JP2006022691A - Air fuel ratio detecting device - Google Patents

Air fuel ratio detecting device Download PDF

Info

Publication number
JP2006022691A
JP2006022691A JP2004200434A JP2004200434A JP2006022691A JP 2006022691 A JP2006022691 A JP 2006022691A JP 2004200434 A JP2004200434 A JP 2004200434A JP 2004200434 A JP2004200434 A JP 2004200434A JP 2006022691 A JP2006022691 A JP 2006022691A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
temperature
exhaust gas
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004200434A
Other languages
Japanese (ja)
Other versions
JP4360294B2 (en
Inventor
Keiichiro Aoki
圭一郎 青木
Yusuke Suzuki
裕介 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004200434A priority Critical patent/JP4360294B2/en
Publication of JP2006022691A publication Critical patent/JP2006022691A/en
Application granted granted Critical
Publication of JP4360294B2 publication Critical patent/JP4360294B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To more accurately detect an air fuel ratio of exhaust gas even when unburned gas is included in the exhaust gas. <P>SOLUTION: This air fuel ratio detecting device is equipped with an air fuel ratio detecting means provided on an exhaust passage of an internal combustion engine and detecting an air fuel ratio of exhaust gas flowing on the exhaust passage; a heating device for heating the air fuel ratio detecting means; an air fuel ratio reducing means for making an air fuel ratio of exhaust gas in the upstream side of the air fuel ratio detecting means temporarily richer than stoichiometric one; and a first temperature increase means for increasing the temperature of the air fuel ratio detecting means to first predetermined temperature or higher by the heating device. In this device, detection accuracy of the air fuel ratio of exhaust gas can be improved by promoting cracking of macromolecular HC by the heating device. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、空燃比検出装置に関する。   The present invention relates to an air-fuel ratio detection device.

空燃比センサは温度によりその特性が変化するため、ヒータを内蔵して素子を加熱することで検出精度を確保している。   Since the characteristics of the air-fuel ratio sensor change depending on the temperature, the detection accuracy is ensured by heating the element with a built-in heater.

そして、内燃機関の排気温度に応じて空燃比センサのヒータへの供給電圧を変更し、これにより排気温度が変化しても素子温度を一定に保つ技術が知られている(例えば、特許文献1参照。)。
特開平6−194338号公報 特開2003−120279号公報
A technique is known in which the supply voltage to the heater of the air-fuel ratio sensor is changed in accordance with the exhaust temperature of the internal combustion engine so that the element temperature remains constant even when the exhaust temperature changes (for example, Patent Document 1). reference.).
JP-A-6-194338 JP 2003-120279 A

ところで、内燃機関の運転状態によっては、クラックが十分になされていない未燃燃料が排気中に含まれることがある。また、NOx触媒の被毒回復時等において排気中への燃
料添加がなされた場合でも、クラックが十分になされていない未燃燃料が排気中に含まれることがある。なお、ここでいうクラックとは、高分子の炭化水素をより低分子の炭化水素に分解することをいう。
By the way, depending on the operating state of the internal combustion engine, unburned fuel that is not sufficiently cracked may be contained in the exhaust gas. In addition, even when fuel is added to the exhaust gas during recovery of NOx catalyst poisoning, unburned fuel that is not sufficiently cracked may be contained in the exhaust gas. The term “crack” as used herein refers to the decomposition of high molecular hydrocarbons into lower molecular hydrocarbons.

このようなクラックが十分になされていない未燃燃料は空燃比センサの拡散抵抗層を通過することができないため、該空燃比センサにおいて燃料が実際よりも少なく測定される。そのため、空燃比センサにより検出される空燃比は、実際よりもリーン側へずれることになる。なお、このような空燃比のずれを以下、「リーンずれ」という。このリーンずれにより排気の空燃比を精度良く検出することが困難となる。   Since unburned fuel that has not been sufficiently cracked cannot pass through the diffusion resistance layer of the air-fuel ratio sensor, the air-fuel ratio sensor measures less fuel than actual. For this reason, the air-fuel ratio detected by the air-fuel ratio sensor is shifted to the lean side from the actual value. Such an air-fuel ratio shift is hereinafter referred to as “lean shift”. This lean shift makes it difficult to accurately detect the air-fuel ratio of the exhaust.

このようなリーンずれは、排気温度が低いために燃料がクラックされにくいディーゼルエンジンで特に発生しやすい。また、ディーゼルエンジンでは、排気中への燃料添加が行われることがあるという点においてもリーンずれが発生しやすい。   Such lean shift is particularly likely to occur in a diesel engine in which the fuel is not easily cracked because the exhaust temperature is low. Further, in a diesel engine, lean deviation is likely to occur in that fuel is sometimes added to the exhaust gas.

本発明は、上記したような問題点に鑑みてなされたものであり、空燃比検出装置において、排気中に未燃燃料が含まれている場合であっても排気の空燃比をより精度良く検出することができる技術を提供することを目的とする。   The present invention has been made in view of the above-described problems. In the air-fuel ratio detection device, even when unburned fuel is contained in the exhaust gas, the air-fuel ratio of the exhaust gas is detected with higher accuracy. It aims at providing the technology which can be done.

上記課題を達成するために本発明による空燃比検出装置は、以下の手段を採用した。すなわち、
内燃機関の排気通路に設けられ該排気通路を流通している排気の空燃比を検出する空燃比検出手段と、
前記空燃比検出手段を加熱する加熱装置と、
前記空燃比検出手段よりも上流の排気の空燃比を一時的にストイキよりもリッチ空燃比とする空燃比低下手段と、
前記空燃比低下手段により排気の空燃比が低下されるときに、前記加熱装置により前記空燃比検出手段の温度を第1所定温度以上まで上昇させる第1昇温手段と、
を具備することを特徴とする。
In order to achieve the above object, an air-fuel ratio detection apparatus according to the present invention employs the following means. That is,
Air-fuel ratio detection means for detecting the air-fuel ratio of the exhaust gas provided in the exhaust passage of the internal combustion engine and flowing through the exhaust passage;
A heating device for heating the air-fuel ratio detection means;
Air-fuel ratio lowering means for temporarily setting the air-fuel ratio of the exhaust upstream of the air-fuel ratio detection means to a rich air-fuel ratio rather than stoichiometry,
A first temperature raising means for raising the temperature of the air-fuel ratio detection means to a first predetermined temperature or higher by the heating device when the air-fuel ratio of the exhaust gas is lowered by the air-fuel ratio reduction means;
It is characterized by comprising.

本発明の最大の特徴は、排気の空燃比が低下された場合には、排気中の燃料が十分にクラックされる温度まで空燃比検出手段の温度を上昇させることにより、該空燃比検出手段のリーンずれを抑制することにある。   The greatest feature of the present invention is that when the air-fuel ratio of the exhaust gas is lowered, the temperature of the air-fuel ratio detection means is increased to a temperature at which the fuel in the exhaust gas is sufficiently cracked. It is to suppress lean shift.

ここで、空燃比検出手段の温度が高いと、その周辺の排気中に含まれる燃料のクラックが促進される。このようにクラックされた燃料は空燃比検出手段に取り込まれるので、該空燃比検出手段による空燃比の検出精度を向上させることができる。   Here, if the temperature of the air-fuel ratio detection means is high, cracking of the fuel contained in the surrounding exhaust is promoted. Since the cracked fuel is taken into the air-fuel ratio detection means, the air-fuel ratio detection accuracy by the air-fuel ratio detection means can be improved.

ここで、第1所定温度とは、排気中の燃料を十分にクラックすることができる温度とすることができる。また、「リッチ空燃比」は、空燃比検出手段に到達する排気がリッチ空燃比となっていればよく、排気系に流通する排気全体でリッチ空燃比となっている必要はない。   Here, the first predetermined temperature can be a temperature at which the fuel in the exhaust gas can be sufficiently cracked. The “rich air-fuel ratio” is not limited as long as the exhaust gas reaching the air-fuel ratio detection means has a rich air-fuel ratio, and the exhaust gas flowing through the exhaust system does not have to be a rich air-fuel ratio.

本発明においては、前記第1昇温手段は、前記空燃比低下手段により低下される排気の空燃比が低いほど前記空燃比検出手段の温度を高くすることができる。   In the present invention, the first temperature raising means can raise the temperature of the air-fuel ratio detecting means as the air-fuel ratio of the exhaust gas lowered by the air-fuel ratio reducing means is lower.

すなわち、クラックが十分になされていない燃料の含有量が多い場合であっても、空燃比検出手段の温度をより高くすることで燃料のクラックをより速やかに行うことが可能となり、該空燃比検出手段の検出精度を向上させることができる。また、加熱装置により空燃比検出手段の温度を上昇させると該空燃比検出手段の熱劣化が進行してしまうので、必要な分だけ空燃比検出手段の温度を上昇させることにより該空燃比検出手段の熱劣化の進行を抑制することが可能となる。   That is, even when there is a large amount of fuel that has not been sufficiently cracked, the temperature of the air-fuel ratio detection means can be increased to cause the fuel to crack more quickly. The detection accuracy of the means can be improved. Further, when the temperature of the air-fuel ratio detecting means is increased by the heating device, the thermal deterioration of the air-fuel ratio detecting means proceeds. Therefore, the air-fuel ratio detecting means is increased by raising the temperature of the air-fuel ratio detecting means by a necessary amount. It is possible to suppress the progress of thermal degradation of the material.

本発明においては、前記空燃比低下手段が排気の空燃比を一時的にストイキよりもリッチ空燃比としていないときには、前記加熱装置により空燃比検出手段の温度を前記第1所定温度よりも低い第2所定温度とする第2昇温手段をさらに備えることができる。   In the present invention, when the air-fuel ratio lowering means does not temporarily set the air-fuel ratio of the exhaust to be richer than the stoichiometric air-fuel ratio, the heating device causes the temperature of the air-fuel ratio detection means to be lower than the first predetermined temperature. A second temperature raising means for setting to a predetermined temperature can be further provided.

空燃比検出手段を高温状態で維持していると該空燃比検出手段の劣化が進行してしまうので、クラックが十分になされていない燃料が排気中に多く含まれているときにだけ該空燃比検出手段の温度を上昇させる。これにより、空燃比検出手段の劣化を抑制し空燃比の検出精度が低下することを抑制できる。   If the air-fuel ratio detecting means is maintained at a high temperature, the air-fuel ratio detecting means deteriorates. Therefore, the air-fuel ratio is detected only when the exhaust gas contains a large amount of fuel that is not sufficiently cracked. Increase the temperature of the detection means. Thereby, it is possible to suppress the deterioration of the air-fuel ratio detection means and suppress the decrease in the air-fuel ratio detection accuracy.

本発明に係る空燃比検出装置では、排気中に未燃燃料が含まれている場合であっても、空燃比検出手段の温度を上昇させて燃料をクラックさせることにより、排気の空燃比をより精度良く検出することができる。   In the air-fuel ratio detection apparatus according to the present invention, even when unburned fuel is contained in the exhaust gas, the air-fuel ratio of the exhaust gas is further increased by cracking the fuel by raising the temperature of the air-fuel ratio detection means. It can be detected with high accuracy.

以下、本発明に係る空燃比検出装置の具体的な実施態様について図面に基づいて説明する。   Hereinafter, specific embodiments of the air-fuel ratio detection apparatus according to the present invention will be described with reference to the drawings.

図1は、本実施例に係る空燃比検出装置を適用する内燃機関1とその排気系の概略構成を示す図である。   FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine 1 to which an air-fuel ratio detection apparatus according to this embodiment is applied and an exhaust system thereof.

図1に示す内燃機関1は、水冷式の4サイクル・ディーゼルエンジンである。   The internal combustion engine 1 shown in FIG. 1 is a water-cooled four-cycle diesel engine.

内燃機関1には、燃焼室へ通じる排気通路2が接続されている。この排気通路2は、下流にて大気へと通じている。   An exhaust passage 2 leading to the combustion chamber is connected to the internal combustion engine 1. This exhaust passage 2 communicates with the atmosphere downstream.

前記排気通路2の途中には、酸化触媒3、及び吸蔵還元型NOx触媒4(以下、NOx触媒4という。)が内燃機関1側から順に備えられている。   In the middle of the exhaust passage 2, an oxidation catalyst 3 and an NOx storage reduction catalyst 4 (hereinafter referred to as NOx catalyst 4) are sequentially provided from the internal combustion engine 1 side.

NOx触媒4は、流入する排気の酸素濃度が高いときは排気中のNOxを吸蔵し、流入する排気の酸素濃度が低く且つ還元剤が存在するときは吸蔵していたNOxを還元する機能
を有する。
The NOx catalyst 4 has a function of storing NOx in the exhaust when the oxygen concentration of the inflowing exhaust gas is high, and reducing the stored NOx when the oxygen concentration of the inflowing exhaust gas is low and a reducing agent is present. .

また、酸化触媒3よりも下流で且つNOx触媒4よりも上流の排気通路2には、該排気
通路2を流通する排気の空燃比を検出する上流側空燃比センサ5が取り付けられている。一方、NOx触媒4よりも下流の排気通路2には、該排気通路2を流通する排気の温度を
検出する排気温度センサ6、及び該排気通路2を流通する排気の空燃比を検出する下流側空燃比センサ7が取り付けられている。
An upstream air-fuel ratio sensor 5 that detects the air-fuel ratio of the exhaust gas flowing through the exhaust passage 2 is attached to the exhaust passage 2 downstream of the oxidation catalyst 3 and upstream of the NOx catalyst 4. On the other hand, in the exhaust passage 2 downstream of the NOx catalyst 4, an exhaust temperature sensor 6 that detects the temperature of the exhaust gas that flows through the exhaust passage 2, and a downstream side that detects the air-fuel ratio of the exhaust gas that flows through the exhaust passage 2. An air-fuel ratio sensor 7 is attached.

ここで、上流側空燃比センサ5及び下流側空燃比センサ7について説明する。   Here, the upstream air-fuel ratio sensor 5 and the downstream air-fuel ratio sensor 7 will be described.

図2は、上流側空燃比センサ5の概略構成図である。なお、下流側空燃比センサ7は、上流側空燃比センサ5と同一の構成である。   FIG. 2 is a schematic configuration diagram of the upstream air-fuel ratio sensor 5. The downstream air-fuel ratio sensor 7 has the same configuration as the upstream air-fuel ratio sensor 5.

上流側空燃比センサ5はハウジング51を備えている。このハウジング51は、中央部にセンサ素子52が保持される貫通穴を有し、外周部に形成されたねじにて排気通路2に固定される。   The upstream air-fuel ratio sensor 5 includes a housing 51. The housing 51 has a through hole in which the sensor element 52 is held at the center, and is fixed to the exhaust passage 2 with a screw formed on the outer periphery.

センサ素子52は、基端部がハウジング51の貫通穴内に保持固定され、先端部はハウジング51より突出して図の下方に延び、被測定ガスである内燃機関1からの排気の流通する排気通路2内に位置している。センサ素子52は、円管状に形成した安定化ジルコニア等の酸素イオン導電性固体電解質501の内周面及び外周面に、夫々白金等の電極502、503を配設してなり、外周面の電極503の表面には多孔質層よりなる拡散抵抗層504が形成されている。また、内部にはセンサ素子52の温度を例えば700℃に維持する電気ヒータ505が備えられている。   The sensor element 52 has a base end portion held and fixed in a through hole of the housing 51, a tip end portion protruding from the housing 51 and extending downward in the figure, and an exhaust passage 2 through which exhaust gas from the internal combustion engine 1, which is a measured gas, flows. Located in. The sensor element 52 is formed by disposing electrodes 502 and 503 such as platinum on the inner peripheral surface and the outer peripheral surface of an oxygen ion conductive solid electrolyte 501 such as stabilized zirconia formed in a circular tube, respectively. A diffusion resistance layer 504 made of a porous layer is formed on the surface of 503. In addition, an electric heater 505 that maintains the temperature of the sensor element 52 at, for example, 700 ° C. is provided.

センサ素子52の外表面は一部を除いてコーティング層で被覆されており、このコーティング層を形成しない先端よりの一部が被測定ガス中の特定成分濃度を検出するガス濃度検出部として機能する。   The outer surface of the sensor element 52 is covered with a coating layer except for a part thereof, and a part from the tip where the coating layer is not formed functions as a gas concentration detection unit for detecting a specific component concentration in the gas to be measured. .

次に、前記構成の上流側空燃比センサ5の作動について説明する。   Next, the operation of the upstream air-fuel ratio sensor 5 having the above configuration will be described.

センサ素子52の温度は電気ヒータ505により、例えば700℃に加熱されているため、センサ素子52周辺の温度は数百℃になっている。そのため、排気中の可燃性ガスと酸素とが反応し、酸素が消費される。さらに、残りの可燃性ガスと酸素とが拡散抵抗層504内で反応し、可燃性ガスが消費される。残りの酸素は外部電極503に到達してイオン化する。このようにしてイオン化した酸素は、酸素イオン導電性固体電解質501内を移動して内部電極502で電子を放出する。この結果、排気中の酸素濃度に比例した電流が流れる。この電流は、可燃性ガスと反応した酸素の分だけ少なくなるので、この電流により得られた酸素濃度により排気の空燃比を検出することが可能となる。   Since the temperature of the sensor element 52 is heated to, for example, 700 ° C. by the electric heater 505, the temperature around the sensor element 52 is several hundred degrees C. Therefore, the combustible gas in the exhaust gas reacts with oxygen, and oxygen is consumed. Further, the remaining combustible gas and oxygen react in the diffusion resistance layer 504, and the combustible gas is consumed. The remaining oxygen reaches the external electrode 503 and is ionized. The oxygen ionized in this manner moves in the oxygen ion conductive solid electrolyte 501 and emits electrons at the internal electrode 502. As a result, a current proportional to the oxygen concentration in the exhaust flows. Since this current is reduced by the amount of oxygen that has reacted with the combustible gas, it becomes possible to detect the air-fuel ratio of the exhaust gas based on the oxygen concentration obtained by this current.

ところで、内燃機関1が希薄燃焼運転されている場合は、NOx触媒4のNOx吸蔵能力が飽和する前に、NOx触媒4に吸蔵されたNOxを還元させる必要がある。   By the way, when the internal combustion engine 1 is operated in lean combustion, it is necessary to reduce the NOx stored in the NOx catalyst 4 before the NOx storage capability of the NOx catalyst 4 is saturated.

そこで、本実施例では、NOx触媒4より上流の排気通路2を流通する排気中に還元剤
たる燃料(軽油)を添加する燃料添加弁8を備えている。ここで、燃料添加弁8は、後述
するECU9からの信号により開弁して燃料を噴射する。燃料添加弁8から排気通路2内へ噴射された燃料は、排気通路2の上流から流れてきた排気の酸素濃度を低下させると共に、NOx触媒4に吸蔵されていたNOxを還元する。
Therefore, in this embodiment, a fuel addition valve 8 for adding fuel (light oil) as a reducing agent to the exhaust gas flowing through the exhaust passage 2 upstream from the NOx catalyst 4 is provided. Here, the fuel addition valve 8 is opened by a signal from an ECU 9 described later to inject fuel. The fuel injected from the fuel addition valve 8 into the exhaust passage 2 lowers the oxygen concentration of the exhaust flowing from the upstream of the exhaust passage 2 and reduces NOx stored in the NOx catalyst 4.

一方、NOx触媒4には燃料に含まれる硫黄分が燃焼して生成される硫黄酸化物(SOx)もNOxと同じメカニズムで吸蔵される。このように吸蔵されたSOxはNOxよりも放
出されにくく、NOx触媒4内に蓄積される。そして、SOxが吸蔵されている分、NOx
を吸蔵できる量が減少し、NOx触媒4のNOx吸蔵力が低下する。これを硫黄被毒(SOx被毒)といい、適宜の時期に硫黄被毒から回復させる被毒回復処理を施す必要がある。
この被毒回復処理は、NOx触媒4を高温(例えば600乃至650℃程度)にしつつ燃
料添加弁8からの燃料添加により酸素濃度を低下させた排気をNOx触媒4に流通させて
行われている。
On the other hand, the NOx catalyst 4 also stores sulfur oxide (SOx) generated by combustion of sulfur contained in the fuel by the same mechanism as NOx. The stored SOx is less likely to be released than NOx and is accumulated in the NOx catalyst 4. And as much as SOx is occluded, NOx
As a result, the amount of NOx stored in the NOx catalyst 4 decreases. This is called sulfur poisoning (SOx poisoning), and it is necessary to perform a poisoning recovery process for recovering from sulfur poisoning at an appropriate time.
This poisoning recovery process is performed by causing the NOx catalyst 4 to flow through the NOx catalyst 4 while reducing the oxygen concentration by adding fuel from the fuel addition valve 8 while keeping the NOx catalyst 4 at a high temperature (for example, about 600 to 650 ° C.). .

以上述べたように構成された内燃機関1には、該内燃機関1を制御するための電子制御ユニットであるECU9が併設されている。このECU9は、内燃機関1の運転条件や運転者の要求に応じて内燃機関1の運転状態を制御するユニットである。   The internal combustion engine 1 configured as described above is provided with an ECU 9 that is an electronic control unit for controlling the internal combustion engine 1. The ECU 9 is a unit that controls the operation state of the internal combustion engine 1 in accordance with the operation conditions of the internal combustion engine 1 and the request of the driver.

ECU9には、各種センサ等が電気配線を介して接続され、該センサ等の出力信号が入力されるようになっている。   Various sensors and the like are connected to the ECU 9 via electric wiring, and output signals from the sensors and the like are input.

一方、ECU9には、燃料添加弁8が電気配線を介して接続され、該ECU9により燃料添加弁8が制御される。また、電気ヒータ505はECU9によりその温度が制御される。   On the other hand, the fuel addition valve 8 is connected to the ECU 9 via electric wiring, and the fuel addition valve 8 is controlled by the ECU 9. The temperature of the electric heater 505 is controlled by the ECU 9.

ところで、NOx触媒4は、経年変化や熱劣化によりNOxの吸蔵能力が低下する。この吸蔵能力の低下を、NOx触媒4前後の空燃比センサ5、7を用いて検出する方法が知ら
れている。これは、NOx触媒4へ燃料を添加したときに下流側空燃比センサ7により検
出されるストイキ継続時間に基づいてNOx触媒4の劣化判定を行うものである。ここで
、NOx触媒4の劣化の度合いを判定するときには、該NOx触媒4に流入する排気の空燃比をストイキ若しくは、ストイキよりも若干リッチ側とする必要がある。従って、上流側空燃比センサ5には高い検出精度が求められる。
By the way, the NOx storage capacity of the NOx catalyst 4 decreases due to aging and thermal deterioration. A method is known in which the decrease in the storage capacity is detected using air-fuel ratio sensors 5 and 7 before and after the NOx catalyst 4. This is for determining the deterioration of the NOx catalyst 4 based on the stoichiometric duration detected by the downstream air-fuel ratio sensor 7 when fuel is added to the NOx catalyst 4. Here, when determining the degree of deterioration of the NOx catalyst 4, the air-fuel ratio of the exhaust gas flowing into the NOx catalyst 4 needs to be stoichiometric or slightly richer than stoichiometric. Therefore, the upstream air-fuel ratio sensor 5 is required to have high detection accuracy.

また、前述したNOx触媒4に吸蔵されていたNOxを還元する場合、および被毒回復処理を行う場合においても、NOx触媒4に流入する排気の空燃比を所定の空燃比に精度良
く合わせる必要がある。従って、上流側空燃比センサ5には高い検出精度が求められる。
In addition, when reducing the NOx stored in the NOx catalyst 4 described above and when performing poisoning recovery processing, it is necessary to accurately match the air-fuel ratio of the exhaust gas flowing into the NOx catalyst 4 to a predetermined air-fuel ratio. is there. Therefore, the upstream air-fuel ratio sensor 5 is required to have high detection accuracy.

しかし、燃料添加弁8からの燃料添加が行われると、前記上流側空燃比センサ5に高分子HCを多く含んだ排気が到達する。ここで、高分子HCは、拡散抵抗層504を通過することができない燃料成分であり、例えば、CnHmで表される燃料成分のうちnが6以上のものを指す。この高分子HCは、酸化触媒3においてある程度クラックすることができるが、燃料の添加量が多い場合や、酸化触媒3の温度が低い場合、排気中の酸素濃度が低い場合には、クラックが十分になされないことがある。   However, when fuel addition from the fuel addition valve 8 is performed, the exhaust containing a large amount of polymer HC reaches the upstream air-fuel ratio sensor 5. Here, the polymer HC is a fuel component that cannot pass through the diffusion resistance layer 504, and for example, indicates a fuel component represented by CnHm in which n is 6 or more. This polymer HC can be cracked to some extent in the oxidation catalyst 3. However, if the amount of fuel added is large, the temperature of the oxidation catalyst 3 is low, or the oxygen concentration in the exhaust gas is low, cracks are sufficient. Sometimes it is not done.

なお、排気中に高分子HCが多く存在する場合として、EGRガス量を煤の発生量が最大となるよりも増加させる低温燃焼、内燃機関1の気筒内への燃料噴射時期や燃料噴射回数の変更する副噴射等が行われている場合を例示することができる。そして、低温燃焼や副噴射等が行われている場合においても精度良く排気の空燃比を検出することが重要である。   Assuming that a large amount of polymer HC is present in the exhaust, low temperature combustion in which the amount of EGR gas is increased more than the maximum amount of soot generation, fuel injection timing into the cylinder of the internal combustion engine 1 and the number of fuel injections The case where the sub injection etc. which are changed are performed can be illustrated. It is important to accurately detect the air-fuel ratio of the exhaust gas even when low-temperature combustion, sub-injection, or the like is performed.

ここで、排気中に高分子HCが多く含まれると、上流側空燃比センサ5では、拡散抵抗
層504内で反応する燃料が少なくなり、外部電極503に到達してイオン化する酸素が多くなる。その結果、上流側空燃比センサ5から出力される空燃比は、実際の空燃比よりも酸素量が多い値となる。すなわちリーン側へずれた値が上流側空燃比センサ5から出力されるリーンずれが生じる。
Here, if the exhaust gas contains a large amount of polymer HC, in the upstream air-fuel ratio sensor 5, the amount of fuel that reacts in the diffusion resistance layer 504 decreases, and the amount of oxygen that reaches the external electrode 503 and ionizes increases. As a result, the air-fuel ratio output from the upstream air-fuel ratio sensor 5 has a value with a larger amount of oxygen than the actual air-fuel ratio. That is, a lean shift occurs in which the value shifted to the lean side is output from the upstream air-fuel ratio sensor 5.

このように、上流側空燃比センサ5がリーンずれを起こしていると、排気の空燃比の正確な検出が困難となる。   As described above, when the upstream air-fuel ratio sensor 5 has a lean shift, it is difficult to accurately detect the air-fuel ratio of the exhaust gas.

その点、本実施例においては、排気中に高分子HCが含まれているときにセンサ素子52の温度を例えば800℃まで上昇させて高分子HCのクラックを促進し、リーンずれを抑制する。   In this regard, in this embodiment, when the polymer HC is contained in the exhaust gas, the temperature of the sensor element 52 is raised to, for example, 800 ° C. to promote cracks in the polymer HC and suppress the lean shift.

また、本実施例においては、排気中に高分子HCが含まれなくなったときにセンサ素子52の温度を例えば700℃に戻すことによりセンサ素子52の熱劣化を抑制する。   In the present embodiment, the thermal degradation of the sensor element 52 is suppressed by returning the temperature of the sensor element 52 to, for example, 700 ° C. when the polymer HC is not contained in the exhaust gas.

次に、本実施例による電気ヒータ505の制御フローについて説明する。   Next, the control flow of the electric heater 505 according to the present embodiment will be described.

図3は、本実施例による電気ヒータ505の制御フローを示したフローチャート図である。本フローは所定の時間毎に繰り返し行われる。   FIG. 3 is a flowchart showing a control flow of the electric heater 505 according to this embodiment. This flow is repeated every predetermined time.

ステップS101では、ECU9は、排気の空燃比がリッチ雰囲気とされる制御が行われているか否か判定する。具体的には、NOx触媒4に吸蔵されているNOxの還元処理、NOx触媒4の劣化判定、硫黄被毒回復処理、低温燃焼、若しくは副噴射等が行われてい
るか否か判定する。このような制御が行われている場合には、排気中に高分子HCが含まれていると推定されるため、センサ素子52の温度が上昇される。
In step S101, the ECU 9 determines whether or not control is performed so that the air-fuel ratio of the exhaust gas is rich. Specifically, it is determined whether or not reduction processing of NOx stored in the NOx catalyst 4, deterioration determination of the NOx catalyst 4, sulfur poisoning recovery processing, low-temperature combustion, sub-injection, or the like is performed. When such control is performed, it is presumed that the polymer HC is contained in the exhaust gas, so that the temperature of the sensor element 52 is increased.

ステップS101で肯定判定がなされた場合にはステップS102へ進み、一方、否定判定がなされた場合にはステップS105へ進む。   If an affirmative determination is made in step S101, the process proceeds to step S102, whereas if a negative determination is made, the process proceeds to step S105.

ステップS102では、ECU9は、センサ素子52の目標温度を800℃に設定する。   In step S102, the ECU 9 sets the target temperature of the sensor element 52 to 800 ° C.

ステップS103では、ECU9は、センサ素子52の温度が800℃となるように電気ヒータ505の通電制御を行う。これにより、高分子HCのクラックが促進される。   In step S103, the ECU 9 controls energization of the electric heater 505 so that the temperature of the sensor element 52 becomes 800 ° C. Thereby, the crack of the polymer HC is promoted.

ステップS104では、ECU9は、リッチ雰囲気での制御が完了したか否か判定する。   In step S104, the ECU 9 determines whether or not the control in the rich atmosphere has been completed.

ステップS104で肯定判定がなされた場合にはステップS105へ進み、一方、否定判定がなされた場合には本ルーチンを一旦終了させる。   If an affirmative determination is made in step S104, the process proceeds to step S105. On the other hand, if a negative determination is made, this routine is temporarily terminated.

ステップS105では、ECU9は、センサ素子52の目標温度を700℃に設定する。   In step S105, the ECU 9 sets the target temperature of the sensor element 52 to 700 ° C.

ステップS106では、ECU9は、センサ素子52の温度が700℃となるように電気ヒータ505の通電制御を行う。   In step S106, the ECU 9 controls energization of the electric heater 505 so that the temperature of the sensor element 52 becomes 700 ° C.

このようにして、燃料添加弁8からの燃料添加等が行われていることにより高分子HCが排気中に多く含まれていると推定される場合には、センサ素子52の温度を800℃まで上昇させる。これにより、高分子HCのクラックを促進させることができ、以て排気の
空燃比の検出精度を向上させることができる。また、排気中に高分子HCが多く含まれていない場合には、センサ素子52の温度を700℃とする(700℃に戻す)ことによりセンサ素子52の熱劣化を抑制することができる。
In this way, when it is presumed that a large amount of polymer HC is contained in the exhaust due to the addition of fuel from the fuel addition valve 8 or the like, the temperature of the sensor element 52 is increased to 800 ° C. Raise. As a result, cracks in the polymer HC can be promoted, and thus the detection accuracy of the air-fuel ratio of the exhaust can be improved. If the exhaust gas does not contain a large amount of polymer HC, the temperature of the sensor element 52 is set to 700 ° C. (returned to 700 ° C.), so that thermal deterioration of the sensor element 52 can be suppressed.

なお、本実施例においては、燃料添加弁8からの燃料添加時等にセンサ素子52の温度を例えば800℃まで上昇させたが、これに代えて、燃料添加弁8からの燃料添加量に応じて、若しくは排気中の高分子HC量に応じてセンサ素子52の温度を変更してもよい。例えば、低温燃焼時と硫黄被毒回復処理時とでは、硫黄被毒回復時のほうが排気中の高分子HC濃度が高いため、硫黄被毒回復時のセンサ素子52の温度が高くなるように設定しても良い。同様に、NOx触媒4のNOx還元時よりも硫黄被毒回復時のほうがセンサ素子52の温度が高くなるように設定してもよい。また、内燃機関1の運転状態(例えば、機関回転数、機関負荷)や燃料添加弁8からの燃料添加量から、排気の空燃比を概算し、この空燃比が低いほどセンサ素子52の温度が高くなるように設定してもよい。   In the present embodiment, the temperature of the sensor element 52 is increased to, for example, 800 ° C. at the time of fuel addition from the fuel addition valve 8, but instead of this, according to the amount of fuel addition from the fuel addition valve 8. Alternatively, the temperature of the sensor element 52 may be changed according to the amount of polymer HC in the exhaust. For example, at the time of low-temperature combustion and during the sulfur poisoning recovery process, since the polymer HC concentration in the exhaust is higher during the sulfur poisoning recovery, the temperature of the sensor element 52 during the sulfur poisoning recovery is set to be higher. You may do it. Similarly, the temperature of the sensor element 52 may be set higher at the time of recovery from sulfur poisoning than at the time of NOx reduction of the NOx catalyst 4. Further, the air-fuel ratio of the exhaust gas is estimated from the operating state of the internal combustion engine 1 (for example, engine speed, engine load) and the amount of fuel added from the fuel addition valve 8, and the temperature of the sensor element 52 decreases as the air-fuel ratio decreases. You may set so that it may become high.

このように、排気中の高分子HC濃度に基づいてセンサ素子52の温度を変更することにより、センサ素子52を過剰に温度上昇させることを抑制し、センサ素子52の劣化を抑制することが可能となる。   In this way, by changing the temperature of the sensor element 52 based on the polymer HC concentration in the exhaust, it is possible to suppress an excessive increase in temperature of the sensor element 52 and to suppress deterioration of the sensor element 52. It becomes.

また、センサ素子52の上昇後の温度は800℃に限らず、該センサ素子52の熱劣化との関係を考慮しつつ可及的に高くするようにしてもよい。   Further, the temperature after the sensor element 52 is raised is not limited to 800 ° C., and may be made as high as possible in consideration of the relationship with the thermal deterioration of the sensor element 52.

実施例に係る空燃比検出装置を適用する内燃機関とその排気系の概略構成を示す図である。It is a figure which shows schematic structure of the internal combustion engine to which the air-fuel ratio detection apparatus which concerns on an Example is applied, and its exhaust system. 空燃比センサの概略構成図である。It is a schematic block diagram of an air fuel ratio sensor. 実施例による電気ヒータの制御フローを示したフローチャート図である。It is the flowchart figure which showed the control flow of the electric heater by an Example.

符号の説明Explanation of symbols

1 内燃機関
2 排気通路
3 酸化触媒
4 吸蔵還元型NOx触媒
5 上流側空燃比センサ
6 排気温度センサ
7 下流側空燃比センサ
8 燃料添加弁
9 ECU
51 ハウジング
52 センサ素子
501 酸素イオン導電性固体電解質
502 内部電極
503 外部電極
504 拡散抵抗層
505 電気ヒータ
1 Internal combustion engine 2 Exhaust passage 3 Oxidation catalyst 4 NOx storage reduction catalyst 5 Upstream air-fuel ratio sensor 6 Exhaust temperature sensor 7 Downstream air-fuel ratio sensor 8 Fuel addition valve 9 ECU
51 housing 52 sensor element 501 oxygen ion conductive solid electrolyte 502 internal electrode 503 external electrode 504 diffusion resistance layer 505 electric heater

Claims (3)

内燃機関の排気通路に設けられ該排気通路を流通している排気の空燃比を検出する空燃比検出手段と、
前記空燃比検出手段を加熱する加熱装置と、
前記空燃比検出手段よりも上流の排気の空燃比を一時的にストイキよりもリッチ空燃比とする空燃比低下手段と、
前記空燃比低下手段により排気の空燃比が低下されるときに、前記加熱装置により前記空燃比検出手段の温度を第1所定温度以上まで上昇させる第1昇温手段と、
を具備することを特徴とする空燃比検出装置。
Air-fuel ratio detection means for detecting the air-fuel ratio of the exhaust gas provided in the exhaust passage of the internal combustion engine and flowing through the exhaust passage;
A heating device for heating the air-fuel ratio detection means;
Air-fuel ratio lowering means for temporarily setting the air-fuel ratio of the exhaust upstream of the air-fuel ratio detection means to a rich air-fuel ratio rather than stoichiometry,
A first temperature raising means for raising the temperature of the air-fuel ratio detection means to a first predetermined temperature or higher by the heating device when the air-fuel ratio of the exhaust gas is lowered by the air-fuel ratio reduction means;
An air-fuel ratio detection apparatus comprising:
前記第1昇温手段は、前記空燃比低下手段により低下される排気の空燃比が低いほど前記空燃比検出手段の温度を高くすることを特徴とする請求項1に記載の空燃比検出装置。   The air-fuel ratio detection apparatus according to claim 1, wherein the first temperature raising means raises the temperature of the air-fuel ratio detection means as the air-fuel ratio of the exhaust gas lowered by the air-fuel ratio lowering means is lower. 前記空燃比低下手段が排気の空燃比を一時的にストイキよりもリッチ空燃比としていないときには、前記加熱装置により空燃比検出手段の温度を前記第1所定温度よりも低い第2所定温度とする第2昇温手段をさらに備えることを特徴とする請求項1または2に記載の空燃比検出装置。   When the air-fuel ratio lowering means does not temporarily set the air-fuel ratio of the exhaust to be richer than stoichiometric, the heating device sets the temperature of the air-fuel ratio detection means to a second predetermined temperature lower than the first predetermined temperature. The air-fuel ratio detection apparatus according to claim 1, further comprising: 2 temperature raising means.
JP2004200434A 2004-07-07 2004-07-07 Air-fuel ratio detection device Expired - Fee Related JP4360294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004200434A JP4360294B2 (en) 2004-07-07 2004-07-07 Air-fuel ratio detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004200434A JP4360294B2 (en) 2004-07-07 2004-07-07 Air-fuel ratio detection device

Publications (2)

Publication Number Publication Date
JP2006022691A true JP2006022691A (en) 2006-01-26
JP4360294B2 JP4360294B2 (en) 2009-11-11

Family

ID=35796155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004200434A Expired - Fee Related JP4360294B2 (en) 2004-07-07 2004-07-07 Air-fuel ratio detection device

Country Status (1)

Country Link
JP (1) JP4360294B2 (en)

Also Published As

Publication number Publication date
JP4360294B2 (en) 2009-11-11

Similar Documents

Publication Publication Date Title
JP6572932B2 (en) Abnormality diagnosis device for ammonia detector
JP6222037B2 (en) Air-fuel ratio sensor abnormality diagnosis device
JP5360312B1 (en) Control device for internal combustion engine
CN108691613B (en) Exhaust gas purification device for internal combustion engine
KR101442391B1 (en) Emission control system for internal combustion engine
KR101399192B1 (en) Emission control system for internal combustion engine
JP4001129B2 (en) Exhaust gas purification device for internal combustion engine
JP2015102023A (en) Abnormality diagnosis device for air-fuel ratio sensor
WO2014118891A1 (en) Control device for internal combustion engine
JP2018178762A (en) Exhaust emission control device of internal combustion engine
JP6268976B2 (en) Control device for internal combustion engine
JP4325368B2 (en) Air-fuel ratio measuring device
JP2006322389A (en) Catalyst degrading prevention device
JP6056726B2 (en) Control device for internal combustion engine
JP6361699B2 (en) Control device for internal combustion engine
CN109386354B (en) Exhaust gas purification device for internal combustion engine
JP4360294B2 (en) Air-fuel ratio detection device
JP4244841B2 (en) Exhaust gas purification device for internal combustion engine
JP3609616B2 (en) Oxygen concentration detector
CN109915268B (en) Catalyst degradation detection device
JP4432515B2 (en) Exhaust gas purification device for internal combustion engine
US8943799B2 (en) Control device for internal combustion engine
JP4894529B2 (en) Catalyst degradation detector
JP6065888B2 (en) Air-fuel ratio sensor abnormality diagnosis device
JP2008002440A (en) Abnormality determination device for exhaust gas concentration sensor of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees