JP2005148623A - Antireflection film - Google Patents

Antireflection film Download PDF

Info

Publication number
JP2005148623A
JP2005148623A JP2003389312A JP2003389312A JP2005148623A JP 2005148623 A JP2005148623 A JP 2005148623A JP 2003389312 A JP2003389312 A JP 2003389312A JP 2003389312 A JP2003389312 A JP 2003389312A JP 2005148623 A JP2005148623 A JP 2005148623A
Authority
JP
Japan
Prior art keywords
refractive index
group
layer
film
light scattering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003389312A
Other languages
Japanese (ja)
Inventor
Kazuhiro Nakamura
和浩 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2003389312A priority Critical patent/JP2005148623A/en
Publication of JP2005148623A publication Critical patent/JP2005148623A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an antireflection film having satisfactory antireflection improving its scratch resistance, and a polarizer plate and a display unit using this antireflection film. <P>SOLUTION: This is an antireflection film having a light scattering layer and a low refractive index layer at least on a transparent support. The light scattering layer is a layer formed by dispersing at least a kind of light transmissive particles diagonally 0.5-5 μm in a light transmissive resin. The difference of the refractive index of the particles and the resin is 0.02-0.2, and the particles are contained in 3-30 mass% in the total solid content of the light scattering layer. The low refractive index layer contains fluorine atoms in the extent of 35-80 mass%. And the refractive index obtained by coating a curable composite consisting mainly of the fluorine polymer containing a functional group of cross-linking or polymerization is 1.30-1.55. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、反射防止フィルムに関し、更に詳細には、反射防止性と耐擦傷性とが両立されており、さらにはギラツキ防止性にも優れた反射防止フィルムに関する。   The present invention relates to an antireflection film, and more specifically, relates to an antireflection film that has both antireflection properties and scratch resistance and is also excellent in antiglare properties.

反射防止フィルムは、一般に、陰極管表示装置(CRT)、プラズマディスプレイ(PDP)、エレクトロルミネッセンスディスプレイ(ELD)や液晶表示装置(LCD)のようなディスプレイ装置において、外光の反射によるコントラスト低下や像の映り込みを防止するために、光学干渉の原理を用いて反射率を低減するようディスプレイの最表面に配置される。   In general, the antireflection film is used in a display device such as a cathode ray tube display (CRT), a plasma display (PDP), an electroluminescence display (ELD), or a liquid crystal display (LCD), and a contrast reduction or image due to reflection of external light. In order to prevent reflection of light, it is arranged on the outermost surface of the display so as to reduce the reflectance by using the principle of optical interference.

このような反射防止フィルムは、一般的には、透明支持体上に適切な膜厚の、透明支持体より低屈折率の低屈折率層による皮膜を形成することにより作製されている。低い反射率を実現するために低屈折率層にはできるだけ屈折率の低い材料が望まれる。また反射防止フィルムはディスプレイの最表面に用いられるため高い耐擦傷性が要求される。厚さ100nm前後の薄膜において、高い耐擦傷性を実現するためには、皮膜自体の強度、および下層への密着性が必要である。   Such an antireflection film is generally produced by forming a film with a low refractive index layer having an appropriate film thickness and a lower refractive index than that of the transparent support on the transparent support. In order to realize a low reflectance, a material having a refractive index as low as possible is desired for the low refractive index layer. Further, since the antireflection film is used on the outermost surface of the display, high scratch resistance is required. In order to realize high scratch resistance in a thin film having a thickness of about 100 nm, the strength of the coating itself and the adhesion to the lower layer are required.

そこで、材料の屈折率を下げるために、(1)フッ素原子を導入する、(2)密度を下げる(空隙を導入する)という手段が提案されいてるが、いずれの手段も皮膜強度や下層との界面の密着性が低下し、耐擦傷性が低下するという問題があり、低い屈折率と高い耐擦傷性の両立は困難な課題であった。   Therefore, in order to lower the refractive index of the material, means of (1) introducing fluorine atoms and (2) lowering the density (introducing voids) have been proposed. There is a problem that the adhesion at the interface is lowered and the scratch resistance is lowered, and it is difficult to achieve both a low refractive index and a high scratch resistance.

そこで、耐擦傷性が向上するように、ある程度皮膜強度を高める方法として、特許文献1及び2において、フッ素含有ゾルゲル膜を用いる方法が提案されているが、(1)硬化に長時間加熱を要し、製造の負荷が大きい、(2)鹸化液(アルカリ処理液)に対し耐性が無く、透明プラスチックフィルム基材の表面を鹸化処理する場合に、反射防止フィルム製膜後にできない、などの大きな制約が発生してしまう。   Thus, as methods for increasing the film strength to some extent so as to improve the scratch resistance, Patent Documents 1 and 2 propose a method using a fluorine-containing sol-gel film. However, (1) long heating is required for curing. However, there are significant restrictions such as (2) not having resistance to saponification solution (alkali treatment solution) and not being able to do after antireflection film formation when the surface of transparent plastic film substrate is saponified Will occur.

一方、特許文献3〜5には、含フッ素ポリマー中にポリシロキサン構造を導入することにより皮膜表面の摩擦係数を下げて耐擦傷性を改良する手段が提案されいている。これらの手段は耐擦傷性改良に対してはある程度有効であるが、本質的な皮膜強度および界面密着性が不足している皮膜に対して該手法のみでは十分な耐擦傷性が得られない。   On the other hand, Patent Documents 3 to 5 propose means for improving scratch resistance by lowering the coefficient of friction of the coating surface by introducing a polysiloxane structure into the fluorine-containing polymer. These means are effective to some extent for improving the scratch resistance, but sufficient scratch resistance cannot be obtained only by this method for a film having an essential film strength and interface adhesion.

更に、近年の画像表示装置の高精細化に伴い、表示画素と光散乱層との相互作用が無視できなくなり、画面が赤、緑、青色にギラついて見えるギラツキが問題となっている。この問題に対しては、特許文献6に記載されている、光散乱層への内部散乱の導入が有効であることが知られている。しかしながら、この提案でも、十分な反射防止性、耐擦傷性、および高い生産性のすべてを満足するものではなかった。
特開2002−265866号公報 特開2002−317152号公報 特開平11−189621号公報 特開平11−228631号公報 特開2000−313709号公報 特開平11−30501号公報
Furthermore, with the recent high definition of image display devices, the interaction between the display pixel and the light scattering layer can no longer be ignored, and glare that causes the screen to appear glaring in red, green, and blue has become a problem. For this problem, it is known that introduction of internal scattering into the light scattering layer described in Patent Document 6 is effective. However, even this proposal does not satisfy all of sufficient antireflection properties, scratch resistance, and high productivity.
JP 2002-265866 A JP 2002-317152 A JP-A-11-189621 Japanese Patent Laid-Open No. 11-228631 JP 2000-313709 A Japanese Patent Laid-Open No. 11-30501

以上要するに、反射防止性と高い耐擦傷性とを両立すると共に高い生産性を満たし、更にはギラツキも解消した反射防止フィルムは提案されてないのが現状である。
従って、本発明の目的は、十分なギラツキ防止性、反射防止性、耐擦傷性、および高い生産性を兼ね備えた反射防止フィルムを提供することにある。
In short, the present situation is that no antireflection film has been proposed which has both antireflection properties and high scratch resistance, satisfies high productivity, and further eliminates glare.
Accordingly, an object of the present invention is to provide an antireflection film having sufficient antiglare properties, antireflection properties, scratch resistance, and high productivity.

本発明者らは、上述の課題を解消すべく鋭意検討した結果、光散乱層を特定の屈折率の差を有する透光性樹脂及び透光性粒子で構成し、更に透光性粒子の粒径や、低屈折率層の構成ポリマー中のフッ素含有率や屈折率を調整することにより、前記目的を達成しうることを知見し、本発明を完成するに至った。
すなわち、本発明は、下記の構成により、前記目的を達成したものである。
(1) 透明支持体上に少なくとも光散乱層と低屈折率層を有する反射防止フィルムであって、該光散乱層は、少なくとも1種の平均粒子径0.5〜5μmの透光性粒子を透光性樹脂に分散してなる層であって、該透光性粒子と該透光性樹脂との屈折率の差が0.02〜0.2であり、該透光性粒子が光散乱層全固形分中に3〜30質量%含有されてなる層であり、前記低屈折率層は、架橋性若しくは重合性の官能基を含む含フッ素ポリマーを主成分としてなる硬化性組成物を塗布して形成された屈折率が1.30〜1.55の層であることを特徴とする反射防止フィルム。
(2)前記含フッ素ポリマーが、含フッ素ビニルモノマー重合単位および側鎖に(メタ)アクリロイル基を有する重合単位を含み、主鎖が炭素原子のみからなる共重合体であることを特徴とする前記(1)に記載の反射防止フィルム。
(3)前記硬化性組成物が、(A)前記含フッ素ポリマー、(B)平均粒径が該低屈折率層の厚みの30%以上100%以下で且つ中空構造からなる屈折率が1.17〜1.40である無機微粒子、(C)酸触媒の存在下で製造されてなる、下記一般式[A]で表されるオルガノシラン化合物の加水分解物および/またはその部分縮合物を、各々少なくとも1種含有する硬化性組成物であることを特徴とする前記(1)又は(2)に記載の反射防止フィルム。
一般式[A]
(R10m−Si(X)4-m
(式中、R10は置換もしくは無置換のアルキル基または置換もしくは無置換のアリール基を表す。Xは水酸基または加水分解可能な基を表す。mは1〜3の整数を表す。)
(4)前記硬化性組成物が、更にラジカル重合性基及び/又はカチオン重合性基から選ばれる重合性基を少なくとも2個以上含有する多官能重合性化合物及び重合開始剤を含有する硬化性組成物であることを特徴とする前記(3)に記載の反射防止フィルム。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have constituted a light scattering layer with a translucent resin and translucent particles having a specific refractive index difference, and further a particle of translucent particles. The inventors have found that the object can be achieved by adjusting the diameter and the fluorine content and refractive index in the constituent polymer of the low refractive index layer, and have completed the present invention.
That is, the present invention achieves the object by the following configuration.
(1) An antireflection film having at least a light scattering layer and a low refractive index layer on a transparent support, the light scattering layer comprising at least one kind of translucent particles having an average particle diameter of 0.5 to 5 μm. A layer formed by dispersing in a light-transmitting resin, wherein a difference in refractive index between the light-transmitting particles and the light-transmitting resin is 0.02 to 0.2, and the light-transmitting particles are scattered by light. 3 to 30% by mass in the total solid content of the layer, and the low refractive index layer is coated with a curable composition mainly composed of a fluorinated polymer containing a crosslinkable or polymerizable functional group. An antireflective film characterized by being a layer having a refractive index of 1.30 to 1.55.
(2) The fluorine-containing polymer is a copolymer comprising a fluorine-containing vinyl monomer polymerization unit and a polymerization unit having a (meth) acryloyl group in a side chain, and the main chain is composed of only carbon atoms. The antireflection film as described in (1).
(3) The curable composition is (A) the fluoropolymer, (B) the average particle diameter is 30% to 100% of the thickness of the low refractive index layer, and the refractive index is 1. An inorganic fine particle of 17 to 1.40, (C) a hydrolyzate of an organosilane compound represented by the following general formula [A] and / or a partial condensate thereof produced in the presence of an acid catalyst, The antireflection film as described in (1) or (2) above, which is a curable composition containing at least one of each.
Formula [A]
(R 10 ) m -Si (X) 4-m
(In the formula, R 10 represents a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group. X represents a hydroxyl group or a hydrolyzable group. M represents an integer of 1 to 3.)
(4) The curable composition further comprises a polyfunctional polymerizable compound containing at least two polymerizable groups selected from radical polymerizable groups and / or cationic polymerizable groups and a polymerization initiator. The antireflection film as described in (3) above, which is a product.

本発明の反射防止フィルムは、十分な反射防止性を有しながら耐擦傷性、生産性に優れたものである。更には、ギラツキ防止性にも優れたものである。このため、本発明の反射防止フィルムを直接又は該反射防止フィルムを備えた偏光板を介して有する液晶表示装置などのディスプレイ装置は、高精細パネルであってもギラツキや外光の写り込みや背景の写り込みが少なく、極めて視認性が高いものである。   The antireflection film of the present invention is excellent in scratch resistance and productivity while having sufficient antireflection properties. Furthermore, it has excellent antiglare properties. Therefore, a display device such as a liquid crystal display device having the antireflection film of the present invention directly or via a polarizing plate provided with the antireflection film is a glare or reflection of external light or background even if it is a high-definition panel. There are few reflections and the visibility is extremely high.

本発明の反射防止フィルムについて好適な一実施形態の基本的な構成を図面を参照しながら説明する。
ここで、図1は、本発明の反射防止フィルムの好ましい1実施形態を模式的に示す断面図である。
図1に示す本実施形態の反射防止フィルム1は、透明支持体2と、透明支持対2上に形成された光散乱層3と、そして光散乱層3上に形成された低屈折率層4とからなる。
光散乱層3は、透光性樹脂と透光性樹脂中に分散された透光性粒子5とからなる。
本発明における反射防止フィルムを構成する各層の屈折率は以下の関係を満たすことが好ましい。
光散乱層の屈折率>透明支持体の屈折率>低屈折率層の屈折率
本発明においては、光散乱層は、防眩性とハードコート性を兼ね備えており、本実施形態においては、1層で形成されたものを例示しているが、複数層、例えば2層〜4層で構成されていてもよい。また、本実施形態のように透明支持体上に直接設けてもよいが、帯電防止層や防湿層等の他の層を介して設けてもよい。
A basic configuration of one preferred embodiment of the antireflection film of the present invention will be described with reference to the drawings.
Here, FIG. 1 is a cross-sectional view schematically showing a preferred embodiment of the antireflection film of the present invention.
The antireflection film 1 of this embodiment shown in FIG. 1 includes a transparent support 2, a light scattering layer 3 formed on the transparent support pair 2, and a low refractive index layer 4 formed on the light scattering layer 3. It consists of.
The light scattering layer 3 includes a translucent resin and translucent particles 5 dispersed in the translucent resin.
The refractive index of each layer constituting the antireflection film in the present invention preferably satisfies the following relationship.
Refractive index of light scattering layer> refractive index of transparent support> refractive index of low refractive index layer In the present invention, the light scattering layer has antiglare properties and hard coat properties. Although what was formed with the layer is illustrated, you may be comprised by multiple layers, for example, 2 layers-4 layers. Moreover, although you may provide directly on a transparent support body like this embodiment, you may provide via other layers, such as an antistatic layer and a moisture-proof layer.

本発明の反射防止フィルムは、その表面凹凸形状として、中心線平均粗さRaが0.08〜0.40μm、10点平均粗さRzがRaの10倍以下、平均山谷距離Smが1〜100μm、凹凸最深部からの凸部高さの標準偏差が0.5μm以下、中心線を基準とした平均山谷距離Smの標準偏差が20μm以下、傾斜角0〜5度の面が10%以上となるように設計するのが、十分な防眩性と目視での均一なマット感が達成されるので、好ましい。
また、C光源下での反射光の色味がa*値−2〜2、b*値−3〜3、380nm〜780nmの範囲内での反射率の最小値と最大値の比0.5〜0.99とするのが、反射光の色味がニュートラルとなるので、好ましい。またC光源下での透過光のb*値を0〜3とすると、表示装置に適用した際の白表示の黄色味が低減され、好ましい。また、面光源上と本発明の反射防止フィルムの間に120μm×40μmの格子を挿入してフイルム上で輝度分布を測定した際の輝度分布の標準偏差を20以下とすると、高精細パネルに本発明のフィルムを適用したときのギラツキが低減され、好ましい。
The antireflection film of the present invention has a surface roughness of 0.08 to 0.40 μm as the center line average roughness, 10 points or less of the average roughness Rz of 10 points or less, and an average mountain valley distance Sm of 1 to 100 μm. The standard deviation of the height of the convex part from the deepest part of the concavo-convex part is 0.5 μm or less, the standard deviation of the average mountain-valley distance Sm with respect to the center line is 20 μm or less, and the surface with the inclination angle of 0 to 5 degrees is 10% or more. It is preferable to design so that sufficient anti-glare properties and a visually uniform mat feeling can be achieved.
Further, the ratio of the minimum value and the maximum value of the reflectance within the range of a * value −2 to 2, b * value −3 to 3, and 380 nm to 780 nm under the light source C is 0.5. ˜0.99 is preferable because the color of the reflected light is neutral. Moreover, when the b * value of the transmitted light under the C light source is set to 0 to 3, the yellow color of white display when applied to a display device is reduced, which is preferable. In addition, when a 120 μm × 40 μm grid is inserted between the surface light source and the antireflection film of the present invention and the luminance distribution is measured on the film, the standard deviation of the luminance distribution is set to 20 or less, and this is applied to a high-definition panel. The glare when applying the film of the invention is reduced, which is preferable.

また、本発明の反射防止フィルムは、その光学特性を、鏡面反射率2.5%以下、透過率90%以上、60度光沢度70%以下とするのが、外光の反射を抑制でき、視認性が向上するため、好ましい。また、ヘイズ20%〜50%、内部ヘイズ/全ヘイズ値0.3〜1、光散乱層までのヘイズ値から低屈折率層を形成後のヘイズ値の低下が15%以内、くし幅0.5mmにおける透過像鮮明度20%〜50%、垂直透過光/垂直から2度傾斜方向の透過率比が1.5〜5.0とするのが、高精細LCDパネル上でのギラツキ防止、文字等のボケの低減が達成されるので、好ましい。   In addition, the antireflection film of the present invention can suppress reflection of external light by setting its optical characteristics to a specular reflectance of 2.5% or less, a transmittance of 90% or more, and a 60 ° gloss of 70% or less. Since visibility improves, it is preferable. In addition, haze 20% to 50%, internal haze / total haze value 0.3 to 1, haze value after formation of low refractive index layer from haze value up to light scattering layer within 15%, comb width 0. The transmission image sharpness at 5 mm is 20% to 50%, and the transmittance ratio of vertical transmitted light / vertical direction at 2 degrees is 1.5 to 5.0, which prevents glare on a high-definition LCD panel and characters This is preferable because reduction of blur such as is achieved.

次に、前記低屈折率層について以下に説明する。
<低屈折率層>
本発明の反射防止フィルムにおける低屈折率層の屈折率は、1.30〜1.55であり、好ましくは1.35〜1.40の範囲である。
屈折率が1.30未満であると、反射防止性能は向上するが、膜の機械強度が低下し、1.55を超えると、反射防止性能が著しく悪化してしまう。
さらに、低屈折率層は下記数式(I)を満たすことが低反射率化の点で好ましい。
数式(I)
(m/4)×0.7<n1×d1<(m/4)×1.3
式中、mは正の奇数であり、n1は低屈折率層の屈折率であり、そして、d1は低屈折率層の膜厚(nm)である。また、λは波長であり、500〜550nmの範囲の値である。
なお、前記数式(I)を満たすとは、前記波長の範囲において数式(I)を満たすm(正の奇数、通常1である)が存在することを意味している。
Next, the low refractive index layer will be described below.
<Low refractive index layer>
The refractive index of the low refractive index layer in the antireflection film of the present invention is 1.30 to 1.55, preferably 1.35 to 1.40.
When the refractive index is less than 1.30, the antireflection performance is improved, but the mechanical strength of the film is lowered, and when it exceeds 1.55, the antireflection performance is remarkably deteriorated.
Further, the low refractive index layer preferably satisfies the following formula (I) from the viewpoint of reducing the reflectance.
Formula (I)
(M / 4) × 0.7 <n1 × d1 <(m / 4) × 1.3
In the formula, m is a positive odd number, n1 is the refractive index of the low refractive index layer, and d1 is the film thickness (nm) of the low refractive index layer. Further, λ is a wavelength, which is a value in the range of 500 to 550 nm.
In addition, satisfy | filling said numerical formula (I) means that m (positive odd number, usually 1) which satisfy | fills numerical formula (I) exists in the said wavelength range.

低屈折率層を形成する素材について以下に説明する。
低屈折率層は、含フッ素ポリマーを主成分とする硬化性組成物を塗布、乾燥、硬化して形成される硬化膜である。
<含フッ素ポリマー>
前記含フッ素ポリマーは、硬化被膜にした場合の被膜の動摩擦係数が0.03〜0.20、水に対する接触角が90〜120°、純水の滑落角が70°以下であり、熱または電離放射線により架橋するポリマーであるのが、ロールフィルムをウェブ搬送しながら塗布、硬化する場合などにおいて生産性向上の点で好ましい。
また、本発明の反射防止フィルムを画像表示装置に装着した時、市販の接着テープとの剥離力が低いほどシールやメモを貼り付けた後に剥がれ易くなるので、剥離力は、500gf以下が好ましく、300gf以下がより好ましく、100gf以下が最も好ましい。また、微小硬度計で測定した表面硬度が高いほど、傷がつき難いので、該表面硬度が、0.3GPa以上が好ましく、0.5GPa以上がより好ましい。
The material for forming the low refractive index layer will be described below.
The low refractive index layer is a cured film formed by applying, drying and curing a curable composition containing a fluorine-containing polymer as a main component.
<Fluoropolymer>
The fluoropolymer has a cured film with a coefficient of dynamic friction of 0.03 to 0.20, a contact angle with water of 90 to 120 °, and a sliding angle of pure water of 70 ° or less, and heat or ionization. A polymer that is cross-linked by radiation is preferable in terms of improving productivity in the case of coating and curing a roll film while transporting the web.
In addition, when the antireflection film of the present invention is mounted on an image display device, the lower the peel strength from a commercially available adhesive tape, the easier it is to peel off after sticking a seal or memo, so the peel strength is preferably 500 gf or less, 300 gf or less is more preferable, and 100 gf or less is most preferable. Further, the higher the surface hardness measured with a microhardness meter, the harder it is to scratch. Therefore, the surface hardness is preferably 0.3 GPa or more, and more preferably 0.5 GPa or more.

低屈折率層に用いられる含フッ素ポリマーは、フッ素原子を35〜80質量%の範囲で含有し、且つ架橋性もしくは重合性の官能基を含む含フッ素ポリマーであり、例えば、パーフルオロアルキル基含有シラン化合物〔例えば(ヘプタデカフルオロ−1,1,2,2−テトラヒドロデシル)トリエトキシシラン〕の加水分解物や脱水縮合物の他、含フッ素モノマー単位と架橋反応性単位とを構成単位とする含フッ素共重合体が挙げられる。含フッ素共重合体の場合、主鎖は、炭素原子のみからなるのが好ましい。すなわち、主鎖骨格に酸素原子や窒素原子などを有しないのが好ましい。   The fluorine-containing polymer used for the low refractive index layer is a fluorine-containing polymer containing a fluorine atom in a range of 35 to 80% by mass and containing a crosslinkable or polymerizable functional group, for example, containing a perfluoroalkyl group In addition to hydrolysates and dehydration condensates of silane compounds [for example, (heptadecafluoro-1,1,2,2-tetrahydrodecyl) triethoxysilane], fluorinated monomer units and crosslinking reactive units are used as constituent units. A fluorine-containing copolymer is mentioned. In the case of a fluorinated copolymer, the main chain preferably consists of only carbon atoms. That is, it is preferable that the main chain skeleton does not have an oxygen atom or a nitrogen atom.

前記含フッ素モノマー単位の具体例としては、例えばフルオロオレフィン類(例えばフルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、パーフルオロオクチルエチレン、ヘキサフルオロプロピレン、パーフルオロ−2,2−ジメチル−1,3−ジオキソール等)、(メタ)アクリル酸の部分または完全フッ素化アルキルエステル誘導体類(例えばビスコート6FM(大阪有機化学製)やM−2020(ダイキン製)等)、完全または部分フッ素化ビニルエーテル類等が挙げられるが、好ましくはパーフルオロオレフィン類であり、屈折率、溶解性、透明性、入手性等の観点から特に好ましくはヘキサフルオロプロピレンである。   Specific examples of the fluorine-containing monomer unit include, for example, fluoroolefins (for example, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, perfluorooctylethylene, hexafluoropropylene, perfluoro-2,2-dimethyl-1,3- Dioxoles, etc.), (meth) acrylic acid partial or fully fluorinated alkyl ester derivatives (for example, Biscoat 6FM (manufactured by Osaka Organic Chemicals) and M-2020 (manufactured by Daikin)), fully or partially fluorinated vinyl ethers, etc. However, perfluoroolefins are preferable, and hexafluoropropylene is particularly preferable from the viewpoint of refractive index, solubility, transparency, availability, and the like.

前記架橋反応性単位としては、グリシジル(メタ)アクリレート、グリシジルビニルエーテルのように分子内にあらかじめ自己架橋性官能基を有するモノマーの重合によって得られる構成単位;カルボキシル基やヒドロキシ基、アミノ基、スルホ基等を有するモノマー〔例えば(メタ)アクリル酸、メチロール(メタ)アクリレート、ヒドロキシアルキル(メタ)アクリレート、アリルアクリレート、ヒドロキシエチルビニルエーテル、ヒドロキシブチルビニルエーテル、マレイン酸、クロトン酸等〕の重合によって得られる構成単位に高分子反応によって(メタ)アクリルロイル基等の架橋反応性基を導入した構成単位(例えばヒドロキシ基に対してアクリル酸クロリドを作用させる等の手法で導入できる)が挙げられる。   Examples of the crosslinking reactive unit include a structural unit obtained by polymerization of a monomer having a self-crosslinking functional group in the molecule such as glycidyl (meth) acrylate and glycidyl vinyl ether; carboxyl group, hydroxy group, amino group, sulfo group A structural unit obtained by polymerization of a monomer having, for example, (meth) acrylic acid, methylol (meth) acrylate, hydroxyalkyl (meth) acrylate, allyl acrylate, hydroxyethyl vinyl ether, hydroxybutyl vinyl ether, maleic acid, crotonic acid, etc. And a structural unit in which a crosslinkable reactive group such as a (meth) acryloyl group is introduced by a polymer reaction (for example, it can be introduced by a technique such as allowing acrylic acid chloride to act on a hydroxy group).

また、前記含フッ素モノマー単位及び前記架橋反応性単位以外に溶剤への溶解性、皮膜の透明性等の観点から、適宜フッ素原子を含有しないモノマーを共重合させて、他の重合単位を導入することもできる。併用可能なモノマー単位には特に限定はなく、例えばオレフィン類〔エチレン、プロピレン、イソプレン、塩化ビニル、塩化ビニリデン等〕、アクリル酸エステル類〔アクリル酸メチル、アクリル酸メチル、アクリル酸エチル、アクリル酸2−エチルヘキシル〕、メタクリル酸エステル類〔メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、エチレングリコールジメタクリレート等〕、スチレン誘導体〔スチレン、ジビニルベンゼン、ビニルトルエン、α−メチルスチレン等〕、ビニルエーテル類〔メチルビニルエーテル、エチルビニルエーテル、シクロヘキシルビニルエーテル等〕、ビニルエステル類〔酢酸ビニル、プロピオン酸ビニル、桂皮酸ビニル等〕、アクリルアミド類〔N−tertブチルアクリルアミド、N−シクロヘキシルアクリルアミド等〕、メタクリルアミド類、アクリロ二トリル誘導体等を挙げることができる。   In addition to the fluorine-containing monomer unit and the cross-linking reactive unit, from the viewpoint of solubility in a solvent, film transparency, and the like, a monomer not containing a fluorine atom is appropriately copolymerized to introduce another polymerization unit. You can also. There are no particular limitations on the monomer units that can be used in combination, such as olefins [ethylene, propylene, isoprene, vinyl chloride, vinylidene chloride, etc.], acrylic esters [methyl acrylate, methyl acrylate, ethyl acrylate, acrylic acid 2 -Ethylhexyl], methacrylates (methyl methacrylate, ethyl methacrylate, butyl methacrylate, ethylene glycol dimethacrylate, etc.), styrene derivatives (styrene, divinylbenzene, vinyl toluene, α-methylstyrene, etc.), vinyl ethers [methyl Vinyl ether, ethyl vinyl ether, cyclohexyl vinyl ether, etc.], vinyl esters [vinyl acetate, vinyl propionate, vinyl cinnamate, etc.], acrylamides [N-tertbutylacrylamide, N-silane] B hexyl acrylamide], methacrylamides, and acrylonitrile derivatives.

前記含フッ素ポリマーに対しては特開平10−25388号および特開平10−147739号各公報に記載のごとく適宜硬化剤を併用しても良い。   As described in JP-A-10-25388 and JP-A-10-147739, a curing agent may be appropriately used in combination with the fluoropolymer.

本発明で特に有用な含フッ素ポリマーは、パーフルオロオレフィンとビニルエーテル類またはビニルエステル類とのランダム共重合体である。特に単独で架橋反応可能な基〔(メタ)アクリロイル基等のラジカル反応性基、エポキシ基、オキセタニル基等の開環重合性基等〕を有していることが好ましい。
これらの架橋反応性基含有重合単位はポリマーの全重合単位の5〜70mol%を占めていることが好ましく、特に好ましくは30〜60mol%を占めていることである。
The fluorine-containing polymer particularly useful in the present invention is a random copolymer of perfluoroolefin and vinyl ethers or vinyl esters. In particular, it preferably has a group capable of undergoing crosslinking reaction alone (radical reactive group such as (meth) acryloyl group, ring-opening polymerizable group such as epoxy group and oxetanyl group).
These crosslinkable group-containing polymerized units preferably occupy 5 to 70 mol%, particularly preferably 30 to 60 mol% of the total polymerized units of the polymer.

本発明に用いられる共重合体の好ましい形態として一般式1のものが挙げられる。   A preferred form of the copolymer used in the present invention is that of general formula 1.

Figure 2005148623
Figure 2005148623

一般式1中、Lは炭素数1〜10の連結基を表し、より好ましくは炭素数1〜6の連結基であり、特に好ましくは2〜4の連結基であり、直鎖であっても分岐構造を有していてもよく、環構造を有していてもよく、O、N及びSから選ばれるヘテロ原子を有していても良い。
好ましい例としては、*-(CH2)2-O-**, *-(CH2)2-NH-**, *-(CH2)4-O-**, *-(CH2)6-O-**, *-(CH2)2-O-(CH2)2-O-**, *-CONH-(CH2)3-O-**, *-CH2CH(OH)CH2-O-**, *-CH2CH2OCONH(CH2)3-O-**( * はポリマー主鎖側の連結部位を表し、** は(メタ)アクリロイル基側の連結部位を表す。)等が挙げられる。mは0または1を表わす。
In General Formula 1, L represents a linking group having 1 to 10 carbon atoms, more preferably a linking group having 1 to 6 carbon atoms, particularly preferably a linking group having 2 to 4 carbon atoms, It may have a branched structure, may have a ring structure, or may have a heteroatom selected from O, N and S.
Preferred examples include *-(CH 2 ) 2 -O-**, *-(CH 2 ) 2 -NH-**, *-(CH 2 ) 4 -O-**, *-(CH 2 ) 6 -O-**, *-(CH 2 ) 2 -O- (CH 2 ) 2 -O-**, * -CONH- (CH 2 ) 3 -O-**, * -CH 2 CH (OH ) CH 2 -O-**, * -CH 2 CH 2 OCONH (CH 2 ) 3 -O-** (* represents the linking site on the polymer main chain side, ** represents the linking on the (meth) acryloyl group side Represents a part). m represents 0 or 1;

一般式1中、Xは水素原子またはメチル基を表す。硬化反応性の観点から、より好ましくは水素原子である。   In general formula 1, X represents a hydrogen atom or a methyl group. From the viewpoint of curing reactivity, a hydrogen atom is more preferable.

一般式1中、Aは任意のビニルモノマーから導かれる繰返し単位を表わし、ヘキサフルオロプロピレンと共重合可能な単量体の構成成分であれば特に制限はなく、基材への密着性、ポリマーのTg(皮膜硬度に寄与する)、溶剤への溶解性、透明性、滑り性、防塵・防汚性等種々の観点から適宜選択することができ、目的に応じて単一あるいは複数のビニルモノマーによって構成されていても良い。   In the general formula 1, A represents a repeating unit derived from an arbitrary vinyl monomer, and is not particularly limited as long as it is a constituent component of a monomer copolymerizable with hexafluoropropylene. Tg (contributes to film hardness), solubility in solvents, transparency, slipperiness, dust / antifouling properties, etc., can be selected as appropriate, depending on the purpose, depending on the single or multiple vinyl monomers It may be configured.

好ましい例としては、メチルビニルエーテル、エチルビニルエーテル、t−ブチルビニルエーテル、シクロへキシルビニルエーテル、イソプロピルビニルエーテル、ヒドロキシエチルビニルエーテル、ヒドロキシブチルビニルエーテル、グリシジルビニルエーテル、アリルビニルエーテル等のビニルエーテル類、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル等のビニルエステル類、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、グリシジルメタアクリレート、アリル(メタ)アクリレート、(メタ)アクリロイルオキシプロピルトリメトキシシラン等の(メタ)アクリレート類、スチレン、p−ヒドロキシメチルスチレン等のスチレン誘導体、クロトン酸、マレイン酸、イタコン酸等の不飽和カルボン酸およびその誘導体等を挙げることができるが、より好ましくはビニルエーテル誘導体、ビニルエステル誘導体であり、特に好ましくはビニルエーテル誘導体である。   Preferred examples include methyl vinyl ether, ethyl vinyl ether, t-butyl vinyl ether, cyclohexyl vinyl ether, isopropyl vinyl ether, hydroxyethyl vinyl ether, hydroxybutyl vinyl ether, glycidyl vinyl ether, vinyl ethers such as allyl vinyl ether, vinyl acetate, vinyl propionate, butyric acid. (Meth) such as vinyl esters such as vinyl, methyl (meth) acrylate, ethyl (meth) acrylate, hydroxyethyl (meth) acrylate, glycidyl methacrylate, allyl (meth) acrylate, (meth) acryloyloxypropyltrimethoxysilane Acrylates, styrene, styrene derivatives such as p-hydroxymethylstyrene, crotonic acid, maleic acid, itaconic acid Can be mentioned unsaturated carboxylic acids and derivatives thereof, more preferably ether derivatives, vinyl ester derivatives, particularly preferably a vinyl ether derivative.

x、y、zはそれぞれの構成成分のモル%を表わし、30≦x≦60、5≦y≦70、0≦z≦65が好ましく、更に好ましくは、35≦x≦55、30≦y≦60、0≦z≦20の場合であり、特に好ましくは40≦x≦55、40≦y≦55、0≦z≦10の場合である。ただし、x+y+z=100である。
本発明に用いられる共重合体の特に好ましい形態として一般式2が挙げられる。
x, y, and z represent the mol% of each constituent component, and preferably 30 ≦ x ≦ 60, 5 ≦ y ≦ 70, and 0 ≦ z ≦ 65, and more preferably 35 ≦ x ≦ 55 and 30 ≦ y ≦. 60, 0 ≦ z ≦ 20, particularly preferably 40 ≦ x ≦ 55, 40 ≦ y ≦ 55, and 0 ≦ z ≦ 10. However, x + y + z = 100.
A particularly preferred form of the copolymer used in the present invention is General Formula 2.

Figure 2005148623
Figure 2005148623

一般式2においてXは一般式1と同じ意味を表わし、好ましい範囲も同じである。
nは2≦n≦10の整数を表わし、2≦n≦6であることが好ましく、2≦n≦4であることが特に好ましい。
Bは任意のビニルモノマーから導かれる繰返し単位を単位を表わし、単一組成であっても複数の組成によって構成されていても良い。例としては、前記一般式1におけるAの例として説明したものが当てはまる。
x、y、z1およびz2はそれぞれの繰返し単位のmol%を表わし、x及びyは、それぞれ30≦x≦60、5≦y≦70を満たすのが好ましく、更に好ましくは、35≦x≦55、30≦y≦60の場合であり、特に好ましくは40≦x≦55、40≦y≦55の場合である。z1及びz2については、0≦z1≦65、0≦z2≦65を満たすのが好ましく、更に好ましくは0≦z1≦30、0≦z2≦10であることが好ましく、0≦z1≦10、0≦z2≦5であることが特に好ましい。ただし、x+y+z1+z2=100である。
一般式1又は2で表わされる共重合体は、例えば、ヘキサフルオロプロピレン成分とヒドロキシアルキルビニルエーテル成分とを含んでなる共重合体に前記のいずれかの手法により(メタ)アクリロイル基を導入することにより合成できる。この際用いられる再沈殿溶媒としては、イソプロパノール、ヘキサン、メタノール等が好ましい。
In General Formula 2, X represents the same meaning as in General Formula 1, and the preferred range is also the same.
n represents an integer of 2 ≦ n ≦ 10, preferably 2 ≦ n ≦ 6, and particularly preferably 2 ≦ n ≦ 4.
B represents a unit of a repeating unit derived from an arbitrary vinyl monomer, and may be composed of a single composition or a plurality of compositions. As an example, what was demonstrated as an example of A in the said General formula 1 is applicable.
x, y, z1 and z2 each represent mol% of each repeating unit, and x and y preferably satisfy 30 ≦ x ≦ 60 and 5 ≦ y ≦ 70, respectively, more preferably 35 ≦ x ≦ 55. 30 ≦ y ≦ 60, particularly preferably 40 ≦ x ≦ 55 and 40 ≦ y ≦ 55. z1 and z2 preferably satisfy 0 ≦ z1 ≦ 65 and 0 ≦ z2 ≦ 65, more preferably 0 ≦ z1 ≦ 30 and 0 ≦ z2 ≦ 10, and 0 ≦ z1 ≦ 10, 0 It is particularly preferable that ≦ z2 ≦ 5. However, x + y + z1 + z2 = 100.
The copolymer represented by the general formula 1 or 2 is obtained, for example, by introducing a (meth) acryloyl group into a copolymer comprising a hexafluoropropylene component and a hydroxyalkyl vinyl ether component by any of the above-described methods. Can be synthesized. As the reprecipitation solvent used in this case, isopropanol, hexane, methanol and the like are preferable.

前記硬化性組成物は、(A)前記含フッ素ポリマー、(B)無機微粒子、(C)後述するオルガノシラン化合物を含有してなるのが好ましい。
<無機微粒子>
無機微粒子の配合量は、1mg/m2〜100mg/m2が好ましく、より好ましくは5mg/m2〜80mg/m2、更に好ましくは10mg/m2〜60mg/m2である。少なすぎると、耐擦傷性の改良効果が減り、多すぎると、低屈折率層表面に微細な凹凸ができ、黒の締まりなどの外観や積分反射率が悪化する場合があるので、上述の範囲内とするのが好ましい。
該無機微粒子は、低屈折率層に含有させることから、低屈折率であることが望ましい。例えば、フッ化マグネシウムやシリカの微粒子が挙げられる。特に、屈折率、分散安定性、コストの点で、シリカ微粒子が好ましい。
無機微粒子の平均粒径は、低屈折率層の厚みの30%以上100%以下が好ましく、より好ましくは35%以上80%以下、更に好ましくは40%以上60%以下である。即ち、低屈折率層の厚みが100nmであれば、シリカ微粒子の粒径は30nm以上100nm以下が好ましく、より好ましくは35nm以上80nm以下、更に好ましくは、40nm以上60nm以下である。
前記無機微粒子の粒径が小さすぎると、耐擦傷性の改良効果が少なくなり、大きすぎると低屈折率層表面に微細な凹凸ができ、黒の締まりといった外観、積分反射率が悪化する場合があるので、上述の範囲内とするのが好ましい。無機微粒子は、結晶質でも、アモルファスのいずれでも良く、また単分散粒子でも、所定の粒径を満たすならば凝集粒子でも構わない。形状は、球径が最も好ましいが、不定形であっても問題無い。
ここで、無機微粒子の平均粒径はコールターカウンターにより測定される。
The curable composition preferably contains (A) the fluoropolymer, (B) inorganic fine particles, and (C) an organosilane compound described later.
<Inorganic fine particles>
The amount of the inorganic fine particles is preferably 1mg / m 2 ~100mg / m 2 , more preferably 5mg / m 2 ~80mg / m 2 , more preferably from 10mg / m 2 ~60mg / m 2 . If the amount is too small, the effect of improving the scratch resistance is reduced. If the amount is too large, fine irregularities are formed on the surface of the low refractive index layer, and the appearance such as black tightening and the integrated reflectance may be deteriorated. It is preferable to be inside.
Since the inorganic fine particles are contained in the low refractive index layer, it is desirable that the inorganic fine particles have a low refractive index. Examples thereof include fine particles of magnesium fluoride and silica. In particular, silica fine particles are preferable in terms of refractive index, dispersion stability, and cost.
The average particle size of the inorganic fine particles is preferably 30% or more and 100% or less, more preferably 35% or more and 80% or less, and still more preferably 40% or more and 60% or less of the thickness of the low refractive index layer. That is, when the thickness of the low refractive index layer is 100 nm, the particle size of the silica fine particles is preferably 30 nm to 100 nm, more preferably 35 nm to 80 nm, and still more preferably 40 nm to 60 nm.
If the particle size of the inorganic fine particles is too small, the effect of improving the scratch resistance is reduced, and if it is too large, fine irregularities are formed on the surface of the low refractive index layer, and the appearance such as black tightening and the integrated reflectance may deteriorate. Therefore, it is preferable to be within the above range. The inorganic fine particles may be either crystalline or amorphous, and may be monodispersed particles or aggregated particles as long as a predetermined particle size is satisfied. The shape is most preferably a spherical diameter, but there is no problem even if the shape is indefinite.
Here, the average particle diameter of the inorganic fine particles is measured by a Coulter counter.

低屈折率層の屈折率上昇をより一層少なくするために、前記無機微粒子は、中空構造であるのが好ましく、また、無機微粒子の屈折率は1.17〜1.40、より好ましくは1.17〜1.35、さらに好ましくは1.17〜1.30である。ここでの屈折率は粒子全体としての屈折率を表し、中空構造の無機微粒子の場合に外殻の無機質のみの屈折率を表すものではない。この時、粒子内の空腔の半径をa、粒子外殻の半径をbとすると、下記数式(II)で表される空隙率xは
(数式II)
x=(4πa3/3)/(4πb3/3)×100
好ましくは10〜60%、さらに好ましくは20〜60%、最も好ましくは30〜60%である。
中空の無機微粒子の屈折率をより低屈折率に、より空隙率を大きくしようとすると、外殻の厚みが薄くなり、粒子の強度としては弱くなるため、耐擦傷性の観点からは屈折率1.17未満の低屈折率の粒子は成り立たない。
なお、無機微粒子の屈折率はアッベ屈折率計(アタゴ(株)製)にて測定を行い測定した。
In order to further reduce the increase in the refractive index of the low refractive index layer, the inorganic fine particles preferably have a hollow structure, and the refractive index of the inorganic fine particles is 1.17 to 1.40, more preferably 1. It is 17-1.35, More preferably, it is 1.17-1.30. Here, the refractive index represents the refractive index of the entire particle, and does not represent the refractive index of only the inorganic material of the outer shell in the case of inorganic fine particles having a hollow structure. At this time, assuming that the radius of the cavity inside the particle is a and the radius of the outer shell of the particle is b, the porosity x expressed by the following formula (II) is (formula II)
x = (4πa 3/3) / (4πb 3/3) × 100
Preferably it is 10 to 60%, More preferably, it is 20 to 60%, Most preferably, it is 30 to 60%.
If the refractive index of hollow inorganic fine particles is made lower and the porosity is increased, the thickness of the outer shell becomes thinner and the strength of the particles becomes weaker. Therefore, from the viewpoint of scratch resistance, the refractive index is 1 Particles with a low refractive index of less than .17 do not hold.
The refractive index of the inorganic fine particles was measured with an Abbe refractometer (manufactured by Atago Co., Ltd.).

また、平均粒径が低屈折率層の厚みの25%未満である無機微粒子(以下「小サイズ無機微粒子」と称す)の少なくとも1種を前記の好ましい範囲内の粒径の無機微粒子(以下「大サイズ無機微粒子」と称す)と併用してもよい。
小サイズ無機微粒子は、大サイズ無機微粒子同士の隙間に存在することができるため、大サイズ無機微粒子の保持剤として寄与することができる。
小サイズ無機微粒子の平均粒径は、低屈折率層が100nmの場合、1nm以上20nm以下が好ましく、5nm以上15nm以下が更に好ましく、10nm以上15nm以下が特に好ましい。このような無機微粒子を用いると、原料コストおよび保持剤効果の点で好ましい。
上述のように前記無機微粒子としては、平均粒径が上述のように低屈折率層の厚みの30〜100%であり、中空構造からなり、屈折率が上述のように1.17〜1.40であるものが特に好ましく用いられる。
In addition, at least one kind of inorganic fine particles (hereinafter referred to as “small size inorganic fine particles”) having an average particle size of less than 25% of the thickness of the low refractive index layer is referred to as “inorganic fine particles (hereinafter referred to as“ small size inorganic fine particles ”). It may be used in combination with “large-size inorganic fine particles”.
Since the small-sized inorganic fine particles can be present in the gaps between the large-sized inorganic fine particles, they can contribute as a retaining agent for the large-sized inorganic fine particles.
When the low refractive index layer is 100 nm, the average particle size of the small-sized inorganic fine particles is preferably 1 nm to 20 nm, more preferably 5 nm to 15 nm, and particularly preferably 10 nm to 15 nm. Use of such inorganic fine particles is preferable in terms of raw material costs and a retaining agent effect.
As described above, the inorganic fine particles have an average particle size of 30 to 100% of the thickness of the low refractive index layer as described above, have a hollow structure, and have a refractive index of 1.17 to 1. What is 40 is used especially preferably.

無機微粒子は、分散液中あるいは塗布液中で、分散安定化を図るために、あるいはバインダー成分との親和性、結合性を高めるために、プラズマ放電処理やコロナ放電処理のような物理的表面処理、界面活性剤やカップリング剤等による化学的表面処理がなされていても良い。中でもカップリング剤の使用が特に好ましい。カップリング剤としては、アルコキシメタル化合物(例、チタンカップリング剤、シランカップリング剤)が好ましく用いられる。なかでも、シランカップリング処理が特に有効である。
前記カップリング剤は、低屈折率層の無機微粒子の表面処理剤として該層塗布液調製以前にあらかじめ表面処理を施すために用いられるが、該層塗布液調製時にさらに添加剤として添加して該層に含有させることが好ましい。
無機微粒子は、表面処理前に、媒体中に予め分散されていることが、表面処理の負荷軽減のために好ましい。
Inorganic fine particles are treated with physical surface treatment such as plasma discharge treatment or corona discharge treatment in order to stabilize dispersion in the dispersion or coating solution, or to improve the affinity and binding properties with the binder component. Further, chemical surface treatment with a surfactant, a coupling agent or the like may be performed. Of these, the use of a coupling agent is particularly preferred. As the coupling agent, an alkoxy metal compound (eg, titanium coupling agent, silane coupling agent) is preferably used. Among these, silane coupling treatment is particularly effective.
The coupling agent is used as a surface treatment agent for the inorganic fine particles of the low refractive index layer in advance for surface treatment prior to the preparation of the layer coating solution, and is further added as an additive during preparation of the layer coating solution. It is preferable to make it contain in a layer.
The inorganic fine particles are preferably dispersed in the medium in advance before the surface treatment in order to reduce the load of the surface treatment.

次に、(C)オルガノシラン化合物について説明する。
<オルガノシラン化合物>
前記硬化性組成物には、オルガノシラン化合物の加水分解物および/またはその部分縮合物等(以下、得られた反応溶液を「ゾル成分」とも称する)を含有させることが、耐擦傷性の点で、特に反射防止能と耐擦傷性とを両立させる点で、好ましい。
このゾル成分は、前記硬化性組成物を塗布後、乾燥、加熱工程で縮合して硬化物を形成することにより低屈折率層のバインダーとして機能する。また、本発明においては、前記含フッ素ポリマーを有するので、活性光線の照射により3次元構造を有するバインダーが形成される。
前記オルガノシラン化合物は、下記一般式[A]で表されるものが好ましい。
一般式[A]
(R10m−Si(X)4-m
前記一般式[A]において、R10は置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基を表す。アルキル基としてはメチル、エチル、プロピル、イソプロピル、ヘキシル、デシル、ヘキサデシル等が挙げられる。アルキル基として好ましくは炭素数1〜30、より好ましくは炭素数1〜16、特に好ましくは1〜6のものである。アリール基としてはフェニル、ナフチル等が挙げられ、好ましくはフェニル基である。
Xは、水酸基または加水分解可能な基を表し、例えばアルコキシ基(炭素数1〜5のアルコキシ基が好ましい。例えばメトキシ基、エトキシ基等が挙げられる)、ハロゲン原子(例えばCl、Br、I等)、及びR2COO(R2は水素原子または炭素数1〜5のアルキル基が好ましい。例えばCH3COO、C25COO等が挙げられる)で表される基が挙げられ、好ましくはアルコキシ基であり、特に好ましくはメトキシ基またはエトキシ基である。
mは1〜3の整数を表し、好ましくは1または2であり、特に好ましくは1である。
Next, (C) the organosilane compound will be described.
<Organosilane compound>
When the curable composition contains a hydrolyzate of an organosilane compound and / or a partial condensate thereof (hereinafter, the obtained reaction solution is also referred to as “sol component”), the scratch resistance is improved. In particular, it is preferable in terms of achieving both the antireflection ability and the scratch resistance.
This sol component functions as a binder for the low refractive index layer by applying the curable composition and then condensing in a drying and heating process to form a cured product. Moreover, in this invention, since it has the said fluorine-containing polymer, the binder which has a three-dimensional structure is formed by irradiation of actinic light.
The organosilane compound is preferably represented by the following general formula [A].
Formula [A]
(R 10 ) m -Si (X) 4-m
In the general formula [A], R 10 represents a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group. Examples of the alkyl group include methyl, ethyl, propyl, isopropyl, hexyl, decyl, hexadecyl and the like. The alkyl group preferably has 1 to 30 carbon atoms, more preferably 1 to 16 carbon atoms, and particularly preferably 1 to 6 carbon atoms. Examples of the aryl group include phenyl and naphthyl, and a phenyl group is preferable.
X represents a hydroxyl group or a hydrolyzable group, for example, an alkoxy group (preferably an alkoxy group having 1 to 5 carbon atoms, such as a methoxy group or an ethoxy group), a halogen atom (for example, Cl, Br, I or the like). ), And R 2 COO (R 2 is preferably a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, such as CH 3 COO, C 2 H 5 COO, etc.), preferably An alkoxy group, particularly preferably a methoxy group or an ethoxy group.
m represents an integer of 1 to 3, preferably 1 or 2, and particularly preferably 1.

10あるいはXが複数存在するとき、複数のR10あるいはXはそれぞれ同じであっても異なっていても良い。
10に含まれる置換基としては特に制限はないが、ハロゲン原子(フッ素、塩素、臭素等)、水酸基、メルカプト基、カルボキシル基、エポキシ基、アルキル基(メチル、エチル、i−プロピル、プロピル、t−ブチル等)、アリール基(フェニル、ナフチル等)、芳香族ヘテロ環基(フリル、ピラゾリル、ピリジル等)、アルコキシ基(メトキシ、エトキシ、i−プロポキシ、ヘキシルオキシ等)、アリールオキシ(フェノキシ等)、アルキルチオ基(メチルチオ、エチルチオ等)、アリールチオ基(フェニルチオ等)、アルケニル基(ビニル、1−プロペニル等)、アシルオキシ基(アセトキシ、アクリロイルオキシ、メタクリロイルオキシ等)、アルコキシカルボニル基(メトキシカルボニル、エトキシカルボニル等)、アリールオキシカルボニル基(フェノキシカルボニル等)、カルバモイル基(カルバモイル、N−メチルカルバモイル、N,N−ジメチルカルバモイル、N−メチル−N−オクチルカルバモイル等)、アシルアミノ基(アセチルアミノ、ベンゾイルアミノ、アクリルアミノ、メタクリルアミノ等)等が挙げられ、これら置換基は更に置換されていても良い。
When R 10 or X there are a plurality, a plurality of R 10 or X groups may be different, even the same, respectively.
The substituent contained in R 10 is not particularly limited, but a halogen atom (fluorine, chlorine, bromine, etc.), hydroxyl group, mercapto group, carboxyl group, epoxy group, alkyl group (methyl, ethyl, i-propyl, propyl, t-butyl etc.), aryl groups (phenyl, naphthyl etc.), aromatic heterocyclic groups (furyl, pyrazolyl, pyridyl etc.), alkoxy groups (methoxy, ethoxy, i-propoxy, hexyloxy etc.), aryloxy (phenoxy etc.) ), Alkylthio groups (methylthio, ethylthio, etc.), arylthio groups (phenylthio, etc.), alkenyl groups (vinyl, 1-propenyl, etc.), acyloxy groups (acetoxy, acryloyloxy, methacryloyloxy, etc.), alkoxycarbonyl groups (methoxycarbonyl, ethoxy) Carbonyl, etc.), aryloxy Carbonyl groups (phenoxycarbonyl, etc.), carbamoyl groups (carbamoyl, N-methylcarbamoyl, N, N-dimethylcarbamoyl, N-methyl-N-octylcarbamoyl, etc.), acylamino groups (acetylamino, benzoylamino, acrylicamino, methacrylamino) Etc.), and these substituents may be further substituted.

10が複数ある場合は、少なくとも一つが置換アルキル基もしくは置換アリール基であることが好ましい。
前記一般式[A]で表されるオルガノシラン化合物の中でも、下記一般式[B]で表されるビニル重合性の置換基を有するオルガノシラン化合物が好ましい。
When there are a plurality of R 10 s , at least one of them is preferably a substituted alkyl group or a substituted aryl group.
Among the organosilane compounds represented by the general formula [A], an organosilane compound having a vinyl polymerizable substituent represented by the following general formula [B] is preferable.

Figure 2005148623
Figure 2005148623

前記一般式[B]において、R1は水素原子、メチル基、メトキシ基、アルコキシカルボニル基、シアノ基、フッ素原子、または塩素原子を表す。アルコキシカルボニル基としては、メトキシカルボニル基、エトキシカルボニル基などが挙げられる。水素原子、メチル基、メトキシ基、メトキシカルボニル基、シアノ基、フッ素原子、および塩素原子が好ましく、水素原子、メチル基、メトキシカルボニル基、フッ素原子、および塩素原子が更に好ましく、水素原子およびメチル基が特に好ましい。
Yは単結合もしくは *−COO−** ,*−CONH−** 又は *−O−** を表し、単結合、*−COO−** および *−CONH−** が好ましく、単結合および *−COO−** が更に好ましく、*−COO−** が特に好ましい。* は=C(R1)−に結合する位置を、** はLに結合する位置を表す。
In the general formula [B], R 1 represents a hydrogen atom, a methyl group, a methoxy group, an alkoxycarbonyl group, a cyano group, a fluorine atom, or a chlorine atom. Examples of the alkoxycarbonyl group include a methoxycarbonyl group and an ethoxycarbonyl group. A hydrogen atom, a methyl group, a methoxy group, a methoxycarbonyl group, a cyano group, a fluorine atom and a chlorine atom are preferred, a hydrogen atom, a methyl group, a methoxycarbonyl group, a fluorine atom and a chlorine atom are more preferred, and a hydrogen atom and a methyl group Is particularly preferred.
Y represents a single bond or * -COO-**, * -CONH-** or * -O-**, preferably a single bond, * -COO-** or * -CONH-**, * -COO-** is more preferable, and * -COO-** is particularly preferable. * Represents a position bonded to ═C (R 1 ) —, and ** represents a position bonded to L.

Lは2価の連結鎖を表す。具体的には、置換もしくは無置換のアルキレン基、置換もしくは無置換のアリーレン基、内部に連結基(例えば、エーテル、エステル、アミドなど)を有する置換もしくは無置換のアルキレン基、内部に連結基を有する置換もしくは無置換のアリーレン基が挙げられ、置換もしくは無置換のアルキレン基、置換もしくは無置換のアリーレン基、内部に連結基を有するアルキレン基が好ましく、無置換のアルキレン基、無置換のアリーレン基、内部にエーテルあるいはエステル連結基を有するアルキレン基が更に好ましく、無置換のアルキレン基、内部にエーテルあるいはエステル連結基を有するアルキレン基が特に好ましい。置換基は、ハロゲン、水酸基、メルカプト基、カルボキシル基、エポキシ基、アルキル基、アリール基等が挙げられ、これら置換基は更に置換されていても良い。   L represents a divalent linking chain. Specifically, a substituted or unsubstituted alkylene group, a substituted or unsubstituted arylene group, a substituted or unsubstituted alkylene group having a linking group (for example, ether, ester, amide, etc.) inside, and a linking group inside. A substituted or unsubstituted arylene group, a substituted or unsubstituted alkylene group, a substituted or unsubstituted arylene group, an alkylene group having a linking group therein is preferred, an unsubstituted alkylene group, an unsubstituted arylene group Further, an alkylene group having an ether or ester linking group inside is more preferable, an unsubstituted alkylene group, and an alkylene group having an ether or ester linking group inside is particularly preferable. Examples of the substituent include a halogen, a hydroxyl group, a mercapto group, a carboxyl group, an epoxy group, an alkyl group, and an aryl group, and these substituents may be further substituted.

nは0または1を表す。Xが複数存在するとき、複数のXはそれぞれ同じであっても異なっていても良い。nとして好ましくは0である。
10は一般式[A]と同義であり、置換もしくは無置換のアルキル基、無置換のアリール基が好ましく、無置換のアルキル基、無置換のアリール基が更に好ましい。
Xは一般式[A]と同義であり、ハロゲン原子、水酸基、無置換のアルコキシ基が好ましく、塩素原子、水酸基、無置換の炭素数1〜6のアルコキシ基が更に好ましく、水酸基、炭素数1〜3のアルコキシ基が更に好ましく、メトキシ基が特に好ましい。
n represents 0 or 1. When there are a plurality of Xs, the plurality of Xs may be the same or different. n is preferably 0.
R 10 has the same meaning as in formula [A], preferably a substituted or unsubstituted alkyl group or an unsubstituted aryl group, and more preferably an unsubstituted alkyl group or an unsubstituted aryl group.
X has the same meaning as in the general formula [A], preferably a halogen atom, a hydroxyl group or an unsubstituted alkoxy group, more preferably a chlorine atom, a hydroxyl group or an unsubstituted alkoxy group having 1 to 6 carbon atoms, a hydroxyl group or a carbon number of 1 -3 alkoxy groups are more preferred, and methoxy groups are particularly preferred.

一般式[A]、一般式[B]の化合物は2種類以上を併用しても良い。以下に一般式[A]、一般式[B]で表される化合物の具体例を示すが、限定されるものではない。   Two or more compounds of the general formula [A] and general formula [B] may be used in combination. Although the specific example of a compound represented by general formula [A] and general formula [B] is shown below, it is not limited.

Figure 2005148623
Figure 2005148623

Figure 2005148623
Figure 2005148623

これらのうち、(M−1)、(M−2)、および(M−5)が特に好ましい。   Of these, (M-1), (M-2), and (M-5) are particularly preferable.

そして、前記オルガノシラン化合物の加水分解物および/または部分縮合物は、一般に前記オルガノシラン化合物を触媒の存在下で処理して製造されるものである。触媒としては、塩酸、硫酸、硝酸等の無機酸類;シュウ酸、酢酸、ギ酸、メタンスルホン酸、トルエンスルホン酸等の有機酸類;水酸化ナトリウム、水酸化カリウム、アンモニア等の無機塩基類;トリエチルアミン、ピリジン等の有機塩基類;トリイソプロポキシアルミニウム、テトラブトキシジルコニウム等の金属アルコキシド類;Zr、Ti又はAlなどの金属を中心金属とする金属キレート化合物等が挙げられる。本発明においては、無機酸類及び有機酸類の酸触媒を用いるのが好ましい。中でも、無機酸では塩酸、硫酸が好ましく、有機酸では、水中での酸解離定数(pKa値(25℃))が4.5以下のものが好ましく、更には、塩酸、硫酸、水中での酸解離定数が3.0以下の有機酸が好ましく、特に、塩酸、硫酸、水中での酸解離定数が2.5以下の有機酸が好ましく、水中での酸解離定数が2.5以下の有機酸が更に好ましく、具体的には、メタンスルホン酸、シュウ酸、フタル酸、マロン酸が更に好ましく、シュウ酸が特に好ましい。   The hydrolyzate and / or partial condensate of the organosilane compound is generally produced by treating the organosilane compound in the presence of a catalyst. Catalysts include inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid; organic acids such as oxalic acid, acetic acid, formic acid, methanesulfonic acid and toluenesulfonic acid; inorganic bases such as sodium hydroxide, potassium hydroxide and ammonia; triethylamine, Examples thereof include organic bases such as pyridine; metal alkoxides such as triisopropoxyaluminum and tetrabutoxyzirconium; metal chelate compounds having a metal such as Zr, Ti or Al as a central metal. In the present invention, it is preferable to use acid catalysts of inorganic acids and organic acids. Of these, hydrochloric acid and sulfuric acid are preferable for inorganic acids, and acid dissociation constants (pKa value (25 ° C.)) in water are preferably 4.5 or less for organic acids. Furthermore, hydrochloric acid, sulfuric acid, and acids in water are preferable. An organic acid having a dissociation constant of 3.0 or less is preferable, particularly an organic acid having an acid dissociation constant of 2.5 or less in hydrochloric acid, sulfuric acid or water, and an organic acid having an acid dissociation constant of 2.5 or less in water. More specifically, methanesulfonic acid, oxalic acid, phthalic acid, and malonic acid are more preferable, and oxalic acid is particularly preferable.

また、本発明においては、前記硬化性組成物に、更にβ−ジケトン化合物および/またはβ−ケトエステル化合物が添加されることが好ましい。以下にさらに説明する。   In the present invention, it is preferable that a β-diketone compound and / or a β-ketoester compound is further added to the curable composition. This will be further described below.

本発明で使用されるのは、一般式R4COCH2COR5で表されるβ−ジケトン化合物および/またはβ−ケトエステル化合物であり、本発明に用いられる硬化性組成物の安定性向上剤として作用するものである。ここで、R4は炭素数1〜10のアルキル基、R5は炭素数1〜10のアルキル基または炭素数1〜10のアルコキシ基を表す。すなわち、前記金属キレート化合物(ジルコニウム、チタニウムおよび/またはアルミニウム化合物)中の金属原子に配位することにより、これらの金属キレート化合物によるオルガノシラン化合物の加水分解物および/または部分縮合物の縮合反応を促進する作用を抑制し、得られる組成物の保存安定性を向上させる作用をなすものと考えられる。β−ジケトン化合物および/またはβ−ケトエステル化合物を構成するR4およびR5は、前記金属キレート化合物を構成するR4およびR5と同様である。 The β-diketone compound and / or β-ketoester compound represented by the general formula R 4 COCH 2 COR 5 is used in the present invention, and is used as a stability improver for the curable composition used in the present invention. It works. Here, R 4 represents an alkyl group having 1 to 10 carbon atoms, and R 5 represents an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms. That is, by coordinating with a metal atom in the metal chelate compound (zirconium, titanium and / or aluminum compound), the condensation reaction of the hydrolyzate and / or partial condensate of the organosilane compound by these metal chelate compounds is performed. It is considered that the promoting action is suppressed and the storage stability of the resulting composition is improved. R 4 and R 5 constituting the β- diketone compound and / or β- ketoester compound are the same as R 4 and R 5 constituting the metal chelate compound.

このβ−ジケトン化合物および/またはβ−ケトエステル化合物の具体例としては、アセチルアセトン、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸−n−プロピル、アセト酢酸−i−プロピル、アセト酢酸−n−ブチル、アセト酢酸−sec−ブチル、アセト酢酸−t−ブチル、2,4−ヘキサン−ジオン、2,4−ヘプタン−ジオン、3,5−ヘプタン−ジオン、2,4−オクタン−ジオン、2,4−ノナン−ジオン、5−メチル−ヘキサン−ジオンなどを挙げることができる。これらのうち、アセト酢酸エチルおよびアセチルアセトンが好ましく、特にアセチルアセトンが好ましい。これらのβ−ジケトン化合物および/またはβ−ケトエステル化合物は、1種単独でまたは2種以上を混合して使用することもできる。本発明においてβ−ジケトン化合物および/またはβ−ケトエステル化合物は、金属キレート化合物1モルに対し好ましくは2モル以上、より好ましくは3〜20モル用いられる。2モル未満では得られる組成物の保存安定性に劣るおそれがあり好ましいものではない。   Specific examples of the β-diketone compound and / or β-ketoester compound include acetylacetone, methyl acetoacetate, ethyl acetoacetate, acetoacetate-n-propyl, acetoacetate-i-propyl, acetoacetate-n-butyl, acetoacetate. Acetic acid-sec-butyl, acetoacetic acid-t-butyl, 2,4-hexane-dione, 2,4-heptane-dione, 3,5-heptane-dione, 2,4-octane-dione, 2,4-nonane -Dione, 5-methyl-hexane-dione and the like can be mentioned. Of these, ethyl acetoacetate and acetylacetone are preferred, and acetylacetone is particularly preferred. These β-diketone compounds and / or β-ketoester compounds may be used alone or in combination of two or more. In the present invention, the β-diketone compound and / or β-ketoester compound is preferably used in an amount of 2 mol or more, more preferably 3 to 20 mol, per 1 mol of the metal chelate compound. If it is less than 2 mol, the storage stability of the resulting composition may be inferior, which is not preferable.

前記オルガノシラン化合物の配合量は、低屈折率層の全固形分の0.1〜50質量%が好ましく、0.5〜20質量%がより好ましく、1〜10質量%が最も好ましい。
前記オルガノシラン化合物は硬化性組成物(光散乱層用、低屈折率層用等の塗布液)に直接添加してもよいが、前記オルガノシラン化合物をあらかじめ触媒の存在下に処理して前記オルガノシラン化合物の加水分解物および/または部分縮合物を調製し、得られた反応溶液(ゾル液)を用いて前記硬化性組成物を調整するのが好ましく、本発明においてはまず前記オルガノシラン化合物の加水分解物および/または部分縮合物および金属キレート化合物を含有する組成物を調製し、これにβ−ジケトン化合物および/またはβ−ケトエステル化合物を添加した液を光散乱層もしくは低屈折率層の少なくとも1層の塗布液に含有せしめて塗設することが好ましい。
The compounding amount of the organosilane compound is preferably 0.1 to 50% by mass, more preferably 0.5 to 20% by mass, and most preferably 1 to 10% by mass based on the total solid content of the low refractive index layer.
The organosilane compound may be added directly to the curable composition (coating liquid for light scattering layer, low refractive index layer, etc.), but the organosilane compound is treated in the presence of a catalyst in advance. It is preferable to prepare a hydrolyzate and / or partial condensate of a silane compound and prepare the curable composition using the obtained reaction solution (sol solution). In the present invention, first, the organosilane compound A composition containing a hydrolyzate and / or a partial condensate and a metal chelate compound is prepared, and a liquid obtained by adding a β-diketone compound and / or a β-ketoester compound thereto is added to at least a light scattering layer or a low refractive index layer. It is preferable to coat it in a single layer coating solution.

低屈折率層における、含フッ素ポリマーに対するオルガノシランのゾル成分の使用量は、5〜100質量%が好ましく、5〜40質量%がより好ましく、8〜35質量%が更に好ましく、10〜30質量%が特に好ましい。使用量が少ないと本発明の効果が得にくく、使用量が多すぎると屈折率が増加したり、膜の形状・面状が悪化したりするので好ましくない。   5-100 mass% is preferable, the usage-amount of the sol component of the organosilane with respect to a fluorine-containing polymer in a low refractive index layer has more preferable 5-40 mass%, 8-35 mass% is still more preferable, 10-30 mass % Is particularly preferred. If the amount used is small, it is difficult to obtain the effect of the present invention, and if the amount used is too large, the refractive index increases or the shape / surface shape of the film deteriorates.

前記硬化性組成物には、上述した無機微粒子以外の無機フィラーを本発明の所望の効果を損なわない範囲の添加量で添加することもできる。無機フィラーの詳細については後述する。   An inorganic filler other than the above-described inorganic fine particles can be added to the curable composition in an addition amount within a range that does not impair the desired effect of the present invention. Details of the inorganic filler will be described later.

[硬化性組成物に含有するその他の物質]
前記硬化性組成物は、前述の(A)含フッ素ポリマー、(B)無機微粒子及び(C)オルガノシラン化合物に、必要に応じて各種添加剤およびラジカル重合開始剤、カチオン重合開始剤を添加し、更にこれらを適当な溶剤に溶解して作製される。この際固形分の濃度は、用途に応じて適宜選択されるが一般的には0.01〜60質量%程度であり、好ましくは0.5〜50質量%、特に好ましくは1%〜20質量%程度である。
[Other substances contained in the curable composition]
The curable composition is prepared by adding various additives, a radical polymerization initiator, and a cationic polymerization initiator to the (A) fluorine-containing polymer, (B) inorganic fine particles, and (C) the organosilane compound as necessary. Further, they are prepared by dissolving them in a suitable solvent. At this time, the concentration of the solid content is appropriately selected according to the use, but is generally about 0.01 to 60% by mass, preferably 0.5 to 50% by mass, particularly preferably 1% to 20% by mass. %.

低屈折率層と直接接する下層との界面密着性等の観点からは、多官能(メタ)アクリレート化合物、多官能エポキシ化合物、ポリイソシアネート化合物、アミノプラスト、多塩基酸またはその無水物等の硬化剤を少量添加することもできる。これらを添加する場合には低屈折率層皮膜の全固形分に対して30質量%以下の範囲とすることが好ましく、20質量%以下の範囲とすることがより好ましく、10質量%以下の範囲とすることが特に好ましい。   Curing agents such as polyfunctional (meth) acrylate compounds, polyfunctional epoxy compounds, polyisocyanate compounds, aminoplasts, polybasic acids or anhydrides thereof from the viewpoint of interfacial adhesion with the lower layer directly in contact with the low refractive index layer Can also be added in small amounts. When adding these, it is preferable to set it as the range of 30 mass% or less with respect to the total solid of a low-refractive-index layer film, It is more preferable to set it as the range of 20 mass% or less, The range of 10 mass% or less It is particularly preferable that

また、防汚性、耐水性、耐薬品性、滑り性等の特性を付与する目的で、公知のシリコーン系化合物あるいはフッ素系化合物の防汚剤、滑り剤等を適宜添加することもできる。これらの添加剤を添加する場合には低屈折率層全固形分の0.01〜20質量%の範囲で添加されることが好ましく、より好ましくは0.05〜10質量%の範囲で添加される場合であり、特に好ましくは0.1〜5質量%の場合である。   In addition, for the purpose of imparting properties such as antifouling properties, water resistance, chemical resistance, and slipping properties, a known silicone compound or fluorine compound antifouling agent, slipping agent, and the like may be appropriately added. When these additives are added, it is preferably added in the range of 0.01 to 20% by mass of the total solid content of the low refractive index layer, more preferably in the range of 0.05 to 10% by mass. Particularly preferred is 0.1 to 5% by mass.

シリコーン系化合物の好ましい例としてはジメチルシリルオキシ単位を繰り返し単位として複数個含む化合物鎖の末端および/または側鎖に置換基を有するものが挙げられる。ジメチルシリルオキシを繰り返し単位として含む化合物鎖中にはジメチルシリルオキシ以外の構造単位を含んでもよい。置換基は同一であっても異なっていても良く、複数個あることが好ましい。好ましい置換基の例としてはアクリロイル基、メタクリロイル基、ビニル基、アリール基、シンナモイル基、エポキシ基、オキセタニル基、水酸基、フルオロアルキル基、ポリオキシアルキレン基、カルボキシル基、アミノ基などを含む基が挙げられる。分子量に特に制限はないが、10万以下であることが好ましく、5万以下であることが特に好ましく、3000〜30000であることが最も好ましい。シリコーン系化合物のシリコーン原子含有量には特に制限はないが18.0質量%以上であることが好ましく、25.0〜37.8質量%であることが特に好ましく、30.0〜37.0質量%であることが最も好ましい。好ましいシリコーン系化合物の例としては信越化学(株)製、X-22-174DX、X-22-2426、X-22-164B、X22-164C、X-22-170DX、X-22-176D、X-22-1821(以上商品名)やチッソ(株)製、FM-0725、FM-7725、DMS-U22、RMS-033、RMS-083、UMS-182(以上商品名)などが挙げられるがこれらに限定されるものではない。   Preferable examples of the silicone compound include those having a substituent at the terminal and / or side chain of a compound chain containing a plurality of dimethylsilyloxy units as repeating units. The compound chain containing dimethylsilyloxy as a repeating unit may contain a structural unit other than dimethylsilyloxy. The substituents may be the same or different, and a plurality of substituents are preferable. Examples of preferred substituents include acryloyl group, methacryloyl group, vinyl group, aryl group, cinnamoyl group, epoxy group, oxetanyl group, hydroxyl group, fluoroalkyl group, polyoxyalkylene group, carboxyl group, amino group and the like. It is done. Although there is no restriction | limiting in particular in molecular weight, It is preferable that it is 100,000 or less, It is especially preferable that it is 50,000 or less, It is most preferable that it is 3000-30000. Although there is no restriction | limiting in particular in silicone atom content of a silicone type compound, it is preferable that it is 18.0 mass% or more, it is especially preferable that it is 25.0-37.8 mass%, and 30.0-37.0. Most preferably, it is mass%. Examples of preferable silicone compounds include X-22-174DX, X-22-2426, X-22-164B, X22-164C, X-22-170DX, X-22-176D, X, manufactured by Shin-Etsu Chemical Co., Ltd. -22-1821 (named above), Chisso Corporation, FM-0725, FM-7725, DMS-U22, RMS-033, RMS-083, UMS-182 (named above), etc. It is not limited to.

フッ素系化合物としては、フルオロアルキル基を有する化合物が好ましい。該フルオロアルキル基は炭素数1〜20であることが好ましく、より好ましくは1〜10であり、直鎖(例えば-CF2CF3, -CH2(CF2)4H, -CH2(CF2)8CF3, -CH2CH2(CF2)4H 等)であっても、分岐構造(例えばCH(CF3)2, CH2CF(CF3)2, CH(CH3)CF2CF3, CH(CH3)(CF2)5CF2H 等)であっても、脂環式構造(好ましくは5員環または6員環、例えばパーフルオロシクロへキシル基、パーフルオロシクロペンチル基またはこれらで置換されたアルキル基等)であっても良く、エーテル結合を有していても良い(例えばCH2OCH2CF2CF3, CH2CH2OCH2C4F8H, CH2CH2OCH2CH2C8F17, CH2CH2OCF2CF2OCF2CF2H 等)。該フルオロアルキル基は同一分子中に複数含まれていてもよい。
フッ素系化合物は、さらに低屈折率層皮膜との結合形成あるいは相溶性に寄与する置換基を有していることが好ましい。該置換基は同一であっても異なっていても良く、複数個あることが好ましい。好ましい置換基の例としてはアクリロイル基、メタクリロイル基、ビニル基、アリール基、シンナモイル基、エポキシ基、オキセタニル基、水酸基、ポリオキシアルキレン基、カルボキシル基、アミノ基などが挙げられる。フッ素系化合物はフッ素原子を含まない化合物とのポリマーであってもオリゴマーであってもよく、分子量に特に制限はない。フッ素系化合物のフッ素原子含有量には特に制限は無いが20質量%以上であることが好ましく、30〜70質量%であることが特に好ましく、40〜70質量%であることが最も好ましい。好ましいフッ素系化合物の例としてはダイキン化学工業(株)製、R-2020、M-2020、R-3833、M-3833(以上商品名)、大日本インキ(株)製、メガファックF-171、F-172、F-179A、ディフェンサMCF-300(以上商品名)などが挙げられるがこれらに限定されるものではない。
As the fluorine compound, a compound having a fluoroalkyl group is preferable. The fluoroalkyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, and a straight chain (for example, —CF 2 CF 3 , —CH 2 (CF 2 ) 4 H, —CH 2 (CF 2 ) 8 CF 3 , -CH 2 CH 2 (CF 2 ) 4 H, etc.), even branched structures (eg CH (CF 3 ) 2 , CH 2 CF (CF 3 ) 2 , CH (CH 3 ) CF 2 CF 3 , CH (CH 3 ) (CF 2 ) 5 CF 2 H, etc.), but also alicyclic structures (preferably 5-membered or 6-membered rings such as perfluorocyclohexyl groups, perfluorocyclopentyl, etc. Group or an alkyl group substituted with these, and may have an ether bond (for example, CH 2 OCH 2 CF 2 CF 3 , CH 2 CH 2 OCH 2 C 4 F 8 H, CH 2 CH 2 OCH 2 CH 2 C 8 F 17 , CH 2 CH 2 OCF 2 CF 2 OCF 2 CF 2 H, etc.). A plurality of the fluoroalkyl groups may be contained in the same molecule.
It is preferable that the fluorine-based compound further has a substituent that contributes to bond formation or compatibility with the low refractive index layer film. The substituents may be the same or different, and a plurality of substituents are preferable. Examples of preferred substituents include acryloyl group, methacryloyl group, vinyl group, aryl group, cinnamoyl group, epoxy group, oxetanyl group, hydroxyl group, polyoxyalkylene group, carboxyl group, amino group and the like. The fluorine-based compound may be a polymer or an oligomer with a compound not containing a fluorine atom, and the molecular weight is not particularly limited. Although there is no restriction | limiting in particular in fluorine atom content of a fluorine-type compound, It is preferable that it is 20 mass% or more, It is especially preferable that it is 30-70 mass%, It is most preferable that it is 40-70 mass%. Examples of preferred fluorine-based compounds include Daikin Chemical Industries, R-2020, M-2020, R-3833, M-3833 (named above), Dainippon Ink, Megafac F-171. , F-172, F-179A, Defender MCF-300 (named above), but not limited thereto.

防塵性、帯電防止等の特性を付与する目的で、公知のカチオン系界面活性剤あるいはポリオキシアルキレン系化合物のような防塵剤、帯電防止剤等を適宜添加することもできる。これら防塵剤、帯電防止剤は前述したシリコーン系化合物やフッ素系化合物にその構造単位が機能の一部として含まれていてもよい。これらを添加剤として添加する場合には低n層全固形分の0.01〜20質量%の範囲で添加されることが好ましく、より好ましくは0.05〜10質量%の範囲で添加される場合であり、特に好ましくは0.1〜5質量%の場合である。好ましい化合物の例としては大日本インキ(株)製、メガファックF-150(商品名)、東レダウコーニング(株)製、SH-3748(商品名)などが挙げられるが、これらに限定されるわけではない。   For the purpose of imparting properties such as dust resistance and antistatic properties, a known cationic surfactant or a dustproof agent such as a polyoxyalkylene compound, an antistatic agent, or the like can be appropriately added. These dustproofing agent and antistatic agent may contain the structural unit as a part of the function in the above-mentioned silicone compound or fluorine compound. When these are added as additives, it is preferably added in the range of 0.01 to 20% by mass, more preferably in the range of 0.05 to 10% by mass of the total solid content of the low n layer. Particularly preferably 0.1 to 5% by mass. Examples of preferable compounds include, but are not limited to, Dainippon Ink Co., Ltd., MegaFuck F-150 (trade name), Toray Dow Corning Co., Ltd., SH-3748 (trade name), and the like. Do not mean.

次に、光散乱層について以下に説明する。
<光散乱層>
光散乱層は、表面散乱および/または内部散乱による光拡散性と、フィルムの耐擦傷性を向上するためのハードコート性をフィルムに寄与する目的で形成される。従って、ハードコート性を付与するため透光性樹脂、及び光拡散性を付与するための透光性粒子を必須成分とし、更に必要に応じて高屈折率化、架橋収縮防止、高強度化のための無機フィラーを含んでなる。
Next, the light scattering layer will be described below.
<Light scattering layer>
The light scattering layer is formed for the purpose of contributing to the film light diffusibility due to surface scattering and / or internal scattering and hard coat properties for improving the scratch resistance of the film. Therefore, a translucent resin for imparting hard coat properties, and translucent particles for imparting light diffusibility are essential components, and if necessary, higher refractive index, prevention of cross-linking shrinkage, higher strength can be achieved. For containing an inorganic filler.

光散乱層の膜厚は、ハードコート性を付与する目的で、1〜10μmが好ましく、1.2〜6μmがより好ましい。薄すぎるとハード性が不足し、厚すぎるとカールや脆性が悪化して加工適性が低下する場合があるので、前記範囲内とするのが好ましい。   The thickness of the light scattering layer is preferably 1 to 10 μm and more preferably 1.2 to 6 μm for the purpose of imparting hard coat properties. If it is too thin, the hard property is insufficient, and if it is too thick, curling and brittleness may be deteriorated and workability may be lowered.

前記透光性樹脂は、飽和炭化水素鎖またはポリエーテル鎖を主鎖として有するバインダーポリマーであることが好ましく、飽和炭化水素鎖を主鎖として有するバインダーポリマーであることがさらに好ましい。また、バインダーポリマーは架橋構造を有することが好ましい。
飽和炭化水素鎖を主鎖として有するバインダーポリマーとしては、エチレン性不飽和モノマーの重合体が好ましい。飽和炭化水素鎖を主鎖として有し、かつ架橋構造を有するバインダーポリマーとしては、二個以上のエチレン性不飽和基を有するモノマーの(共)重合体が好ましい。
バインダーポリマーを高屈折率にするには、このモノマーの構造中に芳香族環や、フッ素以外のハロゲン原子、硫黄原子、リン原子、及び窒素原子から選ばれた少なくとも1種の原子を含む高屈折率モノマーを選択することもできる。
The translucent resin is preferably a binder polymer having a saturated hydrocarbon chain or a polyether chain as a main chain, and more preferably a binder polymer having a saturated hydrocarbon chain as a main chain. The binder polymer preferably has a crosslinked structure.
As the binder polymer having a saturated hydrocarbon chain as a main chain, a polymer of an ethylenically unsaturated monomer is preferable. As the binder polymer having a saturated hydrocarbon chain as the main chain and having a crosslinked structure, a (co) polymer of monomers having two or more ethylenically unsaturated groups is preferable.
In order to increase the refractive index of the binder polymer, the monomer structure has a high refractive index including at least one atom selected from an aromatic ring, a halogen atom other than fluorine, a sulfur atom, a phosphorus atom, and a nitrogen atom. The rate monomer can also be selected.

二個以上のエチレン性不飽和基を有するモノマーとしては、多価アルコールと(メタ)アクリル酸とのエステル〔例えば、エチレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、1,4−シクロヘキサンジアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、1,2,3−シクロヘキサンテトラメタクリレート、ポリウレタンポリアクリレート、ポリエステルポリアクリレート〕、前記のエステルのエチレンオキサイド変性体、ビニルベンゼンおよびその誘導体〔例、1,4−ジビニルベンゼン、4−ビニル安息香酸−2−アクリロイルエチルエステル、1,4−ジビニルシクロヘキサノン〕、ビニルスルホン(例、ジビニルスルホン)、アクリルアミド(例、メチレンビスアクリルアミド)およびメタクリルアミドが挙げられる。前記モノマーは2種以上併用してもよい。   Examples of the monomer having two or more ethylenically unsaturated groups include esters of polyhydric alcohol and (meth) acrylic acid [for example, ethylene glycol di (meth) acrylate, butanediol di (meth) acrylate, hexanediol di ( (Meth) acrylate, 1,4-cyclohexanediacrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate, dipentaerythritol tetra (Meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, pentaerythritol hexa (meth) acrylate, 1,2,3- Chlorohexane tetramethacrylate, polyurethane polyacrylate, polyester polyacrylate], modified ethylene oxide of the above ester, vinylbenzene and derivatives thereof (eg, 1,4-divinylbenzene, 4-vinylbenzoic acid-2-acryloylethyl ester, 1,4-divinylcyclohexanone], vinylsulfone (eg, divinylsulfone), acrylamide (eg, methylenebisacrylamide) and methacrylamide. Two or more of these monomers may be used in combination.

高屈折率モノマーの具体例としては、ビス(4−メタクリロイルチオフェニル)スルフィド、ビニルナフタレン、ビニルフェニルスルフィド、4−メタクリロキシフェニル−4'−メトキシフェニルチオエーテル等が挙げられる。これらのモノマーも2種以上併用してもよい。   Specific examples of the high refractive index monomer include bis (4-methacryloylthiophenyl) sulfide, vinyl naphthalene, vinyl phenyl sulfide, 4-methacryloxyphenyl-4′-methoxyphenyl thioether, and the like. Two or more of these monomers may be used in combination.

これらのエチレン性不飽和基を有するモノマーの重合は、光ラジカル開始剤あるいは熱ラジカル開始剤の存在下、電離放射線の照射または加熱により行うことができる。
従って、前記光散乱層は、上述のエチレン性不飽和モノマー等の透光性樹脂形成用のモノマー、光ラジカル開始剤あるいは熱ラジカル開始剤、透光性粒子および必要に応じて無機フィラーを含有する塗液を調製し、該塗液を透明支持体上に塗布後電離放射線または熱による重合反応により硬化させることにより形成することができる。
Polymerization of these monomers having an ethylenically unsaturated group can be carried out by irradiation with ionizing radiation or heating in the presence of a photo radical initiator or a thermal radical initiator.
Therefore, the light-scattering layer contains a monomer for forming a light-transmitting resin such as the above-mentioned ethylenically unsaturated monomer, a photo radical initiator or a heat radical initiator, light-transmitting particles, and an inorganic filler as necessary. It can be formed by preparing a coating liquid and curing the coating liquid on a transparent support by ionizing radiation or a polymerization reaction with heat.

光ラジカル(重合)開始剤としては、アセトフェノン類、ベンゾイン類、ベンゾフェノン類、ホスフィンオキシド類、ケタール類、アントラキノン類、チオキサントン類、アゾ化合物、過酸化物類、2,3−ジアルキルジオン化合物類、ジスルフィド化合物類、フルオロアミン化合物類や芳香族スルホニウム類が挙げられる。アセトフェノン類の例には、2,2−ジエトキシアセトフェノン、p−ジメチルアセトフェノン、1−ヒドロキシジメチルフェニルケトン、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−4−メチルチオ−2−モルフォリノプロピオフェノンおよび2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノンが含まれる。ベンゾイン類の例には、ベンゾインベンゼンスルホン酸エステル、ベンゾイントルエンスルホン酸エステル、ベンゾインメチルエーテル、ベンゾインエチルエーテルおよびベンゾインイソプロピルエーテルが含まれる。ベンゾフェノン類の例には、ベンゾフェノン、2,4−ジクロロベンゾフェノン、4,4−ジクロロベンゾフェノンおよびp−クロロベンゾフェノンが含まれる。ホスフィンオキシド類の例には、2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキシドが含まれる。
最新UV硬化技術(p.159,発行人;高薄一弘,発行所;(株)技術情報協会,1991年発行)にも種々の例が記載されており本発明に有用である。
市販の光開裂型の光ラジカル(重合)開始剤としては、日本チバガイギー(株)製のイルガキュア(651,184,907)等が好ましい例として挙げられる。
光ラジカル(重合)開始剤は、多官能モノマー100質量部に対して、0.1〜15質量部の範囲で使用することが好ましく、より好ましくは1〜10質量部の範囲である。
光ラジカル(重合)開始剤に加えて、光増感剤を用いてもよい。光増感剤の具体例として、n−ブチルアミン、トリエチルアミン、トリ−n−ブチルホスフィン、ミヒラーのケトンおよびチオキサントンを挙げることができる。
Photo radical (polymerization) initiators include acetophenones, benzoins, benzophenones, phosphine oxides, ketals, anthraquinones, thioxanthones, azo compounds, peroxides, 2,3-dialkyldione compounds, disulfides Examples include compounds, fluoroamine compounds and aromatic sulfoniums. Examples of acetophenones include 2,2-diethoxyacetophenone, p-dimethylacetophenone, 1-hydroxydimethylphenyl ketone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-4-methylthio-2-morpholinopropiophenone and 2 -Benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone is included. Examples of benzoins include benzoin benzene sulfonate, benzoin toluene sulfonate, benzoin methyl ether, benzoin ethyl ether and benzoin isopropyl ether. Examples of the benzophenones include benzophenone, 2,4-dichlorobenzophenone, 4,4-dichlorobenzophenone and p-chlorobenzophenone. Examples of phosphine oxides include 2,4,6-trimethylbenzoyldiphenylphosphine oxide.
Various examples are described in the latest UV curing technology (p.159, issuer; Kazuhiro Takashiro, publisher; Technical Information Association, Inc., published in 1991), and are useful for the present invention.
Preferable examples of commercially available photocleavable photoradical (polymerization) initiators include Irgacure (651, 184, 907) manufactured by Ciba Geigy Japan.
The photo radical (polymerization) initiator is preferably used in the range of 0.1 to 15 parts by mass, more preferably in the range of 1 to 10 parts by mass with respect to 100 parts by mass of the polyfunctional monomer.
In addition to the photoradical (polymerization) initiator, a photosensitizer may be used. Specific examples of the photosensitizer include n-butylamine, triethylamine, tri-n-butylphosphine, Michler's ketone and thioxanthone.

熱ラジカル開始剤としては、有機あるいは無機過酸化物、有機アゾ及びジアゾ化合物等を用いることができる。
具体的には、有機過酸化物として過酸化ベンゾイル、過酸化ハロゲンベンゾイル、過酸化ラウロイル、過酸化アセチル、過酸化ジブチル、クメンヒドロぺルオキシド、ブチルヒドロぺルオキシド、無機過酸化物として、過酸化水素、過硫酸アンモニウム、過硫酸カリウム等、アゾ化合物として2−アゾ−ビス−イソブチロニトリル、2−アゾ−ビス−プロピオニトリル、2−アゾ−ビス−シクロヘキサンジニトリル等、ジアゾ化合物としてジアゾアミノベンゼン、p−ニトロベンゼンジアゾニウム等を挙げることができる。
As the thermal radical initiator, organic or inorganic peroxides, organic azo, diazo compounds, and the like can be used.
Specifically, benzoyl peroxide, halogen benzoyl peroxide, lauroyl peroxide, acetyl peroxide, dibutyl peroxide, cumene hydroperoxide, butyl hydroperoxide as organic peroxides, hydrogen peroxide, peroxides as inorganic peroxides. Ammonium sulfate, potassium persulfate, etc., 2-azo-bis-isobutyronitrile, 2-azo-bis-propionitrile, 2-azo-bis-cyclohexanedinitrile, etc. as diazo compounds, diazoaminobenzene, p -Nitrobenzenediazonium etc. can be mentioned.

ポリエーテルを主鎖として有するポリマーは、多官能エポシキシ化合物の開環重合体が好ましい。多官能エポシキシ化合物の開環重合は、光酸発生剤あるいは熱酸発生剤の存在下、電離放射線の照射または加熱により行うことができる。
従って、多官能エポシキシ化合物、光酸発生剤あるいは熱酸発生剤、透光性粒子および無機フィラーを含有する塗液を調製し、該塗液を透明支持体上に塗布後電離放射線または熱による重合反応により硬化して光拡散層を形成することができる。
The polymer having a polyether as the main chain is preferably a ring-opening polymer of a polyfunctional epoxy compound. The ring-opening polymerization of the polyfunctional epoxy compound can be performed by irradiation with ionizing radiation or heating in the presence of a photoacid generator or a thermal acid generator.
Accordingly, a coating liquid containing a polyfunctional epoxy compound, a photoacid generator or a thermal acid generator, translucent particles and an inorganic filler is prepared, and the coating liquid is applied onto a transparent support and then polymerized by ionizing radiation or heat. It can be cured by reaction to form a light diffusion layer.

二個以上のエチレン性不飽和基を有するモノマーの代わりにまたはそれに加えて、架橋性官能基を有するモノマーを用いてポリマー中に架橋性官能基を導入し、この架橋性官能基の反応により、架橋構造をバインダーポリマーに導入してもよい。
架橋性官能基の例には、イソシアナート基、エポキシ基、アジリジン基、オキサゾリン基、アルデヒド基、カルボニル基、ヒドラジン基、カルボキシル基、メチロール基および活性メチレン基が含まれる。ビニルスルホン酸、酸無水物、シアノアクリレート誘導体、メラミン、エーテル化メチロール、エステルおよびウレタン、テトラメトキシシランのような金属アルコキシドも、架橋構造を導入するためのモノマーとして利用できる。ブロックイソシアナート基のように、分解反応の結果として架橋性を示す官能基を用いてもよい。すなわち、本発明において架橋性官能基は、すぐには反応を示すものではなくとも、分解した結果反応性を示すものであってもよい。
これら架橋性官能基を有するバインダーポリマーは塗布後、加熱することによって架橋構造を形成することができる。
Instead of or in addition to a monomer having two or more ethylenically unsaturated groups, a monomer having a crosslinkable functional group is used to introduce a crosslinkable functional group into the polymer, and by reaction of this crosslinkable functional group, A crosslinked structure may be introduced into the binder polymer.
Examples of the crosslinkable functional group include isocyanate group, epoxy group, aziridine group, oxazoline group, aldehyde group, carbonyl group, hydrazine group, carboxyl group, methylol group and active methylene group. Vinylsulfonic acid, acid anhydride, cyanoacrylate derivative, melamine, etherified methylol, ester and urethane, and metal alkoxide such as tetramethoxysilane can also be used as a monomer for introducing a crosslinked structure. A functional group that exhibits crosslinkability as a result of the decomposition reaction, such as a block isocyanate group, may be used. That is, in the present invention, the crosslinkable functional group may not react immediately but may exhibit reactivity as a result of decomposition.
These binder polymers having a crosslinkable functional group can form a crosslinked structure by heating after coating.

光散乱層に用いられる前記透光性粒子は、光拡散性及び防眩性付与の目的で用いられるものであり、その平均粒径が0.5〜5μm、好ましくは1.0〜4.0μmである。平均粒径が0.5μm未満であると、光の散乱角度分布が広角にまで広がるため、ディスプレイの文字解像度の低下を引き起こしたり、表面凹凸が形成しにくくなるため防眩性が不足したりするため、好ましくない。一方、5μmを超えると、光散乱層の膜厚を厚くする必要が生じ、カールが大きくなる、素材コストが上昇してしまう、等の問題が生じる。
前記透光性粒子の具体例としては、例えばシリカ粒子、TiO2粒子等の無機化合物の粒子;アクリル粒子、架橋アクリル粒子、メタクリル粒子、架橋メタクリル粒子、ポリスチレン粒子、架橋スチレン粒子、メラミン樹脂粒子、ベンゾグアナミン樹脂粒子等の樹脂粒子が好ましく挙げられる。なかでも架橋スチレン粒子、架橋アクリル粒子、架橋アクリルスチレン粒子、シリカ粒子が好ましい。
透光性粒子の形状は、球状あるいは不定形のいずれも使用できる。
The translucent particles used in the light scattering layer are used for the purpose of imparting light diffusibility and antiglare properties, and have an average particle size of 0.5 to 5 μm, preferably 1.0 to 4.0 μm. It is. If the average particle size is less than 0.5 μm, the light scattering angle distribution spreads to a wide angle, resulting in a decrease in the character resolution of the display, and it becomes difficult to form surface irregularities, resulting in insufficient antiglare properties. Therefore, it is not preferable. On the other hand, when the thickness exceeds 5 μm, it is necessary to increase the thickness of the light scattering layer, which causes problems such as an increase in curl and an increase in material cost.
Specific examples of the translucent particles include particles of inorganic compounds such as silica particles and TiO 2 particles; acrylic particles, crosslinked acrylic particles, methacrylic particles, crosslinked methacrylic particles, polystyrene particles, crosslinked styrene particles, melamine resin particles, Preferred examples include resin particles such as benzoguanamine resin particles. Of these, crosslinked styrene particles, crosslinked acrylic particles, crosslinked acrylic styrene particles, and silica particles are preferable.
The translucent particles can be either spherical or indefinite.

また、粒子径の異なる2種以上の透光性粒子を併用して用いてもよい。より大きな粒子径の透光性粒子で防眩性を付与し、より小さな粒子径の透光性粒子で別の光学特性を付与することが可能である。例えば、133ppi以上の高精細ディスプレイに反射防止フィルムを貼り付けた場合に、上述したようなギラツキと呼ばれる光学性能上の不具合のないことが要求される。ギラツキは、フィルム表面に存在する凹凸(防眩性に寄与)により、画素が拡大もしくは縮小され、輝度の均一性を失うことに由来するが、防眩性を付与する透光性粒子より小さな粒子径で、バインダーの屈折率と異なる透光性粒子を併用することにより大きく改善することができる。   Moreover, you may use together and use 2 or more types of translucent particle | grains from which a particle diameter differs. It is possible to impart an antiglare property with a light-transmitting particle having a larger particle size and to impart another optical characteristic with a light-transmitting particle having a smaller particle size. For example, when an antireflection film is attached to a high-definition display of 133 ppi or higher, it is required that there is no problem in optical performance called glare as described above. Glare is derived from the fact that the unevenness of the film surface (which contributes to antiglare properties) causes the pixels to be enlarged or reduced and loses brightness uniformity, but is smaller than the light-transmitting particles that impart antiglare properties. The diameter can be greatly improved by using translucent particles different from the refractive index of the binder.

さらに、前記透光性粒子の粒子径分布としては単分散であることが最も好ましく、各粒子の粒子径は、それぞれ同一に近ければ近いほど良い。例えば平均粒子径よりも20%以上粒子径が大きな粒子を粗大粒子と規定した場合には、この粗大粒子の割合は全粒子数の1%以下であることが好ましく、より好ましくは0.1%以下であり、さらに好ましくは0.01%以下である。このような粒子径分布を持つ透光性粒子は通常の合成反応後に、分級によって得られ、分級の回数を上げることやその程度を強くすることにより、より好ましい分布とすることができる。   Further, the particle size distribution of the translucent particles is most preferably monodispersed, and the particle size of each particle is preferably as close as possible. For example, when particles having a particle size of 20% or more than the average particle size are defined as coarse particles, the proportion of coarse particles is preferably 1% or less of the total number of particles, more preferably 0.1%. Or less, more preferably 0.01% or less. The translucent particles having such a particle size distribution are obtained by classification after a normal synthesis reaction, and a more preferable distribution can be obtained by increasing the number of classifications or increasing the degree thereof.

前記透光性粒子は、形成された光散乱層中に、光散乱層全固形分中に3〜30質量%含有されるように配合される。好ましくは5〜20質量%である。3質量%未満であると、光散乱効果が不足し、30質量%を超えると、像の解像度の低下や表面の白濁やギラツキ等の問題が生じる。
また、透光性粒子の密度は、好ましくは10〜1000mg/m2、より好ましくは100〜700mg/m2である。
透光性粒子の粒度分布はコールターカウンター法により測定し、測定された分布を粒子数分布に換算する。
The translucent particles are blended in the formed light scattering layer so as to be contained in an amount of 3 to 30% by mass in the total solid content of the light scattering layer. Preferably it is 5-20 mass%. If it is less than 3% by mass, the light scattering effect is insufficient, and if it exceeds 30% by mass, problems such as a decrease in image resolution, surface turbidity and glare occur.
The density of the translucent particles is preferably 10 to 1000 mg / m 2 , more preferably 100 to 700 mg / m 2 .
The particle size distribution of the translucent particles is measured by a Coulter counter method, and the measured distribution is converted into a particle number distribution.

光散乱層には、層の屈折率を高めるために、前記の透光性粒子に加えて、チタン、ジルコニウム、アルミニウム、インジウム、亜鉛、錫、アンチモンのうちより選ばれる少なくとも1種の金属の酸化物からなり、平均粒径が0.2μm以下、好ましくは0.1μm以下、より好ましくは0.06μm以下である無機フィラーが含有されることが好ましい。
また逆に、透光性粒子との屈折率差を大きくするために、高屈折率透光性粒子を用いた光散乱層では層の屈折率を低目に保つためにケイ素の酸化物を用いることも好ましい。好ましい粒径は前述の無機フィラーと同じである。
光散乱層に用いられる無機フィラーの具体例としては、TiO2、ZrO2、Al23、In23、ZnO、SnO2、Sb23、ITOとSiO2等が挙げられる。TiO2およびZrO2が高屈折率化の点で特に好ましい。該無機フィラーは表面をシランカップリング処理又はチタンカップリング処理されることも好ましく、フィラー表面にバインダー種と反応できる官能基を有する表面処理剤が好ましく用いられる。
これらの無機フィラーを用いる場合、その添加量は、光散乱層の全質量の10〜90%であることが好ましく、より好ましくは20〜80%であり、特に好ましくは30〜75%である。
なお、このような無機フィラーは、粒径が光の波長よりも十分小さいために散乱が生じず、バインダーポリマーに該フィラーが分散した分散体は光学的に均一な物質として振舞う。
また、光散乱層にも上述のオルガノシラン化合物を用いることができる。
低屈折率層以外の層へのオルガノシラン化合物の添加量は、含有層(添加層)の全固形分の0.001〜50質量%が好ましく、0.01〜20質量%がより好ましく、0.05〜10質量%が更に好ましく、0.1〜5質量%が特に好ましい。
In order to increase the refractive index of the light scattering layer, in addition to the above light-transmitting particles, an oxidation of at least one metal selected from titanium, zirconium, aluminum, indium, zinc, tin, and antimony is added to the light scattering layer. It is preferable that an inorganic filler having an average particle diameter of 0.2 μm or less, preferably 0.1 μm or less, more preferably 0.06 μm or less is contained.
Conversely, in order to increase the difference in refractive index with the light-transmitting particles, the light scattering layer using the high-refractive index light-transmitting particles uses silicon oxide to keep the refractive index of the layer low. It is also preferable. The preferred particle size is the same as that of the aforementioned inorganic filler.
Specific examples of the inorganic filler used in the light scattering layer include TiO 2 , ZrO 2 , Al 2 O 3 , In 2 O 3 , ZnO, SnO 2 , Sb 2 O 3 , ITO and SiO 2 . TiO 2 and ZrO 2 are particularly preferable from the viewpoint of increasing the refractive index. The surface of the inorganic filler is preferably subjected to a silane coupling treatment or a titanium coupling treatment, and a surface treatment agent having a functional group capable of reacting with a binder species on the filler surface is preferably used.
When using these inorganic fillers, the addition amount is preferably 10 to 90% of the total mass of the light scattering layer, more preferably 20 to 80%, and particularly preferably 30 to 75%.
Such an inorganic filler does not scatter because its particle size is sufficiently smaller than the wavelength of light, and a dispersion in which the filler is dispersed in a binder polymer behaves as an optically uniform substance.
The above-mentioned organosilane compound can also be used for the light scattering layer.
The amount of the organosilane compound added to the layers other than the low refractive index layer is preferably 0.001 to 50% by mass, more preferably 0.01 to 20% by mass, based on the total solid content of the containing layer (added layer). 0.05 to 10% by mass is more preferable, and 0.1 to 5% by mass is particularly preferable.

本発明における透光性樹脂と透光性粒子との混合物のバルクの屈折率は、1.48〜2.00であることが好ましく、より好ましくは1.50〜1.80である。屈折率を前記範囲とするには、透光性樹脂及び透光性粒子の種類及び量割合を適宜選択すればよい。どのように選択するかは、予め実験的に容易に知ることができる。
また、本発明においては、透光性樹脂と透光性粒子との屈折率の差(透光性粒子の屈折率−透光性樹脂の屈折率)が、0.02〜0.2であり、好ましくは0.05〜0.15である。この差が0.02未満であると、内部散乱の効果が不足するためギラツキが悪化し、0.2を超えると、フィルム表面の白濁の問題が生じる。
また、前記透光性樹脂の屈折率は、1.45〜2.00であるのが好ましく、1.48〜1.60であるのが更に好ましい。
また、前記透光性粒子の屈折率は、1.40〜1.80であるのが好ましく、1.50〜1.70であるのが更に好ましい。
ここで、前記透光性樹脂の屈折率は、アッベ屈折計で直接測定するか、分光反射スペクトルや分光エリプソメトリーを測定するなどして定量評価できる。
The bulk refractive index of the mixture of translucent resin and translucent particles in the present invention is preferably 1.48 to 2.00, more preferably 1.50 to 1.80. In order to set the refractive index within the above range, the kind and amount ratio of the light-transmitting resin and the light-transmitting particles may be appropriately selected. How to select it can be easily known experimentally in advance.
In the present invention, the difference in refractive index between the translucent resin and the translucent particles (the refractive index of the translucent particles−the refractive index of the translucent resin) is 0.02 to 0.2. , Preferably 0.05 to 0.15. If this difference is less than 0.02, the effect of internal scattering is insufficient and glare deteriorates. If it exceeds 0.2, the problem of cloudiness on the film surface arises.
The refractive index of the translucent resin is preferably 1.45 to 2.00, and more preferably 1.48 to 1.60.
Further, the refractive index of the translucent particles is preferably 1.40 to 1.80, and more preferably 1.50 to 1.70.
Here, the refractive index of the translucent resin can be quantitatively evaluated by directly measuring it with an Abbe refractometer or by measuring a spectral reflection spectrum or a spectral ellipsometry.

本発明の光散乱層は、特に塗布ムラ、乾燥ムラ、点欠陥等の面状均一性を確保するために、フッ素系、シリコーン系の何れかの界面活性剤、あるいはその両者を光拡散層形成用の塗布組成物中に含有する。特にフッ素系の界面活性剤は、より少ない添加量において、本発明の反射防止フィルムの塗布ムラ、乾燥ムラ、点欠陥等の面状故障を改良する効果が現れるため、好ましく用いられる。
面状均一性を高めつつ、高速塗布適性を持たせることにより生産性を高めることが目的である。
The light scattering layer of the present invention is formed with a light diffusing layer in order to ensure surface uniformity such as coating unevenness, drying unevenness, point defects, etc. Contained in the coating composition. In particular, a fluorine-based surfactant is preferably used because an effect of improving surface defects such as coating unevenness, drying unevenness, and point defects of the antireflection film of the present invention appears in a smaller addition amount.
The purpose is to increase productivity by giving high-speed coating suitability while improving the surface uniformity.

フッ素系の界面活性剤の好ましい例としては、フルオロ脂肪族基含有共重合体(「フッ素系ポリマー」と略記することもある)が挙げられ、該フッ素系ポリマーは、下記(i)のモノマーに相当する繰り返し単位を含むことを特徴とする、あるいは下記(ii)のモノマーに相当する繰り返し単位を含むことを特徴とするアクリル樹脂、メタアクリル樹脂、及びこれらに共重合可能なビニル系モノマーとの共重合体が有用である。   Preferable examples of the fluorosurfactant include a fluoroaliphatic group-containing copolymer (sometimes abbreviated as “fluorine polymer”), and the fluoropolymer includes the following monomer (i): An acrylic resin, a methacrylic resin, and a vinyl monomer copolymerizable therewith, characterized by containing a corresponding repeating unit, or containing a repeating unit corresponding to the monomer (ii) below: Copolymers are useful.

(i)下記一般式3で表されるフルオロ脂肪族基含有モノマー (I) Fluoroaliphatic group-containing monomer represented by the following general formula 3

Figure 2005148623
Figure 2005148623

一般式3においてR11は水素原子またはメチル基を表し、Xは酸素原子、イオウ原子または−N(R12)−を表し、mは1以上6以下の整数、nは2〜4の整数を表す。R12は水素原子または炭素数1〜4のアルキル基、具体的にはメチル基、エチル基、プロピル基、ブチル基を表し、好ましくは水素原子またはメチル基である。Xは酸素原子が好ましい。 In General Formula 3, R 11 represents a hydrogen atom or a methyl group, X represents an oxygen atom, a sulfur atom or —N (R 12 ) —, m is an integer of 1 to 6 and n is an integer of 2 to 4. Represent. R 12 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, specifically a methyl group, an ethyl group, a propyl group or a butyl group, preferably a hydrogen atom or a methyl group. X is preferably an oxygen atom.

(ii)前記(i)と共重合可能な下記一般式4で示されるモノマー (Ii) Monomer represented by the following general formula 4 copolymerizable with the above (i)

Figure 2005148623
Figure 2005148623

一般式4において、R13は水素原子またはメチル基を表し、Yは酸素原子、イオウ原子または−N(R15)−を表し、R15は水素原子または炭素数1〜4のアルキル基、具体的にはメチル基、エチル基、プロピル基、ブチル基を表し、好ましくは水素原子またはメチル基である。Yは酸素原子、−N(H)−、および−N(CH3)−が好ましい。
14は置換基を有しても良い炭素数4以上20以下の直鎖、分岐または環状のアルキル基を表す。R14のアルキル基の置換基としては、水酸基、アルキルカルボニル基、アリールカルボニル基、カルボキシル基、アルキルエーテル基、アリールエーテル基、フッ素原子、塩素原子、臭素原子などのハロゲン原子、ニトロ基、シアノ基、アミノ基等があげられるがこの限りではない。炭素数4以上20以下の直鎖、分岐または環状のアルキル基としては、直鎖及び分岐してもよいブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、オクタデシル基、エイコサニル基等、また、シクロヘキシル基、シクロヘプチル基等の単環シクロアルキル基及びビシクロヘプチル基、ビシクロデシル基、トリシクロウンデシル基、テトラシクロドデシル基、アダマンチル基、ノルボルニル基、テトラシクロデシル基、等の多環シクロアルキル基が好適に用いられる。
In General Formula 4, R 13 represents a hydrogen atom or a methyl group, Y represents an oxygen atom, a sulfur atom or —N (R 15 ) —, R 15 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, specifically Specifically, it represents a methyl group, an ethyl group, a propyl group, or a butyl group, preferably a hydrogen atom or a methyl group. Y is an oxygen atom, -N (H) -, and -N (CH 3) - it is preferred.
R 14 represents a linear, branched or cyclic alkyl group having 4 to 20 carbon atoms which may have a substituent. Examples of the substituent for the alkyl group of R 14 include a hydroxyl group, an alkylcarbonyl group, an arylcarbonyl group, a carboxyl group, an alkyl ether group, an aryl ether group, a halogen atom such as a fluorine atom, a chlorine atom, and a bromine atom, a nitro group, and a cyano group. , Amino groups and the like, but not limited thereto. Examples of the linear, branched or cyclic alkyl group having 4 to 20 carbon atoms include a butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group and undecyl group which may be linear or branched. , Dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, octadecyl group, eicosanyl group, etc., and monocyclic cycloalkyl groups such as cyclohexyl group, cycloheptyl group and bicycloheptyl group, bicyclodecyl group, tricycloundecyl group, A polycyclic cycloalkyl group such as a tetracyclododecyl group, an adamantyl group, a norbornyl group, a tetracyclodecyl group, or the like is preferably used.

本発明で用いられるフッ素系ポリマー中に用いられるこれらの一般式3で示されるフルオロ脂肪族基含有モノマーの量は、該フッ素系ポリマーの各単量体に基づいて10モル%以上であり、好ましくは15〜70モル%であり、より好ましくは20〜60モル%の範囲である。   The amount of the fluoroaliphatic group-containing monomer represented by the general formula 3 used in the fluoropolymer used in the present invention is 10 mol% or more based on each monomer of the fluoropolymer, preferably Is 15 to 70 mol%, more preferably in the range of 20 to 60 mol%.

本発明で用いられるフッ素系ポリマーの好ましい質量平均分子量は、3000〜100,000が好ましく、5,000〜80,000がより好ましい。
更に、本発明で用いられるフッ素系ポリマーの好ましい添加量は、塗布液に対して0.001〜5質量%の範囲であり、好ましくは0.005〜3質量%の範囲であり、更に好ましくは0.01〜1質量%の範囲である。フッ素系ポリマーの添加量が0.001質量%未満では効果が不十分であり、また5質量%より多くなると、塗膜の乾燥が十分に行われなくなったり、塗膜としての性能(例えば反射率、耐擦傷性)に悪影響を及ぼす。
The preferred weight average molecular weight of the fluoropolymer used in the present invention is preferably 3000 to 100,000, more preferably 5,000 to 80,000.
Furthermore, the preferable addition amount of the fluoropolymer used in the present invention is in the range of 0.001 to 5% by mass, preferably in the range of 0.005 to 3% by mass, and more preferably, with respect to the coating solution. It is the range of 0.01-1 mass%. If the addition amount of the fluorine-based polymer is less than 0.001% by mass, the effect is insufficient. Adversely affect the scratch resistance).

以下、一般式3で表されるフルオロ脂肪族基含有モノマーからなるフッ素系ポリマーの具体的な構造の例を示すがこの限りではない。なお式中の数字は各モノマー成分のモル比率を示す。Mwは質量平均分子量を表す。   Hereinafter, an example of a specific structure of the fluoropolymer composed of the fluoroaliphatic group-containing monomer represented by the general formula 3 is shown, but the present invention is not limited thereto. In addition, the number in a formula shows the molar ratio of each monomer component. Mw represents a mass average molecular weight.

Figure 2005148623
Figure 2005148623

Figure 2005148623
Figure 2005148623

しかしながら、前記のようなフッ素系ポリマーを使用することにより、光散乱層表面にF原子を含有する官能基が偏析することにより光散乱層の表面エネルギーが低下し、前記光散乱層上に低屈折率層をオーバーコートしたときに反射防止性能が悪化する問題が生じる。これは低屈折率層を形成するために用いられる硬化性組成物の濡れ性が悪化するために低屈折率層に目視では検知できない微小なムラが悪化するためと推定される。このような問題を解決するためには、フッ素系ポリマーの構造と添加量を調整することにより、光散乱層の表面エネルギーを好ましくは20mN・m-1〜50mN・m-1に、より好ましくは30mN・m-1〜40mN・m-1に制御することが効果的であることを見出した。前記のような表面エネルギーを実現するためには、X線光電子分光法で測定したフッ素原子由来のピークと炭素原子由来のピークの比であるF/Cが0.1〜1.5であることが必要である。 However, by using the fluorine-based polymer as described above, the surface energy of the light scattering layer is reduced due to segregation of the functional group containing F atoms on the surface of the light scattering layer, and the low refractive index on the light scattering layer When the rate layer is overcoated, there arises a problem that the antireflection performance deteriorates. This is presumably because minute unevenness that cannot be visually detected in the low refractive index layer deteriorates because the wettability of the curable composition used for forming the low refractive index layer deteriorates. To solve such problems, by adjusting the structure and amount of the fluorine-based polymer, the surface energy of the light scattering layer preferably in 20mN · m -1 ~50mN · m -1 , more preferably it was found that it is effective to control the 30mN · m -1 ~40mN · m -1 . In order to realize the surface energy as described above, F / C, which is a ratio of a peak derived from a fluorine atom and a peak derived from a carbon atom, measured by X-ray photoelectron spectroscopy is 0.1 to 1.5. is required.

或いは、上層を塗布する時には上層を形成する溶媒に抽出されるようなフッ素系ポリマーを選択することで、下層表面(=界面)に偏在することがなくなり上層と下層の密着性を持たせることで、高速塗布においても面状の均一性を保ち、かつ耐擦傷性の強い反射防止フィルムを提供できる表面自由エネルギーの低下を防ぐことにより、低屈折率層塗布前の光散乱層の表面エネルギーを前記範囲に制御することでも目的を達成することができる。そのような素材の例は下記一般式5で表されるフルオロ脂肪族基含有モノマーに相当する繰り返し単位を含むことを特徴とするアクリル樹脂、メタアクリル樹脂、及びこれらに共重合可能なビニル系モノマーとの共重合体である。   Alternatively, by selecting a fluorine-based polymer that is extracted by the solvent that forms the upper layer when the upper layer is applied, it is not unevenly distributed on the lower layer surface (= interface), so that the adhesion between the upper layer and the lower layer is provided. The surface energy of the light-scattering layer before coating the low refractive index layer can be reduced by preventing the surface free energy from being lowered, which can maintain the surface uniformity even during high-speed coating and can provide an antireflection film with high scratch resistance. The purpose can also be achieved by controlling the range. Examples of such materials include an acrylic resin, a methacrylic resin, and a vinyl monomer copolymerizable therewith, containing a repeating unit corresponding to a fluoroaliphatic group-containing monomer represented by the following general formula 5 And a copolymer.

(ii)下記一般式5で表されるフルオロ脂肪族基含有モノマー (Ii) Fluoroaliphatic group-containing monomer represented by the following general formula 5

Figure 2005148623
Figure 2005148623

一般式5においてR16は水素原子またはハロゲン原子またはメチル基を表し、水素原子、メチル基がより好ましい。Xは酸素原子、イオウ原子または−N(R17)−を表し、酸素原子または−N(R17)−がより好ましく、酸素原子が更に好ましい。mは1以上6以下の整数、nは1以上18以下の整数を表す。R17は水素原子または置換基を有しても良い炭素数1〜8のアルキル基を表し、水素原子または炭素数1〜4のアルキル基がより好ましく、水素原子またはメチル基が更に好ましい。Xは酸素原子が好ましい。
一般式5中のmは1〜6の整数を表し、1〜3がより好ましく、1であることが更に好ましい。
一般式5中のnは1〜18の整数を表し、4〜12がより好ましく、6〜8が更に好ましい。
またフッ素系ポリマー中に一般式5で表されるフルオロ脂肪族基含有モノマーが2種類以上構成成分として含まれていても良い。
In the general formula 5, R 16 represents a hydrogen atom, a halogen atom or a methyl group, more preferably a hydrogen atom or a methyl group. X represents an oxygen atom, a sulfur atom or —N (R 17 ) —, more preferably an oxygen atom or —N (R 17 ) —, and still more preferably an oxygen atom. m represents an integer of 1 to 6, and n represents an integer of 1 to 18. R 17 represents a hydrogen atom or an optionally substituted alkyl group having 1 to 8 carbon atoms, more preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and further preferably a hydrogen atom or a methyl group. X is preferably an oxygen atom.
M in the general formula 5 represents an integer of 1 to 6, more preferably 1 to 3, and still more preferably 1.
N in the general formula 5 represents an integer of 1 to 18, more preferably 4 to 12, and still more preferably 6 to 8.
Further, two or more kinds of fluoroaliphatic group-containing monomers represented by the general formula 5 may be contained in the fluoropolymer as a constituent component.

(ii)前記(i)と共重合可能な下記一般式6で示されるモノマー (Ii) Monomer represented by the following general formula 6 copolymerizable with the above (i)

Figure 2005148623
Figure 2005148623

一般式6において、R18は水素原子、ハロゲン原子またはメチル基を表し、水素原子、メチル基がより好ましい。Yは酸素原子、イオウ原子または−N(R20)−を表し、酸素原子または−N(R20)−がより好ましく、酸素原子が更に好ましい。R20は水素原子または炭素数1〜8のアルキル基を表し、水素原子または炭素数1〜4のアルキル基がより好ましく、水素原子またはメチル基が更に好ましい。
19は置換基を有しても良い炭素数1〜20の直鎖、分岐または環状のアルキル基、ポリ(アルキレンオキシ)基を含むアルキル基、置換基を有していても良い芳香族基(例えば、フェニル基またはナフチル基)を表す。炭素数1〜12の直鎖、分岐、または環状のアルキル基、または総炭素数6〜18の芳香族がより好ましく、炭素数1〜8の直鎖、分岐、または環状のアルキル基が更に好ましい。
In the general formula 6, R 18 represents a hydrogen atom, a halogen atom or a methyl group, more preferably a hydrogen atom or a methyl group. Y represents an oxygen atom, a sulfur atom or —N (R 20 ) —, more preferably an oxygen atom or —N (R 20 ) —, and still more preferably an oxygen atom. R 20 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, more preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and further preferably a hydrogen atom or a methyl group.
R 19 is a C 1-20 linear, branched or cyclic alkyl group which may have a substituent, an alkyl group containing a poly (alkyleneoxy) group, and an aromatic group which may have a substituent. (For example, a phenyl group or a naphthyl group). A linear, branched or cyclic alkyl group having 1 to 12 carbon atoms or an aromatic group having 6 to 18 carbon atoms is more preferable, and a linear, branched or cyclic alkyl group having 1 to 8 carbon atoms is more preferable. .

以下、一般式5で表されるフルオロ脂肪族基含有モノマーに相当する繰り返し単位を含むフッ素系ポリマーの具体的な構造の例を示すがこの限りではない。なお、式中の数字は各モノマー成分のモル比率を示す。Mwは質量平均分子量を表す。   Hereinafter, an example of a specific structure of a fluorine-based polymer including a repeating unit corresponding to the fluoroaliphatic group-containing monomer represented by the general formula 5 is shown, but the present invention is not limited thereto. In addition, the number in a formula shows the molar ratio of each monomer component. Mw represents a mass average molecular weight.

Figure 2005148623
Figure 2005148623

Figure 2005148623
Figure 2005148623

Figure 2005148623
Figure 2005148623

Figure 2005148623
Figure 2005148623

Figure 2005148623
Figure 2005148623

また光散乱層上に低屈折率層をオーバーコートする時点で表面エネルギーの低下を防げば、反射防止性能の悪化が防げる。光散乱層塗布時にはフッ素系ポリマーを用いて塗布液の表面張力を下げて面状均一性を高め、高速塗布による高生産性を維持し、光散乱層塗布後にコロナ処理、UV処理、熱処理、鹸化処理、溶剤処理といった表面処理手法を用いて、特に好ましいのはコロナ処理であるが、表面自由エネルギーの低下を防ぐことにより、低屈折率層塗布前の光散乱層の表面エネルギーを前記範囲に制御することでも目的を達成することができる。   Further, if the surface energy is prevented from being lowered when the low refractive index layer is overcoated on the light scattering layer, the deterioration of the antireflection performance can be prevented. When coating the light scattering layer, the surface tension of the coating solution is lowered using a fluoropolymer to improve surface uniformity and maintain high productivity by high-speed coating. After coating the light scattering layer, corona treatment, UV treatment, heat treatment, saponification Corona treatment is particularly preferred using surface treatment methods such as treatment and solvent treatment, but the surface energy of the light scattering layer before coating the low refractive index layer is controlled within the above range by preventing the surface free energy from decreasing. You can also achieve your goals.

また、本発明者等は、ゴニオフォトメーターで測定される散乱光の強度分布が視野角改良効果に相関することを確認した。すなわち、バックライトから出射された光が視認側の偏光板表面に設置された光拡散フィルムで拡散されればされるほど視野角特性がよくなる。しかし、あまり拡散されすぎると、後方散乱が大きくなり、正面輝度が減少する、あるいは、散乱が大きすぎて画像鮮明性が劣化する等の問題が生じる。従って、散乱光強度分布をある範囲に制御することが必要となる。そこで、鋭意検討の結果、所望の視認特性を達成するには、散乱光プロファイルの出射角0°の光強度に対して、特に視認角改良効果と相関ある30°の散乱光強度が0.01%〜0.2%であることが好ましく、0.02%〜0.15%が更に好ましい。
散乱光プロファイルは、作成した光散乱フィルムについて、(株)村上色彩技術研究所製の自動変角光度計GP−5型を用いて測定できる。
In addition, the present inventors have confirmed that the intensity distribution of scattered light measured with a goniophotometer correlates with the viewing angle improvement effect. That is, the more the light emitted from the backlight is diffused by the light diffusion film installed on the polarizing plate surface on the viewing side, the better the viewing angle characteristics. However, if it is diffused too much, backscattering will increase and the front luminance will decrease, or the scattering will be too great and the image clarity will deteriorate. Therefore, it is necessary to control the scattered light intensity distribution within a certain range. Therefore, as a result of intensive studies, in order to achieve the desired visual characteristics, the scattered light intensity at 30 °, which correlates particularly with the visual angle improvement effect, is 0.01 with respect to the light intensity at the output angle 0 ° of the scattered light profile. % To 0.2% is preferable, and 0.02% to 0.15% is more preferable.
The scattered light profile can be measured using the automatic variable angle photometer GP-5 manufactured by Murakami Color Research Laboratory Co., Ltd. for the created light scattering film.

また、本発明の光散乱層を形成する為の塗布組成物中に、チクソトロピー剤を添加しても良い。チクソトロピー剤としては、0.1μm以下のシリカ、マイカ等があげられる。これら添加剤の含有量は、通常、紫外線硬化型樹脂100質量部に対して、1〜10質量部程度とするのが好適である。   Moreover, you may add a thixotropic agent in the coating composition for forming the light-scattering layer of this invention. Examples of the thixotropic agent include silica and mica of 0.1 μm or less. In general, the content of these additives is preferably about 1 to 10 parts by mass with respect to 100 parts by mass of the ultraviolet curable resin.

[高屈折率層、中屈折率層]
本発明の反射防止フィルムでは、より良い反射防止能を付与するために、高屈折率層や中屈折率層を設けることができる。
前記高屈折率層の屈折率は屈折率1.55〜2.40であり、この範囲内の層があれば、本発明における高屈折率層が存在するといえる。この屈折率の範囲は、いわゆる高屈折率層あるいは中屈折率層といわれる範囲であるが、以下の本明細書では、これらの層を総称して高屈折率層と呼ぶことがある。
また、高屈折率層と中屈折率層とが混在する場合、屈折率が支持体、光散乱層、中屈折率層よりも高い層を高屈折率層といい、屈折率が支持体、光散乱層、中屈折率層よりも高く高屈折率層より低い層を中屈折率層という。屈折率は、添加する無機微粒子やバインダーの使用量などを調節することにより適宜調節できる。
[High refractive index layer, middle refractive index layer]
In the antireflection film of the present invention, a high refractive index layer or a medium refractive index layer can be provided in order to impart better antireflection performance.
The refractive index of the high refractive index layer is 1.55 to 2.40, and if there is a layer within this range, it can be said that the high refractive index layer in the present invention exists. The range of this refractive index is a range called a so-called high refractive index layer or medium refractive index layer, but in the following specification, these layers may be collectively referred to as a high refractive index layer.
When a high refractive index layer and a medium refractive index layer are mixed, a layer having a refractive index higher than that of the support, light scattering layer, and medium refractive index layer is referred to as a high refractive index layer, and the refractive index is determined as a support, light A layer higher than the scattering layer and the middle refractive index layer and lower than the high refractive index layer is referred to as a middle refractive index layer. The refractive index can be adjusted as appropriate by adjusting the amount of inorganic fine particles to be added and the amount of binder used.

<二酸化チタンを主成分とする無機微粒子>
前記高屈折率層には、コバルト、アルミニウム、ジルコニウムから選ばれる少なくとも1つの元素を含有する二酸化チタンを主成分とする無機微粒子が含有される。主成分とは、粒子を構成する成分の中で最も含有量(質量%)が多い成分を意味する。
本発明における二酸化チタンを主成分とする無機微粒子は、屈折率が1.90〜2.80であることが好ましく、2.20〜2.80であることが最も好ましい。一次粒子の質量平均径は1〜200nmであることが好ましく、さらに好ましくは2〜100nm、特に好ましくは2〜80nmである。
<Inorganic fine particles mainly composed of titanium dioxide>
The high refractive index layer contains inorganic fine particles mainly composed of titanium dioxide containing at least one element selected from cobalt, aluminum, and zirconium. The main component means a component having the largest content (mass%) among the components constituting the particles.
The inorganic fine particles mainly composed of titanium dioxide in the present invention preferably have a refractive index of 1.90 to 2.80, and most preferably 2.20 to 2.80. The mass average diameter of the primary particles is preferably 1 to 200 nm, more preferably 2 to 100 nm, and particularly preferably 2 to 80 nm.

二酸化チタンを主成分とする無機微粒子に、Co、Al及びZrから選ばれる少なくとも1つの元素を含有させることで、二酸化チタンが有する光触媒活性を抑えることができ、高屈折率層の耐候性を改良することができる。
本発明に用いる二酸化チタンを主成分とする無機微粒子は表面処理してもよい。表面処理は、コバルトを含有する無機化合物、Al(OH)3、Zr(OH)4のような無機化合物または、シランカップリング剤のような有機化合物を用いて実施する。本発明の二酸化チタンを主成分とする無機微粒子は、表面処理により特開2001−166104号公報記載のごとく、コア/シェル構造を有していても良い。
高屈折率層に含有される二酸化チタンを主成分とする無機微粒子の形状は、米粒状、球形状、立方体状、紡錘形状あるいは不定形状であることが好ましく、特に好ましくは不定形状、紡錘形状である。
By incorporating at least one element selected from Co, Al and Zr into inorganic fine particles mainly composed of titanium dioxide, the photocatalytic activity of titanium dioxide can be suppressed, and the weather resistance of the high refractive index layer is improved. can do.
The inorganic fine particles mainly composed of titanium dioxide used in the present invention may be surface-treated. The surface treatment is performed using an inorganic compound containing cobalt, an inorganic compound such as Al (OH) 3 or Zr (OH) 4 , or an organic compound such as a silane coupling agent. The inorganic fine particles mainly composed of titanium dioxide of the present invention may have a core / shell structure by surface treatment as described in JP-A No. 2001-166104.
The shape of the inorganic fine particles mainly composed of titanium dioxide contained in the high refractive index layer is preferably a rice grain shape, a spherical shape, a cubic shape, a spindle shape or an indefinite shape, and particularly preferably an indefinite shape or a spindle shape. is there.

<分散剤>
前記無機微粒子の分散には、分散剤を用いることができる。分散には、アニオン性基を有する分散剤を用いることが特に好ましい。
アニオン性基としては、カルボキシル基、スルホン酸基(及びスルホ基)、リン酸基(及びホスホノ基)、スルホンアミド基等の酸性プロトンを有する基、またはその塩が有効であり、特にカルボキシル基、スルホン酸基、リン酸基及びその塩が好ましく、カルボキシル基及びリン酸基が特に好ましい。1分子当たりの分散剤に含有されるアニオン性基の数は、1個以上含有されていればよいが、平均で2個以上であることが好ましく、より好ましくは5個以上、特に好ましくは10個以上である。アニオン性基は、1分子中に複数種類が含有されていてもよい。さらに、分散剤は架橋又は重合性官能基を含有することが好ましい。
<Dispersant>
A dispersant can be used for dispersing the inorganic fine particles. For dispersion, it is particularly preferable to use a dispersant having an anionic group.
As the anionic group, a group having an acidic proton such as a carboxyl group, a sulfonic acid group (and a sulfo group), a phosphoric acid group (and a phosphono group), or a sulfonamide group, or a salt thereof is effective. A sulfonic acid group, a phosphoric acid group and a salt thereof are preferable, and a carboxyl group and a phosphoric acid group are particularly preferable. The number of anionic groups contained in the dispersant per molecule may be one or more, but it is preferably 2 or more on average, more preferably 5 or more, and particularly preferably 10 It is more than one. Multiple types of anionic groups may be contained in one molecule. Furthermore, the dispersant preferably contains a cross-linkable or polymerizable functional group.

<高屈折率層及びその形成法>
高屈折率層に用いる二酸化チタンを主成分とする無機微粒子は、分散物の状態で高屈折率層の形成に使用する。
無機微粒子の分散において、前記の分散剤の存在下で、分散媒体中に分散する。
分散媒体は、沸点が60〜170℃の液体を用いることが好ましい。分散媒体の例には、水、アルコール、ケトン、エステル、脂肪族炭化水素、ハロゲン化炭化水素、芳香族炭化水素、アミド、エーテル、エーテルアルコールが含まれる。トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンおよびブタノールが好ましい。
特に好ましい分散媒体は、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンである。
<High refractive index layer and formation method thereof>
The inorganic fine particles mainly composed of titanium dioxide used for the high refractive index layer are used for forming the high refractive index layer in a dispersion state.
In the dispersion of the inorganic fine particles, it is dispersed in a dispersion medium in the presence of the dispersant.
As the dispersion medium, a liquid having a boiling point of 60 to 170 ° C. is preferably used. Examples of the dispersion medium include water, alcohol, ketone, ester, aliphatic hydrocarbon, halogenated hydrocarbon, aromatic hydrocarbon, amide, ether, ether alcohol. Toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and butanol are preferred.
Particularly preferred dispersion media are methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.

無機微粒子は、分散機を用いて分散する。分散機の例には、サンドグラインダーミル(例、ピン付きビーズミル)、高速インペラーミル、ペッブルミル、ローラーミル、アトライターおよびコロイドミルが含まれる。サンドグラインダーミルおよび高速インペラーミルが特に好ましい。また、予備分散処理を実施してもよい。予備分散処理に用いる分散機の例には、ボールミル、三本ロールミル、ニーダーおよびエクストルーダーが含まれる。
無機微粒子分散物は、分散媒体中でなるべく微細化されていることが好ましく、質量平均径は1〜200nmである。好ましくは5〜150nmであり、さらに好ましくは10〜100nm、特に好ましくは10〜80nmである。
無機微粒子を200nm以下に微細化することで透明性を損なわない高屈折率層を形成できる。
The inorganic fine particles are dispersed using a disperser. Examples of dispersers include sand grinder mills (eg, pin bead mills), high speed impeller mills, pebble mills, roller mills, attritors and colloid mills. A sand grinder mill and a high-speed impeller mill are particularly preferred. Further, preliminary dispersion processing may be performed. Examples of the disperser used for the preliminary dispersion treatment include a ball mill, a three-roll mill, a kneader, and an extruder.
The inorganic fine particle dispersion is preferably made as fine as possible in the dispersion medium, and has a mass average diameter of 1 to 200 nm. Preferably it is 5-150 nm, More preferably, it is 10-100 nm, Most preferably, it is 10-80 nm.
By refining the inorganic fine particles to 200 nm or less, a high refractive index layer that does not impair the transparency can be formed.

本発明に用いる高屈折率層は、前記のようにして分散媒体中に無機微粒子を分散した分散液に、好ましくは、さらにマトリックス形成に必要なバインダー前駆体(前述の防眩性ハードコート層と同様のもの)、光重合開始剤等を加えて高屈折率層形成用の塗布組成物とし、透明支持体上に高屈折率層形成用の塗布組成物を塗布して、電離放射線硬化性化合物(例えば、多官能モノマーや多官能オリゴマーなど)の架橋反応又は重合反応により硬化させて形成することが好ましい。   The high-refractive index layer used in the present invention is preferably a dispersion containing inorganic fine particles dispersed in a dispersion medium as described above, preferably a binder precursor necessary for matrix formation (the above-mentioned antiglare hard coat layer and The same), a photopolymerization initiator or the like to form a coating composition for forming a high refractive index layer, and a coating composition for forming a high refractive index layer on a transparent support, It is preferably formed by curing by a crosslinking reaction or a polymerization reaction (for example, a polyfunctional monomer or a polyfunctional oligomer).

光重合性多官能モノマーの重合反応には、光重合開始剤を用いることが好ましい。光重合開始剤としては、光ラジカル重合開始剤と光カチオン重合開始剤が好ましく、特に好ましいのは光ラジカル重合開始剤である。光ラジカル重合開始剤としては、前述の防眩性ハードコート層と同様のものが用いられる。   It is preferable to use a photopolymerization initiator for the polymerization reaction of the photopolymerizable polyfunctional monomer. As the photopolymerization initiator, a photoradical polymerization initiator and a photocationic polymerization initiator are preferable, and a photoradical polymerization initiator is particularly preferable. As the radical photopolymerization initiator, the same one as the above-mentioned antiglare hard coat layer is used.

高屈折率層においてバインダーは、さらにシラノール基を有することが好ましい。バインダーがさらにシラノール基を有することで、高屈折率層の物理強度、耐薬品性、耐候性がさらに改良される。
シラノール基は、例えば架橋又は重合性官能基を有する化合物を前記の高屈折率層形成用の塗布組成物に添加し、塗布組成物を透明支持体上に塗布して前記の分散剤、多官能モノマーや多官能オリゴマー等を架橋反応、又は、重合反応させることによりバインダーに導入することができる。
In the high refractive index layer, the binder preferably further has a silanol group. When the binder further has a silanol group, the physical strength, chemical resistance, and weather resistance of the high refractive index layer are further improved.
For example, a silanol group may be formed by adding a compound having a cross-linkable or polymerizable functional group to the coating composition for forming the high refractive index layer, and coating the coating composition on a transparent support. Monomers, polyfunctional oligomers, and the like can be introduced into the binder by a crosslinking reaction or a polymerization reaction.

高屈折率層においてバインダーは、アミノ基または四級アンモニウム基を有することも好ましい。アミノ基または四級アンモニウム基を有するモノマーは、高屈折率層における無機微粒子の良好な分散性を維持し、物理強度、耐薬品性、耐候性に優れた高屈折率層を作製することができる。   In the high refractive index layer, the binder preferably has an amino group or a quaternary ammonium group. A monomer having an amino group or a quaternary ammonium group maintains good dispersibility of the inorganic fine particles in the high refractive index layer, and can produce a high refractive index layer excellent in physical strength, chemical resistance, and weather resistance. .

架橋又は重合しているバインダーは、ポリマーの主鎖が架橋又は重合している構造を有する。ポリマーの主鎖の例には、ポリオレフィン(飽和炭化水素)、ポリエーテル、ポリウレア、ポリウレタン、ポリエステル、ポリアミン、ポリアミドおよびメラミン樹脂が含まれる。ポリオレフィン主鎖、ポリエーテル主鎖およびポリウレア主鎖が好ましく、ポリオレフィン主鎖およびポリエーテル主鎖がさらに好ましく、ポリオレフィン主鎖が最も好ましい。   The crosslinked or polymerized binder has a structure in which the main chain of the polymer is crosslinked or polymerized. Examples of the polymer main chain include polyolefin (saturated hydrocarbon), polyether, polyurea, polyurethane, polyester, polyamine, polyamide and melamine resin. A polyolefin main chain, a polyether main chain and a polyurea main chain are preferable, a polyolefin main chain and a polyether main chain are more preferable, and a polyolefin main chain is most preferable.

バインダーは、アニオン性基を有する繰り返し単位と、架橋又は重合構造を有する繰り返し単位とを有するコポリマーであることが好ましい。コポリマー中のアニオン性基を有する繰り返し単位の割合は、2〜96mol%であることが好ましく、4〜94mol%であることがさらに好ましく、6〜92mol%であることが最も好ましい。繰り返し単位は、二以上のアニオン性基を有していてもよい。コポリマー中の架橋又は重合構造を有する繰り返し単位の割合は、4〜98mol%であることが好ましく、6〜96mol%であることがさらに好ましく、8〜94mol%であることが最も好ましい。   The binder is preferably a copolymer having a repeating unit having an anionic group and a repeating unit having a crosslinked or polymerized structure. The proportion of the repeating unit having an anionic group in the copolymer is preferably 2 to 96 mol%, more preferably 4 to 94 mol%, and most preferably 6 to 92 mol%. The repeating unit may have two or more anionic groups. The proportion of the repeating unit having a crosslinked or polymerized structure in the copolymer is preferably 4 to 98 mol%, more preferably 6 to 96 mol%, and most preferably 8 to 94 mol%.

高屈折率層は前述の二酸化チタンを主成分とする無機微粒子の他にも微細な無機微粒子を含むことができる。該他の無機微粒子は前記防眩性ハードコート層に含有される無機微粒子を用いても良く、微細に分散されていることが好ましく、好ましい分散後粒径と一次粒子粒径は前記防眩性ハードコート層の欄に記載のとおりである。
高屈折率層における無機微粒子の含有量は、高屈折率層の質量に対し10〜90質量%であることが好ましく、より好ましくは15〜80質量%、特に好ましくは15〜75質量%である。無機微粒子は高屈折率層内で二種類以上を併用してもよい。
高屈折率層の上に低屈折率層を有する場合、高屈折率層の屈折率は透明支持体の屈折率より高いことが好ましい。
高屈折率層に、芳香環を含む電離放射線硬化性化合物、フッ素以外のハロゲン化元素(例えば、Br,I,Cl等)を含む電離放射線硬化性化合物、S,N,P等の原子を含む電離放射線硬化性化合物などの架橋又は重合反応で得られるバインダーも好ましく用いることができる。
高屈折率層の上に低屈折率層を構築して、反射防止フィルムを作製するためには、高屈折率層の屈折率は1.55〜2.40であることが好ましく、より好ましくは1.60〜2.20、更に好ましくは、1.65〜2.10、最も好ましくは1.80〜2.00である。
The high refractive index layer can contain fine inorganic fine particles in addition to the inorganic fine particles mainly composed of titanium dioxide. As the other inorganic fine particles, the inorganic fine particles contained in the antiglare hard coat layer may be used, and are preferably finely dispersed. The preferable post-dispersion particle size and primary particle size are the antiglare property. As described in the column of the hard coat layer.
The content of the inorganic fine particles in the high refractive index layer is preferably 10 to 90% by mass, more preferably 15 to 80% by mass, and particularly preferably 15 to 75% by mass with respect to the mass of the high refractive index layer. . Two or more inorganic fine particles may be used in combination in the high refractive index layer.
When the low refractive index layer is provided on the high refractive index layer, the refractive index of the high refractive index layer is preferably higher than the refractive index of the transparent support.
The high refractive index layer contains an ionizing radiation curable compound containing an aromatic ring, an ionizing radiation curable compound containing a halogenated element other than fluorine (for example, Br, I, Cl, etc.), and atoms such as S, N, P, etc. Binders obtained by crosslinking or polymerization reaction such as ionizing radiation curable compounds can also be preferably used.
In order to construct an antireflection film by constructing a low refractive index layer on a high refractive index layer, the refractive index of the high refractive index layer is preferably 1.55 to 2.40, more preferably 1.60 to 2.20, more preferably 1.65 to 2.10, and most preferably 1.80 to 2.00.

高屈折率層には、前記の成分(無機微粒子、重合開始剤、光増感剤など)以外に、樹脂、界面活性剤、帯電防止剤、カップリング剤、増粘剤、着色防止剤、着色剤(顔料、染料)、防眩性付与粒子、消泡剤、レベリング剤、難燃剤、紫外線吸収剤、赤外線吸収剤、接着付与剤、重合禁止剤、酸化防止剤、表面改質剤、導電性の金属微粒子、などを添加することもできる。
高屈折率層の膜厚は用途により適切に設計することができる。高屈折率層を後述する光学干渉層として用いる場合、30〜200nmが好ましく、より好ましくは50〜170nm、特に好ましくは60〜150nmである。
In addition to the above components (inorganic fine particles, polymerization initiators, photosensitizers, etc.), the high refractive index layer includes resins, surfactants, antistatic agents, coupling agents, thickeners, anti-coloring agents, and coloring. Agents (pigments, dyes), anti-glare imparting particles, antifoaming agents, leveling agents, flame retardants, ultraviolet absorbers, infrared absorbers, adhesion promoters, polymerization inhibitors, antioxidants, surface modifiers, conductivity It is also possible to add metal fine particles.
The film thickness of the high refractive index layer can be appropriately designed depending on the application. When using a high refractive index layer as an optical interference layer described later, the thickness is preferably 30 to 200 nm, more preferably 50 to 170 nm, and particularly preferably 60 to 150 nm.

高屈折率層の形成において、電離放射線硬化性化合物の架橋反応、又は、重合反応は、酸素濃度が10体積%以下、好ましくは酸素濃度が6体積%以下、特に好ましくは酸素濃度が2体積%以下、最も好ましくは1体積%以下の雰囲気で実施することが好ましい。   In the formation of the high refractive index layer, the crosslinking reaction or the polymerization reaction of the ionizing radiation curable compound is performed with an oxygen concentration of 10% by volume or less, preferably an oxygen concentration of 6% by volume or less, particularly preferably an oxygen concentration of 2% by volume. Hereinafter, it is most preferable to carry out in an atmosphere of 1% by volume or less.

<無機フィラー>
上述の各層には無機フィラーを添加することが好ましい。各層に添加する無機フィラーはそれぞれ同じでも異なっていても良く、各層の屈折率、膜強度、膜厚、塗布性などの必要性能に応じて、種類、添加量、は適宜調節されることが好ましい。
なお、低屈折率層に用いる無機フィラーは、上述した無機微粒子以外のものであり、光散乱層に用いる無機フィラーは、上述した透光性粒子以外の無機フィラーである。
<Inorganic filler>
It is preferable to add an inorganic filler to each layer described above. The inorganic filler added to each layer may be the same or different, and the type and amount added are preferably adjusted appropriately according to the required performance of each layer, such as refractive index, film strength, film thickness, and coatability. .
The inorganic filler used for the low refractive index layer is other than the above-described inorganic fine particles, and the inorganic filler used for the light scattering layer is an inorganic filler other than the above-described translucent particles.

本発明に使用する前記無機フィラーの形状は、特に制限されるものではなく、例えば、球状、板状、繊維状、棒状、不定形、中空等のいずれも好ましく用いられるが、球状であると分散性がよく、より好ましい。また、前記無機フィラーの種類についても特に制限されるものではないが、非晶質のものが好ましく用いられ、金属の酸化物、窒化物、硫化物またはハロゲン化物からなるものが好ましく、金属酸化物が特に好ましい。金属原子としては、Na、K、Mg、Ca、Ba、Al、Zn、Fe、Cu、Ti、Sn、In、W、Y、Sb、Mn、Ga、V、Nb、Ta、Ag、Si、B、Bi、Mo、Ce、Cd、Be、Pb、ZrおよびNi等が挙げられる。無機フィラーの平均粒子径は、透明な硬化膜を得るためには、0.001〜0.2μmの範囲内の値とするのが好ましく、より好ましくは0.001〜0.1μm、さらに好ましくは0.001〜0.06μmである。ここで、粒子の平均粒径はコールターカウンターにより測定される。
本発明における無機フィラーの使用方法は特に制限されるものではないが、例えば、乾燥状態で使用することができるし、あるいは水もしくは有機溶媒に分散した状態で使用することもできる。
The shape of the inorganic filler used in the present invention is not particularly limited, and for example, any of a spherical shape, a plate shape, a fiber shape, a rod shape, an indeterminate shape, a hollow shape, and the like are preferably used. Good and more preferable. Further, the kind of the inorganic filler is not particularly limited, but an amorphous one is preferably used, and a metal oxide, nitride, sulfide or halide is preferably used. Is particularly preferred. As metal atoms, Na, K, Mg, Ca, Ba, Al, Zn, Fe, Cu, Ti, Sn, In, W, Y, Sb, Mn, Ga, V, Nb, Ta, Ag, Si, B Bi, Mo, Ce, Cd, Be, Pb, Zr, Ni and the like. In order to obtain a transparent cured film, the average particle diameter of the inorganic filler is preferably set to a value within the range of 0.001 to 0.2 μm, more preferably 0.001 to 0.1 μm, and still more preferably. 0.001 to 0.06 μm. Here, the average particle diameter of the particles is measured by a Coulter counter.
Although the usage method of the inorganic filler in this invention is not restrict | limited in particular, For example, it can use in a dry state or can also be used in the state disperse | distributed to water or the organic solvent.

本発明において、無機フィラーの凝集、沈降を抑制する目的で、各層を形成するための塗布液に分散安定化剤を併用することも好ましい。分散安定化剤としては、ポリビニルアルコール、ポリビニルピロリドン、セルロース誘導体、ポリアミド、リン酸エステル、ポリエーテル、界面活性剤および、シランカップリング剤、チタンカップリング剤等を使用することができる。特にシランカップリング剤が硬化後の皮膜が強いため好ましい。分散安定化剤としてのシランカップリング剤の添加量は特に制限されるものではないが、例えば、無機フィラー100質量部に対して、1質量部以上の値とするのが好ましい。また、分散安定化剤の添加方法も特に制限されるものではないが、予め加水分解したものを添加することもできるし、あるいは、分散安定化剤であるシランカップリング剤と無機フィラーとを混合後、さらに加水分解および縮合する方法を採ることができるが、後者の方がより好ましい。   In the present invention, for the purpose of suppressing aggregation and sedimentation of the inorganic filler, it is also preferable to use a dispersion stabilizer in combination with the coating solution for forming each layer. As the dispersion stabilizer, polyvinyl alcohol, polyvinyl pyrrolidone, cellulose derivative, polyamide, phosphate ester, polyether, surfactant, silane coupling agent, titanium coupling agent and the like can be used. In particular, a silane coupling agent is preferable because the film after curing is strong. Although the addition amount of the silane coupling agent as a dispersion stabilizer is not particularly limited, for example, the value is preferably 1 part by mass or more with respect to 100 parts by mass of the inorganic filler. Also, the method of adding the dispersion stabilizer is not particularly limited, but a hydrolyzed one can be added, or a dispersion stabilizer silane coupling agent and an inorganic filler are mixed. Thereafter, a method of further hydrolysis and condensation can be employed, but the latter is more preferable.

<透明支持体>
本発明の反射防止フィルムの透明支持体としては、プラスチックフィルムを用いることが好ましい。プラスチックフィルムを形成するポリマーとしては、セルロースアシレート(例、トリアセチルセルロース、ジアセチルセルロース、セルロースアセテートプロピオネート、セルロースアセテートブチレート、代表的には富士写真フイルム社製TAC−TD80U,TD80UFなど)、ポリアミド、ポリカーボネート、ポリエステル(例、ポリエチレンテレフタレート、ポリエチレンナフタレート)、ポリスチレン、ポリオレフィン、ノルボルネン系樹脂(アートン:商品名、JSR社製)、非晶質ポリオレフィン(ゼオネックス:商品名、日本ゼオン社製)、などが挙げられる。このうちトリアセチルセルロース、ポリエチレンテレフタレート、ノルボルネン系樹脂、非晶質ポリオレフィンが好ましく、特にトリアセチルセルロースが好ましい。
セルロースアシレートは、単層または複数の層からなる。単層のセルロースアシレートは、特開平7−11055号等で開示されているドラム流延、あるいはバンド流延等により作成され、後者の複数の層からなるセルロースアシレートは、公開特許公報の特開昭61−94725号、特公昭62−43846号等で開示されている、いわゆる共流延法により作成される。すなわち、原料フレークをハロゲン化炭化水素類(ジクロロメタン等、アルコール類(メタノール、エタノール、ブタノール等)、エステル類(蟻酸メチル、酢酸メチル等)、エーテル類(ジオキサン、ジオキソラン、ジエチルエーテル等)等の溶剤にて溶解し、これに必要に応じて可塑剤、紫外線吸収剤、劣化防止剤、滑り剤、剥離促進剤等の各種の添加剤を加えた溶液(ドープと称する)を、水平式のエンドレスの金属ベルトまたは回転するドラムからなる支持体の上に、ドープ供給手段(ダイと称する)により流延する際、単層ならば単一のドープを単層流延し、複数の層ならば高濃度のセルロースエステルドープの両側に低濃度ドープを共流延し、支持体上である程度乾燥して剛性が付与されたフィルムを支持体から剥離し、次いで各種の搬送手段により乾燥部を通過させて溶剤を除去することからなる方法である。
<Transparent support>
As the transparent support of the antireflection film of the present invention, a plastic film is preferably used. As the polymer forming the plastic film, cellulose acylate (eg, triacetylcellulose, diacetylcellulose, cellulose acetate propionate, cellulose acetate butyrate, typically TAC-TD80U, TD80UF, etc. manufactured by Fuji Photo Film Co., Ltd.), Polyamide, polycarbonate, polyester (eg, polyethylene terephthalate, polyethylene naphthalate), polystyrene, polyolefin, norbornene resin (Arton: trade name, manufactured by JSR), amorphous polyolefin (ZEONEX: trade name, manufactured by ZEON Corporation), Etc. Among these, triacetyl cellulose, polyethylene terephthalate, norbornene resin, and amorphous polyolefin are preferable, and triacetyl cellulose is particularly preferable.
Cellulose acylate consists of a single layer or a plurality of layers. A single-layer cellulose acylate is prepared by drum casting or band casting disclosed in JP-A No. 7-11055 and the like. The latter cellulose acylate comprising a plurality of layers is a feature of the published patent publication. It is prepared by the so-called co-casting method disclosed in Japanese Utility Model Publication Nos. 61-94725 and 62-43846. That is, the raw material flakes are solvents such as halogenated hydrocarbons (dichloromethane, alcohols (methanol, ethanol, butanol, etc.), esters (methyl formate, methyl acetate, etc.), ethers (dioxane, dioxolane, diethyl ether, etc.), etc. A solution (called a dope) containing various additives such as a plasticizer, an ultraviolet absorber, an anti-degradation agent, a slipping agent and a peeling accelerator as required is dissolved in a horizontal endless. When casting by a dope supply means (called a die) on a support consisting of a metal belt or a rotating drum, a single dope is cast as a single layer, and a high concentration is used as a plurality of layers. A low-concentration dope is co-cast on both sides of the cellulose ester dope, and the film is dried to some extent on the support to release the rigid film, and then peeled off from the support. A process comprising passed through a drying section by species of the conveying means to remove the solvent.

前記のような、セルロースアシレートを溶解するための溶剤としては、ジクロロメタンが代表的である。しかし地球環境や作業環境の観点から、溶剤はジクロロメタン等のハロゲン化炭化水素を実質的に含まないことが好ましい。「実質的に含まない」とは、有機溶剤中のハロゲン化炭化水素の割合が5質量%未満(好ましくは2質量%未満)であることを意味する。   A typical solvent for dissolving cellulose acylate as described above is dichloromethane. However, from the viewpoint of the global environment and working environment, the solvent preferably does not substantially contain a halogenated hydrocarbon such as dichloromethane. “Substantially free” means that the proportion of halogenated hydrocarbon in the organic solvent is less than 5% by mass (preferably less than 2% by mass).

前記のような種々のセルロースアシレートフィルム(トリアセチルセルロースなどからなるフィルム)およびその製造法については発明協会公開技報(公技番号2001−1745、2001年3月15日発行、以下公開技報2001−1745号と略す)に記載されている。 Various cellulose acylate films (films made of triacetyl cellulose and the like) as described above and methods for producing the same are disclosed in the Japan Society for Invention and Technology (Publication No. 2001-1745, published on March 15, 2001, the following public technical bulletin). 2001-1745).

セルロースアシレートフィルムの厚みとしては40μm〜120μmが好ましい。ハンドリング適性、塗布適性等を考慮すると80μm前後が好ましいが、近年の表示装置の薄手化の傾向から、偏光板の薄手化のニーズが大きく、偏光板薄手化の観点では40μm〜60μm前後が好ましい。このような薄手のセルロースアシレートフィルムを本発明の反射防止フィルムの透明支持体として用いる場合には、セルロースアシレートフィルムに直接塗布する層の溶媒、膜厚、架橋収縮率等を最適化することにより前記のハンドリング、塗布適性等の問題を回避することが好ましい。
<他の層について>
透明支持体と本発明の光散乱層の間に設けても良い他の層として、帯電防止層(ディスプレイ側からの表面抵抗値を下げる等の要求がある場合、表面等へのゴミつきが問題となる場合)、ハードコート層(光散乱層だけで硬度が不足する場合)、防湿層、密着改良層、虹ムラ(干渉ムラ)防止層等が挙げられる。
これらの層は、公知の方法にて形成することができる。
The thickness of the cellulose acylate film is preferably 40 μm to 120 μm. In consideration of handling suitability, coating suitability, etc., about 80 μm is preferable. However, there is a great need for thinning the polarizing plate from the recent trend of thinning the display device. When such a thin cellulose acylate film is used as the transparent support of the antireflection film of the present invention, the solvent, film thickness, crosslinking shrinkage ratio, etc. of the layer directly applied to the cellulose acylate film should be optimized. Therefore, it is preferable to avoid the problems such as handling and application suitability.
<About other layers>
As another layer that may be provided between the transparent support and the light scattering layer of the present invention, an antistatic layer (when there is a demand to reduce the surface resistance value from the display side, there is a problem of dust on the surface, etc. And a hard coat layer (when the light scattering layer alone is insufficient in hardness), a moisture-proof layer, an adhesion improving layer, a rainbow unevenness (interference unevenness) preventing layer, and the like.
These layers can be formed by a known method.

本発明の反射防止フィルムは以下の方法で形成することができるが、この方法に制限されない。
[塗布液の調整]
The antireflection film of the present invention can be formed by the following method, but is not limited to this method.
[Adjustment of coating solution]

まず、各層を形成するための成分を含有した塗布液が調製される。その際、溶剤の揮発量を最小限に抑制することにより、塗布液中の含水率の上昇を抑制できる。塗布液中の含水率は5%以下が好ましく、2%以下がより好ましい。溶剤の揮発量の抑制は、各素材をタンクに投入後の攪拌時の密閉性を向上すること、移液作業時の塗布液の空気接触面積を最小化すること等で達成される。また、塗布中、或いはその前後に塗布液中の含水率を低減する手段を設けてもよい。   First, a coating solution containing components for forming each layer is prepared. In that case, the raise of the moisture content in a coating liquid can be suppressed by suppressing the volatilization amount of a solvent to the minimum. The moisture content in the coating solution is preferably 5% or less, more preferably 2% or less. The suppression of the volatilization amount of the solvent is achieved by improving the sealing property at the time of stirring after putting each material into the tank, minimizing the air contact area of the coating liquid at the time of liquid transfer operation, and the like. Moreover, you may provide the means to reduce the moisture content in a coating liquid during application | coating, or before and behind that.

光散乱層を形成する塗布液中には、直接その上に形成される低屈折率層の乾燥膜厚(50nm〜120nm程度)に相当する異物を概ね全て(90%以上を指す)除去できるろ過をすることが好ましい。光拡散性を付与する為の透光性粒子が低屈折率層の膜厚と同等以上であるため、前記ろ過は、透光性粒子以外の全ての素材を添加した中間液に対して行うことが好ましい。また、前記のような粒径の小さな異物を除去可能なフィルターが入手できない場合には、少なくとも直接その上に形成される層のウエット膜厚(1〜10μm程度)に相当する異物を概ね全て除去できるろ過をすることが好ましい。このような手段により、直接その上に形成される層の点欠陥を減少することができる。   Filtration capable of removing almost all foreign substances (pointing to 90% or more) corresponding to the dry film thickness (about 50 nm to 120 nm) of the low refractive index layer directly formed on the coating liquid for forming the light scattering layer It is preferable to Since the translucent particles for imparting light diffusivity are equal to or greater than the film thickness of the low refractive index layer, the filtration should be performed on the intermediate liquid to which all materials other than the translucent particles are added. Is preferred. In addition, when a filter capable of removing foreign substances having a small particle diameter as described above is not available, almost all foreign substances corresponding to the wet film thickness (about 1 to 10 μm) of the layer directly formed thereon are removed. It is preferable to perform filtration. By such means, the point defects of the layer formed directly thereon can be reduced.

次に、光散乱層を形成するための塗布液を、ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法やエクストルージョンコート法(米国特許2681294号明細書参照)により透明支持体上に塗布し、加熱・乾燥する。その後、光照射および/または加熱して、光散乱層を形成するためのモノマーを重合して硬化する。これにより光散乱層が形成される。
ここで、必要であれば光散乱層を複数層とし、光散乱層塗布の前に同様な方法で平滑な光散乱層塗布および硬化を行うことができる。
次に、同様にして低屈折率層を形成するための塗布液を光散乱層上に塗布し、溶剤を乾燥した後に光照射および/または加熱し低屈折率層が形成される。このようにして、本発明の反射防止フィルムが得られる。
Next, a coating solution for forming the light scattering layer is prepared by using a dip coating method, an air knife coating method, a curtain coating method, a roller coating method, a wire bar coating method, a gravure coating method or an extrusion coating method (US Pat. No. 2,681,294). Apply to a transparent support according to the description), and heat and dry. Thereafter, the monomer for forming the light scattering layer is polymerized and cured by light irradiation and / or heating. Thereby, a light scattering layer is formed.
Here, if necessary, the light scattering layer may be formed into a plurality of layers, and smooth light scattering layer application and curing may be performed by the same method before the light scattering layer application.
Next, in the same manner, a coating liquid for forming a low refractive index layer is applied on the light scattering layer, and after drying the solvent, light irradiation and / or heating is performed to form the low refractive index layer. In this way, the antireflection film of the present invention is obtained.

光散乱層を形成する際には、基材フィルム上に直接又は他の層を介してウエット塗布膜厚として1〜20μmの範囲で前記塗液を塗布するのが好ましい。また、低屈折率層を形成する際には、光散乱層上にウエット塗布膜厚として1〜10μmの範囲で前記と液を塗布するのが好ましく、2〜5μmの範囲で塗布されるのがより好ましい。   When forming a light-scattering layer, it is preferable to apply | coat the said coating liquid in the range of 1-20 micrometers as wet coating film thickness directly or via another layer on a base film. Moreover, when forming a low refractive index layer, it is preferable to apply | coat the said liquid in the range of 1-10 micrometers as a wet coating film thickness on a light-scattering layer, and it is apply | coated in the range of 2-5 micrometers. More preferred.

光散乱層および低屈折率層は、基材フィルム上に直接又は他の層を介して塗布された後、溶剤を乾燥するために加熱されたゾーンにウェブで搬送される。その際の乾燥ゾーンの温度は25℃〜140℃が好ましく、乾燥ゾーンの前半は比較的低温であり、後半は比較的高温であることが好ましい。但し、各層の塗布組成物に含有される溶剤以外の成分の揮発が始まる温度以下であることが好ましい。例えば、紫外線硬化樹脂と併用される市販の光ラジカル発生剤のなかには120℃の温風中で数分以内にその数10%前後が揮発してしまうものもあり、また、単官能、2官能のアクリレートモノマー等は100℃の温風中で揮発が進行するものもある。そのような場合には、前記のように各層の塗布組成物に含有される溶剤以外の成分の揮発が始まる温度以下であることが好ましい。   The light scattering layer and the low refractive index layer are applied directly on the base film or via other layers, and then conveyed in a web to a heated zone to dry the solvent. In this case, the temperature of the drying zone is preferably 25 ° C. to 140 ° C., the first half of the drying zone is relatively low temperature, and the second half is preferably relatively high temperature. However, it is preferably below the temperature at which components other than the solvent contained in the coating composition of each layer start to volatilize. For example, some of the commercially available photo radical generators used in combination with ultraviolet curable resins volatilize around several tens of percent within a few minutes in warm air at 120 ° C. Some acrylate monomers and the like undergo volatilization in warm air at 100 ° C. In such a case, it is preferable that it is below the temperature at which components other than the solvent contained in the coating composition of each layer start to volatilize as described above.

また、各層の塗布組成物を基材フィルム上に塗布した後の乾燥風は、前記塗布組成物の固形分濃度が1〜50%の間は塗膜表面の風速が0.1〜2m/秒の範囲にあることが、乾燥ムラを防止するために好ましい。
また、各層の塗布組成物を基材フィルム上に塗布した後、乾燥ゾーン内で基材フィルムの塗布面とは反対の面に接触する搬送ロールと基材フィルムとの温度差が0℃〜20℃以内とすると、搬送ロール上での伝熱ムラによる乾燥ムラが防止でき、好ましい。
Moreover, the dry wind after apply | coating the coating composition of each layer on a base film is 0.1-2 m / sec on the surface of a coating film, when the solid content concentration of the said coating composition is 1 to 50%. It is preferable to be in the range in order to prevent drying unevenness.
Moreover, after apply | coating the coating composition of each layer on a base film, the temperature difference of the conveyance roll and base film which contacts the surface opposite to the coating surface of a base film in a drying zone is 0 degreeC-20. Within the range of ° C., drying unevenness due to heat transfer unevenness on the transport roll can be prevented, which is preferable.

溶剤の乾燥ゾーンの後に、ウェブで電離放射線および/または熱により各塗膜を硬化させるゾーンを通過させ、塗膜を硬化する。例えば塗膜が紫外線硬化性であれば、紫外線ランプにより10mJ/cm2〜1000mJ/cm2の照射量の紫外線を照射して各層を硬化するのが好ましい。その際、ウェブの幅方向の照射量分布は中央の最大照射量に対して両端まで含めて50〜100%の分布が好ましく、80〜100%の分布がより好ましい。更に表面硬化を促進する為に窒素ガス等をパージして酸素濃度を低下する必要がある際には、酸素濃度0.01%〜5%が好ましく、幅方向の分布は酸素濃度で2%以下が好ましい。 After the solvent drying zone, the coating is cured by passing through a zone where the coating is cured by ionizing radiation and / or heat on the web. For example, if the coating film is UV curable, it is to cure each layer by irradiating an irradiation amount of ultraviolet rays of 10mJ / cm 2 ~1000mJ / cm 2 by an ultraviolet lamp preferred. At that time, the irradiation distribution in the width direction of the web is preferably 50 to 100%, more preferably 80 to 100%, including both ends with respect to the central maximum irradiation. Further, when it is necessary to purge nitrogen gas or the like to lower the oxygen concentration in order to promote surface hardening, the oxygen concentration is preferably 0.01% to 5%, and the distribution in the width direction is 2% or less in terms of oxygen concentration. Is preferred.

また、光散乱層の硬化率(100−残存官能基含率)が100%未満のある値となった場合、その上に本発明の低屈折率層を設けて電離放射線および/または熱により低屈折率層を硬化した際に下層の光散乱層の硬化率が低屈折率層を設ける前よりも高くなると、光散乱層と低屈折率層との間の密着性が改良され、好ましい。   In addition, when the curing rate (100-residual functional group content) of the light scattering layer becomes a certain value less than 100%, the low refractive index layer of the present invention is provided on the light scattering layer to reduce the light scattering layer by ionizing radiation and / or heat. When the refractive index layer is cured, if the curing rate of the lower light scattering layer is higher than before the low refractive index layer is provided, the adhesion between the light scattering layer and the low refractive index layer is improved, which is preferable.

前記のようにして製造された本発明の反射防止フィルムは、これを用いて偏光板を作成することにより液晶表示装置に用いることができる。この場合、片面に粘着層を設ける等してディスプレイの最表面に配置する。本発明の反射防止フィルムは、偏光板における偏光膜を両面から挟む2枚の保護フィルムのうち少なくとも1枚に用いることが好ましい。本発明の反射防止フィルムが保護フィルムを兼ねることで、偏光板の製造コストを低減できる。また、本発明の反射防止フィルムを最表層に使用することにより、外光の映り込み等が防止され、耐擦傷性、防汚性等も優れた偏光板とすることができる。   The antireflection film of the present invention produced as described above can be used for a liquid crystal display device by making a polarizing plate using the antireflection film. In this case, it arrange | positions on the outermost surface of a display by providing an adhesive layer on one side. The antireflection film of the present invention is preferably used for at least one of the two protective films sandwiching the polarizing film in the polarizing plate from both sides. Since the antireflection film of the present invention also serves as a protective film, the production cost of the polarizing plate can be reduced. Further, by using the antireflection film of the present invention as the outermost layer, reflection of external light and the like can be prevented, and a polarizing plate having excellent scratch resistance, antifouling property and the like can be obtained.

本発明の反射防止フィルムを2枚の偏光膜の表面保護フイルムの内の一方として用いて偏光板を作成する際には、前記の反射防止フィルムを、反射防止構造を有する側とは反対側の透明支持体の表面、すなわち偏光膜と貼り合わせる側の表面を親水化することで、接着面における接着性を改良することが好ましい。   When producing a polarizing plate using the antireflection film of the present invention as one of the surface protective films of two polarizing films, the antireflection film is on the side opposite to the side having the antireflection structure. It is preferable to improve the adhesion on the adhesive surface by hydrophilizing the surface of the transparent support, that is, the surface to be bonded to the polarizing film.

[鹸化処理]
(1)アルカリ液に浸漬する法
アルカリ液の中に反射防止フィルムを適切な条件で浸漬して、フイルム全表面のアルカリと反応性を有する全ての面を鹸化処理する手法であり、特別な設備を必要としないため、コストの観点で好ましい。アルカリ液は、水酸化ナトリウム水溶液であることが好ましい。好ましい濃度は0.5〜3mol/Lであり、特に好ましくは1〜2mol/Lである。好ましいアルカリ液の液温は30〜75℃、特に好ましくは40〜60℃である。
前記の鹸化条件の組合せは比較的穏和な条件同士の組合せであることが好ましいが、反射防止フィルムの素材や構成、目標とする接触角によって設定することができる。
アルカリ液に浸漬した後は、フィルムの中にアルカリ成分が残留しないように、水で十分に水洗したり、希薄な酸に浸漬してアルカリ成分を中和することが好ましい。
[Saponification]
(1) Method of immersing in alkaline solution This is a technique in which an antireflection film is immersed in an alkaline solution under appropriate conditions to saponify all surfaces reactive with alkali on the entire surface of the film. Is preferable from the viewpoint of cost. The alkaline liquid is preferably a sodium hydroxide aqueous solution. A preferred concentration is 0.5 to 3 mol / L, particularly preferably 1 to 2 mol / L. The liquid temperature of a preferable alkali liquid is 30-75 degreeC, Most preferably, it is 40-60 degreeC.
The combination of the saponification conditions is preferably a combination of relatively mild conditions, but can be set depending on the material and configuration of the antireflection film and the target contact angle.
After being immersed in the alkaline solution, it is preferable to sufficiently wash with water or neutralize the alkaline component by immersing in a dilute acid so that the alkaline component does not remain in the film.

鹸化処理することにより、透明支持体の反射防止層を有する表面と反対の表面が親水化される。 偏光板用保護フィルムは、透明支持体の親水化された表面を偏光膜と接着させて使用する。
親水化された表面は、ポリビニルアルコールを主成分とする接着層との接着性を改良するのに有効である。
鹸化処理は、低屈折率層を有する側とは反対側の透明支持体の表面の水に対する接触角が低いほど、偏光膜との接着性の観点では好ましいが、一方、浸漬法では同時に低屈折率層を有する表面から内部の光散乱層までアルカリによるダメージを受ける為、必要最小限の反応条件とすることが重要となる。アルカリによる反射防止層の受けるダメージの指標として、反対側の表面の透明支持体の水に対する接触角を用いた場合、特に透明支持体がトリアセチルセルロースであれば、好ましくは10度〜50度、より好ましくは30度〜50度、さらに好ましくは40度〜50度となる。50度以上では、偏光膜との接着性に問題が生じる為、好ましくない。一方、10度未満では、反射防止膜の受けるダメージが大きすぎる為、物理強度を損ない、好ましくない。
By saponification treatment, the surface of the transparent support opposite to the surface having the antireflection layer is hydrophilized. The protective film for polarizing plate is used by adhering the hydrophilic surface of the transparent support to the polarizing film.
The hydrophilized surface is effective for improving the adhesiveness with the adhesive layer mainly composed of polyvinyl alcohol.
In the saponification treatment, the lower the contact angle of water on the surface of the transparent support opposite to the side having the low refractive index layer, the better from the viewpoint of adhesiveness to the polarizing film. Since it is damaged by alkali from the surface having the rate layer to the inner light scattering layer, it is important to set the reaction conditions to the minimum necessary. As an index of the damage received by the antireflection layer due to alkali, when the contact angle to water of the transparent support on the opposite surface is used, particularly when the transparent support is triacetylcellulose, preferably 10 to 50 degrees, More preferably, it is 30 to 50 degrees, and further preferably 40 to 50 degrees. If it is 50 degrees or more, a problem arises in the adhesion to the polarizing film, which is not preferable. On the other hand, if the angle is less than 10 degrees, the damage received by the antireflection film is too large, so that the physical strength is impaired, which is not preferable.

(2)アルカリ液を塗布する方法
上述の浸漬法における反射防止膜へのダメージを回避する手段として、適切な条件でアルカリ液を反射防止膜を有する表面と反対側の表面のみに塗布、加熱、水洗、乾燥するアルカリ液塗布法が好ましく用いられる。なお、この場合の塗布とは、鹸化を行う面に対してのみアルカリ液などを接触させることを意味し、塗布以外にも噴霧、液を含んだベルト等に接触させる、などによって行われることも含む。これらの方法を採ることにより、別途、アルカリ液を塗布する設備、工程が必要となるため、コストの観点では(1)の浸漬法に劣る。一方で、鹸化処理を施す面にのみアルカリ液が接触するため、反対側の面にはアルカリ液に弱い素材を用いた層を有することができる。例えば、蒸着膜やゾル−ゲル膜では、アルカリ液によって、腐食、溶解、剥離など様々な影響が起こるため、浸漬法では設けることが望ましくないが、この塗布法では液と接触しないため問題なく使用することが可能である。
(2) Method of applying alkaline solution As a means for avoiding damage to the antireflection film in the above immersion method, the alkaline solution is applied only to the surface opposite to the surface having the antireflection film under appropriate conditions, heated, An alkaline solution coating method of washing with water and drying is preferably used. The application in this case means that an alkaline solution or the like is brought into contact only with the surface to be saponified, and in addition to the application, it may be carried out by spraying or contacting a belt containing the solution. Including. By adopting these methods, a separate facility and process for applying an alkaline solution are required, which is inferior to the immersion method (1) from the viewpoint of cost. On the other hand, since the alkali solution contacts only the surface to be saponified, the opposite surface can have a layer using a material that is weak against the alkali solution. For example, vapor deposition films and sol-gel films have various effects such as corrosion, dissolution, peeling, etc. caused by alkaline liquids. Is possible.

前記(1)、(2)のどちらの鹸化方法においても、ロール状の支持体から巻き出して各層を形成後に行うことができるため、前述の反射防止フィルム製造工程の後に加えて一連の操作で行っても良い。さらに、同様に巻き出した支持体からなる偏光板との張り合わせ工程もあわせて連続で行うことにより、枚葉で同様の操作をするよりもより効率良く偏光板を作成することができる。   In any of the saponification methods (1) and (2), since each layer can be formed by unwinding from a roll-shaped support, a series of operations can be performed in addition to the above-described antireflection film manufacturing process. You can go. Furthermore, the polarizing plate can be produced more efficiently than the same operation with a single wafer by continuously performing the pasting step with the polarizing plate made of the unwound support.

(3)反射防止膜をラミネートフィルムで保護して鹸化する方法
前記(2)と同様に、光散乱層および/または低屈折率層がアルカリ液に対する耐性が不足している場合に、低屈折率層まで形成した後に低屈折率層を形成した面にラミネートフィルムを貼り合せてからアルカリ液に浸漬することで低屈折率層を形成した面とは反対側のトリアセチルセルロース面だけを親水化し、然る後にラミネートフィルムを剥離することができる。この方法でも、光散乱層、低屈折率層へのダメージなしに偏光板保護フィルムとして必要なだけの親水化処理をトリアセチルセルロースフィルムの反射防止層を形成した面とは反対の面だけに施すことができる。前記(2)の方法と比較して、ラミネートフィルムが廃棄物として発生する半面、特別なアルカリ液を塗布する装置が不要である利点がある。
(3) Method of saponification by protecting the antireflection film with a laminate film As in the case of (2) above, when the light scattering layer and / or the low refractive index layer has insufficient resistance to an alkaline solution, After laminating the laminate film on the surface on which the low refractive index layer is formed after forming the layer, the surface of the triacetyl cellulose opposite to the surface on which the low refractive index layer is formed is hydrophilized by immersing in an alkali solution, Thereafter, the laminate film can be peeled off. Even in this method, only the surface opposite to the surface on which the antireflective layer of the triacetyl cellulose film is formed is subjected to the hydrophilization treatment necessary for the polarizing plate protective film without damage to the light scattering layer and the low refractive index layer be able to. Compared with the method (2), there is an advantage that a laminate film is generated as waste, but a device for applying a special alkaline solution is unnecessary.

(4)光散乱層まで形成後にアルカリ液に浸漬する方法
光散乱層まではアルカリ液に対する耐性があるが、低屈折率層がアルカリ液に対する耐性不足である場合には、光散乱層まで形成後にアルカリ液に浸漬して両面を親水化処理し、然る後に光散乱層上に低屈折率層を形成することもできる。製造工程が煩雑になるが、特に低屈折率層がフッ素含有ゾル−ゲル膜等、親水基を有する場合には光散乱層と低屈折率層との層間密着性が向上する利点がある。
(4) Method of immersing in an alkali solution after forming up to the light scattering layer Although the light scattering layer is resistant to the alkali solution, if the low refractive index layer is insufficiently resistant to the alkali solution, after forming up to the light scattering layer It is also possible to soak both surfaces in an alkali solution to hydrophilize both sides, and then form a low refractive index layer on the light scattering layer. Although the manufacturing process is complicated, there is an advantage that the interlayer adhesion between the light scattering layer and the low refractive index layer is improved particularly when the low refractive index layer has a hydrophilic group such as a fluorine-containing sol-gel film.

(5)予め鹸化済のトリアセチルセルロースフィルムに反射防止膜を形成する方法
トリアセチルセルロースフィルムを予めアルカリ液に浸漬するなどして鹸化し、何れか一方の面に直接または他の層を介して光散乱層、低屈折率層を形成してもよい。アルカリ液に浸漬して鹸化する場合には、光散乱層または他の層と鹸化により親水化されたトリアセチルセルロース面との層間密着性が悪化することがある。そのような場合には、鹸化後、光散乱層または他の層を形成する面だけにコロナ放電、グロー放電等の処理をすることで親水化面を除去してから光散乱層または他の層を形成することで対処できる。また、光散乱層または他の層が親水性基を有する場合には層間密着が良好なこともある。
(5) Method of forming an antireflection film on a pre-saponified triacetyl cellulose film A triacetyl cellulose film is preliminarily immersed in an alkaline solution and saponified, either directly or via another layer. A light scattering layer and a low refractive index layer may be formed. In the case of saponification by dipping in an alkali solution, interlayer adhesion between the light scattering layer or other layers and the triacetyl cellulose surface hydrophilized by saponification may deteriorate. In such a case, after the saponification, only the surface on which the light scattering layer or other layer is formed is treated by corona discharge, glow discharge or the like to remove the hydrophilic surface, and then the light scattering layer or other layer. Can be dealt with by forming Further, when the light scattering layer or other layer has a hydrophilic group, the interlayer adhesion may be good.

以下に、本発明の反射防止フィルムを用いた偏光板及び該偏光板を用いた液晶表示装置について説明する。
[偏光板]
本発明の好ましい偏光板は、偏光膜の保護フイルム(偏光板用保護フイルム)の少なくとも一方として、本発明の反射防止フイルムを有する。偏光板用保護フイルムは、前記のように、反射防止構造を有する側とは反対側の透明支持体の表面、すなわち偏光膜と貼り合わせる側の表面の水に対する接触角が10度〜50度の範囲にあることが好ましい。
本発明の反射防止フイルムを偏光板用保護フイルムとして用いることにより、物理強度、耐光性に優れた反射防止機能を有する偏光板が作製でき、大幅なコスト削減、表示装置の薄手化が可能となる。
また、本発明の反射防止フイルムを偏光板用保護フイルムの一方に、後述する光学異方性のある光学補償フィルムを偏光膜の保護フィルムのもう一方に用いた偏光板を作製することにより、さらに、液晶表示装置の明室でのコントラストを改良し、上下左右の視野角が非常に広げることができる偏光板を作製できる。
Below, the polarizing plate using the antireflection film of this invention and the liquid crystal display device using this polarizing plate are demonstrated.
[Polarizer]
The preferable polarizing plate of this invention has the antireflection film of this invention as at least one of the protective film (polarizing plate protective film) of a polarizing film. As described above, the protective film for polarizing plate has a contact angle with water of 10 to 50 degrees on the surface of the transparent support opposite to the side having the antireflection structure, that is, the surface to be bonded to the polarizing film. It is preferable to be in the range.
By using the antireflection film of the present invention as a protective film for a polarizing plate, a polarizing plate having an antireflection function excellent in physical strength and light resistance can be produced, and the cost can be greatly reduced and the display device can be thinned. .
Further, by preparing a polarizing plate using the antireflection film of the present invention as one of the protective films for polarizing plates and an optical compensation film having optical anisotropy described later as the other protective film of the polarizing film, Thus, a polarizing plate capable of improving the contrast in the bright room of the liquid crystal display device and greatly widening the vertical and horizontal viewing angles can be produced.

[光学補償層]
偏光板には光学補償層(位相差層)を設けることにより、液晶表示画面の視野角特性を改良することができる。
光学補償層としては、公知のものを用いることができるが、視野角を広げるという点では、特開2001−100042号に記載されているディスコティック構造単位を有する化合物からなる光学異方性を有する層を有し、該ディスコティック化合物と透明支持体とのなす角度が透明支持体からの距離に伴って変化していることを特徴とする光学補償層が好ましい。
該角度は該ディスコティック化合物からなる光学異方性層の透明支持体面側からの距離の増加とともに増加していることが好ましい。
光学補償層を偏光膜の保護フィルムとして用いる場合、偏光膜と貼り合わせる側の表面が鹸化処理されていることが好ましく、前記の鹸化処理に従って実施することが好ましい。
[Optical compensation layer]
By providing the polarizing plate with an optical compensation layer (retardation layer), the viewing angle characteristics of the liquid crystal display screen can be improved.
A known layer can be used as the optical compensation layer, but it has optical anisotropy made of a compound having a discotic structural unit described in JP-A-2001-100042 in terms of widening the viewing angle. An optical compensation layer having a layer, wherein the angle formed by the discotic compound and the transparent support varies with the distance from the transparent support, is preferable.
The angle preferably increases as the distance from the transparent support surface side of the optically anisotropic layer made of the discotic compound increases.
When the optical compensation layer is used as a protective film for a polarizing film, the surface on the side to be bonded to the polarizing film is preferably saponified, and is preferably performed according to the saponifying process.

[偏光膜]
偏光膜としては公知の偏光膜や、偏光膜の吸収軸が長手方向に平行でも垂直でもない長尺の偏光膜から切り出された偏光膜を用いてもよい。偏光膜の吸収軸が長手方向に平行でも垂直でもない長尺の偏光膜は以下の方法により作成される。
即ち、連続的に供給されるポリマーフィルムの両端を保持手段により保持しつつ張力を付与して延伸した偏光膜で、少なくともフィルム幅方向に1.1〜20.0倍に延伸し、フィルム両端の保持装置の長手方向進行速度差が3%以内であり、フィルム両端を保持する工程の出口におけるフィルムの進行方向と、フィルムの実質延伸方向のなす角が、20〜70゜傾斜するようにフィルム進行方向を、フィルム両端を保持させた状態で屈曲させてなる延伸方法によって製造することができる。特に45°傾斜させたものが生産性の観点から好ましく用いられる。
[Polarizing film]
As the polarizing film, a known polarizing film or a polarizing film cut out from a long polarizing film whose absorption axis is neither parallel nor perpendicular to the longitudinal direction may be used. A long polarizing film whose absorption axis is neither parallel nor perpendicular to the longitudinal direction is produced by the following method.
That is, with a polarizing film stretched by applying tension while holding both ends of a continuously supplied polymer film by a holding means, stretched at least 1.1 to 20.0 times in the film width direction, The progress of the film is such that the difference between the moving speeds in the longitudinal direction of the holding device is within 3%, and the angle formed between the moving direction of the film at the exit of the process of holding both ends of the film and the substantial stretching direction of the film is inclined by 20 to 70 °. It can be produced by a stretching method in which the direction is bent while holding both ends of the film. In particular, those inclined by 45 ° are preferably used from the viewpoint of productivity.

ポリマーフィルムの延伸方法については、特開2002−86554号公報の段落0020〜0030に詳しい記載がある。   The method for stretching the polymer film is described in detail in paragraphs 0020 to 0030 of JP-A-2002-86554.

<液晶表示装置>
本発明の反射防止フィルムは、液晶表示装置(LCD)、プラズマディスプレイパネル(PDP)、エレクトロルミネッセンスディスプレイ(ELD)や陰極管表示装置(CRT)のような画像表示装置に適用することができる。本発明の反射防止フィルムは透明支持体を有しているので、透明支持体側を画像表示装置の画像表示面に接着して用いられる。
<Liquid crystal display device>
The antireflection film of the present invention can be applied to an image display device such as a liquid crystal display device (LCD), a plasma display panel (PDP), an electroluminescence display (ELD), or a cathode ray tube display device (CRT). Since the antireflection film of the present invention has a transparent support, the transparent support side is adhered to the image display surface of the image display device.

本発明の反射防止フィルムは、偏光膜の表面保護フィルムの片側として用いた場合、ツイステットネマチック(TN)、スーパーツイステットネマチック(STN)、バーティカルアライメント(VA)、インプレインスイッチング(IPS)、オプティカリーコンペンセイテットベンドセル(OCB)等のモードの透過型、反射型、または半透過型の液晶表示装置に好ましく用いることができる。   The antireflection film of the present invention, when used as one side of the surface protective film of the polarizing film, is twisted nematic (TN), super twisted nematic (STN), vertical alignment (VA), in-plane switching (IPS), optical It can be preferably used for a transmissive, reflective, or transflective liquid crystal display device of a mode such as a curry compensate bend cell (OCB).

VAモードの液晶セルには、(1)棒状液晶性分子を電圧無印加時に実質的に垂直に配向させ、電圧印加時に実質的に水平に配向させる狭義のVAモードの液晶セル(特開平2−176625号公報記載)に加えて、(2)視野角拡大のため、VAモードをマルチドメイン化した(MVAモードの)液晶セル(SID97、Digest of tech. Papers(予稿集)28(1997)845記載)、(3)棒状液晶性分子を電圧無印加時に実質的に垂直配向させ、電圧印加時にねじれマルチドメイン配向させるモード(n−ASMモード)の液晶セル(日本液晶討論会の予稿集58〜59(1998)記載)および(4)SURVAIVALモードの液晶セル(LCDインターナショナル98で発表)が含まれる。   The VA mode liquid crystal cell includes (1) a narrowly defined VA mode liquid crystal cell in which rod-like liquid crystalline molecules are aligned substantially vertically when no voltage is applied, and substantially horizontally when a voltage is applied (Japanese Patent Laid-Open No. Hei 2-). (2) In addition to (2) Liquid crystal cell (SID97, Digest of tech. Papers (Preliminary Collection) 28 (1997) 845 in which the VA mode is converted into a multi-domain (MVA mode) for viewing angle expansion ), (3) A liquid crystal cell in a mode (n-ASM mode) in which rod-like liquid crystalline molecules are substantially vertically aligned when no voltage is applied and twisted multi-domain alignment is applied when a voltage is applied (Preliminary collections 58-59 of the Japan Liquid Crystal Society) (1998)) and (4) SURVAVAL mode liquid crystal cells (announced at LCD International 98).

OCBモードの液晶セルは、棒状液晶性分子を液晶セルの上部と下部とで実質的に逆の方向に(対称的に)配向させるベンド配向モードの液晶セルを用いた液晶表示装置であり、米国特許4583825号、同5410422号の各明細書に開示されている。棒状液晶性分子が液晶セルの上部と下部とで対称的に配向しているため、ベンド配向モードの液晶セルは、自己光学補償機能を有する。そのため、この液晶モードは、OCB(Optically Compensatory Bend) 液晶モードとも呼ばれる。ベンド配向モードの液晶表示装置は、応答速度が速いとの利点がある。   The OCB mode liquid crystal cell is a liquid crystal display device using a bend alignment mode liquid crystal cell in which rod-like liquid crystalline molecules are aligned in a substantially opposite direction (symmetrically) between the upper part and the lower part of the liquid crystal cell. It is disclosed in the specifications of Japanese Patent Nos. 45882525 and 5410422. Since the rod-like liquid crystal molecules are symmetrically aligned at the upper and lower portions of the liquid crystal cell, the bend alignment mode liquid crystal cell has a self-optical compensation function. Therefore, this liquid crystal mode is also called an OCB (Optically Compensatory Bend) liquid crystal mode. The bend alignment mode liquid crystal display device has an advantage of high response speed.

ECBモードの液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に水平配向しており、カラーTFT液晶表示装置として最も多く利用されており、多数の文献に記載がある。例えば「EL、PDP、LCDディスプレイ」東レリサーチセンター発行(2001)などに記載されている。   In an ECB mode liquid crystal cell, rod-like liquid crystal molecules are substantially horizontally aligned when no voltage is applied, and is most frequently used as a color TFT liquid crystal display device, and is described in many documents. For example, it is described in “EL, PDP, LCD display” published by Toray Research Center (2001).

特にTNモードやIPSモードの液晶表示装置に対しては、特開2001-100043等に記載されているように、視野角拡大効果を有する光学補償フィルムを偏光膜の裏表2枚の保護フィルムの内の本発明の反射防止フィルムとは反対側の面に用いることにより、1枚の偏光板の厚みで反射防止効果と視野角拡大効果を有する偏光板を得ることができ、特に好ましい。   Particularly for TN mode and IPS mode liquid crystal display devices, as described in JP-A-2001-100043, an optical compensation film having an effect of widening the viewing angle is used as a protective film on the back and front surfaces of the polarizing film. By using it on the surface opposite to the antireflection film of the present invention, a polarizing plate having an antireflection effect and a viewing angle expansion effect can be obtained with the thickness of one polarizing plate, which is particularly preferable.

本発明を詳細に説明するために、以下に実施例を挙げて説明するが、本発明はこれらに限定されるものではない。なお、特別の断りの無い限り、「部」及び「%」は質量基準である。   In order to describe the present invention in detail, examples will be described below, but the present invention is not limited thereto. Unless otherwise specified, “part” and “%” are based on mass.

(パーフルオロオレフィン共重合体(1)の合成)

Figure 2005148623
(Synthesis of perfluoroolefin copolymer (1))
Figure 2005148623

内容量100mlのステンレス製撹拌機付オートクレーブに酢酸エチル40ml、ヒドロキシエチルビニルエーテル14.7gおよび過酸化ジラウロイル0.55gを仕込み、系内を脱気して窒素ガスで置換した。さらにヘキサフルオロプロピレン(HFP)25gをオートクレーブ中に導入して65℃まで昇温した。オートクレーブ内の温度が65℃に達した時点の圧力は5.4kg/cm2であった。該温度を保持し8時間反応を続け、圧力が3.2kg/cm2に達した時点で加熱をやめ放冷した。室温まで内温が下がった時点で未反応のモノマーを追い出し、オートクレーブを開放して反応液を取り出した。得られた反応液を大過剰のヘキサンに投入し、デカンテーションにより溶剤を除去することにより沈殿したポリマーを取り出した。さらにこのポリマーを少量の酢酸エチルに溶解してヘキサンから2回再沈殿を行うことによって残存モノマーを完全に除去した。乾燥後ポリマー28gを得た。次に該ポリマーの20gをN,N-ジメチルアセトアミド100mlに溶解、氷冷下アクリル酸クロライド11.4gを滴下した後、室温で10時間攪拌した。反応液に酢酸エチルを加え水洗、有機層を抽出後濃縮し、得られたポリマーをヘキサンで再沈殿させることによりパーフルオロオレフィン共重合体(1)を19g得た。得られたポリマーの屈折率は1.421であった。 Into a stainless steel autoclave with a stirrer of 100 ml, 40 ml of ethyl acetate, 14.7 g of hydroxyethyl vinyl ether and 0.55 g of dilauroyl peroxide were charged, and the inside of the system was deaerated and replaced with nitrogen gas. Furthermore, 25 g of hexafluoropropylene (HFP) was introduced into the autoclave and the temperature was raised to 65 ° C. The pressure when the temperature in the autoclave reached 65 ° C. was 5.4 kg / cm 2 . The reaction was continued for 8 hours while maintaining the temperature, and when the pressure reached 3.2 kg / cm 2 , the heating was stopped and the mixture was allowed to cool. When the internal temperature dropped to room temperature, unreacted monomers were driven out, the autoclave was opened, and the reaction solution was taken out. The obtained reaction solution was poured into a large excess of hexane, and the polymer was precipitated by removing the solvent by decantation. Further, this polymer was dissolved in a small amount of ethyl acetate and reprecipitated twice from hexane to completely remove the residual monomer. After drying, 28 g of polymer was obtained. Next, 20 g of the polymer was dissolved in 100 ml of N, N-dimethylacetamide, and 11.4 g of acrylic acid chloride was added dropwise under ice cooling, followed by stirring at room temperature for 10 hours. Ethyl acetate was added to the reaction solution, washed with water, the organic layer was extracted and concentrated, and the resulting polymer was reprecipitated with hexane to obtain 19 g of perfluoroolefin copolymer (1). The resulting polymer had a refractive index of 1.421.

(ゾル液aの調製)
攪拌機、還流冷却器を備えた反応器、メチルエチルケトン120部、アクリロイルオキシプロピルトリメトキシシラン(KBM−5103、信越化学工業(株)製)100部、ジイソプロポキシアルミニウムエチルアセトアセテート3部を加え混合したのち、イオン交換水30部を加え、60℃で4時間反応させたのち、室温まで冷却し、ゾル液aを得た。質量平均分子量は1600であり、オリゴマー成分以上の成分のうち、分子量が1000〜20000の成分は100%であった。また、ガスクロマトグラフィー分析から、原料のアクリロイルオキシプロピルトリメトキシシランは全く残存していなかった。
(Preparation of sol solution a)
A stirrer, a reactor equipped with a reflux condenser, 120 parts of methyl ethyl ketone, 100 parts of acryloyloxypropyltrimethoxysilane (KBM-5103, manufactured by Shin-Etsu Chemical Co., Ltd.), 3 parts of diisopropoxyaluminum ethyl acetoacetate were added and mixed. After that, 30 parts of ion-exchanged water was added and reacted at 60 ° C. for 4 hours, and then cooled to room temperature to obtain sol solution a. The mass average molecular weight was 1600, and among the components higher than the oligomer component, the component having a molecular weight of 1000 to 20000 was 100%. Further, from the gas chromatography analysis, the raw material acryloyloxypropyltrimethoxysilane did not remain at all.

(ゾル液bの調製)
反応後室温まで冷却した後、アセチルアセトン6部を添加したこと以外は前記ゾル液aと同様にしてゾル液bを得た。
(Preparation of sol liquid b)
After cooling to room temperature after the reaction, a sol solution b was obtained in the same manner as the sol solution a except that 6 parts of acetylacetone was added.

(光散乱層用塗布液Aの調製)
ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレートの混合物(PETA、日本化薬(株)製)50gをトルエン38.5gで希釈した。更に、重合開始剤(イルガキュア184、チバ・スペシャルティ・ケミカルズ(株)製)を2g添加し、混合攪拌した。 この溶液を塗布、紫外線硬化して得られた塗膜の屈折率は1.51であった。
さらにこの溶液にポリトロン分散機にて10000rpmで20分分散した平均粒径3.5μmの架橋ポリスチレン粒子(屈折率1.61、SX−350、綜研化学(株)製)の30%トルエン分散液を1.7gおよび平均粒径3.5μmの架橋アクリル−スチレン粒子(屈折率1.55、綜研化学(株)製)の30%トルエン分散液を13.3g加え、最後に、フッ素系表面改質剤(FP−107)0.75g、シランカップリング剤(KBM−5103、信越化学工業(株)製)を10gを加え、完成液とした。
前記混合液を孔径30μmのポリプロピレン製フィルターでろ過して光散乱層の塗布液Aを調製した。
(Preparation of coating solution A for light scattering layer)
50 g of a mixture of pentaerythritol triacrylate and pentaerythritol tetraacrylate (PETA, Nippon Kayaku Co., Ltd.) was diluted with 38.5 g of toluene. Furthermore, 2 g of a polymerization initiator (Irgacure 184, manufactured by Ciba Specialty Chemicals Co., Ltd.) was added and mixed and stirred. The refractive index of the coating film obtained by applying this solution and curing with ultraviolet rays was 1.51.
Further, a 30% toluene dispersion of crosslinked polystyrene particles having an average particle size of 3.5 μm (refractive index 1.61, SX-350, manufactured by Soken Chemical Co., Ltd.) dispersed in this solution for 20 minutes at 10,000 rpm with a Polytron disperser. Add 13.3 g of a 30% toluene dispersion of 1.7 g and crosslinked acrylic-styrene particles having an average particle size of 3.5 μm (refractive index 1.55, manufactured by Soken Chemical Co., Ltd.) 0.75 g of an agent (FP-107) and 10 g of a silane coupling agent (KBM-5103, manufactured by Shin-Etsu Chemical Co., Ltd.) were added to obtain a finished solution.
The mixed solution was filtered through a polypropylene filter having a pore diameter of 30 μm to prepare a coating solution A for a light scattering layer.

(光散乱層用塗布液Bの調製)
市販ジルコニア含有UV硬化型ハードコート液(デソライトZ7404、JSR(株)製、固形分濃度約61%、固形分中ZrO2含率約70%、重合性モノマー、重合開始剤含有)285g、ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(DPHA、日本化薬(株)製)85gを混合し、更に、メチルイソブチルケトン60g、メチルエチルケトン17gで希釈した。更に、シランカップリング剤(KBM−5103、信越化学(株)製)28gを混合攪拌した。この溶液を塗布、紫外線硬化して得られた塗膜の屈折率は1.61であった。
さらにこの溶液に平均粒径3.0μmの分級強化架橋PMMA粒子(屈折率1.49、MXS−300、綜研化学(株)製)の30%メチルイソブチルケトン分散液をポリトロン分散機にて10000rpmで20分分散した分散液を35g加え、次いで、平均粒径1.5μmのシリカ粒子(屈折率1.46、シーホスタKE-P150、日本触媒(株)製)の30%メチルエチルケトン分散液をポリトロン分散機にて10000rpmで30分分散した分散液を90g加え、最後に、フッ素系表面改質剤(FP−1)0.12gを混合攪拌し、完成液とした。
前記混合液を孔径30μmのポリプロピレン製フィルターでろ過して光散乱層の塗布液Bを調製した。
(Preparation of coating solution B for light scattering layer)
285 g of commercially available zirconia-containing UV curable hard coat liquid (Desolite Z7404, manufactured by JSR Corporation, solid content concentration of about 61%, ZrO 2 content of solid content of about 70%, polymerizable monomer, polymerization initiator contained), dipenta 85 g of a mixture of erythritol pentaacrylate and dipentaerythritol hexaacrylate (DPHA, manufactured by Nippon Kayaku Co., Ltd.) was mixed, and further diluted with 60 g of methyl isobutyl ketone and 17 g of methyl ethyl ketone. Furthermore, 28 g of a silane coupling agent (KBM-5103, manufactured by Shin-Etsu Chemical Co., Ltd.) was mixed and stirred. The refractive index of the coating film obtained by applying this solution and curing with ultraviolet rays was 1.61.
Further, a 30% methyl isobutyl ketone dispersion of classified strengthened crosslinked PMMA particles (refractive index: 1.49, MXS-300, manufactured by Soken Chemical Co., Ltd.) having an average particle size of 3.0 μm was added to this solution at 10,000 rpm with a Polytron disperser. 35 g of a dispersion dispersed for 20 minutes was added, and then a 30% methyl ethyl ketone dispersion of silica particles having an average particle diameter of 1.5 μm (refractive index 1.46, Seahosta KE-P150, manufactured by Nippon Shokubai Co., Ltd.) 90 g of a dispersion dispersed at 10,000 rpm for 30 minutes was added, and finally 0.12 g of a fluorine-based surface modifier (FP-1) was mixed and stirred to obtain a finished solution.
The mixed solution was filtered through a polypropylene filter having a pore diameter of 30 μm to prepare a coating solution B for a light scattering layer.

(光散乱層用塗布液Cの調製)
前記光散乱層用塗布液Bにおいて平均粒径1.5μmのシリカ粒子の代わりに、平均粒径1.5μmの分級強化高架橋PMMA粒子(MXS−150H、架橋剤エチレングリコールジメタクリレート、架橋剤量30%、綜研化学(株)製、屈折率1.49)の30%メチルエチルケトン分散液を130g用いた以外は添加量も含め前記塗布液Aと同様にして、光散乱層用塗布液Cを作成した。
(Preparation of coating solution C for light scattering layer)
In the light scattering layer coating solution B, instead of silica particles having an average particle diameter of 1.5 μm, classified reinforcing highly crosslinked PMMA particles having an average particle diameter of 1.5 μm (MXS-150H, a crosslinking agent ethylene glycol dimethacrylate, an amount of crosslinking agent of 30 %, A coating solution C for a light scattering layer was prepared in the same manner as the coating liquid A, including the addition amount, except that 130 g of 30% methyl ethyl ketone dispersion liquid manufactured by Soken Chemical Co., Ltd., refractive index 1.49) was used. .

(光散乱層用塗布液Dの調製)
前記光散乱層用塗布液Aにおいて平均粒径3.5μmの架橋ポリスチレン粒子および平均粒径3.5μmの架橋アクリル−スチレン粒子の代わりに、平均粒径3.0μmの分級強化高架橋PMMA粒子(架橋剤エチレングリコールジメタクリレート、架橋剤量40%、屈折率1.50)の30%トルエン分散液を15g用いた以外は添加量も含め前記塗布液Aと同様にして、光散乱層用塗布液Dを作成した。
(Preparation of coating solution D for light scattering layer)
In the light scattering layer coating liquid A, instead of crosslinked polystyrene particles having an average particle size of 3.5 μm and crosslinked acrylic-styrene particles having an average particle size of 3.5 μm, classified strengthening highly crosslinked PMMA particles (crosslinked) Coating solution D for light scattering layer in the same manner as coating solution A, including the added amount, except that 15 g of 30% toluene dispersion of the agent ethylene glycol dimethacrylate, crosslinker amount 40%, refractive index 1.50) was used. It was created.

(低屈折率層用塗布液Aの調整)
屈折率1.42の熱架橋性含フッ素ポリマー(JN7228、固形分濃度6%、JSR(株)製)13g、シリカゾル(シリカ、MEK−STの粒子サイズ違い、平均粒径45nm、固形分濃度30%、日産化学(株)製)1.3g、ゾル液a 0.6gおよびメチルエチルケトン5g、シクロヘキサノン0.6gを添加、攪拌の後、孔径1μmのポリプロピレン製フィルターでろ過して、低屈折率層用塗布液Aを調製した。この塗布液により形成される層の屈折率は、1.43であった。
(Adjustment of coating solution A for low refractive index layer)
Thermally crosslinkable fluorine-containing polymer having a refractive index of 1.42 (JN7228, solid content concentration 6%, manufactured by JSR Corporation) 13 g, silica sol (silica, MEK-ST particle size difference, average particle size 45 nm, solid content concentration 30 %, Manufactured by Nissan Chemical Co., Ltd.) 1.3 g, sol solution 0.6 g, methyl ethyl ketone 5 g, and cyclohexanone 0.6 g were added. After stirring, the mixture was filtered with a polypropylene filter having a pore size of 1 μm for a low refractive index layer. A coating solution A was prepared. The refractive index of the layer formed with this coating solution was 1.43.

(低屈折率層用塗布液Bの調整)
前記低屈折率層用塗布液Aにおいて、シリカゾルの代わりに中空シリカゾル(屈折率1.31、平均粒径60nm、固形分濃度20%)を1.95g用いた以外は添加量も含め前記塗布液Aと同様にして、低屈折率層用塗布液Bを作成した。この塗布液により形成される層の屈折率は、1.38であった。
(Adjustment of coating liquid B for low refractive index layer)
In the coating liquid A for the low refractive index layer, the coating liquid including the addition amount was used except that 1.95 g of hollow silica sol (refractive index 1.31, average particle size 60 nm, solid content concentration 20%) was used instead of silica sol. In the same manner as A, a coating solution B for a low refractive index layer was prepared. The refractive index of the layer formed with this coating solution was 1.38.

(低屈折率層用塗布液Cの調製)
屈折率1.42の熱架橋性含フッ素ポリマー(JN7228、固形分濃度6%、JSR(株)製)15g、シリカゾル(シリカ、MEK−ST、平均粒径15nm、固形分濃度30%、日産化学社製)0.6g、シリカゾル(シリカ、MEK−STの粒子サイズ違い、平均粒径45nm、固形分濃度30%、日産化学(株)製)0.8g、ゾル液a 0.4gおよびメチルエチルケトン3g、シクロヘキサノ0.6gを添加、攪拌の後、孔径1μmのポリプロピレン製フィルターでろ過して、低屈折率層用塗布液Cを調製した。この塗布液により形成される層の屈折率は、1.43であった。
(Preparation of coating solution C for low refractive index layer)
Thermally crosslinkable fluorine-containing polymer having a refractive index of 1.42 (JN7228, solid content concentration 6%, manufactured by JSR Corporation) 15 g, silica sol (silica, MEK-ST, average particle size 15 nm, solid content concentration 30%, Nissan Chemical) 0.6 g, silica sol (silica, MEK-ST particle size difference, average particle size 45 nm, solid content concentration 30%, manufactured by Nissan Chemical Co., Ltd.) 0.8 g, sol solution a 0.4 g and methyl ethyl ketone 3 g Then, 0.6 g of cyclohexano was added, stirred, and then filtered through a polypropylene filter having a pore size of 1 μm to prepare a coating solution C for a low refractive index layer. The refractive index of the layer formed with this coating solution was 1.43.

(低屈折率層用塗布液Dの調製)
パーフルオロオレフィン共重合体(1)の15.2g、シリカゾル(シリカ、MEK-STの粒子径違い品、平均粒径45nm、固形分濃度30%、日産化学社製)1.4g、反応性シリコーンX−22−164B(商品名;信越化学工業社製)0.3g、ゾル液a 7.3g、光重合開始剤(イルガキュア907(商品名)、チバガイギー社製)0.76g、メチルエチルケトン301g、シクロヘキサノン9.0gを添加、攪拌の後、孔径5μmのポリプロピレン製フィルターでろ過して、低屈折率層用塗布液Dを調製した。この塗布液により形成される層の屈折率は、1.44であった。
(Preparation of coating solution D for low refractive index layer)
15.2 g of perfluoroolefin copolymer (1), silica sol (silica, MEK-ST with different particle size, average particle size 45 nm, solid content concentration 30%, manufactured by Nissan Chemical Industries) 1.4 g, reactive silicone X-22-164B (trade name; manufactured by Shin-Etsu Chemical Co., Ltd.) 0.3 g, sol solution a 7.3 g, photopolymerization initiator (Irgacure 907 (trade name), manufactured by Ciba Geigy) 0.76 g, methyl ethyl ketone 301 g, cyclohexanone After adding 9.0 g and stirring, it was filtered through a polypropylene filter having a pore size of 5 μm to prepare a coating solution D for a low refractive index layer. The refractive index of the layer formed with this coating solution was 1.44.

(低屈折率層用塗布液Eの調整)
前記低屈折率層用塗布液Dにおいて、シリカゾルの代わりに中空シリカゾル(屈折率1.31、平均粒径60nm、固形分濃度20%)を1.95g用いた以外は添加量も含め前記塗布液Dと同様にして、低屈折率層用塗布液Eを作成した。この塗布液により形成される層の屈折率は、1.396であった。
(Adjustment of coating liquid E for low refractive index layer)
In the coating liquid D for the low refractive index layer, the coating liquid including addition amount is used except that 1.95 g of hollow silica sol (refractive index 1.31, average particle size 60 nm, solid content concentration 20%) is used instead of silica sol. In the same manner as D, a coating solution E for a low refractive index layer was prepared. The refractive index of the layer formed by this coating solution was 1.396.

(低屈折率層用塗布液Fの調整)
屈折率1.42の熱架橋性含フッ素ポリマー(JN7228、固形分濃度6%、JSR(株)製)13g、およびシクロヘキサノン0.3gを添加、攪拌の後、孔径1μmのポリプロピレン製フィルターでろ過して、低屈折率層用塗布液Fを調製した。この塗布液により形成される層の屈折率は、1.42であった。
(Adjustment of coating liquid F for low refractive index layer)
Add 13 g of heat-crosslinkable fluoropolymer having a refractive index of 1.42 (JN7228, solid concentration 6%, manufactured by JSR Corporation) and 0.3 g of cyclohexanone, and after stirring, filter through a polypropylene filter with a pore size of 1 μm. Thus, a coating solution F for a low refractive index layer was prepared. The refractive index of the layer formed with this coating solution was 1.42.

[実施例1]
(1)光散乱層の塗設
80μmの厚さのトリアセチルセルロースフイルム(TAC−TD80U、富士写真フイルム(株)製)をロール形態で巻き出して、前記の光散乱層用塗布液Aを線数180本/インチ、深度40μmのグラビアパターンを有する直径50mmのマイクログラビアロールとドクターブレードを用いて、グラビアロール回転数30rpm、搬送速度30m/分の条件で塗布し、60℃で150秒乾燥の後、さらに窒素パージ下で160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度400mW/cm2、照射量250mJ/cm2の紫外線を照射して塗布層を硬化させ、厚さ6μmの機能層を形成し、巻き取った。
[Example 1]
(1) Coating of light scattering layer A triacetyl cellulose film (TAC-TD80U, manufactured by Fuji Photo Film Co., Ltd.) having a thickness of 80 μm is unwound in a roll form, and the coating liquid A for the light scattering layer is drawn into a wire. Using a gravure roll with a diameter of 40 mm and a doctor blade with a gravure pattern of several 180 lines / inch and a depth of 40 μm, it was applied at a gravure roll rotation speed of 30 rpm and a conveying speed of 30 m / min, and dried at 60 ° C. for 150 seconds. Then, using a 160 W / cm air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) under a nitrogen purge, the coating layer is cured by irradiating ultraviolet rays with an illuminance of 400 mW / cm 2 and an irradiation amount of 250 mJ / cm 2. A functional layer having a thickness of 6 μm was formed and wound up.

(2)低屈折率層の塗設
該機能層を塗設したトリアセチルセルロースフイルムを再び巻き出して、前記低屈折率層用塗布液Aを線数180本/インチ、深度40μmのグラビアパターンを有する直径50mmのマイクログラビアロールとドクターブレードを用いて、グラビアロール回転数30rpm、搬送速度15m/分の条件で塗布し、120℃で150秒乾燥の後、更に140℃で8分乾燥させてから窒素パージ下で240W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度400mW/cm2、照射量900mJ/cm2の紫外線を照射し、厚さ100nmの低屈折率層を形成し、巻き取った。
(反射防止フィルムの鹸化処理)
製膜後、前記試料1について、以下の処理を行った。
1.5mol/lの水酸化ナトリウム水溶液を調製し、55℃に保温した。0.01mol/lの希硫酸水溶液を調製し、35℃に保温した。作製した反射防止フィルムを前記の水酸化ナトリウム水溶液に2分間浸漬した後、水に浸漬し水酸化ナトリウム水溶液を十分に洗い流した。次いで、前記の希硫酸水溶液に1分間浸漬した後、水に浸漬し希硫酸水溶液を十分に洗い流した。最後に試料を120℃で十分に乾燥させた。
このようにして、鹸化処理済み反射防止フィルムを作製した。これを実施例1試料1とする。
(2) Coating of low refractive index layer The triacetyl cellulose film coated with the functional layer is unwound again, and the coating liquid A for low refractive index layer is formed into a gravure pattern with 180 lines / inch and a depth of 40 μm. Using a micro gravure roll having a diameter of 50 mm and a doctor blade, it was applied under the conditions of a gravure roll rotation speed of 30 rpm and a conveyance speed of 15 m / min, dried at 120 ° C. for 150 seconds, and further dried at 140 ° C. for 8 minutes. Using a 240 W / cm air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) under a nitrogen purge, ultraviolet rays having an illuminance of 400 mW / cm 2 and an irradiation amount of 900 mJ / cm 2 are irradiated, and a low refractive index layer having a thickness of 100 nm And wound up.
(Saponification treatment of antireflection film)
After the film formation, the sample 1 was subjected to the following treatment.
A 1.5 mol / l aqueous sodium hydroxide solution was prepared and kept at 55 ° C. A 0.01 mol / l dilute sulfuric acid aqueous solution was prepared and kept at 35 ° C. The prepared antireflection film was immersed in the aqueous sodium hydroxide solution for 2 minutes, and then immersed in water to sufficiently wash away the aqueous sodium hydroxide solution. Subsequently, after being immersed in the dilute sulfuric acid aqueous solution for 1 minute, it was immersed in water to sufficiently wash away the dilute sulfuric acid aqueous solution. Finally, the sample was thoroughly dried at 120 ° C.
In this way, a saponified antireflection film was produced. This is designated as Example 1 Sample 1.

(反射防止フィルムの評価)
得られたフィルムについて、以下の項目の評価を行った。結果を表1に示す。
(Evaluation of antireflection film)
About the obtained film, the following items were evaluated. The results are shown in Table 1.

(1)平均反射率
分光光度計(日本分光(株)製)を用いて、380〜780nmの波長領域において、入射角5°における分光反射率を測定した。結果には450〜650nmの積分球平均反射率を用いた。
(1) Average reflectance Using a spectrophotometer (manufactured by JASCO Corporation), the spectral reflectance at an incident angle of 5 ° was measured in a wavelength region of 380 to 780 nm. For the results, an integrating sphere average reflectance of 450 to 650 nm was used.

(2)耐擦傷性;スチールウール耐擦傷性評価(dryスチール)
ラビングテスターを用いて、以下の条件でこすりテストをおこなった。
評価環境条件:25℃、60%RH
こすり材:試料と接触するテスターのこすり先端部(1cm×1cm)にスチールウール(日本スチールウール(株)製、グレードNo.0000)を巻いて、動かないようバンド固定した。
移動距離(片道):13cm、こすり速度:13cm/秒、荷重:500g/cm2、先端部接触面積:1cm×1cm、こすり回数:10往復。
こすり終えた試料の裏側に油性黒インキを塗り、反射光で目視観察して、こすり部分の傷を、以下の基準で評価した。
◎:非常に注意深く見ても、全く傷が見えない。
○:非常に注意深く見ると僅かに弱い傷が見える。
○△:弱い傷が見える。
△:中程度の傷が見える。
△×〜×:一目見ただけで分かる傷がある。
(2) Scratch resistance: Steel wool scratch resistance evaluation (dry steel)
A rubbing test was conducted using a rubbing tester under the following conditions.
Evaluation environmental conditions: 25 ° C., 60% RH
Rubbing material: Steel wool (manufactured by Nippon Steel Wool Co., Ltd., Grade No. 0000) was wound around the rubbing tip (1 cm × 1 cm) of a tester in contact with the sample, and the band was fixed so as not to move.
Moving distance (one way): 13 cm, rubbing speed: 13 cm / sec, load: 500 g / cm 2 , tip contact area: 1 cm × 1 cm, rubbing frequency: 10 reciprocations.
An oil-based black ink was applied to the back side of the rubbed sample and visually observed with reflected light, and scratches on the rubbed portion were evaluated according to the following criteria.
A: Even when viewed very carefully, no scratches are visible.
○: Slightly weak scratches are visible when viewed very carefully.
○ △: Weak scratches are visible.
Δ: Moderate scratches are visible.
Δ × ˜ ×: There is a scratch that can be seen at first glance.

(3)耐擦傷性;水綿棒こすり耐性評価(wet綿棒)
ラビングテスターのこすり先端部に綿棒を固定し、平滑皿中で試料の上下をクリップで固定し、室温25℃で、試料と綿棒を25℃の水に浸し、綿棒に500gの荷重をかけて、こすり回数を変えてこすりテストを行った。こすり条件は以下のとおり。
こすり距離(片道):1cm、 こすり速度:約2往復/秒
こすり終えた試料を観察して、膜剥がれが起こった回数で、こすり耐性を以下
のように評価した。
0〜10往復で膜剥がれ ×
10〜30往復で膜剥がれ ×△
30〜50往復で膜剥がれ △
50〜100往復で膜剥がれ ○△
100〜150往復で膜剥がれ ○
150往復でも膜剥がれなし ◎
(3) Scratch resistance; water swab rub resistance evaluation (wet swab)
A rubbing tester rubbed with a cotton swab fixed to the tip of the sample, and fixed the top and bottom of the sample with a clip in a smooth pan. The rubbing test was performed by changing the number of rubbing. The rubbing conditions are as follows.
Rubbing distance (one way): 1 cm, rubbing speed: about 2 reciprocations / second The sample after rubbing was observed, and the rubbing resistance was evaluated as follows according to the number of film peeling.
0-10 round trip film peeling ×
Film peeling after 10 to 30 round trips
30-50 reciprocating film peeling
50-100 reciprocating film peeling
100-150 round trip film peeling ○
No film peeling even after 150 reciprocations ◎

[実施例1試料2〜試料7、試料8(比較例)]
表1の記載の通り、実施例1試料1において、光散乱層用塗布液を光散乱層用塗布液(B、C、D)に、あるいは低屈折率層用塗布液(B〜F)に変える以外は、実施例1試料1と同様にして作製、評価を行った。結果を表1に示す。
なお、光散乱層の乾燥後の膜厚は、3.4μmとした。
[Example 1 Sample 2 to Sample 7, Sample 8 (Comparative Example)]
As described in Table 1, in Sample 1 of Example 1, the light scattering layer coating liquid was changed to the light scattering layer coating liquid (B, C, D) or the low refractive index layer coating liquids (B to F). Except for changing, it was produced and evaluated in the same manner as Sample 1 in Example 1. The results are shown in Table 1.
The thickness of the light scattering layer after drying was 3.4 μm.

Figure 2005148623
Figure 2005148623

表1に示された結果より、以下のことが明らかである。
本発明の反射防止フィルムにおいて、本発明により優れた面状均一性と高い耐擦傷性を持つ反射防止膜が生産性高く得られる。
From the results shown in Table 1, the following is clear.
In the antireflection film of the present invention, an antireflection film having excellent surface uniformity and high scratch resistance can be obtained with high productivity.

実施例1試料1、4〜7において、光散乱層塗布液Aで用いる希釈溶剤をトルエンの代わりにトルエン/アノン=85/15、トルエン/アノン=70/30という溶剤組成にすると、アノンの比率が高くなるにつれて透明支持体/光散乱層の界面密着力が強化され、耐擦傷性能が向上した。
また実施例1試料1〜7において、低屈折率層塗布液に使用しているオルガノシランのゾル液aの代わりにbを使用したところ、塗布液の経時安定性が良くなり、連続塗布に対する適性が高くなった。
また低屈折率層塗布液A、B、およびCに使用している熱架橋性含フッ素ポリマーの代わりに、屈折率1.44の熱架橋性含フッ素ポリマー(JTA−113、固形分濃度6%、JSR(株)製)を使用したところ、耐擦傷性が著しく向上した。
また低屈折率層塗布液D、Eにジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(DPHA、日本化薬(株)製)10gを添加して、同様に塗布したところ、耐擦傷性が著しく向上した。
Example 1 In Samples 1 and 4-7, when the diluent solvent used in the light scattering layer coating liquid A was made to have a solvent composition of toluene / anone = 85/15 and toluene / anone = 70/30 instead of toluene, the ratio of anone As the film height increased, the interface adhesion between the transparent support / light scattering layer was strengthened, and the scratch resistance was improved.
In Example 1 samples 1 to 7, when b was used in place of the organosilane sol solution a used in the low refractive index layer coating solution, the stability of the coating solution with time was improved and suitability for continuous coating. Became high.
In place of the thermally crosslinkable fluoropolymer used in the low refractive index layer coating solutions A, B and C, a thermally crosslinkable fluoropolymer having a refractive index of 1.44 (JTA-113, solid content concentration 6%) , Manufactured by JSR Co., Ltd.), the scratch resistance was remarkably improved.
Further, 10 g of a mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate (DPHA, manufactured by Nippon Kayaku Co., Ltd.) was added to the low refractive index layer coating liquids D and E. Improved significantly.

[実施例2]
PVAフィルムをヨウ素2.0g/l、ヨウ化カリウム4.0g/lの水溶液に25℃にて240秒浸漬し、さらにホウ酸10g/lの水溶液に25℃にて60秒浸漬後、特開2002−86554号公報に記載の図2の形態のテンター延伸機に導入し、5.3倍に延伸し、テンターを延伸方向に対し図2の如く屈曲させ、以降幅を一定に保った。80℃雰囲気で乾燥させた後テンターから離脱した。左右のテンタークリップの搬送速度差は、0.05%未満であり、導入されるフィルムの中心線と次工程に送られるフィルムの中心線のなす角は、46゜であった。ここで|L1−L2|は0.7m、Wは0.7mであり、|L1−L2|=Wの関係にあった。テンター出口における実質延伸方向Ax−Cxは、次工程へ送られるフィルムの中心線22に対し45゜傾斜していた。テンター出口におけるシワ、フィルム変形は観察されなかった。
さらに、PVA((株)クラレ製PVA−117H)3%水溶液を接着剤としてケン化処理した富士写真フィルム(株)製フジタック(セルローストリアセテート、レターデーション値3.0nm)と貼り合わせ、さらに80℃で乾燥して有効幅650mmの偏光板を得た。得られた偏光板の吸収軸方向は、長手方向に対し45゜傾斜していた。この偏光板の550nmにおける透過率は43.7%、偏光度は99.97%であった。さらに図2の如く310×233mmサイズに裁断したところ、91.5%の面積効率で辺に対し45゜吸収軸が傾斜した偏光板を得た。
次に、実施例1試料1〜7(鹸化処理済み)フィルムを前記偏光板と貼り合わせて反射防止付き偏光板を作製した。この偏光板を用いて低屈折率層を最表層に配置した液晶表示装置を作製したところ、外光の映り込みがないために優れたコントラストが得られ、光散乱性により反射像が目立たず優れた視認性を有していた。
[Example 2]
The PVA film was immersed in an aqueous solution of 2.0 g / l iodine and 4.0 g / l potassium iodide at 25 ° C. for 240 seconds, and further immersed in an aqueous solution of boric acid 10 g / l at 25 ° C. for 60 seconds. It introduced into the tenter drawing machine of the form of FIG. 2 described in 2002-86554, it extended | stretched 5.3 time, the tenter was bent like FIG. 2 with respect to the extending | stretching direction, and the width | variety was kept constant hereafter. After drying in an atmosphere of 80 ° C., it was detached from the tenter. The difference in transport speed between the left and right tenter clips was less than 0.05%, and the angle between the center line of the introduced film and the center line of the film sent to the next process was 46 °. Here, | L1-L2 | is 0.7 m, W is 0.7 m, and | L1-L2 | = W. The substantial stretching direction Ax-Cx at the tenter outlet was inclined by 45 ° with respect to the center line 22 of the film sent to the next process. Wrinkles and film deformation at the tenter exit were not observed.
Furthermore, it was bonded to Fuji Photo Film Co., Ltd. Fujitac (cellulose triacetate, retardation value 3.0 nm), which was saponified with an aqueous solution of PVA (Pura-117H, Kuraray Co., Ltd.) 3%, and further 80 ° C. And dried to obtain a polarizing plate having an effective width of 650 mm. The absorption axis direction of the obtained polarizing plate was inclined 45 ° with respect to the longitudinal direction. The polarizing plate had a transmittance at 550 nm of 43.7% and a polarization degree of 99.97%. Further, as shown in FIG. 2, when the substrate was cut into a size of 310 × 233 mm, a polarizing plate having an absorption efficiency of 91.5% and a 45 ° absorption axis inclined with respect to the side was obtained.
Next, Example 1 Samples 1 to 7 (saponified) films were bonded to the polarizing plate to prepare a polarizing plate with antireflection. Using this polarizing plate, a liquid crystal display device having a low refractive index layer as the outermost layer was produced. As a result, there was no reflection of external light, and an excellent contrast was obtained. Had good visibility.

[実施例3]
1.5mol/l、55℃のNaOH水溶液中に2分間浸漬したあと中和、水洗した、80μmの厚さのトリアセチルセルロースフイルム(TAC−TD80U、富士写真フイルム(株)製)と、実施例1試料1の裏面鹸化済みトリアセチルセルロースフィルムに、ポリビニルアルコールにヨウ素を吸着させ、延伸して作製した偏光子の両面を接着、保護して偏光板を作製した。このようにして作製した偏光板を、反射防止膜側が最表面となるように透過型TN液晶表示装置搭載のノートパソコンの液晶表示装置(偏光選択層を有する偏光分離フィルムである住友3M(株)製のD−BEFをバックライトと液晶セルとの間に有する)の視認側の偏光板と貼り代えたところ、背景の映りこみが極めて少なく、表示品位の非常に高い表示装置が得られた。
[Example 3]
An 80 μm-thick triacetylcellulose film (TAC-TD80U, manufactured by Fuji Photo Film Co., Ltd.), which was immersed in a 1.5 mol / l, 55 ° C. NaOH aqueous solution for 2 minutes, then neutralized and washed with water, and Examples A polarizing plate was prepared by adhering and protecting both sides of a polarizer prepared by adsorbing iodine to polyvinyl alcohol on the backside saponified triacetylcellulose film of Sample 1 and stretching. A liquid crystal display device of a notebook personal computer equipped with a transmissive TN liquid crystal display device (Sumitomo 3M Co., Ltd., which is a polarization separation film having a polarization selection layer) so that the anti-reflection film side is the outermost surface. When the polarizing plate on the viewing side of D-BEF made of the product between the backlight and the liquid crystal cell was replaced, a display device with very high display quality was obtained with very little background reflection.

[実施例4]
実施例1試料1〜7を貼りつけた透過型TN液晶セルの視認側の偏光板の液晶セル側の保護フィルム、およびバックライト側の偏光板の液晶セル側の保護フィルムとして、ディスコティック構造単位の円盤面が透明支持体面に対して傾いており、且つ該ディスコティック構造単位の円盤面と透明支持体面とのなす角度が、光学異方層の深さ方向において変化している光学補償層を有する視野角拡大フィルム(ワイドビューフィルムSA 12B、富士写真フイルム(株)製)を用いたところ、明室でのコントラストに優れ、且つ上下左右の視野角が非常に広く、極めて視認性に優れ、表示品位の高い液晶表示装置が得られた。
また、自動変角光度計GP−5型((株)村上色彩技術研究所製)を用いて、入射光に対してフィルムを垂直に配置し、全方位に渡って散乱光プロファイルを測定した。このプロファイルより、出射角0°に対する30℃の散乱光強度を求めた。実施例1試料2及び3(光散乱層用塗布液B、C)は、出射角0°に対する30°の散乱光強度が0.06%であり、この光拡散性により、特に下方向の視野角アップ、左右方向の黄色味が改善され、非常に良好な液晶表示装置であった。 比較として、試料8(比較例)のフィルムでは、出射角0°に対する30°の散乱光強度が実質0%であり、下方向視野角アップ、黄色味改善効果は全く得られなかった。
[Example 4]
Example 1 A discotic structural unit as a protective film on the liquid crystal cell side of the polarizing plate on the viewing side of the transmissive TN liquid crystal cell to which samples 1 to 7 are attached, and a protective film on the liquid crystal cell side of the polarizing plate on the backlight side An optical compensation layer in which the disc surface is inclined with respect to the transparent support surface and the angle formed by the disc surface of the discotic structural unit and the transparent support surface varies in the depth direction of the optical anisotropic layer. When using the viewing angle widening film (wide view film SA 12B, manufactured by Fuji Photo Film Co., Ltd.), it has excellent contrast in bright rooms, very wide viewing angles in the vertical and horizontal directions, and extremely excellent visibility. A liquid crystal display device with high display quality was obtained.
Further, using an automatic goniophotometer GP-5 type (manufactured by Murakami Color Research Laboratory Co., Ltd.), the film was placed perpendicular to the incident light, and the scattered light profile was measured in all directions. From this profile, the scattered light intensity at 30 ° C. with respect to an emission angle of 0 ° was obtained. Example 1 Samples 2 and 3 (light scattering layer coating liquids B and C) have a scattered light intensity of 30 ° with respect to an emission angle of 0 ° of 0.06%. It was a very good liquid crystal display device with improved corners and left-right yellowness. As a comparison, in the film of Sample 8 (Comparative Example), the scattered light intensity at 30 ° with respect to the output angle of 0 ° was substantially 0%, and the effect of improving the downward viewing angle and improving the yellowness was not obtained at all.

[実施例5]
実施例1試料1〜7を、有機EL表示装置の表面のガラス板に粘着剤を介して貼り合わせたところ、ガラス表面での反射が抑えられ、視認性の高い表示装置が得られた。
[Example 5]
Example 1 When samples 1 to 7 were bonded to a glass plate on the surface of an organic EL display device via an adhesive, reflection on the glass surface was suppressed, and a display device with high visibility was obtained.

[実施例6]
実施例1試料1〜7および実施例2で作成した偏光板を用いて、片面反射防止フィルム付き偏光板を作製し、偏光板の反射防止膜を有している側の反対面にλ/4板を張り合わせ、有機EL表示装置の表面のガラス板に貼り付けたところ、表面反射および、表面ガラスの内部からの反射がカットされ、極めて視認性の高い表示が得られた。
[Example 6]
Example 1 A polarizing plate with a single-sided antireflection film was prepared using the polarizing plates prepared in Samples 1 to 7 and Example 2, and λ / 4 was formed on the opposite side of the polarizing plate having the antireflection film. When the plates were bonded together and attached to the glass plate on the surface of the organic EL display device, the surface reflection and the reflection from the inside of the surface glass were cut, and a display with extremely high visibility was obtained.

図1は、本発明の反射防止フィルムの層構成を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing the layer structure of the antireflection film of the present invention.

符号の説明Explanation of symbols

1 反射防止フィルム
2 透明支持体
3 光散乱層
4 低屈折率層
5 透光性粒子
DESCRIPTION OF SYMBOLS 1 Antireflection film 2 Transparent support 3 Light scattering layer 4 Low refractive index layer 5 Translucent particle

Claims (4)

透明支持体上に少なくとも光散乱層と低屈折率層を有する反射防止フィルムであって、
該光散乱層は、少なくとも1種の平均粒子径0.5〜5μmの透光性粒子を透光性樹脂に分散してなる層であって、該透光性粒子と該透光性樹脂との屈折率の差が0.02〜0.2であり、該透光性粒子が光散乱層全固形分中に3〜30質量%含有されてなる層であり、
前記低屈折率層は、架橋性若しくは重合性の官能基を含む含フッ素ポリマーを主成分としてなる硬化性組成物を塗布して形成された屈折率が1.30〜1.55の層であることを特徴とする反射防止フィルム。
An antireflection film having at least a light scattering layer and a low refractive index layer on a transparent support,
The light scattering layer is a layer formed by dispersing at least one kind of translucent particles having an average particle diameter of 0.5 to 5 μm in a translucent resin, and the translucent particles, the translucent resin, The refractive index difference is 0.02 to 0.2, and the light-transmitting particles are contained in 3 to 30% by mass in the total solid content of the light scattering layer,
The low refractive index layer is a layer having a refractive index of 1.30 to 1.55 formed by applying a curable composition mainly composed of a fluorine-containing polymer containing a crosslinkable or polymerizable functional group. An antireflection film characterized by that.
前記含フッ素ポリマーが、含フッ素ビニルモノマー重合単位および側鎖に(メタ)アクリロイル基を有する重合単位を含み、主鎖が炭素原子のみからなる共重合体であることを特徴とする請求項1に記載の反射防止フィルム。   2. The fluorine-containing polymer is a copolymer comprising a fluorine-containing vinyl monomer polymerization unit and a polymerization unit having a (meth) acryloyl group in a side chain, and a main chain consisting of only carbon atoms. The antireflection film as described. 前記硬化性組成物が、(A)前記含フッ素ポリマー、(B)平均粒径が前記低屈折率層の厚みの30%以上100%以下で且つ中空構造からなる屈折率が1.17〜1.40である無機微粒子、(C)酸触媒の存在下で製造されてなる、下記一般式[A]で表されるオルガノシラン化合物の加水分解物および/またはその部分縮合物を、各々少なくとも1種含有する硬化性組成物であることを特徴とする請求項1又は2に記載の反射防止フィルム。
一般式[A]
(R10m−Si(X)4-m
(式中、R10は置換もしくは無置換のアルキル基または置換もしくは無置換のアリール基を表す。Xは水酸基または加水分解可能な基を表す。mは1〜3の整数を表す。)
The curable composition comprises (A) the fluoropolymer, (B) an average particle diameter of 30% to 100% of the thickness of the low refractive index layer, and a refractive index of 1.17 to 1 consisting of a hollow structure. .40 inorganic fine particles, (C) a hydrolyzate of an organosilane compound represented by the following general formula [A] and / or a partial condensate thereof, each produced in the presence of an acid catalyst: The antireflective film according to claim 1, which is a seed-containing curable composition.
Formula [A]
(R 10 ) m -Si (X) 4-m
(In the formula, R 10 represents a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group. X represents a hydroxyl group or a hydrolyzable group. M represents an integer of 1 to 3.)
前記硬化性組成物が、更にラジカル重合性基及び/又はカチオン重合性基から選ばれる重合性基を少なくとも2個以上含有する多官能重合性化合物及び重合開始剤を含有する硬化性組成物であることを特徴とする請求項3記載の反射防止フィルム。   The curable composition further comprises a polyfunctional polymerizable compound containing at least two polymerizable groups selected from radical polymerizable groups and / or cationic polymerizable groups and a polymerization initiator. The antireflection film according to claim 3.
JP2003389312A 2003-11-19 2003-11-19 Antireflection film Pending JP2005148623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003389312A JP2005148623A (en) 2003-11-19 2003-11-19 Antireflection film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003389312A JP2005148623A (en) 2003-11-19 2003-11-19 Antireflection film

Publications (1)

Publication Number Publication Date
JP2005148623A true JP2005148623A (en) 2005-06-09

Family

ID=34696098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003389312A Pending JP2005148623A (en) 2003-11-19 2003-11-19 Antireflection film

Country Status (1)

Country Link
JP (1) JP2005148623A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007065635A (en) * 2005-08-02 2007-03-15 Fujifilm Corp Optical film, particularly antireflection film and method of manufacturing the same, and polarizer and liquid crystal display device using antireflection film
JP2007163971A (en) * 2005-12-15 2007-06-28 Fujifilm Corp Antireflection film, polarizing plate using the same and liquid crystal display device
JP2017054111A (en) * 2015-09-07 2017-03-16 日東電工株式会社 Low refractive index layer, laminated film, manufacturing method of low refractive index layer, manufacturing method of laminated film, optical member, and image display device
WO2017043496A1 (en) * 2015-09-07 2017-03-16 日東電工株式会社 Low-refractive-index layer, laminated film, method for producing low-refractive-index layer, method for producing laminated film, optical member, and image display device
US11460610B2 (en) 2015-07-31 2022-10-04 Nitto Denko Corporation Optical laminate, method of producing optical laminate, optical element, and image display
US11505667B2 (en) 2014-12-26 2022-11-22 Nitto Denko Corporation Laminated film roll and method of producing the same
US11536877B2 (en) 2015-08-24 2022-12-27 Nitto Denko Corporation Laminated optical film, method of producing laminated optical film, optical element, and image display
US11618807B2 (en) 2014-12-26 2023-04-04 Nitto Denko Corporation Film with void spaces bonded through catalysis and method of producing the same
US11674004B2 (en) 2015-07-31 2023-06-13 Nitto Denko Corporation Laminated film, optical element, and image display

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007065635A (en) * 2005-08-02 2007-03-15 Fujifilm Corp Optical film, particularly antireflection film and method of manufacturing the same, and polarizer and liquid crystal display device using antireflection film
JP2007163971A (en) * 2005-12-15 2007-06-28 Fujifilm Corp Antireflection film, polarizing plate using the same and liquid crystal display device
US11618807B2 (en) 2014-12-26 2023-04-04 Nitto Denko Corporation Film with void spaces bonded through catalysis and method of producing the same
US11505667B2 (en) 2014-12-26 2022-11-22 Nitto Denko Corporation Laminated film roll and method of producing the same
US11674004B2 (en) 2015-07-31 2023-06-13 Nitto Denko Corporation Laminated film, optical element, and image display
US11460610B2 (en) 2015-07-31 2022-10-04 Nitto Denko Corporation Optical laminate, method of producing optical laminate, optical element, and image display
US11536877B2 (en) 2015-08-24 2022-12-27 Nitto Denko Corporation Laminated optical film, method of producing laminated optical film, optical element, and image display
JP2021179620A (en) * 2015-09-07 2021-11-18 日東電工株式会社 Low refractive index layer, laminated film, manufacturing method of low refractive index layer, manufacturing method of laminated film, optical member, and image display device
CN107949797B (en) * 2015-09-07 2020-07-03 日东电工株式会社 Low refractive index layer, laminated film, method for producing low refractive index layer and laminated film, optical member, and image display device
US20180215124A1 (en) * 2015-09-07 2018-08-02 Nitto Denko Corporation Low refractive index layer, laminated film, method for producing low refractive index layer, method for producing laminated film, optical element, and image display device
JP7152130B2 (en) 2015-09-07 2022-10-12 日東電工株式会社 Low refractive index layer, laminated film, method for producing low refractive index layer, method for producing laminated film, optical member, and image display device
KR20180050682A (en) * 2015-09-07 2018-05-15 닛토덴코 가부시키가이샤 A low refractive index layer, a laminated film, a method for producing a low refractive index layer, a method for producing a laminated film, an optical member and an image display device
US11524481B2 (en) 2015-09-07 2022-12-13 Nitto Denko Corporation Low refractive index layer, laminated film, method for producing low refractive index layer, method for producing laminated film, optical element, and image display device
CN107949797A (en) * 2015-09-07 2018-04-20 日东电工株式会社 Low-index layer, stacked film, manufacture method, optical component and the image display device of low-index layer and stacked film
KR102494180B1 (en) * 2015-09-07 2023-01-31 닛토덴코 가부시키가이샤 Low refractive index layer, laminated film, method for manufacturing low refractive index layer, method for manufacturing laminated film, optical member and image display device
WO2017043496A1 (en) * 2015-09-07 2017-03-16 日東電工株式会社 Low-refractive-index layer, laminated film, method for producing low-refractive-index layer, method for producing laminated film, optical member, and image display device
JP2017054111A (en) * 2015-09-07 2017-03-16 日東電工株式会社 Low refractive index layer, laminated film, manufacturing method of low refractive index layer, manufacturing method of laminated film, optical member, and image display device
JP7309787B2 (en) 2015-09-07 2023-07-18 日東電工株式会社 Low refractive index layer, laminated film, method for producing low refractive index layer, method for producing laminated film, optical member, and image display device

Similar Documents

Publication Publication Date Title
JP4404769B2 (en) Antireflection film, polarizing plate, and image display device
JP4666983B2 (en) Method for producing optical functional film
JP4806541B2 (en) Optical film, polarizing plate, and image display device
JP5102958B2 (en) Method for producing antireflection film
JP2005186568A (en) Antireflection film, polarizing plate and liquid crystal display
JP4474114B2 (en) Composition, film and polarizing plate containing fluoroaliphatic group-containing polymer
JP2006048025A (en) Antireflection film and manufacturing method thereof
JP2007249191A (en) Optical film, antireflection film, polarizing plate and image display device
JP2007045142A (en) Anti-glare and anti-reflection film, its manufacturing process, polarizing plate using the film and liquid crystal display device using the polarizing plate
JP2006113561A (en) Producing method of light-scattering film, polarizing plate comprising light-scattering film and liquid crystal display device comprising the polarizing plate
JP2006079067A (en) Anti-reflection film
JP2007108725A (en) Optical film, antireflection film, polarizing plate using the same and display device
JP2007256844A (en) Optical film, antireflection film, manufacturing method of optical film, and polarizing plate and display device using the same
JP4139673B2 (en) Antireflection film and display device
JP4448681B2 (en) Antireflection film, polarizing plate, and liquid crystal display device
JP2005234476A (en) Antireflection coating, antireflection film and image display apparatus
JP4393232B2 (en) Method for producing antireflection film
JP2004191956A (en) Antireflection film, polarizing plate, and liquid crystal display
JP2006154791A (en) Manufacturing method of light scattering film, polarizing plate using light scattering film and liquid crystal display device using polarizing plate
JP2007034213A (en) Antireflection film, and polarizing plate and display device using the same
JP2006096861A (en) Coating composition, optically functional layer, antireflection film, polarization plate and image display device
JP2009251190A (en) Optical film, polarizing plate and image display apparatus
JP2007041495A (en) Anti-glare and anti-reflection film, polarizing plate using the anti-glare and anti-reflection film and liquid crystal display device using the polarizing plate
JP4856880B2 (en) Antireflection film, polarizing plate and image display device
JP2005148623A (en) Antireflection film

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060327