylates are commercially available hydroxypoly (oxyalkylene) materials, for example, trade name “Pluronic” [Pluronic (Asahi Denka Kogyo Co., Ltd.), Adeka Polyether (Asahi Denka Kogyo Co., Ltd.) "Carbowax" [Carbowax (Glico Product)], "Triton" (Toriton (Rohm and Haas)) and PEG (Daiichi Kogyo Seiyaku Co., Ltd.) It can be produced by reacting with acrylic acid, methacrylic acid, acrylic chloride, methacrylic chloride or acrylic acid anhydride by a known method. Separately, poly (oxyalkylene) diacrylate produced by a known method can also be used.

一般式(i)で示されるフルオロ脂肪族基含有モノマーからなるフッ素系面状改良剤において、フッ素系面状改良剤の形成に用いられる全モノマー量に対する一般式(i)で示されるフルオロ脂肪族基含有モノマーの量が50モル%以上であることが好ましく、より好ましくは70〜100モル%であり、特に好ましくは80〜100モル%の範囲である。
また、一般式(ii)で示されるモノマーの量は、0〜50モル%であることが好ましく、0〜30モル%であることがより好ましい。
In the fluorine-based surface improver comprising the fluoroaliphatic group-containing monomer represented by the general formula (i), the fluoroaliphatic represented by the general formula (i) with respect to the total amount of monomers used for forming the fluorine-based surface improver The amount of the group-containing monomer is preferably 50 mol% or more, more preferably 70 to 100 mol%, and particularly preferably 80 to 100 mol%.
Moreover, it is preferable that the quantity of the monomer shown by general formula (ii) is 0-50 mol%, and it is more preferable that it is 0-30 mol%.

一般式(i)で示されるフルオロ脂肪族基含有モノマーからなるフッ素系面状改良剤の好ましい質量平均分子量は、3000〜100,000が好ましく、6,000〜80,000がより好ましく、8,000〜60,000が更に好ましい。
ここで、質量平均分子量は、TSKgel GMHxL、TSKgel G4000HxL、TSKgel G2000HxL(何れも東ソー(株)製の商品名)のカラムを使用したGPC分析装置により、溶媒THF、示差屈折計検出によるポリスチレン換算で表した分子量であり、含有量は、分子量が300以上の成分のピーク面積を100%とした場合の、前記分子量範囲のピークの面積%である。
The preferred weight average molecular weight of the fluorine-based planar improver comprising the fluoroaliphatic group-containing monomer represented by the general formula (i) is preferably 3000 to 100,000, more preferably 6,000 to 80,000, and 8, 000 to 60,000 is more preferable.
Here, the mass average molecular weight is expressed in terms of polystyrene by GTH analyzer using TSKgel GMHxL, TSKgel G4000HxL, and TSKgel G2000HxL (both trade names manufactured by Tosoh Corporation) by solvent THF and differential refractometer detection. The content is the area% of the peak in the molecular weight range when the peak area of a component having a molecular weight of 300 or more is defined as 100%.

一般式(i)で示されるフルオロ脂肪族基含有モノマーからなるフッ素系面状改良剤の好ましい添加量は、添加する層の塗料に対して0.001〜5質量%の範囲であり、好ましくは0.005〜3質量%の範囲であり、更に好ましくは0.01〜1質量%の範囲である。   The preferred amount of addition of the fluorine-based surface improver comprising the fluoroaliphatic group-containing monomer represented by the general formula (i) is in the range of 0.001 to 5% by mass with respect to the coating material of the layer to be added, preferably The range is 0.005 to 3% by mass, and more preferably 0.01 to 1% by mass.

以下、一般式(i)で示されるフルオロ脂肪族基含有モノマーからなるフッ素系面状改良剤の具体的な構造の例を示すが、本発明はこれらに限定されるものではない。なお式中の数字は各モノマー成分のモル比率を示す。Mwは質量平均分子量を表す。   Hereinafter, examples of the specific structure of the fluorine-based surface improver composed of the fluoroaliphatic group-containing monomer represented by the general formula (i) will be shown, but the present invention is not limited thereto. In addition, the number in a formula shows the molar ratio of each monomer component. Mw represents a mass average molecular weight.

Figure 2006023350
Figure 2006023350

Figure 2006023350
Figure 2006023350

表面張力を調整する観点から、上記とは構造が異なるモノマーを含有するフッ素系の面状改良剤も好ましい。特に、下記一般式(iii)のモノマーに相当する繰り返し単位、及び、下記一般式(iv)のモノマーに相当する繰り返し単位を含むことを特徴とするアクリル樹脂、メタアクリル樹脂、及びこれらに共重合可能なビニル系モノマーとの共重合体が好ましい。
一般式(iii)
From the viewpoint of adjusting the surface tension, a fluorine-based surface improver containing a monomer having a structure different from the above is also preferable. In particular, an acrylic resin, a methacrylic resin, and a copolymer thereof, containing a repeating unit corresponding to the monomer of the following general formula (iii) and a repeating unit corresponding to the monomer of the following general formula (iv) Copolymers with possible vinyl monomers are preferred.
General formula (iii)

Figure 2006023350
Figure 2006023350

一般式(iii)中、R31は水素原子またはメチル基を表し、X3は酸素原子、イオウ原子または‐N(R32)‐を表し、mは1以上6以下の整数、nは2または3の整数を表す。R32は水素原子または炭素数1〜4のアルキル基、具体的にはメチル基、エチル基、プロピル基、ブチル基を表し、好ましくは水素原子またはメチル基である。X3は酸素原子が好ましい。一般式2中のmは1以上6以下の整数が好ましく、2が特に好ましい。一般式2中のnは1〜3であって、1〜3の混合物を用いてもよい。 In the general formula (iii), R 31 represents a hydrogen atom or a methyl group, X 3 represents an oxygen atom, a sulfur atom or —N (R 32 ) —, m is an integer of 1 to 6, and n is 2 or An integer of 3 is represented. R 32 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, specifically a methyl group, an ethyl group, a propyl group or a butyl group, preferably a hydrogen atom or a methyl group. X 3 is preferably an oxygen atom. M in the general formula 2 is preferably an integer of 1 to 6, and 2 is particularly preferable. N in the general formula 2 is 1 to 3, and a mixture of 1 to 3 may be used.

上記一般式(iii)で表されるモノマーと共重合可能なモノマーとして下記一般式(iv)で示されるモノマーが好ましい。
一般式(iv)
As the monomer copolymerizable with the monomer represented by the general formula (iii), a monomer represented by the following general formula (iv) is preferable.
Formula (iv)

Figure 2006023350
Figure 2006023350

一般式(iv)中、R13は水素原子またはメチル基を表し、Y1は酸素原子、イオウ原子または‐N(R15)‐を表し、R15は水素原子または炭素数1〜4のアルキル基、具体的にはメチル基、エチル基、プロピル基、ブチル基を表し、好ましくは水素原子またはメチル基である。Yは酸素原子、−N(H)−、および−N(CH3)−が好ましい。R14は置換基を有しても良い炭素数4以上20以下の直鎖、分岐または環状のアルキル基を表す。R14のアルキル基の置換基としては、水酸基、アルキルカルボニル基、アリールカルボニル基、カルボキシル基、アルキルエーテル基、アリールエーテル基、フッ素原子、塩素原子、臭素原子などのハロゲン原子、ニトロ基、シアノ基、アミノ基等があげられるがこの限りではない。炭素数4以上20以下の直鎖、分岐または環状のアルキル基としては、直鎖及び分岐してもよいブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、オクタデシル基、エイコサニル基等、また、シクロヘキシル基、シクロヘプチル基等の単環シクロアルキル基及びビシクロヘプチル基、ビシクロデシル基、トリシクロウンデシル基、テトラシクロドデシル基、アダマンチル基、ノルボルニル基、テトラシクロデシル基、等の多環シクロアルキル基が好適に用いられる。 In the general formula (iv), R 13 represents a hydrogen atom or a methyl group, Y 1 represents an oxygen atom, a sulfur atom or —N (R 15 ) —, and R 15 represents a hydrogen atom or an alkyl having 1 to 4 carbon atoms. Group, specifically a methyl group, an ethyl group, a propyl group, or a butyl group, preferably a hydrogen atom or a methyl group. Y is an oxygen atom, -N (H) -, and -N (CH 3) - it is preferred. R 14 represents a linear, branched or cyclic alkyl group having 4 to 20 carbon atoms which may have a substituent. Examples of the substituent for the alkyl group of R 14 include a hydroxyl group, an alkylcarbonyl group, an arylcarbonyl group, a carboxyl group, an alkyl ether group, an aryl ether group, a halogen atom such as a fluorine atom, a chlorine atom, and a bromine atom, a nitro group, and a cyano group. , Amino groups and the like, but not limited thereto. Examples of the linear, branched or cyclic alkyl group having 4 to 20 carbon atoms include a butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group and undecyl group which may be linear or branched. , Dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, octadecyl group, eicosanyl group, etc., and monocyclic cycloalkyl groups such as cyclohexyl group, cycloheptyl group and bicycloheptyl group, bicyclodecyl group, tricycloundecyl group, A polycyclic cycloalkyl group such as a tetracyclododecyl group, an adamantyl group, a norbornyl group, a tetracyclodecyl group, or the like is preferably used.

一般式(iii)で示されるフルオロ脂肪族基含有モノマーからなるフッ素系面状改良剤の合成に用いられる一般式(iii)で示されるフルオロ脂肪族基含有モノマーの量は、該フッ素系面状改良剤の各単量体の合計量に基づいて10モル%以上であり、好ましくは15〜70モル%であり、より好ましくは20〜60モル%の範囲である。   The amount of the fluoroaliphatic group-containing monomer represented by the general formula (iii) used for the synthesis of the fluorine-based planarity improver comprising the fluoroaliphatic group-containing monomer represented by the general formula (iii) It is 10 mol% or more based on the total amount of each monomer of an improving agent, Preferably it is 15-70 mol%, More preferably, it is the range of 20-60 mol%.

上記一般式(iii)で示されるフルオロ脂肪族基含有モノマーからなるフッ素系面状改良剤の好ましい質量平均分子量は、3000〜100,000が好ましく、5,000〜80,000がより好ましい。一般式(iii)で示されるフルオロ脂肪族基含有モノマーからなるフッ素系面状改良剤の好ましい添加量は、効果の発現、塗膜の乾燥性、塗膜の性能(例えば反射率、耐擦傷性等)等を考慮して、塗布液に対して好ましくは0.001〜5質量%の範囲であり、より好ましくは0.005〜3質量%の範囲であり、更に好ましくは0.01〜1質量%の範囲である。   The preferred weight average molecular weight of the fluorine-based surface improver comprising the fluoroaliphatic group-containing monomer represented by the general formula (iii) is preferably 3000 to 100,000, and more preferably 5,000 to 80,000. The preferred amount of addition of the fluorine-based surface improver comprising the fluoroaliphatic group-containing monomer represented by the general formula (iii) is the effect, the drying property of the coating film, and the performance of the coating film (for example, reflectance, scratch resistance). Etc.) is preferably in the range of 0.001 to 5% by mass, more preferably in the range of 0.005 to 3% by mass, and still more preferably 0.01 to 1%. It is the range of mass%.

以下、一般式(iii)で示されるフルオロ脂肪族基含有モノマーからなるフッ素系面状改良剤の具体的な構造の例を示すがこの限りではない。なお式中の数字は各モノマー成分のモル比率を示す。Mwは質量平均分子量を表す。   Hereinafter, examples of the specific structure of the fluorine-based surface improver composed of the fluoroaliphatic group-containing monomer represented by the general formula (iii) are shown, but the present invention is not limited thereto. In addition, the number in a formula shows the molar ratio of each monomer component. Mw represents a mass average molecular weight.

Figure 2006023350
Figure 2006023350

Figure 2006023350
Figure 2006023350

本発明の面状改良剤は、ケトン系溶媒(アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなど)、エステル系溶媒(酢酸エチル、酢酸ブチル等)、エーテル類(テトラヒドロフラン、1,4−ジオキサン等)、芳香族炭化水素系溶媒(トルエン、キシレン等)を含有する塗料に用いることが好ましくい。特に、ケトン系溶媒が好ましい。ケトン系溶媒の中でも、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンが好ましい。
また、特にケトン系溶媒を全溶媒の10質量%以上含有する塗料であることが好ましい。好ましくは30質量%以上、さらに好ましくは60質量%以上である。
The surface conditioner of the present invention includes ketone solvents (acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, etc.), ester solvents (ethyl acetate, butyl acetate, etc.), ethers (tetrahydrofuran, 1,4-dioxane, etc.), It is preferable to use it for a paint containing an aromatic hydrocarbon solvent (toluene, xylene, etc.). In particular, a ketone solvent is preferable. Among the ketone solvents, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone are preferable.
Moreover, it is preferable that it is especially a coating material containing 10 mass% or more of a ketone solvent of all the solvents. Preferably it is 30 mass% or more, More preferably, it is 60 mass% or more.

塗料の溶媒は、ケトン系溶媒以外の溶媒を含んでいてもよい。例えば、水、アルコール(例、メタノール、エタノール、イソプロパノール、ブタノール、ベンジルアルコール)、エステル(例、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、蟻酸メチル、蟻酸エチル、蟻酸プロピル、蟻酸ブチル)、脂肪族炭化水素(例、ヘキサン、シクロヘキサン)、ハロゲン化炭化水素(例、メチレンクロライド、クロロホルム、四塩化炭素)、芳香族炭化水素(例、ベンゼン、トルエン、キシレン)、アミド(例、ジメチルホルムアミド、ジメチルアセトアミド、n−メチルピロリドン)、エーテル(例、ジエチルエーテル、ジオキサン、テトラヒドロフラン)、エーテルアルコール(例、1−メトキシ−2−プロパノール)などがあげられる。   The solvent of the paint may contain a solvent other than the ketone solvent. For example, water, alcohol (eg, methanol, ethanol, isopropanol, butanol, benzyl alcohol), ester (eg, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl formate, ethyl formate, propyl formate, butyl formate), fat Aromatic hydrocarbons (eg, hexane, cyclohexane), halogenated hydrocarbons (eg, methylene chloride, chloroform, carbon tetrachloride), aromatic hydrocarbons (eg, benzene, toluene, xylene), amides (eg, dimethylformamide, dimethyl) Examples include acetamide, n-methylpyrrolidone), ether (eg, diethyl ether, dioxane, tetrahydrofuran), ether alcohol (eg, 1-methoxy-2-propanol) and the like.

面状改良剤は、層と層の界面の密着性を悪化させることがある。従って、層の表面に存在する面状改良剤を、該層の隣接層を形成する塗料中に溶出させて、層と層の界面近傍に面状改良剤が残らないようにすることが好ましい。そのため、隣接層の塗料中に面状改良剤を溶解する溶媒を含有させることが好ましい。そのような溶媒としては、上記ケトン系溶媒が好ましい。   A planarity improving agent may worsen the adhesiveness of the interface of a layer. Accordingly, it is preferable to elute the surface improver present on the surface of the layer into the coating material forming the adjacent layer of the layer so that the surface improver does not remain in the vicinity of the interface between the layers. Therefore, it is preferable to contain a solvent that dissolves the surface improver in the paint of the adjacent layer. As such a solvent, the above ketone solvents are preferable.

透明支持体上に形成する層の塗料において、面状改良剤を添加するのが特に好ましいのは、ハードコート層、防眩層、光散乱層、帯電防止層、高屈折率層を形成するための塗料であり、特に好ましいのはハードコート層、防眩層、光散乱層を形成するための塗料である。   In order to form a hard coat layer, an antiglare layer, a light scattering layer, an antistatic layer, and a high refractive index layer, it is particularly preferable to add a surface state improver to the coating of the layer formed on the transparent support. Particularly preferred are paints for forming a hard coat layer, an antiglare layer, and a light scattering layer.

(反射防止フィルム)
本発明の反射防止フィルムは、物理強度(耐擦傷性など)を改良するために、最外層を有する側の表面の動摩擦係数は0.25以下であることが好ましい。ここで記載した動摩擦係数は、直径5mmのステンレス剛球に0.98Nの荷重をかけ、速度60cm/分で最外層を有する側の表面を移動させたときの、最外層を有する側の表面と直径5mmのステンレス剛球の間の動摩擦係数をいう。好ましくは0.17以下であり、特に好ましくは0.15以下である。
さらに反射防止フィルムは、防汚性能を改良するために、最外層を有する側の表面の水に対する接触角が80゜以上であることが好ましい。更に好ましくは90゜以上であり、特に好ましくは100゜以上である。
(Antireflection film)
In the antireflection film of the present invention, in order to improve physical strength (such as scratch resistance), the dynamic friction coefficient of the surface having the outermost layer is preferably 0.25 or less. The dynamic friction coefficient described here is the same as the surface and diameter on the side having the outermost layer when a load of 0.98 N is applied to a stainless hard sphere having a diameter of 5 mm and the surface on the side having the outermost layer is moved at a speed of 60 cm / min. The coefficient of dynamic friction between 5 mm stainless hard spheres. Preferably it is 0.17 or less, Most preferably, it is 0.15 or less.
Further, the antireflection film preferably has a contact angle with water of 80 ° or more on the surface having the outermost layer in order to improve the antifouling performance. More preferably, it is 90 ° or more, and particularly preferably 100 ° or more.

本発明に係る反射防止フィルムのヘイズは、0.5〜60%であることが好ましく、1〜50%であることがさらに好ましく、1〜40%であることが最も好ましい。   The haze of the antireflection film according to the present invention is preferably 0.5 to 60%, more preferably 1 to 50%, and most preferably 1 to 40%.

本発明の反射防止フィルムの反射率は低いほど好ましく、好ましくは3.0%以下、より好ましくは2.5%以下、更に好ましくは2.0%以下、特に好ましくは1.5%以下である。   The reflectance of the antireflection film of the present invention is preferably as low as possible, preferably 3.0% or less, more preferably 2.5% or less, still more preferably 2.0% or less, and particularly preferably 1.5% or less. .

(反射防止フィルムの構成)
本発明の反射防止フィルムの構成例を図面を引用しながら説明する。
図1は、優れた反射防止性能を有する反射防止フィルムの層構成を模式的に示す断面図である。
(Structure of antireflection film)
A configuration example of the antireflection film of the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view schematically showing a layer structure of an antireflection film having excellent antireflection performance.

図1に示す態様は、透明支持体1、防眩層2、帯電防止層4、そして低屈折率層(最外層)5の順序の層構成を有する。防眩層2に含まれる粒子3は、平均粒径が0.2〜10μmの粒子である。
図1に示す態様では透明支持体1、帯電防止層4、低屈折率層5は、以下の関係を満足する屈折率を有する。すなわち、帯電防止層の屈折率>透明支持体の屈折率>低屈折率層の屈折率。
The embodiment shown in FIG. 1 has a layer structure in the order of a transparent support 1, an antiglare layer 2, an antistatic layer 4, and a low refractive index layer (outermost layer) 5. The particles 3 contained in the antiglare layer 2 are particles having an average particle size of 0.2 to 10 μm.
In the embodiment shown in FIG. 1, the transparent support 1, the antistatic layer 4, and the low refractive index layer 5 have a refractive index that satisfies the following relationship. That is, the refractive index of the antistatic layer> the refractive index of the transparent support> the refractive index of the low refractive index layer.

図1のような層構成では、特開昭59−50401号公報に記載されているように、帯電防止層が下記数式(11)、低屈折率層が下記数式(12)をそれぞれ満足することがさらに優れた反射防止性能を有する反射防止フィルムとすることができる点で好ましい。   1, the antistatic layer satisfies the following formula (11) and the low refractive index layer satisfies the following formula (12), as described in JP-A-59-50401. Is preferable in that it can be an antireflection film having further excellent antireflection performance.

数式(11) (m8λ/4)×0.7<n88<(m8λ/4)×1.3 Formula (11) (m 8 λ / 4) × 0.7 <n 8 d 8 <(m 8 λ / 4) × 1.3

数式(11)中、m8は正の整数(一般に1、2または3)であり、n8は帯電防止層の屈折率であり、そして、d8は帯電防止層の層厚(nm)である。λは可視光線の波長で
あり、380〜680(nm)の範囲の値である。
In formula (11), m 8 is a positive integer (generally 1, 2 or 3), n 8 is the refractive index of the antistatic layer, and d 8 is the layer thickness (nm) of the antistatic layer. is there. λ is the wavelength of visible light, and is a value in the range of 380 to 680 (nm).

数式(12) (m9λ/4)×0.7<n99<(m9λ/4)×1.3 Formula (12) (m 9 λ / 4) × 0.7 <n 9 d 9 <(m 9 λ / 4) × 1.3

数式(12)中、m9は正の奇数(一般に1)であり、n9は低屈折率層の屈折率であり、そして、d9は低屈折率層の層厚(nm)である。λは可視光線の波長であり、380〜680(nm)の範囲の値である。
なお、図1に示した態様は、防眩性に優れた反射防止フィルムである。
In Equation (12), m 9 is a positive odd number (generally 1), n 9 is the refractive index of the low refractive index layer, and d 9 is the layer thickness (nm) of the low refractive index layer. λ is the wavelength of visible light, and is a value in the range of 380 to 680 (nm).
In addition, the aspect shown in FIG. 1 is an antireflection film excellent in antiglare property.

(偏光板用保護フィルム)
本発明の反射防止フィルムを偏光膜の保護フィルム(偏光板用保護フィルム)として用いることができる。この場合、最外層を有する側とは反対側の透明支持体の表面、すなわち偏光膜と貼り合わせる側の表面の水に対する接触角が40°以下であることが好ましい。さらに好ましくは30°以下であり、特に好ましくは25°以下である。接触角を40°以下にすることは、ポリビニルアルコールを主成分とする偏光膜との接着性を改良するのに有効である。この接触角は下記の鹸化処理の処理条件により調整することができる。
(Protective film for polarizing plate)
The antireflection film of the present invention can be used as a protective film for a polarizing film (protective film for polarizing plate). In this case, the contact angle with respect to water of the surface of the transparent support opposite to the side having the outermost layer, that is, the surface to be bonded to the polarizing film is preferably 40 ° or less. More preferably, it is 30 ° or less, and particularly preferably 25 ° or less. Setting the contact angle to 40 ° or less is effective in improving the adhesion with a polarizing film containing polyvinyl alcohol as a main component. This contact angle can be adjusted by the following saponification treatment conditions.

偏光板用保護フィルムとして用いる反射防止フィルムの透明支持体としては、トリアセチルセルロースフィルムを用いることが特に好ましい。   As the transparent support of the antireflection film used as the protective film for polarizing plate, it is particularly preferable to use a triacetyl cellulose film.

本発明における偏光板用保護フィルムを作製する手法としては、下記2つの手法が挙げられる。
(1)鹸化処理した透明支持体の一方の面に上記の各層(例、帯電防止層、ハードコート層、低屈折率層、高屈折率層、最外層など)を塗設する手法。
(2)透明支持体の一方の面に上記の各層(例、帯電防止層、ハードコート層、低屈折率層、最外層など)を塗設した後、偏光膜と貼り合わせる側を鹸化処理する手法。
The following two methods are mentioned as a method of producing the protective film for polarizing plates in this invention.
(1) A method of coating each of the above layers (eg, antistatic layer, hard coat layer, low refractive index layer, high refractive index layer, outermost layer, etc.) on one surface of a saponified transparent support.
(2) After coating each of the above layers (eg, antistatic layer, hard coat layer, low refractive index layer, outermost layer, etc.) on one surface of the transparent support, the side to be bonded to the polarizing film is saponified. Technique.

上記(1)の手法において、透明支持体の一方の面のみが鹸化処理されている場合、各層は鹸化処理されていない側に塗設する。透明支持体の両方の面が鹸化処理されている場合、各層を塗設する側の鹸化処理した透明支持体の表面をコロナ放電処理、グロー放電処理、火焔処理などの手法により表面処理し、その後、各層を塗設することが好ましい。
上記(2)において、反射防止フィルム全体を鹸化液に浸漬することが好ましい。この場合、反射防止フィルムは各層を有する側の表面を保護フィルムで保護して鹸化液に浸せきし、偏光膜と貼り合わせる側の透明支持体の表面を鹸化処理することもできる。
さらにまた、反射防止フィルムの偏光膜と貼り合わせる側の透明支持体の表面に鹸化処理液を塗布して、偏光膜と貼り合わせる側を鹸化処理することもできる。
鹸化処理は、保護フィルムの上に反射防止性能を付与した後に実施することで、よりコストを削減でき、特に(2)の手法が、偏光板用保護フィルムを安価に製造できる点で好ましい。
In the method (1), when only one surface of the transparent support is saponified, each layer is coated on the side not saponified. When both surfaces of the transparent support are saponified, the surface of the saponified transparent support on the side where each layer is applied is surface-treated by a technique such as corona discharge treatment, glow discharge treatment, flame treatment, etc. It is preferable to coat each layer.
In said (2), it is preferable to immerse the whole antireflection film in a saponification liquid. In this case, the antireflection film can also be saponified on the surface of the transparent support to be bonded to the polarizing film by protecting the surface having each layer with a protective film and immersing it in a saponification solution.
Furthermore, a saponification treatment solution can be applied to the surface of the transparent support on the side to be bonded to the polarizing film of the antireflection film, and the side to be bonded to the polarizing film can be saponified.
The saponification treatment is carried out after antireflection performance is imparted on the protective film, whereby the cost can be further reduced, and the method (2) is particularly preferable in that the protective film for polarizing plate can be produced at a low cost.

偏光板用保護フィルムは、光学性能(反射防止性能、防眩性能など)、物理性能(耐擦傷性など)、耐薬品性、防汚性能(耐汚染性など)、耐候性(耐湿熱性、耐光性)、防塵性能において、本発明の反射防止フィルムで記載した性能を満足することが好ましい。
従って、最外層を有する側の表面の表面抵抗値が1×1013Ω/□以下であることが好ましく、1×1012Ω/□以下であることがより好ましく、1×1010Ω/□以下であることが更に好ましく、1×108Ω/□以下であることが特に好ましい。
最外層を有する側の表面の動摩擦係数は0.25以下であることが好ましい。好ましくは0.17以下であり、特に好ましくは0.15以下である。
また、最外層を有する側の表面の水に対する接触角は90゜以上であることが好ましい。更に好ましくは95゜以上であり、特に好ましくは100゜以上である。
Protective films for polarizing plates have optical performance (antireflection performance, antiglare performance, etc.), physical performance (such as scratch resistance), chemical resistance, antifouling performance (contamination resistance, etc.), weather resistance (moisture and heat resistance, light resistance) Property) and dustproof performance, it is preferable to satisfy the performance described in the antireflection film of the present invention.
Accordingly, the surface resistance value of the surface having the outermost layer is preferably 1 × 10 13 Ω / □ or less, more preferably 1 × 10 12 Ω / □ or less, and more preferably 1 × 10 10 Ω / □. More preferably, it is more preferably 1 × 10 8 Ω / □ or less.
The coefficient of dynamic friction on the surface having the outermost layer is preferably 0.25 or less. Preferably it is 0.17 or less, Most preferably, it is 0.15 or less.
Further, the contact angle with respect to water on the surface having the outermost layer is preferably 90 ° or more. More preferably, it is 95 ° or more, and particularly preferably 100 ° or more.

(鹸化処理)
上記の鹸化処理は、公知の手法、例えば、アルカリ液の中に透明支持体、又は、反射防止フィルムを適切な時間浸漬して実施するのが好ましい。
アルカリ液は、水酸化カリウム水溶液、及び/又は、水酸化ナトリウム水溶液であることが好ましい。好ましい濃度は0.5〜3mol/lであり、特に好ましくは1〜2mol/lである。好ましいアルカリ液の液温は30〜70℃、特に好ましくは40〜60℃である。
アルカリ液に浸漬した後は、フィルムの中にアルカリ成分が残留しないように、水で十分に水洗したり、希薄な酸に浸漬してアルカリ成分を中和することが好ましい。
(Saponification treatment)
The saponification treatment is preferably carried out by a known method, for example, by immersing a transparent support or an antireflection film in an alkali solution for an appropriate time.
The alkaline liquid is preferably a potassium hydroxide aqueous solution and / or a sodium hydroxide aqueous solution. A preferred concentration is 0.5 to 3 mol / l, particularly preferably 1 to 2 mol / l. The liquid temperature of a preferable alkali liquid is 30-70 degreeC, Most preferably, it is 40-60 degreeC.
After being immersed in the alkaline solution, it is preferable to sufficiently wash with water or neutralize the alkaline component by immersing in a dilute acid so that the alkaline component does not remain in the film.

鹸化処理することにより、透明支持体の表面が親水化される。偏光板用保護フィルムは、透明支持体の親水化された表面を偏光膜と接着させて使用する。
親水化された表面は、ポリビニルアルコールを主成分とする偏光膜との接着性を改良するのに有効である。
鹸化処理は、最外層を有する側とは反対側の透明支持体の表面の水に対する接触角が40゜以下になるように実施することが好ましい。更に好ましくは30゜以下、特に好ましくは25゜以下である。
By saponification treatment, the surface of the transparent support is hydrophilized. The protective film for polarizing plate is used by adhering the hydrophilic surface of the transparent support to the polarizing film.
The hydrophilized surface is effective for improving the adhesion with a polarizing film containing polyvinyl alcohol as a main component.
The saponification treatment is preferably carried out so that the contact angle of water on the surface of the transparent support opposite to the side having the outermost layer is 40 ° or less. More preferably, it is 30 ° or less, particularly preferably 25 ° or less.

(偏光板)
本発明の偏光板は、偏向膜の保護フィルム(偏光板用保護フィルム)の少なくとも一方に、本発明の反射防止フィルムを有する。偏光板用保護フィルムは、上記のように、最外層を有する側とは反対側の透明支持体の表面、すなわち偏光膜と貼り合わせる側の表面の水に対する接触角が40°以下であることが好ましい。
(Polarizer)
The polarizing plate of the present invention has the antireflection film of the present invention on at least one of the polarizing film protective film (polarizing plate protective film). As described above, the polarizing plate protective film has a water contact angle of 40 ° or less on the surface of the transparent support opposite to the side having the outermost layer, that is, the surface to be bonded to the polarizing film. preferable.

本発明の反射防止フィルムを偏光板用保護フィルムとして用いることにより、反射防止機能を有する偏光板が作製でき、大幅なコスト削減、表示装置の薄手化が可能となる。
また、本発明の反射防止フィルムを2枚の保護フィルムの一方に、後述する光学異方性のある光学補償フィルムをもう一方に用いた偏光板は、さらに、液晶表示装置の明室でのコントラストを改良し、上下左右の視野角を非常に広げることができるので、好ましい。
By using the antireflection film of the present invention as a protective film for a polarizing plate, a polarizing plate having an antireflection function can be produced, and the cost can be greatly reduced and the display device can be thinned.
The polarizing plate using the antireflection film of the present invention as one of the two protective films and the optical compensation film having optical anisotropy described later as the other is further provided with a contrast in a bright room of a liquid crystal display device. This is preferable because the viewing angle in the vertical and horizontal directions can be greatly widened.

(光学補償フィルム)
上記光学補償フィルム(位相差フィルム)は、液晶表示画面の視野角特性を改良することができる。
光学補償フィルムとしては、公知のものを用いることができるが、視野角を広げるという点では、ディスコティック構造単位を有する化合物からなる光学異方性層を有し、該ディスコティック化合物とフィルム面とのなす角度が、光学異方性層の深さ方向で変化していることを特徴とする光学補償フィルムが好ましい。すなわち、ディスコティック構造単位を有する化合物の配向状態としては、例えば、ハイブリッド配向、ベント配向、ツイスト配向、ホモジニアス配向、ホメオトロピック配向等であることが好ましく、ハイブリッド配向であることが特に好ましい。該角度は、光学異方性層中で光学補償フィルムの支持体面側からの距離の増加とともに増加していることが好ましい。
光学補償フィルムを偏光膜の保護フィルムとして用いる場合、偏光膜と貼り合わせる側の表面が鹸化処理されていることが好ましく、前記の鹸化処理に従って実施することが好ましい。
(Optical compensation film)
The optical compensation film (retardation film) can improve viewing angle characteristics of a liquid crystal display screen.
As the optical compensation film, a known film can be used, but in terms of widening the viewing angle, the optical compensation film has an optically anisotropic layer made of a compound having a discotic structural unit, and the discotic compound and the film surface The optical compensation film is preferably characterized in that the angle formed by is changed in the depth direction of the optically anisotropic layer. That is, the orientation state of the compound having a discotic structural unit is preferably, for example, a hybrid orientation, a bent orientation, a twist orientation, a homogeneous orientation, a homeotropic orientation, or the like, and particularly preferably a hybrid orientation. The angle is preferably increased as the distance from the support surface side of the optical compensation film increases in the optically anisotropic layer.
When the optical compensation film is used as a protective film for the polarizing film, the surface on the side to be bonded to the polarizing film is preferably saponified, and is preferably performed according to the saponifying process.

また、光学異方性層が更にセルロースエステルを含んでいる態様、光学異方性層と光学補償フィルムの透明支持体との間に配向層が形成されている態様、該光学異方性層を有する光学補償フィルムの透明支持体が、光学的に負の一軸性を有し、且つ該透明支持体面の法線方向に光軸を有する態様、更に下記の条件を満足する態様も好ましい。   Also, an embodiment in which the optically anisotropic layer further contains a cellulose ester, an embodiment in which an alignment layer is formed between the optically anisotropic layer and the transparent support of the optical compensation film, and the optically anisotropic layer An embodiment in which the transparent support of the optical compensation film has an optically negative uniaxial property and an optical axis in the normal direction of the surface of the transparent support, and an embodiment satisfying the following conditions are also preferable.

20≦{(nx+ny)/2−nz}×d≦400   20 ≦ {(nx + ny) / 2−nz} × d ≦ 400

式中、nxは面内の遅相軸方向の屈折率(面内の最大屈折率)であり、nyは面内の遅相軸に垂直な方向の屈折率、nzは面に垂直方向の屈折率である。また、dは光学異方性
層の厚さ(nm)である。
In the equation, nx is a refractive index in the slow axis direction in the plane (maximum refractive index in the plane), ny is a refractive index in the direction perpendicular to the slow axis in the plane, and nz is a refractive index in the direction perpendicular to the plane. Rate. D is the thickness (nm) of the optically anisotropic layer.

(画像表示装置)
反射防止フィルムは、液晶表示装置(LCD)、プラズマディスプレイパネル(PDP)、エレクトロルミネッセンスディスプレイ(ELD)や陰極管表示装置(CRT)のような画像表示装置に適用することができる。反射防止フィルムは、反射防止フィルムの透明支持体側を画像表示装置の画像表示面に接着する。
本発明に用いる反射防止フィルム及び偏光板は、ツイステットネマチック(TN)、スーパーツイステットネマチック(STN)、バーティカルアライメント(VA)、インプレインスイッチング(IPS)、オプティカリーコンペンセイテットベンドセル(OCB)等のモードの透過型、反射型、または半透過型の液晶表示装置に好ましく用いることができる。 特にTNモードやIPSモードの液晶表示装置に対しては、特開2001−100043号公報等に記載されているように、上記の光学補償フィルムと反射防止フィルムを保護フィルムとして有する偏光板を用いることで、視野角特性と反射防止特性を大幅に改良できる。
また、さらに市販の輝度向上フィルム(偏光選択層を有する偏光分離フィルム、例えば住友3M(株)製のD−BEFなど)と併せて用いることにより、透過型または半透過型の液晶表示装置において、さらに視認性の高い表示装置を得ることができる。
また、λ/4板と組み合わせることで、反射型液晶用の偏光板や、有機ELディスプレイ用表面保護板として表面および内部からの反射光を低減するのに用いることができる。
(Image display device)
The antireflection film can be applied to an image display device such as a liquid crystal display device (LCD), a plasma display panel (PDP), an electroluminescence display (ELD), or a cathode ray tube display device (CRT). The antireflection film adheres the transparent support side of the antireflection film to the image display surface of the image display device.
The antireflection film and polarizing plate used in the present invention are twisted nematic (TN), super twisted nematic (STN), vertical alignment (VA), in-plane switching (IPS), optically compensated bend cell (OCB). It can be preferably used for a transmissive, reflective, or transflective liquid crystal display device of the mode. In particular, for a TN mode or IPS mode liquid crystal display device, as described in JP-A-2001-100043, a polarizing plate having the above optical compensation film and antireflection film as a protective film is used. Thus, viewing angle characteristics and antireflection characteristics can be greatly improved.
Further, by using in combination with a commercially available brightness enhancement film (a polarized light separation film having a polarization selection layer, such as D-BEF manufactured by Sumitomo 3M Co., Ltd.), in a transmissive or transflective liquid crystal display device, Furthermore, a display device with high visibility can be obtained.
Further, by combining with a λ / 4 plate, it can be used to reduce reflected light from the surface and the inside as a polarizing plate for reflective liquid crystal or a surface protective plate for organic EL display.

本発明を詳細に説明するために、以下に実施例を挙げて説明するが、本発明はこれらに限定されるものではない。
(パーフルオロオレフィン共重合体PF−1の合成)
In order to describe the present invention in detail, examples will be described below, but the present invention is not limited thereto.
(Synthesis of perfluoroolefin copolymer PF-1)

Figure 2006023350
Figure 2006023350

ステンレス製撹拌機付オートクレーブに酢酸エチル40質量部、ヒドロキシエチルビニルエーテル14.7質量部、及び過酸化ジラウロイル0.55質量部を仕込み、系内を脱気して窒素ガスで置換した。さらにヘキサフルオロプロピレン(HFP)25質量部をオートクレーブ中に導入して65℃まで昇温した。オートクレーブ内の温度が65℃に達した時点の圧力は5.4kg/cm2(529kPa)であった。該温度を保持し8時間反応を続け、圧力が3.2kg/cm2(314kPa)に達した時点で加熱をやめ放冷した。室温まで内温が下がった時点で未反応のモノマーを追い出し、オートクレーブを開放して反応液を取り出した。
得られた反応液を大過剰のヘキサンに投入し、デカンテーションにより溶剤を除去することにより沈殿したポリマーを取り出した。さらにこのポリマーを少量の酢酸エチルに溶解してヘキサンから2回再沈殿を行うことによって残存モノマーを完全に除去した。乾燥後ポリマー生成物28質量部を得た。
次に該ポリマー生成物の20質量部をN,N−ジメチルアセトアミド100質量部に溶解、氷冷下で、アクリル酸クロライド11.4質量部を滴下した後、室温で10時間攪拌した。反応液に酢酸エチルを加えて水洗し、有機層を抽出後、濃縮し、得られたポリマーをヘキサンで再沈殿させることにより上記パーフルオロオレフィン共重合体PF−1を19質量部得た。得られたパーフルオロオレフィン共重合体の屈折率は1.421であった。
上記パーフルオロオレフィン共重合体PF−1をメチルエチルケトンに溶解し、固形分濃度30%の溶液を得た。
A stainless steel autoclave equipped with a stirrer was charged with 40 parts by mass of ethyl acetate, 14.7 parts by mass of hydroxyethyl vinyl ether, and 0.55 parts by mass of dilauroyl peroxide, and the system was deaerated and replaced with nitrogen gas. Further, 25 parts by mass of hexafluoropropylene (HFP) was introduced into the autoclave and the temperature was raised to 65 ° C. The pressure when the temperature in the autoclave reached 65 ° C. was 5.4 kg / cm 2 (529 kPa). The reaction was continued for 8 hours while maintaining the temperature, and when the pressure reached 3.2 kg / cm 2 (314 kPa), the heating was stopped and the mixture was allowed to cool. When the internal temperature dropped to room temperature, unreacted monomers were driven out, the autoclave was opened, and the reaction solution was taken out.
The obtained reaction solution was poured into a large excess of hexane, and the polymer was precipitated by removing the solvent by decantation. Further, this polymer was dissolved in a small amount of ethyl acetate and reprecipitated twice from hexane to completely remove the residual monomer. After drying, 28 parts by mass of the polymer product was obtained.
Next, 20 parts by mass of the polymer product was dissolved in 100 parts by mass of N, N-dimethylacetamide, and 11.4 parts by mass of acrylic acid chloride was added dropwise under ice cooling, followed by stirring at room temperature for 10 hours. Ethyl acetate was added to the reaction solution and washed with water. The organic layer was extracted and concentrated, and the obtained polymer was reprecipitated with hexane to obtain 19 parts by mass of the perfluoroolefin copolymer PF-1. The obtained perfluoroolefin copolymer had a refractive index of 1.421.
The perfluoroolefin copolymer PF-1 was dissolved in methyl ethyl ketone to obtain a solution having a solid content concentration of 30%.

(オルガノシラン化合物A溶液の調製)
攪拌機、還流冷却器を備えた反応器、メチルエチルケトン120質量部、3−アクリロキシプロピルトリメトキシシラン(KBM−5103、信越化学工業(株)製)100質量部、ジイソプロポキシアルミニウムエチルアセトアセテート(商品名:ケロープEP−12、ホープ製薬(株)製)3質量部を加えて混合したのち、イオン交換水30質量部を加え、60℃で4時間反応させた。室温まで冷却し、オルガノシラン化合物Aの溶液を得た。質量平均分子量は1600であり、オリゴマー成分以上の成分のうち、分子量が1000〜20000の成分は100%であった。また、ガスクロマトグラフィーによって分析したところ、原料の3−アクリロキシプロピルトリメトキシシランは殆ど残存していなかった。
(Preparation of organosilane compound A solution)
A reactor equipped with a stirrer and a reflux condenser, 120 parts by mass of methyl ethyl ketone, 100 parts by mass of 3-acryloxypropyltrimethoxysilane (KBM-5103, manufactured by Shin-Etsu Chemical Co., Ltd.), diisopropoxyaluminum ethyl acetoacetate (product) Name: Kerope EP-12, manufactured by Hope Pharmaceutical Co., Ltd.) 3 parts by mass was added and mixed, and then 30 parts by mass of ion-exchanged water was added and reacted at 60 ° C. for 4 hours. The solution was cooled to room temperature to obtain a solution of organosilane compound A. The mass average molecular weight was 1600, and among the components higher than the oligomer component, the component having a molecular weight of 1000 to 20000 was 100%. Further, when analyzed by gas chromatography, the raw material 3-acryloxypropyltrimethoxysilane hardly remained.

(光拡散層用塗料H−1の調製)
ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレートの混合物(KAYARAD PET-30、日本化薬(株)製)50.0質量部に、重合開始剤(イルガキュア184、チバ・スペシャルティ・ケミカルズ(株)製)2.0質量部、フッ素系面状改良剤(P−7)0.75質量部、オルガノシラン化合物(KBM−5103、信越化学工業(株)製)10.0質量部、トルエン38.5質量部を添加して撹拌した。この溶液を塗布したのち、紫外線硬化して得られた塗膜の屈折率は1.51であった。
さらにこの溶液にポリトロン分散機にて10000rpmで分散した平均粒径3.5μmの架橋ポリスチレン粒子(屈折率1.61、SX−350、綜研化学(株)製)の30%トルエン分散液1.7質量部、及び、ポリトロン分散機にて10000rpmで分散した平均粒径3.5μmの架橋アクリル−スチレン粒子(屈折率1.55、綜研化学(株)製)の30%トルエン分散液13.3質量部を添加して撹拌した。
孔径30μmのポリプロピレン製フィルターでろ過して光拡散層用塗料H−1を調製した。この塗料による塗膜の屈折率は1.51であった。
なお、光拡散層用塗料H−1の表面張力は32mN/mであった。
(Preparation of light diffusion layer paint H-1)
50.0 parts by mass of a mixture of pentaerythritol triacrylate and pentaerythritol tetraacrylate (KAYARAD PET-30, manufactured by Nippon Kayaku Co., Ltd.) and a polymerization initiator (Irgacure 184, manufactured by Ciba Specialty Chemicals Co., Ltd.) 2 0.0 part by mass, 0.75 part by mass of fluorine-based surface improver (P-7), 10.0 parts by mass of organosilane compound (KBM-5103, manufactured by Shin-Etsu Chemical Co., Ltd.), 38.5 parts by mass of toluene Was added and stirred. After applying this solution, the refractive index of the coating film obtained by ultraviolet curing was 1.51.
Further, a 30% toluene dispersion 1.7 of crosslinked polystyrene particles having an average particle diameter of 3.5 μm (refractive index 1.61, SX-350, manufactured by Soken Chemical Co., Ltd.) dispersed in this solution at 10,000 rpm with a Polytron disperser. 13.3 parts by mass of a 30% toluene dispersion of a mass part and crosslinked acrylic-styrene particles having an average particle size of 3.5 μm (refractive index: 1.55, manufactured by Soken Chemical Co., Ltd.) dispersed at 10,000 rpm with a polytron disperser. Part was added and stirred.
A light diffusion layer coating material H-1 was prepared by filtration through a polypropylene filter having a pore size of 30 μm. The refractive index of the coating film made of this paint was 1.51.
The surface tension of the light diffusion layer coating material H-1 was 32 mN / m.

(光拡散層用塗料H−2の調製)
光拡散層用塗料H−1において、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレートの混合物(KAYARAD PET-30、日本化薬(株)製)の量を47.0質量部に減らし、平均粒径3.5μmの架橋ポリスチレン粒子(屈折率1.60、SX−350、綜研化学(株)製)の30%トルエン分散液を2.6質量部、及び、ポリトロン分散機にて10000rpmで分散した平均粒径3.5μmの架橋アクリル−スチレン粒子(屈折率1.55、綜研化学(株)製)の30%トルエン分散液を20.0質量部に増加した以外は光拡散層用塗料H−1と同じにして添加、撹拌、ろ過して、光拡散層用塗料H−2を調製した。
(Preparation of light diffusion layer paint H-2)
In the light diffusing layer coating H-1, the amount of the mixture of pentaerythritol triacrylate and pentaerythritol tetraacrylate (KAYARAD PET-30, manufactured by Nippon Kayaku Co., Ltd.) was reduced to 47.0 parts by mass, and the average particle size 3 Average particle obtained by dispersing 2.6% by mass of 30% toluene dispersion of 0.5 μm cross-linked polystyrene particles (refractive index 1.60, SX-350, manufactured by Soken Chemical Co., Ltd.) and 10,000 rpm with a polytron disperser. A coating material for light diffusion layer H-1 except that the 30% toluene dispersion of crosslinked acrylic-styrene particles having a diameter of 3.5 μm (refractive index 1.55, manufactured by Soken Chemical Co., Ltd.) was increased to 20.0 parts by mass. In the same manner, the mixture was added, stirred and filtered to prepare a light diffusion layer coating material H-2.

(光拡散層用塗料H−3の調製)
光拡散層用塗料H−2において、架橋ポリスチレン粒子の平均粒径を2.5μmに変更し、架橋アクリル−スチレン粒子の平均粒径も2.5μmに変更した以外は光拡散層用塗料H−2と同じにして添加、撹拌、ろ過して、光拡散層用塗料H−3を調製した。
(Preparation of light diffusing layer coating H-3)
In the light diffusion layer coating H-2, the average particle size of the crosslinked polystyrene particles was changed to 2.5 μm, and the average particle size of the crosslinked acrylic-styrene particles was changed to 2.5 μm. In the same manner as in No. 2, the mixture was added, stirred and filtered to prepare a light diffusion layer coating material H-3.

(光拡散層用塗料H−4の調製)
光拡散層用塗料H−2において、架橋ポリスチレン粒子の平均粒径を4.5μmに変更し、架橋アクリル−スチレン粒子の平均粒径も4.5μmに変更した以外は光拡散層用塗料H−2と同じにして添加、撹拌、ろ過して、光拡散層用塗料H−4を調製した。
(Preparation of light diffusing layer coating H-4)
In the light diffusion layer coating H-2, the average particle size of the crosslinked polystyrene particles was changed to 4.5 μm, and the average particle size of the crosslinked acrylic-styrene particles was also changed to 4.5 μm. In the same manner as in No. 2, the mixture was added, stirred and filtered to prepare a light diffusing layer coating H-4.

(光拡散層用塗料H−5の調製)
酸化ジルコニウム微粒子を含有する透明高屈折率ハードコート材料(デソライトZ7404、JSR(株)製)285.0質量部に、ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(DPHA、日本化薬(株)製)85.0質量部、オルガノシラン化合物(KBM−5103、信越化学工業(株)製)28.0質量部、メチルイソブチルケトン60.0質量部、メチルエチルケトン17.0質量部を添加して撹拌した。この溶液を塗布、紫外線硬化して得られた塗膜の屈折率は1.61であった。
さらにこの溶液にポリトロン分散機にて10000rpmで分散した平均粒径3.0μmの分級を強化した架橋PMMA粒子(屈折率1.49、MXS−300、綜研化学(株)製)の30%メチルイソブチルケトン分散液35.0質量部、ポリトロン分散機にて10000rpmで分散した平均粒径1.5μmのシリカ粒子(屈折率1.46、シーホスタKE−P150、(株)日本触媒製)の30%メチルエチルケトン分散液90.0質量部を添加して撹拌した。孔径30μmのポリプロピレン製フィルターでろ過してハードコート層用塗料(II)を調製した。この塗料による塗膜の屈折率は1.61であった。
なお、ハードコート層用塗料(II)において塗料の表面張力は25mN/mであった。
(Preparation of light diffusion layer paint H-5)
A mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate (DPHA, Nippon Kayaku (DPHA), 285.0 parts by mass of a transparent high-refractive-index hard coat material containing fine particles of zirconium oxide (Desolite Z7404, manufactured by JSR Corporation) Ltd.) 85.0 parts by mass, organosilane compound (KBM-5103, manufactured by Shin-Etsu Chemical Co., Ltd.) 28.0 parts by mass, methyl isobutyl ketone 60.0 parts by mass, methyl ethyl ketone 17.0 parts by mass were added. And stirred. The refractive index of the coating film obtained by applying this solution and curing with ultraviolet rays was 1.61.
Further, 30% methyl isobutyl of cross-linked PMMA particles (refractive index 1.49, MXS-300, manufactured by Soken Chemical Co., Ltd.) with enhanced classification with an average particle size of 3.0 μm dispersed in this solution at 10,000 rpm with a polytron disperser. 30% methyl ethyl ketone of 35.0 parts by mass of a ketone dispersion, silica particles having an average particle diameter of 1.5 μm (refractive index: 1.46, Seahosta KE-P150, manufactured by Nippon Shokubai Co., Ltd.) dispersed at 10,000 rpm with a Polytron disperser 90.0 parts by mass of the dispersion was added and stirred. A hard coat layer coating material (II) was prepared by filtering through a polypropylene filter having a pore size of 30 μm. The refractive index of the coating film formed from this paint was 1.61.
In the hard coat layer coating (II), the surface tension of the coating was 25 mN / m.

(光拡散層用塗料H−6の調製)
前記光拡散層用塗料H−5の分級を強化した架橋PMMA粒子の平均粒径を、3.5μmに変更した以外は光拡散層用塗料H−5と全く同じにして光拡散層用塗料H−6を調製した。
(Preparation of light diffusion layer paint H-6)
The light diffusing layer coating H-5 is the same as the light diffusing layer coating H-5 except that the average particle diameter of the crosslinked PMMA particles strengthened in the classification of the light diffusing layer coating H-5 is changed to 3.5 μm. -6 was prepared.

(帯電防止層用塗料AS−1)
市販の透明帯電防止層用塗料「ペルトロンC−4456S−7」(固形分濃度45%、日本ペルノックス(株)製)を帯電防止層用塗料Aとして用いた。C−4456S−7は、分散剤を用いて分散された導電性微粒子ATOを含有する透明帯電防止層用塗料である。この塗料による塗膜の屈折率は1.55であった。
(Antistatic layer coating AS-1)
A commercially available coating for transparent antistatic layer "Pertron C-4456S-7" (solid content concentration 45%, manufactured by Nippon Pernox Co., Ltd.) was used as antistatic layer coating A. C-4456S-7 is a coating for transparent antistatic layer containing conductive fine particles ATO dispersed using a dispersant. The refractive index of the coating film made of this paint was 1.55.

(帯電防止層用塗料AS−2)
市販の導電性微粒子ATO(アンチモンドープ酸化錫T−1、比表面積80m2/g、三菱マテリアル(株)製)20.0質量部に、アニオン性基とメタアクリロイル基を有する分散剤(B−1)5.0質量部、メチルエチルケトン75質量部を添加して撹拌した。
(Antistatic layer coating AS-2)
Dispersant (B-) having an anionic group and a methacryloyl group on 20.0 parts by mass of commercially available conductive fine particles ATO (antimony-doped tin oxide T-1, specific surface area 80 m 2 / g, manufactured by Mitsubishi Materials Corporation) 1) 5.0 parts by mass and 75 parts by mass of methyl ethyl ketone were added and stirred.

Figure 2006023350
Figure 2006023350

メディア分散機(直径0.5mmのジルコニアビーズ使用)を用いて上記液中のATO粒子を分散した。光散乱法で分散液中のATO粒子の質量平均粒径を評価した結果、58nmであった。
上記ATO分散液100質量部に、ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(DPHA、日本化薬(株)製)、14.0質量部、重合開始剤(イルガキュア907、チバ・スペシャルティ・ケミカルズ(株)製)0.9質量部を添加して撹拌した。このようにして帯電防止層用塗料AS−2を調製した。この塗料による塗膜の屈折率は1.61であった。
The ATO particles in the liquid were dispersed using a media disperser (using zirconia beads having a diameter of 0.5 mm). It was 58 nm as a result of evaluating the mass mean particle diameter of the ATO particle | grains in a dispersion liquid by the light-scattering method.
To 100 parts by mass of the ATO dispersion, a mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate (DPHA, Nippon Kayaku Co., Ltd.), 14.0 parts by mass, a polymerization initiator (Irgacure 907, Ciba Specialty) -0.9 mass part of Chemicals Co., Ltd. was added and stirred. In this way, antistatic layer coating material AS-2 was prepared. The refractive index of the coating film formed from this paint was 1.61.

(帯電防止層用塗料AS−3)
市販の導電性微粒子ATO(アンチモンドープ酸化錫T−1、比表面積80m2/g、
三菱マテリアル(株)製)20.0質量部に、アニオン性基とメタアクリロイル基を有する上記分散剤(B−1)3.0質量部、シクロヘキサノン77質量部を添加して撹拌した。
メディア分散機(直径0.5mmのジルコニアビーズ使用)を用いて上記液中のATO粒子を分散した。光散乱法で分散液中のATO粒子の質量平均粒径を評価した結果、62nmであった。
上記ATO分散液100質量部に、ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(DPHA、日本化薬(株)製)、16.0質量部、重合開始剤(イルガキュア907、チバ・スペシャルティ・ケミカルズ(株)製)0.8質量部を添加して撹拌した。このようにして帯電防止層用塗料AS−3を調製した。この塗料による塗膜の屈折率は1.62であった。
(Antistatic layer coating AS-3)
Commercially available conductive fine particles ATO (antimony-doped tin oxide T-1, specific surface area 80 m 2 / g,
3.0 parts by mass of the dispersant (B-1) having an anionic group and a methacryloyl group and 77 parts by mass of cyclohexanone were added to 20.0 parts by mass of Mitsubishi Materials Corporation and stirred.
The ATO particles in the liquid were dispersed using a media disperser (using zirconia beads having a diameter of 0.5 mm). It was 62 nm as a result of evaluating the mass mean particle diameter of the ATO particle | grains in a dispersion liquid by the light-scattering method.
To 100 parts by mass of the ATO dispersion, a mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate (DPHA, Nippon Kayaku Co., Ltd.), 16.0 parts by mass, a polymerization initiator (Irgacure 907, Ciba Specialty) -0.8 part by mass of Chemicals Co., Ltd. was added and stirred. Thus, antistatic layer coating material AS-3 was prepared. The refractive index of the coating film made of this paint was 1.62.

(帯電防止層用塗料AS−4)
市販の導電性微粒子ATO(アンチモンドープ酸化錫T−1、比表面積80m2/g、三菱マテリアル(株)製)20.0質量部に、アニオン性基とメタアクリロイル基を有する上記分散剤(B−1)0.8質量部、シクロヘキサノン79.2質量部を添加して撹拌した。
メディア分散機(直径0.5mmのジルコニアビーズ使用)を用いて上記液中のATO粒子を分散した。光散乱法で分散液中のATO粒子の質量平均粒径を評価した結果、102nmであった。
上記ATO分散液100質量部に、ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(DPHA、日本化薬(株)製)、18.0質量部、重合開始剤(イルガキュア907、チバ・スペシャルティ・ケミカルズ(株)製)0.9質量部を添加して撹拌した。このようにして帯電防止層用塗料AS−4を調製した。この塗料による塗膜の屈折率は1.63であった。
(Antistatic layer coating AS-4)
Dispersant (B) having an anionic group and a methacryloyl group in 20.0 parts by mass of commercially available conductive fine particles ATO (antimony-doped tin oxide T-1, specific surface area 80 m 2 / g, manufactured by Mitsubishi Materials Corporation) -1) 0.8 parts by mass and 79.2 parts by mass of cyclohexanone were added and stirred.
The ATO particles in the liquid were dispersed using a media disperser (using zirconia beads having a diameter of 0.5 mm). It was 102 nm as a result of evaluating the mass mean particle diameter of the ATO particle | grains in a dispersion liquid by the light-scattering method.
To 100 parts by mass of the ATO dispersion, a mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate (DPHA, Nippon Kayaku Co., Ltd.), 18.0 parts by mass, a polymerization initiator (Irgacure 907, Ciba Specialty) -0.9 mass part of Chemicals Co., Ltd. was added and stirred. In this way, antistatic layer coating material AS-4 was prepared. The refractive index of the coating film formed from this paint was 1.63.

(帯電防止層用塗料AS−5)
市販の導電性微粒子ATO(アンチモンドープ酸化錫T−1、比表面積80m2/g、三菱マテリアル(株)製)20.0質量部に、シクロヘキサノン80質量部を添加して撹拌した。分散剤は使用しなかった。
メディア分散機(直径0.5mmのジルコニアビーズ使用)を用いて帯電防止層用塗料Cで記載したのと全く同様に、上記液中のATO粒子を分散した。光散乱法で分散液中のATO粒子の質量平均粒径を評価した結果、250nmであり、ATO微粒子を微細に分散できなかった。このようにして、ATO分散液を作製した。
上記ATO分散液100質量部に、ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(DPHA、日本化薬(株)製)19質量部、重合開始剤(イルガキュア907、チバ・スペシャルティ・ケミカルズ(株)製)0.8質量部を添加して撹拌して帯電防止層用塗料AS−5を調製した。屈折率は1.64であった。
(Antistatic layer coating AS-5)
80 parts by mass of cyclohexanone was added to 20.0 parts by mass of commercially available conductive fine particles ATO (antimony-doped tin oxide T-1, specific surface area 80 m 2 / g, manufactured by Mitsubishi Materials Corporation) and stirred. No dispersant was used.
The ATO particles in the liquid were dispersed in the same manner as described in the antistatic layer coating material C using a media disperser (using zirconia beads having a diameter of 0.5 mm). As a result of evaluating the mass average particle diameter of the ATO particles in the dispersion by the light scattering method, it was 250 nm, and the ATO fine particles could not be finely dispersed. In this way, an ATO dispersion was prepared.
To 100 parts by mass of the ATO dispersion, 19 parts by mass of a mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate (DPHA, Nippon Kayaku Co., Ltd.), a polymerization initiator (Irgacure 907, Ciba Specialty Chemicals ( Co., Ltd.) 0.8 parts by mass was added and stirred to prepare antistatic layer coating material AS-5. The refractive index was 1.64.

(帯電防止層用塗料AS−6)
上記帯電防止層用塗料AS−3塗料100質量部に、メチルエチルケトンを60質量部加えて撹拌して帯電防止層用塗料AS−6を調製した。
(Antistatic layer coating AS-6)
The antistatic layer coating material AS-6 was prepared by adding 60 parts by weight of methyl ethyl ketone to 100 parts by weight of the antistatic layer coating material AS-3 coating material and stirring the mixture.

(帯電防止層用塗料AS−7)
市販の導電性微粒子ATO(アンチモンドープ酸化錫T−1、比表面積80m2/g、三菱マテリアル(株)製)20.0質量部に、アニオン性基とメタアクリロイル基を有する上記分散剤(B−1)3.0質量部、シクロヘキサノン43.7質量部を添加して撹拌した。
メディア分散機(直径0.5mmのジルコニアビーズ使用)を用いて上記液中のATO粒子を分散した。光散乱法で分散液中のATO粒子の質量平均粒径を評価した結果、67nmであった。
上記ATO分散液66.7質量部に、ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(DPHA、日本化薬(株)製)、16.0質量部、重合開始剤(イルガキュア907、チバ・スペシャルティ・ケミカルズ(株)製)0.9質量部を添加して撹拌した。このようにして帯電防止層用塗料AS−7を調製した。この塗料による塗膜の屈折率は1.62であった。
(Antistatic layer coating AS-7)
Dispersant (B) having an anionic group and a methacryloyl group in 20.0 parts by mass of commercially available conductive fine particles ATO (antimony-doped tin oxide T-1, specific surface area 80 m 2 / g, manufactured by Mitsubishi Materials Corporation) -1) 3.0 parts by mass and 43.7 parts by mass of cyclohexanone were added and stirred.
The ATO particles in the liquid were dispersed using a media disperser (using zirconia beads having a diameter of 0.5 mm). It was 67 nm as a result of evaluating the mass mean particle diameter of the ATO particle | grains in a dispersion liquid by the light-scattering method.
To 66.7 parts by mass of the ATO dispersion, a mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate (DPHA, manufactured by Nippon Kayaku Co., Ltd.), 16.0 parts by mass, a polymerization initiator (Irgacure 907, Ciba -0.9 mass part of Specialty Chemicals Co., Ltd.) was added and stirred. In this way, antistatic layer coating material AS-7 was prepared. The refractive index of the coating film made of this paint was 1.62.

(帯電防止層用塗料AS−8)
市販の導電性微粒子ATO(アンチモンドープ酸化錫T−1、比表面積80m2/g、三菱マテリアル(株)製)20.0質量部に、アニオン性基とメタアクリロイル基を有する上記分散剤(B−1)3.0質量部、シクロヘキサノン27.0質量部を添加して撹拌した。
メディア分散機(直径0.5mmのジルコニアビーズ使用)を用いて上記液中のATO粒子を分散した。光散乱法で分散液中のATO粒子の質量平均粒径を評価した結果、72nmであった。
上記ATO分散液50.0質量部に、ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(DPHA、日本化薬(株)製)、16.0質量部、重合開始剤(イルガキュア907、チバ・スペシャルティ・ケミカルズ(株)製)0.9質量部を添加して撹拌した。このようにして帯電防止層用塗料AS−8を調製した。この塗料による塗膜の屈折率は1.62であった。
(Antistatic layer coating AS-8)
Dispersant (B) having an anionic group and a methacryloyl group in 20.0 parts by mass of commercially available conductive fine particles ATO (antimony-doped tin oxide T-1, specific surface area 80 m 2 / g, manufactured by Mitsubishi Materials Corporation) -1) 3.0 parts by mass and 27.0 parts by mass of cyclohexanone were added and stirred.
The ATO particles in the liquid were dispersed using a media disperser (using zirconia beads having a diameter of 0.5 mm). It was 72 nm as a result of evaluating the mass mean particle diameter of the ATO particle | grains in a dispersion liquid by the light-scattering method.
A mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate (DPHA, manufactured by Nippon Kayaku Co., Ltd.), 16.0 parts by mass, a polymerization initiator (Irgacure 907, Ciba) was added to 50.0 parts by mass of the ATO dispersion. -0.9 mass part of Specialty Chemicals Co., Ltd.) was added and stirred. In this way, antistatic layer coating material AS-8 was prepared. The refractive index of the coating film made of this paint was 1.62.

(帯電防止層用塗料AS−9)
市販の導電性微粒子ATO(アンチモンドープ酸化錫T−1、比表面積80m2/g、三菱マテリアル(株)製)20.0質量部に、アニオン性基とメタアクリロイル基を有する上記分散剤(B−1)3.0質量部、シクロヘキサノン48質量部を添加して撹拌した。
メディア分散機(直径0.5mmのジルコニアビーズ使用)を用いて上記液中のATO粒子を分散した。光散乱法で分散液中のATO粒子の質量平均粒径を評価した結果、62nmであった。
上記ATO分散液71質量部に、ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(DPHA、日本化薬(株)製)、3.0質量部、重合開始剤(イルガキュア907、チバ・スペシャルティ・ケミカルズ(株)製)0.5質量部を添加して撹拌した。このようにして帯電防止層用塗料AS−9を調製した。この塗料による塗膜の屈折率は1.68であった。
(Antistatic layer coating AS-9)
Dispersant (B) having an anionic group and a methacryloyl group in 20.0 parts by mass of commercially available conductive fine particles ATO (antimony-doped tin oxide T-1, specific surface area 80 m 2 / g, manufactured by Mitsubishi Materials Corporation) -1) 3.0 parts by mass and 48 parts by mass of cyclohexanone were added and stirred.
The ATO particles in the liquid were dispersed using a media disperser (using zirconia beads having a diameter of 0.5 mm). It was 62 nm as a result of evaluating the mass mean particle diameter of the ATO particle | grains in a dispersion liquid by the light-scattering method.
To 71 parts by mass of the ATO dispersion, a mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate (DPHA, manufactured by Nippon Kayaku Co., Ltd.), 3.0 parts by mass, a polymerization initiator (Irgacure 907, Ciba Specialty) -0.5 mass part of Chemicals Co., Ltd.) was added and stirred. In this way, antistatic layer coating material AS-9 was prepared. The refractive index of the coating film formed from this paint was 1.68.

(帯電防止層用塗料AS−10)
前記の帯電防止層用塗料AS−3の分散剤B−1を、アロニックスM5300(カルボン酸基含有モノマー、東亞合成(株)製)で等量置き換えした以外は、帯電防止層用塗料AS−3と全く同様にして分散を行って、帯電防止層用塗料AS−10を調製した。分散後の導電材粒径は65nmであり、この塗料による塗膜の屈折率は1.62であった。
(Antistatic layer coating AS-10)
The antistatic layer coating material AS-3, except that the dispersant B-1 of the antistatic layer coating material AS-3 was replaced with an equivalent amount of Aronics M5300 (carboxylic acid group-containing monomer, manufactured by Toagosei Co., Ltd.). Dispersion was carried out in exactly the same manner as above to prepare antistatic layer coating material AS-10. The particle diameter of the conductive material after dispersion was 65 nm, and the refractive index of the coating film formed from this paint was 1.62.

(低屈折率層用塗料L−1の調製)
屈折率1.42の熱架橋性含フッ素ポリマー(JN7228A、固形分濃度6%、JSR(株)製)13.0質量部に、シリカ微粒子のMEK分散液(MEK−ST−L、平均粒径45nm、固形分濃度30%、日産化学工業(株)製)1.3質量部、上記オルガノシラン化合物A溶液0.6質量部、メチルエチルケトン5.0質量部およびシクロヘキサノン0.6質量部を添加して攪拌した。孔径1μmのポリプロピレン製フィルターでろ過して、低屈折率層用塗料L−1を調製した。この塗料による塗膜の屈折率は1.42であった。
(Preparation of coating material L-1 for low refractive index layer)
13.0 parts by mass of heat-crosslinkable fluorine-containing polymer having a refractive index of 1.42 (JN7228A, solid content concentration 6%, manufactured by JSR Corporation), MEK dispersion of silica fine particles (MEK-ST-L, average particle diameter) 45 nm, solid content concentration 30%, manufactured by Nissan Chemical Industries, Ltd.) 1.3 parts by mass, the above organosilane compound A solution 0.6 parts by mass, methyl ethyl ketone 5.0 parts by mass and cyclohexanone 0.6 parts by mass were added. And stirred. The mixture was filtered through a polypropylene filter having a pore diameter of 1 μm to prepare a coating L-1 for a low refractive index layer. The refractive index of the coating film formed from this paint was 1.42.

(低屈折率層用塗料L−2の調製)
屈折率1.42の熱架橋性含フッ素ポリマー(JN7228A、固形分濃度6%、JSR(株)製)15.0質量部に、シリカ微粒子のMEK分散液(MEK−ST、平均粒径15nm、固形分濃度30%、日産化学工業(株)製)0.6質量部、シリカ微粒子のMEK分散液(MEK−ST−L、平均粒径45nm、固形分濃度30%、日産化学工業(株)製)0.8質量部、上記オルガノシラン化合物A溶液0.4質量部、およびメチルエチルケトン3.0質量部、シクロヘキサノン0.6質量部を添加して攪拌した。孔径1μmのポリプロピレン製フィルターでろ過して、低屈折率層用塗料L−2を調製した。この塗料による塗膜の屈折率は1.42であった。
(Preparation of paint L-2 for low refractive index layer)
In 15.0 parts by mass of a heat-crosslinkable fluorine-containing polymer having a refractive index of 1.42 (JN7228A, solid content concentration 6%, manufactured by JSR Corporation), a MEK dispersion of silica fine particles (MEK-ST, average particle size 15 nm, Solid content concentration 30%, manufactured by Nissan Chemical Industries, Ltd.) 0.6 parts by mass, silica fine particle MEK dispersion (MEK-ST-L, average particle size 45 nm, solid content concentration 30%, Nissan Chemical Industries, Ltd.) (Product) 0.8 parts by mass, 0.4 parts by mass of the organosilane compound A solution, 3.0 parts by mass of methyl ethyl ketone, and 0.6 parts by mass of cyclohexanone were added and stirred. The mixture was filtered through a polypropylene filter having a pore size of 1 μm to prepare a coating L-2 for a low refractive index layer. The refractive index of the coating film formed from this paint was 1.42.

(中空のシリカ微粒子のMEK分散液の調製)
中空シリカ微粒子ゾル(イソプロピルアルコールシリカゾル、平均粒子径60nm、シェル厚み10nm、シリカ濃度20質量%、シリカ粒子の屈折率1.31、特開2002−79616の調製例4に準じサイズを変更して作成)500部に、アクリロイルオキシプロピルトリメトキシシラン(信越化学工業(株)製)30部、およびジイソプロポキシアルミニウムエチルアセテート(商品名:ケロープEP−12、ホープ製薬(株)製)1.5部加え混合した後に、イオン交換水を9部を加えた。60℃で8時間反応させた後に室温まで冷却し、アセチルアセトン1.8部を添加した。この分散液500gにほぼシリカの含量一定となるようにメチルエチルケトンを添加しながら、圧力20kPaで減圧蒸留による溶媒置換を行った。分散液に異物の発生はなく、固形分濃度をメチルエチルケトンで調整し20質量%にしたときの粘度は25℃で5mPa・sであった。得られた分散液A−1のイソプロピルアルコールの残存量をガスクロマトグラフィーで分析したところ、1.5%であった。
(Preparation of MEK dispersion of hollow silica fine particles)
Hollow silica fine particle sol (Isopropyl alcohol silica sol, average particle diameter 60 nm, shell thickness 10 nm, silica concentration 20% by mass, silica particle refractive index 1.31, prepared by changing the size according to Preparation Example 4 of JP-A-2002-79616 ) 500 parts, 30 parts of acryloyloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.), and 1.5 parts of diisopropoxyaluminum ethyl acetate (trade name: Kerope EP-12, manufactured by Hope Pharmaceutical Co., Ltd.) After addition and mixing, 9 parts of ion exchange water was added. After reacting at 60 ° C. for 8 hours, the mixture was cooled to room temperature, and 1.8 parts of acetylacetone was added. While adding methyl ethyl ketone so that the content of silica was almost constant in 500 g of this dispersion, solvent substitution by vacuum distillation was performed at a pressure of 20 kPa. No foreign matter was generated in the dispersion, and the viscosity when the solid content was adjusted to 20% by mass with methyl ethyl ketone was 5 mPa · s at 25 ° C. When the residual amount of isopropyl alcohol in the obtained dispersion A-1 was analyzed by gas chromatography, it was 1.5%.

(低屈折率層用塗料L−3の調製)
屈折率1.42の熱架橋性含フッ素ポリマー(JN7228A、固形分濃度6%、JSR(株)製)13.0質量部に、上記中空のシリカ微粒子のMEK分散液(屈折率1.31、平均粒径60nm、固形分濃度20%)1.95質量部、上記オルガノシラン化合物A溶液0.6質量部、およびメチルエチルケトン4.35質量部、シクロヘキサノン0.6質量部を添加して攪拌した。孔径1μmのポリプロピレン製フィルターでろ過して、低屈折率層用塗料L−3を調製した。この塗料による塗膜の屈折率は1.40であった。
(Preparation of paint L-3 for low refractive index layer)
13.0 parts by mass of a heat-crosslinkable fluorine-containing polymer having a refractive index of 1.42 (JN7228A, solid content concentration 6%, manufactured by JSR Corporation) was added to the MEK dispersion of the above-described hollow silica fine particles (refractive index 1.31, 1.95 parts by mass (average particle size 60 nm, solid content concentration 20%), 0.6 parts by mass of the organosilane compound A solution, 4.35 parts by mass of methyl ethyl ketone, and 0.6 parts by mass of cyclohexanone were added and stirred. The mixture was filtered through a polypropylene filter having a pore diameter of 1 μm to prepare a low refractive index layer coating material L-3. The refractive index of the coating film formed from this paint was 1.40.

(低屈折率層用塗料L−4の調製)
イソプロピルアルコール/メチルエチルケトン=1/1(質量比)の混合溶媒に、テトラメトキシシラン1モル、0.1mol/lの塩酸2モルを添加した。室温で2時間撹拌して加水分解反応を行い、テトラメトキシシランの加水分解物の溶液を調製した。
イソプロピルアルコール/メチルエチルケトン=1/1(質量比)に、テトラメトキシシランの加水分解物9.0質量部、ペンタエリスリトールトリアクリレート1.0質量部、重合開始剤(イルガキュア907、チバ・スペシャルティ・ケミカルズ(株)製)0.5質量部、固形分濃度が4.5質量%になるように添加して撹拌した。孔径1μmのポリプロピレン製フィルターでろ過して、低屈折率層用塗料L−4を調製した。この塗料による塗膜の屈折率は1.45であった。
(Preparation of paint L-4 for low refractive index layer)
To a mixed solvent of isopropyl alcohol / methyl ethyl ketone = 1/1 (mass ratio), 1 mol of tetramethoxysilane and 2 mol of 0.1 mol / l hydrochloric acid were added. A hydrolysis reaction was performed by stirring at room temperature for 2 hours to prepare a hydrolyzate solution of tetramethoxysilane.
Isopropyl alcohol / methyl ethyl ketone = 1/1 (mass ratio), tetramethoxysilane hydrolyzate 9.0 parts by mass, pentaerythritol triacrylate 1.0 part by mass, polymerization initiator (Irgacure 907, Ciba Specialty Chemicals ( Co., Ltd.) 0.5 parts by mass, and the solid content concentration was added to 4.5% by mass and stirred. The mixture was filtered through a polypropylene filter having a pore diameter of 1 μm to prepare a low refractive index layer coating material L-4. The refractive index of the coating film made of this paint was 1.45.

(低屈折率層用塗料L−5の調製)
上記パーフルオロオレフィン共重合体PF−1の溶液(固形分濃度30%)15.0質量部に、アクリロイル基を有するポリシロキサン化合物(X−22−164C、信越化学工業(株)製)0.15質量部、光重合開始剤(イルガキュア907、チバ・スペシャルティ・ケミカルズ(株)製)0.23質量部、メチルエチルケトン81.8質量部及びシクロヘキサノン2.8質量部を添加して撹拌した。孔径1μmのポリプロピレン製フィルターでろ過して、低屈折率層用塗料L−6を調製した。この塗料による塗膜の屈折率は1.43であった。
(Preparation of coating material L-5 for low refractive index layer)
A polysiloxane compound having an acryloyl group (X-22-164C, manufactured by Shin-Etsu Chemical Co., Ltd.) is added to 15.0 parts by mass of the above-mentioned perfluoroolefin copolymer PF-1 (solid content concentration: 30%). 15 parts by mass, 0.23 parts by mass of a photopolymerization initiator (Irgacure 907, manufactured by Ciba Specialty Chemicals Co., Ltd.), 81.8 parts by mass of methyl ethyl ketone and 2.8 parts by mass of cyclohexanone were added and stirred. The mixture was filtered through a polypropylene filter having a pore size of 1 μm to prepare a low refractive index layer coating material L-6. The refractive index of the coating film formed from this paint was 1.43.

(低屈折率層用塗料L−6の調製)
上記パーフルオロオレフィン共重合体PF−1の溶液(固形分濃度30%)10.5質量部に、シリカ微粒子のMEK分散液(MEK−ST−L、平均粒径45nm、固形分濃度30%、日産化学工業(株)製)4.5質量部、アクリロイル基を有するポリシロキサン化合物(X−22−164C,信越化学工業(株)製)0.15質量部、光重合開始剤(イルガキュア907、チバ・スペシャルティ・ケミカルズ(株)製)0.23質量部、上記オルガノシラン化合物A溶液2.0質量部、メチルエチルケトン81.2質量部及び、シクロヘキサノン2.8質量部を添加して撹拌した。孔径1μmのポリプロピレン製フィルターでろ過して、低屈折率層用塗料L−6を調製した。この塗料による塗膜の屈折率は1.44であった。
(Preparation of coating material L-6 for low refractive index layer)
In 10.5 parts by mass of the above-mentioned perfluoroolefin copolymer PF-1 (solid content concentration 30%), MEK dispersion of silica fine particles (MEK-ST-L, average particle size 45 nm, solid content concentration 30%, Nissan Chemical Industries, Ltd.) 4.5 parts by mass, polysiloxane compound having an acryloyl group (X-22-164C, Shin-Etsu Chemical Co., Ltd.) 0.15 parts by mass, photopolymerization initiator (Irgacure 907, Ciba Specialty Chemicals Co., Ltd.) 0.23 parts by mass, 2.0 parts by mass of the organosilane compound A solution, 81.2 parts by mass of methyl ethyl ketone, and 2.8 parts by mass of cyclohexanone were added and stirred. The mixture was filtered through a polypropylene filter having a pore size of 1 μm to prepare a low refractive index layer coating material L-6. The refractive index of the coating film formed from this paint was 1.44.

(低屈折率層用塗料L−7の調製)
上記パーフルオロオレフィン共重合体PF−1の溶液(固形分濃度30%)10.5質量部に、中空のシリカ微粒子のMEK分散液(屈折率1.31、平均粒径60nm、固形分濃度20%)6.75質量部、アクリロイル基を有するポリシロキサン化合物(X−22−164C,信越化学工業(株)製)0.15質量部、光重合開始剤(イルガキュア907、チバ・スペシャルティ・ケミカルズ(株)製)0.23質量部、上記オルガノシラン化合物A溶液2.0質量部、メチルエチルケトン81.2質量部及び、シクロヘキサノン2.8質量部を添加して撹拌した。孔径1μmのポリプロピレン製フィルターでろ過して、低屈折率層用塗料L−7を調製した。この塗料による塗膜の屈折率は1.41であった。
(Preparation of coating material L-7 for low refractive index layer)
In 10.5 parts by mass of the above-mentioned perfluoroolefin copolymer PF-1 (solid content concentration 30%), hollow silica fine particle MEK dispersion (refractive index 1.31, average particle size 60 nm, solid content concentration 20). %) 6.75 parts by mass, polysiloxane compound having an acryloyl group (X-22-164C, manufactured by Shin-Etsu Chemical Co., Ltd.) 0.15 parts by mass, photopolymerization initiator (Irgacure 907, Ciba Specialty Chemicals ( 0.23 parts by mass, 0.2 parts by mass of the organosilane compound A solution, 81.2 parts by mass of methyl ethyl ketone, and 2.8 parts by mass of cyclohexanone were added and stirred. The mixture was filtered through a polypropylene filter having a pore diameter of 1 μm to prepare a low refractive index layer coating material L-7. The refractive index of the coating film made of this paint was 1.41.

(低屈折率層用塗料L−8の調製)
上記パーフルオロオレフィン共重合体PF−1の溶液(固形分濃度30%)13.5質量部に、ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(DPHA、日本化薬(株)製)0.45質量部、アクリロイル基を有するポリシロキサン化合物(X−22−164C、信越化学工業(株)製)0.15質量部、光重合開始剤(イルガキュア907、チバ・スペシャルティ・ケミカルズ(株)製)0.23質量部、メチルエチルケトン81.2質量部及び、シクロヘキサノン2.8質量部を添加して、撹拌した。孔径1μmのポリプロピレン製フィルターでろ過して、低屈折率層用塗料L−8を調製した。この塗料による塗膜の屈折率は1.44であった。
(Preparation of coating material L-8 for low refractive index layer)
A mixture (DPHA, Nippon Kayaku Co., Ltd.) of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate was added to 13.5 parts by mass of the above-mentioned perfluoroolefin copolymer PF-1 (solid content concentration 30%). 0.45 parts by mass, polysiloxane compound having an acryloyl group (X-22-164C, manufactured by Shin-Etsu Chemical Co., Ltd.) 0.15 parts by mass, photopolymerization initiator (Irgacure 907, Ciba Specialty Chemicals Co., Ltd.) 0.23 parts by mass, 81.2 parts by mass of methyl ethyl ketone, and 2.8 parts by mass of cyclohexanone were added and stirred. The mixture was filtered through a polypropylene filter having a pore diameter of 1 μm to prepare a low refractive index layer coating material L-8. The refractive index of the coating film formed from this paint was 1.44.

[実施例1] [Example 1]

膜厚80μm、幅1340mmのトリアセチルセルロースフィルム(TAC−TD80U、富士写真フイルム(株)製)上に、光拡散層用塗料(H−1〜H−6)をマイクログラビア塗布方式で、搬送速度30m/分の条件で塗布した。
60℃で150秒乾燥の後、窒素パージ(酸素濃度0.5%以下)しながら、160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度400mW/cm2、照射量250mJ/cm2の紫外線を照射して塗布層を硬化させて、光拡散層つきフィルムを作製した。
On a triacetyl cellulose film (TAC-TD80U, manufactured by Fuji Photo Film Co., Ltd.) having a thickness of 80 μm and a width of 1340 mm, a light diffusion layer coating material (H-1 to H-6) is applied by a microgravure coating method, and a conveyance speed. It apply | coated on the conditions of 30 m / min.
After it dried for 150 seconds at 60 ° C., with a nitrogen purge (hereinafter oxygen concentration of 0.5%), using a 160 W / cm air-cooled metal halide lamp (manufactured by Eye Graphics Co.), illuminance 400 mW / cm 2, irradiation The coating layer was cured by irradiating an ultraviolet ray having a quantity of 250 mJ / cm 2 to produce a film with a light diffusion layer.

上記で塗設した光拡散層の上に、帯電防止層用塗料(AS−1〜AS−10)を、マイクログラビア塗工方式で、搬送速度15m/分の条件で塗布した。
100℃で150秒乾燥した後、窒素パージ(酸素濃度0.5%以下)しながら、240W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度400mW/cm2、照射量500mJ/cm2の紫外線を照射して塗布層を硬化させて、帯電防止層を有するフィルムを作製した。
On the light diffusion layer coated as described above, the antistatic layer coating material (AS-1 to AS-10) was applied by a microgravure coating method under a transport speed of 15 m / min.
After drying at 100 ° C. for 150 seconds, using a 240 W / cm air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) with nitrogen purge (oxygen concentration 0.5% or less), irradiation is 400 mW / cm 2 . The coating layer was cured by irradiating an ultraviolet ray in an amount of 500 mJ / cm 2 to produce a film having an antistatic layer.

上記帯電防止層の上に、低屈折率層用塗料(L−1〜L−8)をマイクログラビア塗布方式で、搬送速度15m/分の条件で塗布した。
その後、L−1〜L−3についての乾燥、硬化条件は、以下で行った。
120℃で150秒乾燥の後、更に140℃で8分乾燥させてから窒素パージ(酸素濃度0.5%以下)しながら240W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度400mW/cm2、照射量900mJ/cm2の紫外線を照射して塗布層を硬化させ、低屈折率層(最外層)を形成した。
L−4についての乾燥、硬化条件は、以下で行った。
120℃で150秒乾燥の後、更に140℃で20分熱処理して塗布層を硬化させ低屈折率層(最外層)を形成した。
また、L−5〜L−8についての乾燥、硬化条件は、以下のように行った。
90℃で30秒乾燥の後、窒素パージ(酸素濃度0.5%以下)しながら240W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度600mW/cm2、照射量600mJ/cm2の紫外線を照射して塗布層を硬化させ低屈折率層(最外層)を形成した。
On the antistatic layer, the low refractive index layer coating materials (L-1 to L-8) were applied by a microgravure coating method under the condition of a conveyance speed of 15 m / min.
Thereafter, the drying and curing conditions for L-1 to L-3 were as follows.
After drying at 120 ° C. for 150 seconds and further drying at 140 ° C. for 8 minutes, a 240 W / cm air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) is used while purging with nitrogen (oxygen concentration 0.5% or less). Then, the coating layer was cured by irradiating ultraviolet rays having an illuminance of 400 mW / cm 2 and an irradiation amount of 900 mJ / cm 2 to form a low refractive index layer (outermost layer).
The drying and curing conditions for L-4 were as follows.
After drying at 120 ° C. for 150 seconds, the coating layer was cured by heat treatment at 140 ° C. for 20 minutes to form a low refractive index layer (outermost layer).
The drying and curing conditions for L-5 to L-8 were performed as follows.
After drying at 90 ° C. for 30 seconds, using an air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) with a nitrogen purge (oxygen concentration of 0.5% or less), an illuminance of 600 mW / cm 2 and an irradiation amount The coating layer was cured by irradiating 600 mJ / cm 2 of ultraviolet rays to form a low refractive index layer (outermost layer).

反射防止フィルムにおける上記光拡散層、上記帯電防止層および低屈折率層の塗設組み合わせを、表1に記載したとおりに行った。さらに各反射防止フィルム試料の光拡散層まで塗設したフィルムの光拡散層を有する側の平均表面粗さRa1と、帯電防止層まで塗設したフィルムの帯電防止層を有する側の平均表面粗さRa2を、原子間力顕微鏡(AFM)を用いて測定した結果も表1に記載した。(表1)   The coating combination of the light diffusion layer, the antistatic layer and the low refractive index layer in the antireflection film was performed as described in Table 1. Furthermore, the average surface roughness Ra1 on the side having the light diffusion layer of the film coated up to the light diffusion layer of each antireflection film sample, and the average surface roughness on the side of the film coated up to the antistatic layer having the antistatic layer The results of measuring Ra2 using an atomic force microscope (AFM) are also shown in Table 1. (Table 1)

Figure 2006023350
Figure 2006023350

(反射防止フィルムの評価)
得られた反射防止フィルムについて、以下の項目の評価を行った。結果を表2に示す。
(Evaluation of antireflection film)
About the obtained antireflection film, the following items were evaluated. The results are shown in Table 2.

(1)表面抵抗の評価
反射防止フィルムの低屈折率層(最外層)を有する側の表面の表面抵抗を、超絶縁抵抗/微小電流計TR8601((株)アドバンテスト製)を用いて、25℃、相対湿度60%の条件下で測定した。
(1) Evaluation of surface resistance The surface resistance of the surface having the low refractive index layer (outermost layer) of the antireflection film was measured at 25 ° C. using a super insulation resistance / microammeter TR8601 (manufactured by Advantest). , And measured under conditions of relative humidity 60%.

(2)塵埃除去性の評価
反射防止フィルムをモニターに張り付け、モニター表面に塵埃(布団、衣服の繊維屑)を振りかけた。クリーニングクロスで塵埃を拭き取り、塵埃の除去性を調べ、下記3段階で評価した。
○;塵埃が完全に取り除けたもの。
△;塵埃が若干残ったもの(許容範囲内)。
×;塵埃がかなり残ったもの。
(2) Evaluation of dust removability An antireflection film was attached to the monitor, and dust (futon, fiber waste from clothes) was sprinkled on the monitor surface. The dust was wiped off with a cleaning cloth, the dust removal property was examined, and the following three grades were evaluated.
○: Dust completely removed.
Δ: Some dust remained (within tolerance).
×: Dust remains considerably.

(3)防眩性の評価
作製した反射防止フィルムにルーバーなしのむき出し蛍光灯(8000cd/cm2)を映し、その反射像のボケの程度を以下の基準で評価した。
◎:蛍光灯の輪郭が全く〜ほとんどわからない。
○:蛍光灯の輪郭がわずかにわかる。
△:蛍光灯の周囲が白っぽく見えるが、輪郭は識別できる(許容範囲内)。
×:蛍光灯がほとんどボケない。
(4)平均反射率の評価
分光光度計(日本分光(株)製;V−550)を用いて、380〜780nmの波長領域において、積分球を用いて、入射角5°における分光反射率を測定した。分光反射率の評価において、450〜650nmの平均反射率を用いた。
(3) Evaluation of anti-glare property An exposed fluorescent lamp (8000 cd / cm 2 ) without a louver was projected on the produced anti-reflection film, and the degree of blur of the reflected image was evaluated according to the following criteria.
A: The outline of the fluorescent lamp is completely unknown.
○: The outline of the fluorescent lamp is slightly understood.
Δ: The periphery of the fluorescent lamp looks whitish, but the outline can be identified (within an allowable range).
X: Fluorescent lamp is hardly blurred.
(4) Evaluation of average reflectance Using a spectrophotometer (manufactured by JASCO Corporation; V-550), in the wavelength region of 380 to 780 nm, using a integrating sphere, the spectral reflectance at an incident angle of 5 ° is calculated. It was measured. In the evaluation of the spectral reflectance, an average reflectance of 450 to 650 nm was used.

(5)動摩擦係数の評価
反射防止フィルムの低屈折率層(最外層)を有する側の表面の滑り性の指標として動摩擦係数を評価した。動摩擦係数は試料を温度25℃、相対湿度60%の条件で2時間調湿した後、動摩擦測定機(HEIDON−14)で、直径5mmのステンレス剛球を用い、荷重0.98N、速度60cm/分で測定した。
(5) Evaluation of dynamic friction coefficient The dynamic friction coefficient was evaluated as an index of the slipperiness of the surface of the antireflection film having the low refractive index layer (outermost layer). The dynamic friction coefficient was adjusted for 2 hours under conditions of a temperature of 25 ° C. and a relative humidity of 60%, and then a dynamic friction measuring machine (HEIDON-14) was used with a stainless hard ball having a diameter of 5 mm, a load of 0.98 N, and a speed of 60 cm / min. Measured with

(6)耐擦傷性の評価
反射防止フィルムの低屈折率層(最外層)を有する側の表面において、ラビングテスターを用いてスチールウールによる擦りテストを実施した。
こすり材としてスチールウール(日本スチールウール(株)製、グレードNo.0000)を用い、移動距離(片道)13cm、こすり速度13cm/秒、荷重4.9N/cm2、先端部接触面積:1cm×1cm、こすり回数10往復の条件で実施した。最外層の表面についた傷について目視観察して、下記4段階で評価した。
◎;注意深く見ても、全く傷が見えない。
○;注意深く見ると、僅かに弱い傷が見える。
△;弱い傷が見える(許容範囲内)。
×;一目見ただけで目立つ傷が見える。
(6) Evaluation of scratch resistance On the surface of the antireflection film having the low refractive index layer (outermost layer), a rubbing test using steel wool was performed using a rubbing tester.
Steel wool (Grade No. 0000, manufactured by Nippon Steel Wool Co., Ltd.) was used as the scraping material, moving distance (one way) 13 cm, rubbing speed 13 cm / sec, load 4.9 N / cm 2 , tip contact area: 1 cm × It was carried out under the conditions of 1 cm and the number of rubbing times of 10 reciprocations. The scratches on the surface of the outermost layer were visually observed and evaluated in the following four stages.
A: Even if you look carefully, no scratches are visible.
○: If you look carefully, you can see slightly weak scratches.
Δ: Weak scratches are visible (within tolerance).
×: A conspicuous scratch can be seen at a glance.

(7)接触角の評価
反射防止フィルムを温度25℃、相対湿度60%の条件で2時間調湿した。反射防止フィルムの低屈折率層(最外層)を有する側の表面における水の接触角を評価した。
(7) Evaluation of contact angle The antireflection film was conditioned for 2 hours under the conditions of a temperature of 25 ° C. and a relative humidity of 60%. The contact angle of water on the surface of the antireflection film having the low refractive index layer (outermost layer) was evaluated.

(8)防汚性の評価
反射防止フィルムの低屈折率層(最外層)を有する側の表面に油性マジック(ZEBRAマッキー、赤)を付着させて30分経時させ、それをクリーニングクロスで拭き取った時の状態を観察して、以下の3段階で評価した。
○:マジックが完全に拭き取れたもの。
△:マジックの一部が拭き取れずに残ったもの(許容範囲内)。
×:マジックのほとんどが拭き取れずに残ったもの。
(9)ヘイズの評価
ヘイズはヘイズ計(1001DP型、日本電色工業(株)製)を用いて測定した。
試料1サンプルにつき5点測定し、その平均値を採用した。
(8) Evaluation of antifouling property An oily magic (ZEBRA Mackey, red) was attached to the surface of the antireflective film having the low refractive index layer (outermost layer), allowed to age for 30 minutes, and then wiped off with a cleaning cloth. The state of time was observed and evaluated in the following three stages.
○: The magic has been completely wiped off.
Δ: A part of the magic remains without being wiped off (within an allowable range).
X: Most of the magic remained without being wiped off.
(9) Evaluation of haze Haze was measured using a haze meter (1001DP type, manufactured by Nippon Denshoku Industries Co., Ltd.).
Five points were measured per sample, and the average value was adopted.

Figure 2006023350
Figure 2006023350

表2の結果より、帯電防止層Ra2値を光拡散層Ra1値で除した値が0.5〜1.0に入っている本発明の試料101〜109、111、112、114〜122は比較試料110、113、123に比べて塵埃除去性、防眩性、耐擦傷性、ヘイズのすべての項目を満足する性能を示しており、これが本発明の効果によることが明白である。   From the results in Table 2, the samples 101 to 109, 111, 112, and 114 to 122 of the present invention in which the value obtained by dividing the antistatic layer Ra2 value by the light diffusion layer Ra1 value is in the range of 0.5 to 1.0 are compared. Compared to Samples 110, 113, and 123, the performance satisfies all the items of dust removal property, antiglare property, scratch resistance, and haze, and this is clearly due to the effect of the present invention.

[比較例A]
膜厚80μm、幅1340mmのトリアセチルセルロースフィルム(TAC−TD80U、富士写真フイルム(株)製)上に、帯電防止層用塗料(AS−3)を、マイクログラビア塗工方式で、搬送速度15m/分の条件で塗布した。
100℃で150秒乾燥した後、窒素パージ(酸素濃度0.5%以下)しながら、240W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度400mW/cm2、照射量500mJ/cm2の紫外線を照射して塗布層を硬化させて、膜厚0.1μmの帯電防止層を有するフィルムを作製した。
前記で塗設した帯電防止層の上に、光拡散層塗料(H−1)をマイクログラビア塗布方式で、搬送速度30m/分の条件で塗布した。
60℃で150秒乾燥の後、窒素パージ(酸素濃度0.5%以下)しながら、160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度400mW/cm2、照射量250mJ/cm2の紫外線を照射して塗布層を硬化させて、膜厚4μmの光拡散層を有するフィルムを作製した。
[Comparative Example A]
On a triacetyl cellulose film (TAC-TD80U, manufactured by Fuji Photo Film Co., Ltd.) having a thickness of 80 μm and a width of 1340 mm, an antistatic layer coating material (AS-3) is applied by a microgravure coating method at a conveyance speed of 15 m / It was applied under the condition of minutes.
After drying at 100 ° C. for 150 seconds, using a 240 W / cm air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) with nitrogen purge (oxygen concentration 0.5% or less), irradiation is 400 mW / cm 2 . The coating layer was cured by irradiating with an amount of 500 mJ / cm 2 of ultraviolet rays to produce a film having an antistatic layer with a thickness of 0.1 μm.
On the antistatic layer coated as described above, the light diffusion layer coating material (H-1) was applied by a microgravure coating method at a transport speed of 30 m / min.
After it dried for 150 seconds at 60 ° C., with a nitrogen purge (hereinafter oxygen concentration of 0.5%), using a 160 W / cm air-cooled metal halide lamp (manufactured by Eye Graphics Co.), illuminance 400 mW / cm 2, irradiation The coating layer was cured by irradiating an amount of 250 mJ / cm 2 of ultraviolet rays to produce a film having a light diffusion layer with a thickness of 4 μm.

前記で塗設した光拡散層の上に、低屈折率層用塗料(L−1)をマイクログラビア塗布方式で、搬送速度15m/分の条件で塗布した。
その後、120℃で150秒乾燥の後、更に140℃で8分乾燥させてから窒素パージ(酸素濃度0.5%以下)しながら240W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度400mW/cm2、照射量900mJ/cm2の紫外線を照射して塗布層を硬化させ、膜厚0.09μmの低屈折率層(最外層)を形成して反射防止フィルム[比較試料A]を作製した。この試料に実施例1と同じ評価を実施した結果を表3に示す。
On the light diffusion layer coated as described above, the coating material for low refractive index layer (L-1) was applied by a microgravure coating method under the condition of a conveyance speed of 15 m / min.
Then, after drying at 120 ° C. for 150 seconds and further drying at 140 ° C. for 8 minutes, a 240 W / cm air-cooled metal halide lamp (made by Eye Graphics Co., Ltd.) while purging with nitrogen (oxygen concentration 0.5% or less) Is used to cure the coating layer by irradiating ultraviolet rays with an illuminance of 400 mW / cm 2 and an irradiation amount of 900 mJ / cm 2 to form a low refractive index layer (outermost layer) having a film thickness of 0.09 μm. Comparative sample A] was prepared. Table 3 shows the results of the same evaluation as in Example 1 performed on this sample.

[比較例B]
前記で作製した[比較試料A]に対して、帯電防止層用塗料(AS−3)の塗料液量が4倍になるマイクログラビア塗布条件で塗布し、硬化後膜厚0.41μmの帯電防止層を作製した。帯電防止層の上に、前記[比較試料A]と同じ条件で順に、光拡散層と低屈折率層を形成して反射防止フィルム[比較試料B]を作製した。この試料に実施例1と同じ評価を実施した結果を表3に示す。
[Comparative Example B]
The antistatic layer coating (AS-3) was applied to the above-prepared [Comparative Sample A] under the microgravure coating conditions in which the amount of coating liquid was 4 times, and the antistatic layer having a thickness of 0.41 μm after curing. A layer was made. On the antistatic layer, a light diffusion layer and a low refractive index layer were sequentially formed under the same conditions as in the above [Comparative Sample A] to prepare an antireflection film [Comparative Sample B]. Table 3 shows the results of the same evaluation as in Example 1 performed on this sample.

[比較例C]
(帯電防止層用塗料AS−11)
市販の導電性微粒子ATO(アンチモンドープ酸化錫T−1、比表面積80m2/g、三菱マテリアル(株)製)20.0質量部に、アニオン性基とメタアクリロイル基を有する上記分散剤(B−1)2.0質量部、シクロヘキサノン28質量部を添加して撹拌した。
メディア分散機(直径0.5mmのジルコニアビーズ使用)を用いて上記液中のATO粒子を分散した。光散乱法で分散液中のATO粒子の質量平均粒径を評価した結果、69nmであった。
上記ATO分散液50質量部に、ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(DPHA、日本化薬(株)製)、2.0質量部、重合開始剤(イルガキュア907、チバ・スペシャルティ・ケミカルズ(株)製)0.3質量部を添加して撹拌した。このようにして帯電防止層用塗料AS−11を調製した。この塗料による塗膜の屈折率は1.72であった。
この帯電防止層用塗料AS−11を[比較試料A]の層配置と同じにして、[比較試料A]に対して帯電防止層用塗料(AS−11)の塗料液量が4倍になるマイクログラビア塗布条件で塗布し、硬化後膜厚0.60μmの帯電防止層を作製した。帯電防止層の上に、前記[比較試料A]と同じ条件で順に、光拡散層と低屈折率層を形成して反射防止フィルム[比較試料C]を作製した。この試料に実施例1と同じ評価を実施した結果を表3に示す。
[Comparative Example C]
(Antistatic layer coating AS-11)
Dispersant (B) having an anionic group and a methacryloyl group in 20.0 parts by mass of commercially available conductive fine particles ATO (antimony-doped tin oxide T-1, specific surface area 80 m 2 / g, manufactured by Mitsubishi Materials Corporation) -1) 2.0 parts by mass and 28 parts by mass of cyclohexanone were added and stirred.
The ATO particles in the liquid were dispersed using a media disperser (using zirconia beads having a diameter of 0.5 mm). It was 69 nm as a result of evaluating the mass mean particle diameter of the ATO particle | grains in a dispersion liquid by the light-scattering method.
To 50 parts by mass of the ATO dispersion, a mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate (DPHA, Nippon Kayaku Co., Ltd.), 2.0 parts by mass, a polymerization initiator (Irgacure 907, Ciba Specialty) -0.3 mass part of Chemicals Co., Ltd.) was added and stirred. Thus, antistatic layer coating material AS-11 was prepared. The refractive index of the coating film formed from this paint was 1.72.
This antistatic layer coating AS-11 is made the same as the layer arrangement of [Comparative Sample A], and the amount of coating liquid of the antistatic layer coating (AS-11) is quadrupled compared to [Comparative Sample A]. Coating was performed under microgravure coating conditions to produce an antistatic layer having a thickness of 0.60 μm after curing. On the antistatic layer, a light diffusion layer and a low refractive index layer were sequentially formed under the same conditions as in [Comparative Sample A] to prepare an antireflection film [Comparative Sample C]. Table 3 shows the results of the same evaluation as in Example 1 performed on this sample.

[比較例D]
実施例1の試料101の低屈折率層の作製において、窒素パージを実施せずに、大気雰囲気(酸素濃度約21%)の中で低屈折率層を硬化させた以外は、試料101と全く同様にして反射防止フィルム[比較試料D]を作製し、実施例1と同じ評価を実施した。この試料に実施例1と同じ評価を実施した結果を表3に示す。
[Comparative Example D]
In the production of the low refractive index layer of the sample 101 of Example 1, the sample was completely the same as the sample 101 except that the low refractive index layer was cured in an air atmosphere (oxygen concentration of about 21%) without performing nitrogen purge. Similarly, an antireflection film [Comparative Sample D] was prepared and evaluated in the same manner as in Example 1. Table 3 shows the results of the same evaluation as in Example 1 performed on this sample.

Figure 2006023350
Figure 2006023350

表3の結果について述べる。比較例A試料の評価結果と実施例1の本発明試料101との評価結果の比較から、帯電防止層を光拡散層の下側へ塗設すると表面抵抗値が大きくなって、塵埃除去性が劣ることが分かる。
次に、比較例B試料、比較例C試料と比較例A試料の評価結果の比較から、比較例A試料の層配置で帯電防止層の塗布膜厚を厚くすると(0.09μmに対して0.41μm、0.60μm)表面抵抗値は小さくなるが、ヘイズが増加することが分かる。さらにこの比較例B試料と比較例C試料は、反射防止フィルムを白紙上に置いて目視観察する色味評価において、実施例1の本発明試料101に比べて、青黒い着色が濃くなっていることが観察された。さらにコスト試算によりコストアップになることが確認された。
比較例D試料の評価結果と実施例1の本発明試料101との評価結果の比較から、UV硬化時の雰囲気を窒素パージせずに大気下で行うと耐擦傷性が劣化することが分かる。
前記本発明試料101と比較例A試料〜D試料について、後記評価法による密着性の評価を行った。その結果、前記本発明試料101と比較例A試料と比較例D試料は評価◎で、比較例試料Bは評価△、比較例試料Cは評価×であった。
比較例試料Cのように帯電防止層を支持体に近い側に配置することによる導電性の低下を、帯電防止層中の導電材の密度増加で補おうとすると密着性が破綻することが判る。
The results of Table 3 will be described. From the comparison of the evaluation results of the comparative example A sample and the inventive sample 101 of Example 1, when the antistatic layer is applied to the lower side of the light diffusion layer, the surface resistance value increases and the dust removability is improved. You can see that it is inferior.
Next, from the comparison of the evaluation results of the comparative example B sample, the comparative example C sample, and the comparative example A sample, when the coating thickness of the antistatic layer is increased in the layer arrangement of the comparative example A sample (0 for 0.09 μm). .41 μm, 0.60 μm) It can be seen that the surface resistance value decreases, but the haze increases. Furthermore, the comparative example B sample and the comparative example C sample are darker in color than the sample 101 of the present invention 101 in the color evaluation in which the antireflection film is placed on white paper and visually observed. Was observed. Furthermore, it was confirmed that the cost would be increased by cost estimation.
From the comparison of the evaluation results of the comparative example D sample and the inventive sample 101 of Example 1, it can be seen that the scratch resistance deteriorates when the atmosphere during UV curing is performed in the air without purging with nitrogen.
About the said invention sample 101 and Comparative Example A sample-D sample, the adhesiveness evaluation by a postscript evaluation method was performed. As a result, the inventive sample 101, the comparative example A sample and the comparative example D sample were evaluated as ◎, the comparative sample B was evaluated as Δ, and the comparative sample C was evaluated as x.
It can be seen that, when an attempt is made to compensate for the decrease in conductivity caused by disposing the antistatic layer on the side close to the support as in Comparative Example Sample C by increasing the density of the conductive material in the antistatic layer, the adhesion is broken.

(10)密着性の評価
反射防止フィルム試料を温度25℃、相対湿度60%の条件で2時間調湿した。各試料の帯電防止層を有する側の表面に、カッターナイフで碁盤目状に縦11本、横11本の切り込みを入れて、合計100個の正方形の升目を刻み、その面に日東電工(株)製のポリエステル粘着テープ(No.31B)を貼りつけた。30分経時したあとに、垂直方向にテープを素早く引き剥がし、剥がれた升目の数を数えて、下記4段階の基準で評価した。同じ密着評価を3回行って平均をとった。
◎:100升において剥がれが全く認められなかった。
○:100升において1〜2升の剥がれが認められた。
△:100升において3〜10升の剥がれが認められた(許容範囲内)。
×:100升において11升以上の剥がれが認められた。
(10) Evaluation of adhesion The antireflection film sample was conditioned for 2 hours under the conditions of a temperature of 25 ° C. and a relative humidity of 60%. On the surface of each sample having the antistatic layer, 11 vertical and 11 horizontal cuts were made with a cutter knife in a grid pattern, and a total of 100 square squares were engraved, and Nitto Denko Corporation ) Made of polyester adhesive tape (No. 31B). After 30 minutes, the tape was quickly peeled off in the vertical direction, and the number of squares peeled off was counted and evaluated according to the following four criteria. The same adhesion evaluation was performed 3 times and the average was taken.
A: No peeling was observed at 100 mm.
○: peeling of 1 to 2 mm was observed at 100 mm.
Δ: Peeling of 3 to 10 mm was observed at 100 mm (within tolerance).
X: Peeling of 11 mm or more was observed at 100 mm.

[実施例2]
(画像表示装置の評価)
実施例1の試料101〜109、111、112、114〜122の反射防止フィルムを、画像表示装置(TN、STN、IPS、VA、又はOCBのモードの、透過型、反射型又は半透過型の液晶表示装置、及び、プラズマディスプレイパネル(PDP)、エレクトロルミネッセンスディスプレイ(ELD)、陰極管表示装置(CRT))のディスプレイ面に装着した。本発明の反射防止フィルムを用いた画像表示装置は、反射防止性、防塵性、耐擦傷性、防汚性に優れていた。
さらにまた、切断面の面積が100μm2以上の凹は存在せず、画素サイズが100ppi(100ピクセル/インチ:長さ1インチ当たりに100画素がある)における画像表示装置におけるギラツキ故障の発生が無かった。
[Example 2]
(Evaluation of image display device)
The antireflection films of the samples 101 to 109, 111, 112, and 114 to 122 of Example 1 are transferred to the image display device (TN, STN, IPS, VA, or OCB mode, transmissive type, reflective type, or transflective type). The liquid crystal display device was mounted on the display surface of a plasma display panel (PDP), an electroluminescence display (ELD), and a cathode tube display device (CRT). The image display device using the antireflection film of the present invention was excellent in antireflection properties, dustproof properties, scratch resistance, and antifouling properties.
Furthermore, there is no occurrence of glare failure in the image display device in which the area of the cut surface is not more than 100 μm 2 and the pixel size is 100 ppi (100 pixels / inch: 100 pixels per inch length). It was.

[実施例3]
(偏光板用保護フィルムの作製)
1.5mol/lの水酸化ナトリウム水溶液を50℃に保温した鹸化液を調整した。さらに、0.005mol/lの希硫酸水溶液を調製した。
実施例1の試料101〜109、111、112、114〜122の反射防止フィルムにおいて、低屈折率層(最外層)を有する側とは反対側の透明支持体の表面を、上記鹸化液を用いて鹸化処理した。
鹸化処理した透明支持体表面の水酸化ナトリウム水溶液を、水で十分に洗浄した後、上記の希硫酸水溶液で洗浄し、さらに希硫酸水溶液を水で十分に洗浄して、100℃で十分に乾燥させた。
反射防止フィルムの低屈折率層(最外層)を有する側とは反対側の、鹸化処理した透明支持体の表面の水に対する接触角を評価したところ、40°以下であった。このようにして、偏光板用保護フィルムを作製した。
[Example 3]
(Preparation of protective film for polarizing plate)
A saponification solution in which a 1.5 mol / l sodium hydroxide aqueous solution was kept at 50 ° C. was prepared. Further, a 0.005 mol / l dilute sulfuric acid aqueous solution was prepared.
In the antireflection films of Samples 101 to 109, 111, 112, and 114 to 122 of Example 1, the surface of the transparent support opposite to the side having the low refractive index layer (outermost layer) was used for the saponification solution. And saponified.
The sodium hydroxide aqueous solution on the surface of the saponified transparent support is thoroughly washed with water, then washed with the above diluted sulfuric acid aqueous solution, and further, the diluted sulfuric acid aqueous solution is thoroughly washed with water and sufficiently dried at 100 ° C. I let you.
When the contact angle of the surface of the saponified transparent support on the side opposite to the side having the low refractive index layer (outermost layer) of the antireflection film was evaluated, it was 40 ° or less. Thus, the protective film for polarizing plates was produced.

(偏光板の作製)
特開2002−86554号公報に記載の偏向膜の一方の面に、PVA((株)クラレ製PVA−117H)3%水溶液を接着剤として用いて、本発明の反射防止フィルム(偏光板用保護フィルム)の鹸化処理したトリアセチルセルロース面を貼り合わせた。さらに、偏光膜のもう片方の面には上記と同様にして鹸化処理したトリアセチルセルロースフィルム(富士写真フィルム(株)製フジタック、レターデーション値3.0nm)を同じ接着剤を用いて貼り合わせた。このようにして、本発明の偏光板を作製した。
(Preparation of polarizing plate)
An antireflection film of the present invention (protection for polarizing plate) is applied to one surface of a deflection film described in JP-A-2002-86554 using a 3% aqueous solution of PVA (PVA-117H manufactured by Kuraray Co., Ltd.) as an adhesive. The saponified triacetyl cellulose surface of the film) was bonded together. Further, a triacetyl cellulose film (Fuji Photo Film Co., Ltd., Fujitac, retardation value 3.0 nm) saponified in the same manner as above was bonded to the other surface of the polarizing film using the same adhesive. . Thus, the polarizing plate of this invention was produced.

(画像表示装置の評価)
このようにして作製した本発明の偏光板を装着したTN、STN、IPS、VA、OCBのモードの透過型、反射型、又は、半透過型の液晶表示装置は、反射防止性、防塵性、耐擦傷性、防汚性に優れていた。
なお、種々公知化されている偏向膜を用い、上記と同様に作製した偏光板においても同様の結果が得られた。
(Evaluation of image display device)
The TN, STN, IPS, VA, OCB mode transmission type, reflection type, or semi-transmission type liquid crystal display device equipped with the polarizing plate of the present invention thus produced has antireflection properties, dustproof properties, Excellent scratch resistance and antifouling properties.
Similar results were obtained with polarizing plates produced in the same manner as described above using various known deflection films.

[実施例4]
(偏光板の作製)
光学補償フィルム(ワイドビューフィルムSA 12B、富士写真フイルム(株)製)の、光学異方性層を有する側とは反対側の表面を実施例3と同様の条件で鹸化処理した。
[Example 4]
(Preparation of polarizing plate)
The surface of the optical compensation film (Wide View Film SA 12B, manufactured by Fuji Photo Film Co., Ltd.) opposite to the side having the optically anisotropic layer was saponified under the same conditions as in Example 3.

(画像表示装置の評価)
このようにして作製した本発明の偏光板を装着したTN、STN、IPS、VA、OCBのモードの透過型、反射型、又は、半透過型の液晶表示装置は、光学補償フィルムを用いていない偏光板を装着した液晶表示装置よりも明室でのコントラストに優れ、上下左右の視野角が広く、さらに、反射防止性、防塵性、耐擦傷性、防汚性に優れていた。
特に、架橋ポリスチレン粒子、架橋アクリル−ポリスチレン粒子、架橋PMMA粒子、シリカ粒子による透過光の光散乱効果により、下方向の視野角が顕著に広がり、左右方向の黄色味が改善されていた。
なお、種々公知化されている偏向膜を用い、上記と同様に作製した偏光板においても同様の結果が得られた。
(Evaluation of image display device)
The TN, STN, IPS, VA, OCB mode transmissive, reflective, or transflective liquid crystal display device equipped with the polarizing plate of the present invention thus manufactured does not use an optical compensation film. Compared with a liquid crystal display device equipped with a polarizing plate, the contrast in a bright room was excellent, the viewing angles of the top, bottom, left and right were wide, and the antireflection property, dust resistance, scratch resistance, and antifouling property were excellent.
In particular, due to the light scattering effect of transmitted light by the cross-linked polystyrene particles, cross-linked acrylic-polystyrene particles, cross-linked PMMA particles, and silica particles, the downward viewing angle was remarkably widened, and the yellowness in the left-right direction was improved.
Similar results were obtained with polarizing plates produced in the same manner as described above using various known deflection films.

[実施例5]
(画像表示装置の評価)
実施例1の試料101〜109、111、112、114〜122の反射防止フィルムを、有機EL表示装置に装着したところ、反射防止性、防塵性、耐擦傷性、防汚性に優れていた。
また、偏光膜の一方の面に実施例3で作製した偏光板用保護フィルム、もう一方の面にλ/4板を有する偏光板を実施例3と同様にして作製した。上記の偏光板を有機EL表示装置に装着したところ、偏光板を貼ったガラス表面からの光の反射もカットされ、極めて視認性の高い表示装置が得られた。
[Example 5]
(Evaluation of image display device)
When the antireflection films of Samples 101 to 109, 111, 112, and 114 to 122 of Example 1 were mounted on an organic EL display device, they were excellent in antireflection, dustproof, scratch resistance, and antifouling properties.
Further, a polarizing plate protective film prepared in Example 3 on one side of the polarizing film and a polarizing plate having a λ / 4 plate on the other side were prepared in the same manner as in Example 3. When the above polarizing plate was mounted on an organic EL display device, reflection of light from the glass surface on which the polarizing plate was attached was also cut, and a display device with extremely high visibility was obtained.

反射防止フィルムを画像表示装置に適用する態様を模式的に示す概略図である。It is the schematic which shows the aspect which applies an antireflection film to an image display apparatus typically.

符号の説明Explanation of symbols

1 透明支持体
2 光拡散層
3 透光性粒子
4 帯電防止層
5 低屈折率層
DESCRIPTION OF SYMBOLS 1 Transparent support 2 Light-diffusion layer 3 Translucent particle | grains 4 Antistatic layer 5 Low refractive index layer

Claims (14)

透明支持体上に、少なくとも光拡散層、帯電防止層、透明支持体よりも屈折率が低い低屈折率層をこの順に塗設した反射防止フィルムであって、かつ帯電防止層を塗設する前の光拡散層表面の中心線平均粗さRa1で帯電防止層塗設後の帯電防止層表面の中心線平均粗さRa2を除した値が、0.5〜1.0であることを特徴とする反射防止フィルム。   An antireflection film in which at least a light diffusion layer, an antistatic layer, and a low refractive index layer having a lower refractive index than that of the transparent support are coated in this order on the transparent support, and before the antistatic layer is applied The value obtained by dividing the center line average roughness Ra2 of the antistatic layer surface after coating the antistatic layer by the centerline average roughness Ra1 of the light diffusion layer is 0.5 to 1.0. Anti-reflection film. 帯電防止層を塗設する前の光拡散層表面の中心線平均粗さRa1が0.03〜0.30μmであり、帯電防止層塗設後の帯電防止層表面のRa2が、0.02〜0.25μmであることを特徴とする請求項1に記載の反射防止フィルム。   The center line average roughness Ra1 of the surface of the light diffusion layer before coating of the antistatic layer is 0.03 to 0.30 μm, and Ra2 of the surface of the antistatic layer after coating of the antistatic layer is 0.02 to 0.02. The antireflection film according to claim 1, wherein the film has a thickness of 0.25 μm. 帯電防止層および/または低屈折率層が、少なくとも塗布と電離放射線硬化を含む工程によって形成されたことを特徴とする請求項1または2に記載の反射防止フィルム。   3. The antireflection film according to claim 1, wherein the antistatic layer and / or the low refractive index layer is formed by a process including at least coating and ionizing radiation curing. 低屈折率層が下記一般式(1)で表される含フッ素化合の架橋または重合反応により形成されたことを特徴とする請求項1〜3のいずれかに記載の反射防止フィルム。
一般式(1)
Figure 2006023350
一般式(1)中、Lは炭素数1〜10の連結基を表し、mは0または1を表す。Xは水素原子またはメチル基を表す。Aは任意のビニルモノマーの重合単位を表し、単一成分であっても複数の成分で構成されていてもよい。x、y、zはそれぞれの構成成分のモル%を表し、30≦x≦60、5≦y≦70、0≦z≦65を満たす値を表す。
The antireflective film according to claim 1, wherein the low refractive index layer is formed by a crosslinking or polymerization reaction of a fluorine-containing compound represented by the following general formula (1).
General formula (1)
Figure 2006023350
In General Formula (1), L represents a C1-C10 coupling group, m represents 0 or 1. X represents a hydrogen atom or a methyl group. A represents a polymerization unit of any vinyl monomer, and may be a single component or a plurality of components. x, y, and z represent mol% of each constituent component, and represent values satisfying 30 ≦ x ≦ 60, 5 ≦ y ≦ 70, and 0 ≦ z ≦ 65.
低屈折率層に中空シリカ微粒子を含有することを特徴とする請求項1〜4のいずれかに記載の反射防止フィルム。   The antireflective film according to any one of claims 1 to 4, wherein the low refractive index layer contains hollow silica fine particles. 低屈折率層を有する側の表面抵抗が1×1012Ω/□以下であることを特徴とする請求項1〜5のいずれかに記載の反射防止フィルム。 The antireflection film according to claim 1, wherein the surface resistance on the side having the low refractive index layer is 1 × 10 12 Ω / □ or less. 帯電防止層に含有する導電材が金属酸化物であることを特徴とする請求項1〜6のいずれかに記載の反射防止フィルム。   The antireflection film according to claim 1, wherein the conductive material contained in the antistatic layer is a metal oxide. 帯電防止層の層厚みが60〜200nmであることを特徴とする請求項1〜7のいずれかに記載の反射防止フィルム。   The antistatic film according to claim 1, wherein the antistatic layer has a thickness of 60 to 200 nm. 帯電防止層の導電材の含有率が帯電防止層の全固形分の20〜60質量%であることを特徴とする請求項1〜8のいずれかに記載の反射防止フィルム。   9. The antireflection film according to claim 1, wherein the content of the conductive material in the antistatic layer is 20 to 60% by mass of the total solid content of the antistatic layer. 光拡散層が平均粒径が0.5〜8μmの透光性粒子を含有することを特徴とする請求項1〜9のいずれかに記載の反射防止フィルム。   The antireflection film according to claim 1, wherein the light diffusion layer contains translucent particles having an average particle diameter of 0.5 to 8 μm. 光拡散層のバインダーマトリックスの屈折率が1.45〜1.90であり、さらに光拡散層のバインダーマトリックスと透光性粒子の屈折率差が0.02〜0.30であることを特徴とする請求項1〜10のいずれかに記載の反射防止フィルム。   The refractive index of the binder matrix of the light diffusing layer is 1.45 to 1.90, and the refractive index difference between the binder matrix of the light diffusing layer and the translucent particles is 0.02 to 0.30. The antireflection film according to claim 1. 請求項1〜11のいずれかに記載の反射防止フィルムを偏光膜の2枚の保護フィルムの少なくとも一方に有することを特徴とする偏光板。   A polarizing plate comprising the antireflection film according to claim 1 on at least one of two protective films of a polarizing film. 請求項1〜11のいずれかに記載の反射防止フィルム、または請求項12に記載の偏光板が画像表示面に配置されていることを特徴とする画像表示装置。   An image display device, wherein the antireflection film according to claim 1 or the polarizing plate according to claim 12 is disposed on an image display surface. 画像表示装置が、TN、STN、IPS、VA又はOCBモードの、透過型、反射型又は半透過型の液晶表示装置であることを特徴とする請求項13に記載の画像表示装置。   14. The image display device according to claim 13, wherein the image display device is a TN, STN, IPS, VA, or OCB mode transmissive, reflective, or transflective liquid crystal display device.
JP2004199073A 2004-07-06 2004-07-06 Antireflection film, polarizing plate and image display device Pending JP2006023350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004199073A JP2006023350A (en) 2004-07-06 2004-07-06 Antireflection film, polarizing plate and image display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004199073A JP2006023350A (en) 2004-07-06 2004-07-06 Antireflection film, polarizing plate and image display device

Publications (1)

Publication Number Publication Date
JP2006023350A true JP2006023350A (en) 2006-01-26

Family

ID=35796679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004199073A Pending JP2006023350A (en) 2004-07-06 2004-07-06 Antireflection film, polarizing plate and image display device

Country Status (1)

Country Link
JP (1) JP2006023350A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1950244A1 (en) 2007-01-26 2008-07-30 Rohm and Haas Company Light-scattering compositions
KR100995229B1 (en) 2006-07-27 2010-11-17 이터널 케미컬주식회사 Scratch-resistant optical film
JP4983792B2 (en) * 2006-03-28 2012-07-25 大日本印刷株式会社 Optical laminate
US9310522B2 (en) 2010-05-12 2016-04-12 Dai Nippon Printing Co., Ltd. Optical layered body, method for producing optical layered body, polarizer and image display device
CN106154367A (en) * 2016-08-23 2016-11-23 苏州大学 A kind of light diffusing sheet and preparation method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4983792B2 (en) * 2006-03-28 2012-07-25 大日本印刷株式会社 Optical laminate
KR101350372B1 (en) * 2006-03-28 2014-01-13 다이니폰 인사츠 가부시키가이샤 Optical laminated body
US9291745B2 (en) 2006-03-28 2016-03-22 Dai Nippon Printing Co., Ltd. Optical laminated body
KR100995229B1 (en) 2006-07-27 2010-11-17 이터널 케미컬주식회사 Scratch-resistant optical film
EP1950244A1 (en) 2007-01-26 2008-07-30 Rohm and Haas Company Light-scattering compositions
US7893162B2 (en) 2007-01-26 2011-02-22 Rohm And Haas Company Light-scattering compositions
US8084543B2 (en) 2007-01-26 2011-12-27 Rohm And Haas Company Light-scattering compositions
CN102532791A (en) * 2007-01-26 2012-07-04 罗门哈斯公司 Light-scattering compositions
US9310522B2 (en) 2010-05-12 2016-04-12 Dai Nippon Printing Co., Ltd. Optical layered body, method for producing optical layered body, polarizer and image display device
US10254446B2 (en) 2010-05-12 2019-04-09 Dai Nippon Printing Co., Ltd. Optical layered body, method for producing optical layered body, polarizer and image display device
CN106154367A (en) * 2016-08-23 2016-11-23 苏州大学 A kind of light diffusing sheet and preparation method

Similar Documents

Publication Publication Date Title
JP5114438B2 (en) Optical film, manufacturing method thereof, polarizing plate and image display device
JP4404769B2 (en) Antireflection film, polarizing plate, and image display device
JP4820716B2 (en) Antiglare film, antireflection film, polarizing plate and image display device
KR101202635B1 (en) Hardening composition, antireflective film, method of producing the same, polarizing plate and image display unit
KR101139267B1 (en) Optical functional film, antireflection film, polarizing plate and image display device
US20080014373A1 (en) Optical Film, Producing Method Therefor, Polarizing Plate and Image Display Apparatus
JP2005186568A (en) Antireflection film, polarizing plate and liquid crystal display
JP4900892B2 (en) Method for producing optical film
JP2005196122A (en) Antireflection film, protective film for polarizing plate, those manufacturing methods, polarizing plate, and image display apparatus
JP2007102208A (en) Optical film, anti-reflection film, and polarizing plate and image display device using the optical film and the anti-reflection film
JP2006048025A (en) Antireflection film and manufacturing method thereof
JP4878778B2 (en) Conductive hard coat film, antireflection film, polarizing plate, and image display device
JP2006195413A (en) Optical film, producing method therefor, polarizing plate and image display apparatus
JP2010061044A (en) Anti-reflection film, polarizing plate, and image forming device
JP4393232B2 (en) Method for producing antireflection film
JP2006225513A (en) Curable composition, antireflection film, polarizing plate and image display device using those
JP4856880B2 (en) Antireflection film, polarizing plate and image display device
JP5211087B2 (en) Cellulose acylate film, polarizing plate using the same, and image display device using them
JP2005275391A (en) Antireflection film and manufacturing method, polarizing plate, and liquid crystal display device using the same
JP2006206775A (en) Coating composition for light-diffusing layer, antireflection film, method for producing the same, and polarizing plate and image display device using the antireflection film
JP2006251043A (en) Optical functional film, manufacturing method of the same and polarizing plate using the same, and image display device
JP2006075698A (en) Production method for optical functional film, optical functional film, protection film for polarizing plate and polarizing plate and image display device
JP2005272270A (en) Conductive titanium dioxide fine particle, high refractive index coating, composition for forming high refractive index coating, and method for manufacturing these
JP2005148623A (en) Antireflection film
JP2006293334A (en) Antireflection film, polarizing plate and image display device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060327

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061124