JP2006022503A - Construction method for connecting bifurcated section of shield tunnel, and shield tunnel structure using the construction method - Google Patents

Construction method for connecting bifurcated section of shield tunnel, and shield tunnel structure using the construction method Download PDF

Info

Publication number
JP2006022503A
JP2006022503A JP2004199650A JP2004199650A JP2006022503A JP 2006022503 A JP2006022503 A JP 2006022503A JP 2004199650 A JP2004199650 A JP 2004199650A JP 2004199650 A JP2004199650 A JP 2004199650A JP 2006022503 A JP2006022503 A JP 2006022503A
Authority
JP
Japan
Prior art keywords
tunnel
outer peripheral
peripheral wall
main
branch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004199650A
Other languages
Japanese (ja)
Other versions
JP4229882B2 (en
Inventor
Masaru Kawagoe
勝 河越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumagai Gumi Co Ltd
Original Assignee
Kumagai Gumi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumagai Gumi Co Ltd filed Critical Kumagai Gumi Co Ltd
Priority to JP2004199650A priority Critical patent/JP4229882B2/en
Publication of JP2006022503A publication Critical patent/JP2006022503A/en
Application granted granted Critical
Publication of JP4229882B2 publication Critical patent/JP4229882B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance safety in the execution of work and reduce a construction period and construction costs, by enabling a bifurcated section to be surely connected in ground, without using a cut and cover tunneling method etc. concurrently employing an auxiliary construction method, or securing the great length of a merging section; and to enable construction to be surely performed even under high water pressure. <P>SOLUTION: Branch-line tunnels 4 are constituted as three circular tunnels wherein two tunnel structures 10 with a diameter smaller than that of the branch-line tunnel 4 are annexed so that the positional relationship of bringing respective outer peripheral walls of the branch-line tunnels 4 and the two tunnel structures 10 into almost concurrent and partial contact with an outer peripheral wall of a main-line tunnel 2 at the point of merging with the main-line tunnel 2 can be established. After freezing treatment is applied to a section where the outer peripheral wall of the main-line tunnel 2 and the respective outer peripheral walls of the two tunnel structures 10 come into contact with one another, at a point where the maine-line tunnel 2 merges with the three circular tunnels, an opening communication section is opened by removing opposed wall sections of the main-line tunnel 2 and the branch-line tunnel 4. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、シールドトンネルの分岐部接続工法及びその工法によるシールドトンネル構造に関するものであり、特に、開削工法等を用いることなく、また合流部分の長さを長くとることなく、更に、地盤改良等の補助工法を最小に抑え、地中での分岐部接続を可能として、施工時の安全性を向上させるとともに工期の短縮及び工費の低減を図り、さらには高水圧下でも確実に施工することが可能なシールドトンネルの分岐部接続工法及びその工法によるシールドトンネル構造に関するものである。   The present invention relates to a shield tunnel branch connection method and a shield tunnel structure using the method, and in particular, without using an open-cut method or the like, without increasing the length of the merged portion, and further improving the ground. It is possible to minimize the auxiliary construction method, connect the branch part in the ground, improve the safety at the time of construction, shorten the construction period and reduce the construction cost, and even work under high water pressure. The present invention relates to a possible shield tunnel junction connection method and a shield tunnel structure by the method.

トンネルの分岐部接続に関する従来技術として、例えば次のようなトンネルの合流方法が知られている。この従来技術は、複数のセグメントからなる先行トンネル構造体と、多数の小径トンネル構造物とからなる後行トンネル構造体とによるトンネル同士を合流させるものである。まず、先行して複数のセグメントからなる先行トンネル構造体を構築し、この先行トンネル構造体に漸次接近するように小径トンネル構造物からなる後行トンネル構造体を構築していき、これらトンネル構造体同士が接触するようになったら、後行トンネル構造体を先行トンネル構造体の外周の無筋構造のセグメントの一部に重合させていく。これにより、合流の途中であっても、常に一連・一体のトンネル構造物が構築され、強度及び止水が十分に確保されたものとなる。そして、それら双方のトンネルによる重合部分が一定の強度を保持した状態において、後行トンネル構造体の小径トンネル構造物の掘進を停止し、セグメントからなる先行トンネル構造体により中壁を構成する。これにより、先行トンネル構造物が常に中壁を構成しているので、トンネル空間内部を掘削する際の補助部材となる。そして最終的に、後行トンネルの小径トンネル構造物の掘進を全て完了させて先行トンネル構造体に収束させた構造としている(例えば、特許文献1参照)。   For example, the following tunnel merging methods are known as conventional techniques related to tunnel branching connection. In this prior art, tunnels formed by a preceding tunnel structure composed of a plurality of segments and a trailing tunnel structure composed of a large number of small-diameter tunnel structures are joined together. First, a preceding tunnel structure composed of a plurality of segments is constructed in advance, and a subsequent tunnel structure composed of a small-diameter tunnel structure is constructed so as to gradually approach the preceding tunnel structure. When they come into contact with each other, the succeeding tunnel structure is superposed on a part of the non-muscle segment on the outer periphery of the preceding tunnel structure. Thereby, even in the middle of merging, a series / integrated tunnel structure is always constructed, and sufficient strength and water stoppage are ensured. Then, in a state where the overlapped portion by both of the tunnels has a constant strength, the excavation of the small-diameter tunnel structure of the succeeding tunnel structure is stopped, and the inner wall is constituted by the preceding tunnel structure composed of segments. Thereby, since the preceding tunnel structure always constitutes the inner wall, it becomes an auxiliary member when excavating the inside of the tunnel space. And finally, it is set as the structure which completed the excavation of the small diameter tunnel structure of the succeeding tunnel, and was made to converge on the preceding tunnel structure (for example, refer patent document 1).

また、トンネルの合流に関連した大断面トンネル構造の構築に関する従来技術として、例えば次のような連孔シールド工法が知られている。この従来技術は、先行する第1のシールド機によって第1のトンネルを掘削し、該第1のトンネルの掘削断面の一部分をモルタル等で製作された掘削可能なセグメントによって覆工した後、後続する第2のシールド機によって前記覆工材を掘削しながら、第1のトンネルと掘削断面が一部分重なる第2のトンネルを掘削していくことにより、工期を短縮することが可能な連孔シールド工法としている(例えば、特許文献2参照)。
特開平4−155093号公報(第3頁、図1〜6)。 特開平1−192995号公報(第2頁、図2)。
Further, as a conventional technique related to the construction of a large-section tunnel structure related to the merge of tunnels, for example, the following continuous hole shield method is known. This prior art is followed by excavating the first tunnel with the preceding first shield machine and lining a part of the excavation cross section of the first tunnel with an excavable segment made of mortar or the like. As a continuous hole shield construction method that can shorten the construction period by excavating the second tunnel where the excavation cross-section partially overlaps with the first tunnel while excavating the lining material with the second shield machine (For example, refer to Patent Document 2).
Japanese Patent Laid-Open No. 4-155093 (page 3, FIGS. 1 to 6). Japanese Patent Laid-Open No. 1-192995 (second page, FIG. 2).

特許文献1に記載のトンネルの合流方法においては、後行トンネル構造体を、多数の小径トンネル構造物をそれらの径方向に重合連設させて構築している。このため、後行トンネル構造体の構築に工費が嵩むおそれがある。また、この後行トンネル構造体を、先行トンネル構造体の軸線に漸次接近するように堀進させ、先行トンネル構造体に接近した時点より、先行トンネル構造体の無筋構造のセグメントの外周部において重合させながら構築し合流させている。このため、合流部分の長さが長くなって工期が長びくことになる。   In the tunnel merging method described in Patent Document 1, the trailing tunnel structure is constructed by superposing a large number of small diameter tunnel structures in the radial direction. For this reason, there exists a possibility that a construction cost may increase in construction of a trailing tunnel structure. In addition, the trailing tunnel structure is dug so as to gradually approach the axis of the preceding tunnel structure, and from the point of approach to the preceding tunnel structure, the outer periphery of the segment of the unstructured structure of the preceding tunnel structure It is constructed and merged while polymerizing. For this reason, the length of the merging portion becomes longer and the construction period becomes longer.

また、特許文献2に記載の連孔シールド工法には、第1のトンネルの一部分を掘削可能なセグメントで覆工し、後続する第2のシールド機で前記覆工材を掘削しながら第2のトンネルを形成することにより、大断面トンネルを構築する技術が開示されているが、この構築法をシールドトンネルの分岐部接続に適用しうる点については何等の開示もない。   In addition, in the continuous hole shield method described in Patent Document 2, a part of the first tunnel is covered with a segment that can be excavated, and the second shield machine that follows is excavated with the second shield machine while the second shield machine is excavated. Although a technique for constructing a large-section tunnel by forming a tunnel has been disclosed, there is no disclosure about the point that this construction method can be applied to the junction connection of a shield tunnel.

ところで、近時、トンネルの大深度化傾向に伴い、シールドトンネルの分岐部接続の施工法が大きな課題となっている。従来、シールドトンネルに分岐部を設ける場合は、地盤改良等を併用した地中切り拡げ工法等によるものが多かった。また、民地下において開削工法を採ることには無理があり、また水圧に対しても、この開削工法には限界があることから、大深度の高水圧下においても合流部分の長さを長くとることなく工期の短縮及び工費の低減を図りうるとともに確実な地中接続工法の開発が望まれている。   By the way, recently, with the trend of increasing the depth of the tunnel, the construction method of the junction part of the shield tunnel has become a big issue. Conventionally, when a branch part is provided in a shield tunnel, there are many cases where the underground cutting and expansion method using ground improvement or the like is used. In addition, it is impossible to adopt the open-cut method in the private basement, and since the open-cut method is also limited in terms of water pressure, the length of the merging part is increased even under high water pressure at a large depth. Therefore, it is desired to develop a reliable underground connection method that can shorten the construction period and reduce the construction cost without any problems.

そこで、補助工法を併用した地中切り拡げ工法等を用いることなく、また合流部分の長さを長くとることなく地中での確実な分岐部接続を可能として、施工時の安全性を向上させるとともに工期の短縮及び工費の低減を図り、さらには高水圧下でも確実に施工するために解決すべき技術的課題が生じてくるのであり、本発明はこの課題を解決することを目的とする。   Therefore, it is possible to connect to a certain bifurcation in the ground without using underground cutting and expansion method combined with an auxiliary construction method, and without increasing the length of the merged portion, thereby improving safety during construction. At the same time, there is a technical problem to be solved in order to shorten the construction period and reduce the construction cost, and to reliably perform the construction even under high water pressure, and the present invention aims to solve this problem.

本発明は上記目的を達成するために提案されたものであり、請求項1記載の発明は、本線トンネルに、断面円形の枝線トンネルを開口連絡部を介して合流させるシールドトンネルの分岐部接続工法であって、前記枝線トンネルは、該枝線トンネルよりも小径で断面円形の二個のトンネル構造体を、前記枝線トンネル及び前記二個のトンネル構造体の各軸線が同方向で且つ、前記本線トンネルとの合流点において前記枝線トンネル及び前記二個のトンネル構造体の各外周壁の一部が前記本線トンネルの外周壁にほぼ同時に接触する位置関係となるように添設した三円形トンネルに構成し、前記本線トンネルと前記枝線トンネルとの対向壁部及び該対向壁部間に介在する土砂等を除去して前記開口連絡部を開口するシールドトンネルの分岐部接続工法を提供する。   The present invention has been proposed in order to achieve the above-mentioned object, and the invention according to claim 1 is to connect a branch portion of a shield tunnel in which a branch tunnel having a circular cross section is joined to a main tunnel through an opening connecting portion. The branch line tunnel has two tunnel structures having a smaller diameter and a circular cross section than the branch line tunnel, and the axis lines of the branch line tunnel and the two tunnel structures are in the same direction and Three branch walls and a portion of each of the outer peripheral walls of the two tunnel structures are arranged so as to be in a positional relationship in which they are in contact with the outer peripheral wall of the main tunnel almost simultaneously. Connecting to a branch portion of a shield tunnel configured to be a circular tunnel and removing the opposing wall portion of the main tunnel and the branch tunnel and earth and sand interposed between the opposing wall portions to open the opening connecting portion The law provides.

この構成によれば、三円形シールド機により三円形トンネルを掘進しつつ枝線トンネル及び二個のトンネル構造体の各外周壁の一部が本線トンネルの外周壁に接触した合流点において、本線トンネルと前記枝線トンネルとの対向壁部及び該対向壁部間に介在する土砂等を除去することにより開口連絡部が開口して、本線トンネルに対する枝線トンネルの分岐部接続が行われる。   According to this configuration, the main tunnel is formed at the junction where a part of each outer peripheral wall of the branch tunnel and the two tunnel structures is in contact with the outer peripheral wall of the main tunnel while the three-circular tunnel is dug by the three-circular shield machine. By removing the opposing wall portion between the and the branch tunnel and the earth and sand interposed between the opposing wall portions, the opening connecting portion is opened, and the branch portion of the branch tunnel is connected to the main tunnel.

請求項2記載の発明は、上記本線トンネルと上記三円形トンネルとの合流点において、上記本線トンネルの外周壁と上記二個のトンネル構造体の各外周壁との接触部に凍結処理を施した後に、上記開口連絡部を開口するシールドトンネルの分岐部接続工法を提供する。   In the invention according to claim 2, the freezing treatment is performed on the contact portion between the outer peripheral wall of the main tunnel and the outer peripheral walls of the two tunnel structures at the junction of the main tunnel and the three-circular tunnel. Later, a shield tunnel branch connecting method for opening the opening connecting portion is provided.

この構成によれば、三円形シールド機により三円形トンネルを掘進しつつ枝線トンネル及び二個のトンネル構造体の各外周壁の一部が本線トンネルの外周壁に接触した合流点において、本線トンネルの外周壁と二個のトンネル構造体の各外周壁との接触部に凍結処理を施し、開口連絡部の開口予定領域の周囲に凍結止水ゾーンを形成した後、本線トンネルと枝線トンネルとの対向壁部及び該対向壁部間に介在する土砂等を除去することにより開口連絡部が開口して、本線トンネルに対する枝線トンネルの分岐部接続が行われる。   According to this configuration, the main tunnel is formed at the junction where a part of each outer peripheral wall of the branch tunnel and the two tunnel structures is in contact with the outer peripheral wall of the main tunnel while the three-circular tunnel is dug by the three-circular shield machine. Freezing treatment is performed on the contact portion between the outer peripheral wall of each of the two tunnel structures and each outer peripheral wall of the two tunnel structures, and after forming a frozen water-stopping zone around the planned opening region of the opening connecting portion, By removing the opposing wall portion and the earth and sand interposed between the opposing wall portions, the opening connecting portion is opened, and the branch portion of the branch tunnel is connected to the main tunnel.

請求項3記載の発明は、上記本線トンネルと上記三円形トンネルとの合流点において、上記本線トンネルの外周壁と上記二個のトンネル構造体の各外周壁との接触部周囲の地盤に地盤改良剤を注入して止水処理を施した後に、上記開口連絡部を開口することを特徴とする請求項1記載のシールドトンネルの分岐部接続工法を提供する。   According to a third aspect of the present invention, the ground is improved in the ground around the contact portion between the outer peripheral wall of the main tunnel and the outer peripheral walls of the two tunnel structures at the junction of the main tunnel and the three-circular tunnel. 2. The method for connecting branch portions of a shield tunnel according to claim 1, wherein the opening connecting portion is opened after the agent is injected and the water stop treatment is performed.

この構成によれば、三円形シールド機により三円形トンネルを掘進しつつ枝線トンネル及び二個のトンネル構造体の各外周壁の一部が本線トンネルの外周壁に接触した合流点において、本線トンネルの外周壁と二個のトンネル構造体の各外周壁との接触部周囲の地盤に地盤改良剤注入して止水処理を施し、開口連絡部の開口予定領域の周囲に地盤改良止水ゾーンを形成した後、本線トンネルと枝線トンネルとの対向壁部及び該対向壁部間に介在する土砂等を除去することにより開口連絡部が開口して、本線トンネルに対する枝線トンネルの分岐部接続が行われる。   According to this configuration, the main tunnel is formed at the junction where a part of each outer peripheral wall of the branch tunnel and the two tunnel structures is in contact with the outer peripheral wall of the main tunnel while the three-circular tunnel is dug by the three-circular shield machine. The ground improvement agent is injected into the ground around the contact area between the outer peripheral wall of the two tunnel structures and each of the outer peripheral walls of the two tunnel structures, water-stopping treatment is performed, and the ground improvement water-stopping zone is formed around the planned opening area of the opening communication part. After the formation, the opening connecting portion is opened by removing the opposing wall portion between the main line tunnel and the branch line tunnel and the earth and sand interposed between the opposing wall portions, and the branch portion tunnel connection to the main tunnel is established. Done.

請求項4記載の発明は、上記二個のトンネル構造体の各外周壁の一部が上記本線トンネルの外周壁に接触する当該本線トンネルの外周壁部は、前記トンネル構造体の外周壁の形状に沿った逆R状に形成したシールドトンネルの分岐部接続工法を提供する。   According to a fourth aspect of the present invention, an outer peripheral wall portion of the main tunnel in which a part of each outer peripheral wall of the two tunnel structures is in contact with the outer peripheral wall of the main tunnel is a shape of the outer peripheral wall of the tunnel structure. A branch tunnel connection method for a shield tunnel formed in a reverse R shape along the line is provided.

この構成によれば、本線トンネルの外周壁部に形成した各逆R状の部分に二個のトンネル構造体の各外周壁をそれぞれ接触させることで、凍結止水ゾーンを増大させることが可能となる。   According to this configuration, it is possible to increase the freeze-stop zone by bringing the outer peripheral walls of the two tunnel structures into contact with the respective reverse R-shaped portions formed on the outer peripheral wall portion of the main tunnel. Become.

請求項5記載の発明は、上記本線トンネルの外周壁部に形成した上記逆R状の部分には、掘削可能な材料を埋め込んでおき、三円形シールド機による上記三円形トンネルの前記本線トンネルへの掘進合流時に、前記三円形シールド機により前記材料を掘削除去するようにしたシールドトンネルの分岐部接続工法を提供する。   According to a fifth aspect of the present invention, an excavable material is embedded in the inverted R-shaped portion formed on the outer peripheral wall of the main tunnel, and the three-circular tunnel is moved to the main tunnel by the three-circular shield machine. And a shield tunnel branch connection method in which the material is excavated and removed by the three-round shield machine at the time of merging.

この構成によれば、本線トンネルの外周壁部に形成した逆R状の部分に掘削可能な材料を埋め込んでおくことで、シールド機による本線トンネルの掘進時に、該シールド機もしくは本線トンネル内への漏水のおそれがなくなる。   According to this configuration, the material that can be excavated is embedded in the reverse R-shaped portion formed on the outer peripheral wall portion of the main tunnel, so that when the main tunnel is dug by the shield machine, the shield machine or the main tunnel is inserted into the main tunnel. There is no risk of water leakage.

請求項6記載の発明は、上記本線トンネルの外周壁と上記二個のトンネル構造体の各外周壁との接触部に凍結処理を施した後で上記開口連絡部を開口する前に構造部材で連結したシールドトンネルの分岐部接続工法を提供する。   According to a sixth aspect of the present invention, there is provided a structural member before the opening connecting portion is opened after the freezing treatment is performed on the contact portion between the outer peripheral wall of the main tunnel and the outer peripheral walls of the two tunnel structures. We provide a method for connecting branch parts of linked shield tunnels.

この構成によれば、本線トンネルの外周壁と二個のトンネル構造体の各外周壁との接触部が強固に連結保持されて、開口連絡部形成の施工時に、その施工の衝撃による漏水が防止されて止水性の確実な維持が可能となる。   According to this configuration, the contact portion between the outer peripheral wall of the main tunnel and each outer peripheral wall of the two tunnel structures is firmly connected and held, and at the time of construction of the opening connection portion, leakage due to the impact of the construction is prevented. Thus, it is possible to reliably maintain the water-stopping property.

請求項7記載の発明は、本線トンネルに、断面円形の枝線トンネルが開口連絡部を介して合流する分岐部を持つシールドトンネル構造であって、前記枝線トンネルは、該枝線トンネルよりも小径で内周壁がセグメントで覆工された断面円形の二個のトンネル構造体が、前記枝線トンネル及び前記二個のトンネル構造体の各軸線が同方向で且つ、前記本線トンネルとの合流点において前記枝線トンネル及び前記二個のトンネル構造体の各外周壁の一部が前記本線トンネルの外周壁にほぼ同時に接触する位置関係となるように添設された三円形トンネルから成るシールドトンネル構造を提供する。   The invention according to claim 7 is a shield tunnel structure in which a branch line tunnel having a circular cross section joins with a main line tunnel via an opening connecting part, and the branch line tunnel is more than the branch line tunnel. Two tunnel structures having a small diameter and a circular inner section covered with segments, the axis of the branch tunnel and the two tunnel structures are in the same direction, and the junction with the main tunnel A shield tunnel structure comprising a three-circular tunnel attached so that a part of the outer peripheral walls of the branch line tunnel and the two tunnel structures are in contact with each other substantially simultaneously with the outer peripheral wall of the main tunnel I will provide a.

この構成によれば、分岐部における本線トンネルと枝線トンネルとの間の開口連絡部は、三円形トンネルが三円形シールド機により掘進されて枝線トンネル及び二個のトンネル構造体の各外周壁の一部が本線トンネルの外周壁に接触した合流点において本線トンネルと枝線トンネルとの対向壁部及び該対向壁部間に介在する土砂等が除去されることにより、分岐部を持つシールドトンネル構造が実現されている。   According to this configuration, the opening communication part between the main line tunnel and the branch line tunnel at the branch part is formed in such a manner that the three circular tunnels are dug by the three circular shield machine, and the outer peripheral walls of the branch line tunnel and the two tunnel structures. Shield tunnel with a branch by removing the opposing wall of the main tunnel and the branch tunnel and the earth and sand interposed between the opposing walls at the junction where part of the main tunnel touches the outer wall of the main tunnel The structure is realized.

請求項8記載の発明は、上記二個のトンネル構造体の各外周壁の一部が上記本線トンネルの外周壁に接触する当該本線トンネルの外周壁部は、前記トンネル構造体の外周壁の形状に沿った逆R状に形成されているシールドトンネル構造を提供する。   According to an eighth aspect of the present invention, an outer peripheral wall portion of the main tunnel, in which a part of each outer peripheral wall of the two tunnel structures contacts the outer peripheral wall of the main tunnel, has a shape of the outer peripheral wall of the tunnel structure. The shield tunnel structure formed in the reverse R shape along the line is provided.

この構成によれば、本線トンネルの外周壁と二個のトンネル構造体の各外周壁との接触部に凍結処理を施した際に、本線トンネルの外周壁部に形成した各逆R状の部分に二個のトンネル構造体の各外周壁がそれぞれ接触されることで、接触面積を増して凍結止水ゾーンの増大を可能としている。   According to this configuration, when the freezing treatment is performed on the contact portion between the outer peripheral wall of the main tunnel and the outer peripheral walls of the two tunnel structures, each inverted R-shaped portion formed on the outer peripheral wall portion of the main tunnel. Since the outer peripheral walls of the two tunnel structures are in contact with each other, the contact area is increased and the freeze-stop zone can be increased.

請求項9記載の発明は、上記二個のトンネル構造体の各外周壁の一部が上記本線トンネルの外周壁に接触する部位における当該各トンネル構造体側の上記セグメント及び前記本線トンネル側の上記セグメントには、それぞれ張付凍結管を予め設置したシールドトンネル構造を提供する。   The invention according to claim 9 is the segment on each tunnel structure side and the segment on the main tunnel side in a portion where a part of each outer peripheral wall of the two tunnel structures contacts the outer peripheral wall of the main tunnel. Provides a shield tunnel structure in which a tension freezing pipe is previously installed.

この構成によれば、別途の凍結工法を必要とすることなく、本線トンネルの外周壁と二個のトンネル構造体の各外周壁との接触部に効率的且つ、確実に凍結処理を施すことが可能となる。   According to this configuration, the freezing process can be performed efficiently and reliably on the contact portion between the outer peripheral wall of the main tunnel and the outer peripheral walls of the two tunnel structures without requiring a separate freezing method. It becomes possible.

請求項10記載の発明は、上記本線トンネル側の外周壁と上記トンネル構造体側の外周壁との間が構造部材で連結されているシールドトンネル構造を提供する。   The invention according to claim 10 provides a shield tunnel structure in which the outer peripheral wall on the main tunnel side and the outer peripheral wall on the tunnel structure side are connected by a structural member.

この構成によれば、本線トンネルの外周壁と二個のトンネル構造体の各外周壁との接触部が強固に連結保持されて、分岐部における本線トンネルと枝線トンネルとの連結を強固に保持することが可能となる。   According to this configuration, the contact portion between the outer peripheral wall of the main tunnel and each outer peripheral wall of the two tunnel structures is firmly connected and held, and the connection between the main tunnel and the branch tunnel is firmly held at the branch portion. It becomes possible to do.

請求項1記載の発明は、本線トンネルと枝線トンネルとの合流部分の長さを長くとることなく、地中において必要な開口面積を持つ開口連絡部を形成することができる。したがって、施工時の安全性を向上させることができるとともに工期の短縮及び工費の低減を図ることができるという利点がある。   According to the first aspect of the present invention, it is possible to form an opening connecting portion having a necessary opening area in the ground without increasing the length of the joining portion between the main tunnel and the branch tunnel. Therefore, there is an advantage that the safety during construction can be improved and the work period can be shortened and the work cost can be reduced.

請求項2記載の発明は、凍結処理を施すことにより、本線トンネルと枝線トンネルとの合流部分の長さを長くとることなく、地中において必要な開口面積を持つ開口連絡部を形成することができる。したがって、地中切り拡げ等の工法を用いることなく分岐部接続を行うことができて、施工時の安全性を向上させることができるとともに工期の短縮及び工費の低減を図ることができ、さらには高水圧下でも確実に施工することができるという利点がある。   The invention according to claim 2 forms an opening communication portion having a necessary opening area in the ground without taking a length of a joining portion of the main line tunnel and the branch line tunnel by freezing. Can do. Therefore, it is possible to perform branch connection without using a construction method such as underground cutting and expansion, improve safety during construction, shorten the construction period and reduce construction cost, and There is an advantage that it can be reliably constructed even under high water pressure.

請求項3記載の発明は、地盤改良剤を注入して止水処理を施すことにより、本線トンネルと枝線トンネルとの合流部分の長さを長くとることなく、地中において必要な開口面積を持つ開口連絡部を形成することができる。したがって、地中切り拡げ等の工法を用いることなく分岐部接続を行うことができて、施工時の安全性を向上させることができるとともに工期の短縮及び工費の低減を図ることができ、さらには高水圧下でも確実に施工することができるという利点がある。   According to the invention of claim 3, by applying a water stop treatment by injecting a ground improvement agent, the required opening area in the ground can be increased without taking a length of the joining portion between the main tunnel and the branch tunnel. The opening communication part which has can be formed. Therefore, it is possible to perform branch connection without using a construction method such as underground cutting and expansion, improve safety during construction, shorten the construction period and reduce construction cost, and There is an advantage that it can be reliably constructed even under high water pressure.

請求項4記載の発明は、トンネル構造体の外周壁の形状に沿った逆R状に形成したので、凍結止水ゾーンを増大させることができて止水性をさらに向上させることができるという利点がある。   Since the invention according to claim 4 is formed in an inverted R shape along the shape of the outer peripheral wall of the tunnel structure, there is an advantage that the freeze-stop zone can be increased and the water-stop performance can be further improved. is there.

請求項5記載の発明は、本線トンネルの外周壁部に形成した逆R状の部分に掘削可能な材料を埋め込んでおくことで、シールド機による本線トンネルの掘進時に、該シールド機もしくは本線トンネル内への漏水を防止することができて、高水圧下でも安全且つ、効率よく施工することができるという利点がある。   According to the fifth aspect of the present invention, a material that can be excavated is embedded in an inverted R-shaped portion formed on the outer peripheral wall portion of the main tunnel, so that when the main tunnel is dug by the shield machine, There is an advantage that water can be prevented from leaking and can be constructed safely and efficiently even under high water pressure.

請求項6記載の発明は、本線トンネルの外周壁と二個のトンネル構造体の各外周壁との接触部が強固に連結保持されて、開口連絡部形成の施工時に、その施工の衝撃による漏水が防止されて止水性の確実な維持が可能となる。   According to the sixth aspect of the present invention, the contact portion between the outer peripheral wall of the main tunnel and each outer peripheral wall of the two tunnel structures is firmly connected and held, and leakage of water due to the impact of the construction is made at the time of construction of the opening communication portion. Is prevented, and the water stoppage can be reliably maintained.

請求項7記載の発明は、本線トンネルと枝線トンネルとの合流部分の長さを長くとることなく、地中において必要な開口面積を持つ開口連絡部が形成されている。したがって、工期の短縮及び工費の低減を図ることができて低コストのシールドトンネル構造を実現することができるという利点がある。   According to the seventh aspect of the present invention, an opening connecting portion having a necessary opening area in the ground is formed without increasing the length of the joining portion between the main tunnel and the branch tunnel. Therefore, there is an advantage that the construction period can be shortened and the construction cost can be reduced, and a low-cost shield tunnel structure can be realized.

請求項8記載の発明は、本線トンネルの外周壁部が二個のトンネル構造体の外周壁の形状に沿った逆R状に形成されているので、開口連絡部の開口の際の凍結止水ゾーンが増大して止水性をさらに向上させることができるという利点がある。   According to the eighth aspect of the present invention, the outer peripheral wall portion of the main tunnel is formed in an inverted R shape along the shape of the outer peripheral walls of the two tunnel structures. There is an advantage that the water stoppage can be further improved by increasing the zone.

請求項9記載の発明は、別途の凍結工法を必要とすることなく、本線トンネルの外周壁と二個のトンネル構造体の各外周壁との接触部に効率的且つ、確実に凍結止水ゾーンを形成することができるという利点がある。   The invention according to claim 9 is an effective and reliable freezing water stop zone at the contact portion between the outer peripheral wall of the main tunnel and the outer peripheral walls of the two tunnel structures without requiring a separate freezing method. There is an advantage that can be formed.

請求項10記載の発明は、上記本線トンネル側の外周壁と上記トンネル構造体側の外周壁との間が構造部材で連結されているので、分岐部における本線トンネルと枝線トンネルとの連結を強固に保持することができるという利点がある。   In the invention described in claim 10, since the outer peripheral wall on the main tunnel side and the outer peripheral wall on the tunnel structure side are connected by a structural member, the connection between the main tunnel and the branch tunnel at the branch portion is strong. There is an advantage that it can be held.

補助工法を併用した地中切り拡げ等の工法及び開削工法等を用いることなく、また合流部分の長さを長くとることなく地中での確実な分岐部接続を可能として、施工時の安全性を向上させるとともに工期の短縮及び工費の低減を図り、さらには高水圧下でも確実に施工するという目的を、本線トンネルに、断面円形の枝線トンネルを開口連絡部を介して合流させるシールドトンネルの分岐部接続工法であって、前記枝線トンネルは、該枝線トンネルよりも小径で断面円形の二個のトンネル構造体を、前記枝線トンネル及び前記二個のトンネル構造体の各軸線が同方向で且つ、前記本線トンネルとの合流点において前記枝線トンネル及び前記二個のトンネル構造体の各外周壁の一部が前記本線トンネルの外周壁にほぼ同時に接触する位置関係となるように添設した三円形トンネルに構成し、前記本線トンネルと前記三円形トンネルとの合流点において前記本線トンネルの外周壁における逆R状の凹部と前記二個のトンネル構造体の各外周壁との接触部に、前記本線トンネル側の外周壁及び前記各トンネル構造体側の外周壁のそれぞれに予め設置した張付凍結管により凍結処理を施し、さらに該凍結処理が施された領域内もしくは該領域の近傍における前記本線トンネル側の外周壁と前記トンネル構造体側の外周壁との間を構造部材で連結した後、前記本線トンネルと前記枝線トンネルとの対向壁部及び該対向壁部間に介在する土砂等を除去して前記開口連絡部を形成することにより実現した。   Safety at the time of construction is possible without using construction methods such as underground cutting and expanding methods that use auxiliary construction methods and open-cut construction methods, etc., and without having to lengthen the length of the confluence, making it possible to reliably connect the junction in the ground. The purpose of this project is to shorten the construction period and reduce the construction cost, and also to ensure the construction even under high water pressure. A branch connection method, wherein the branch line tunnel has two tunnel structures having a smaller diameter and a circular cross section than the branch line tunnel, and the axis lines of the branch line tunnel and the two tunnel structures are the same. And a positional relationship in which a part of each outer peripheral wall of the branch tunnel and the two tunnel structures is in contact with the outer peripheral wall of the main tunnel almost simultaneously at the junction with the main tunnel. A three-circular tunnel attached to the main tunnel and the three-circular tunnel at the junction of the reverse R-shaped recess in the outer peripheral wall of the main tunnel and the outer peripheral walls of the two tunnel structures Are subjected to a freezing treatment by means of tension freezing tubes installed in advance on each of the outer peripheral wall on the main tunnel side and the outer peripheral wall on the tunnel structure side, and further in the region subjected to the freezing treatment or After connecting the outer peripheral wall on the main tunnel side and the outer peripheral wall on the tunnel structure side in the vicinity of the region with a structural member, the opposing wall portion between the main tunnel and the branch line tunnel, and between the opposing wall portions This was realized by removing the intervening earth and sand to form the opening communication part.

以下、本発明の実施例を図面に従って詳述する。図1は、分岐部の開口連絡部形成前の正面断面図、図2は、本線トンネルとトンネル構造体との接触部を拡大して示す正面断面図、図3は、本線トンネルにおける逆R状に形成した部分の拡大正面断面図、図4は、シールドトンネルにおける分岐部の部分を模式的に示す平面図である。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a front sectional view before forming an opening connecting portion of a branch portion, FIG. 2 is an enlarged front sectional view showing a contact portion between the main tunnel and the tunnel structure, and FIG. 3 is an inverted R shape in the main tunnel. FIG. 4 is a plan view schematically showing the branching portion of the shield tunnel.

まず、本実施例に係るシールドトンネルの分岐部接続工法によるシールドトンネル構造及び該シールドトンネル構造に用いられる各トンネル等の構成から説明する。図1及び図4に示すように、シールドトンネル構造は、内周壁がセグメント1で覆工された断面円形の本線トンネル2に、内周壁がセグメント3で覆工され、前記本線トンネル2よりもやや小径の断面円形の枝線トンネル4が、分岐部5の部分で開口連絡部6を介して合流されている。   First, the shield tunnel structure according to the shield tunnel branch connection method according to this embodiment and the configuration of each tunnel used in the shield tunnel structure will be described. As shown in FIGS. 1 and 4, the shield tunnel structure has a circular main line tunnel 2 with an inner peripheral wall covered with a segment 1, and an inner peripheral wall lined with a segment 3. Branch tunnels 4 having a small cross-section and a circular cross section are joined at the branch portion 5 via the opening connecting portion 6.

前記本線トンネル2は、図示しない円形シールド機により掘削されつつ、該円形シールド機の後方で掘削穴の内周壁にセグメント1が円環状に組み上げられて形成されている。該本線トンネル2の外周壁部における後述する二個のトンネル構造体10,10の各外周壁の一部がそれぞれ接触する部位には、図2及び図3に示すように、該トンネル構造体10の外周壁の形状に対応した逆R状の凹部7が形成されている。該逆R状の凹部7には、円形シールド機による本線トンネル2の掘進時に、該円形シールド機もしくは本線トンネル2内への漏水を防止するため、掘削可能なモルタルや合成樹脂等の材料8が埋め込まれている。   While the main tunnel 2 is excavated by a circular shield machine (not shown), the segment 1 is formed in an annular shape on the inner peripheral wall of the excavation hole behind the circular shield machine. As shown in FIG. 2 and FIG. 3, the tunnel structure 10 is located at a part of each outer peripheral wall of the two tunnel structures 10, 10 to be described later on the outer peripheral wall of the main tunnel 2. An inverted R-shaped recess 7 corresponding to the shape of the outer peripheral wall is formed. In the inverted R-shaped concave portion 7, a material 8 such as digging mortar or synthetic resin is provided in order to prevent water leakage into the circular shield machine or the main tunnel 2 when the main tunnel 2 is dug by the circular shield machine. Embedded.

一方、前記枝線トンネル4は、該枝線トンネル4と前記本線トンネル2との対向壁部に前記開口連絡部6を開口する際に、該対向壁部に所要の大きさの開口予定領域6aをとった上で、その開口予定領域6aを囲む近傍領域に凍結止水ゾーンを形成するために、次のような三円形トンネルに構成されている。   On the other hand, when the opening connecting portion 6 is opened in the opposing wall portion between the branch tunnel 4 and the main tunnel 2, the branch line tunnel 4 has a predetermined opening planned area 6 a on the opposing wall portion. In order to form a freeze-stop zone in the vicinity region surrounding the planned opening region 6a, the following three-circular tunnel is configured.

即ち、前記枝線トンネル4は、該枝線トンネル4よりも小径で内周壁がセグメント9で覆工された断面円形の二個のトンネル構造体10,10を、前記枝線トンネル4及び前記二個のトンネル構造体10,10の各軸線が同方向で且つ、前記本線トンネル2との合流点において前記枝線トンネル4及び前記二個のトンネル構造体10,10の各外周壁の一部が前記本線トンネル2の外周壁にほぼ同時に接触する位置関係となるように添設した三円形トンネルに構成されている。   That is, the branch line tunnel 4 includes two tunnel structures 10, 10 having a smaller diameter than the branch line tunnel 4 and an inner peripheral wall covered with the segment 9. Each axis of each of the tunnel structures 10 and 10 is in the same direction, and a part of each of the outer peripheral walls of the branch tunnel 4 and the two tunnel structures 10 and 10 at the junction with the main tunnel 2 is It is configured as a three-circular tunnel that is attached so as to be in a positional relationship that contacts the outer peripheral wall of the main tunnel 2 almost simultaneously.

該三円形トンネルは、前記枝線トンネル4の形成当初から、図示しない三円形シールド機により掘削されつつ、該三円形シールド機の後方で、枝線トンネル側掘削穴の内周壁にセグメント3が円環状に組み上げられ、また各トンネル構造体側の掘削穴の内周壁にそれぞれセグメント9が円環状に組み上げられて形成されている。   The three-circular tunnel is excavated by a three-circular shield machine (not shown) from the beginning of the branch-line tunnel 4, and the segment 3 is circularly formed on the inner peripheral wall of the branch-line tunnel-side excavation hole behind the three-circular shield machine. Each segment 9 is formed in an annular shape on the inner peripheral wall of the excavation hole on the side of each tunnel structure.

そして、前記二個のトンネル構造体10,10の各外周壁の一部が前記本線トンネル2の外周壁に接触する部位における当該各トンネル構造体10,10側のセグメント9及び前記本線トンネル2側のセグメント1には、それぞれ張付凍結管11a,11bが予め設置されている。   Then, the segment 9 on the side of each tunnel structure 10, 10 side and the side of the main tunnel 2 at the part where a part of each outer peripheral wall of the two tunnel structures 10, 10 is in contact with the outer peripheral wall of the main tunnel 2. Tension freezing tubes 11a and 11b are installed in advance in the segment 1, respectively.

また、前記本線トンネル2の外周壁と前記二個のトンネル構造体10,10の各外周壁との接触部12に、前記張付凍結管11a,11bによる凍結処理が施された後で前記開口連絡部6が開口される前に、該開口連絡部6の開口施工時の耐衝撃性を高めるため、その凍結処理が施された領域内もしくは該領域の近傍における前記本線トンネル2側のセグメント1と前記各トンネル構造体10,10側のセグメント9との間に、本線トンネル2の内側からタイボルト等の構造部材13が打ち込まれる。図1及び図2の例では、構造部材13は凍結処理が施された領域内の開口予定領域6a側に打ち込まれる。該構造部材13は、施工後には分岐部5における前記本線トンネル2と前記枝線トンネル4との連結を強固に保持するようにも機能する。   In addition, the opening after the freezing treatment by the tension freezing tubes 11a and 11b is performed on the contact portion 12 between the outer peripheral wall of the main tunnel 2 and the outer peripheral walls of the two tunnel structures 10 and 10. Before the connection portion 6 is opened, the segment 1 on the main tunnel 2 side in the region where the freezing treatment is performed or in the vicinity of the region in order to improve the impact resistance when the opening connection portion 6 is opened. A structural member 13 such as a tie bolt is driven from the inside of the main tunnel 2 between the tunnel structure 10 and the segment 9 on the side of each tunnel structure. In the example of FIGS. 1 and 2, the structural member 13 is driven into the planned opening region 6a side in the region subjected to the freezing process. The structural member 13 also functions to firmly hold the connection between the main tunnel 2 and the branch tunnel 4 at the branch portion 5 after construction.

次に、上述のように構成された本線トンネルと枝線トンネルとの分岐部接続工法を説明する。三円形シールド機により三円形トンネルを掘進しつつ、該三円形トンネルの前記本線トンネル2への合流時に、三円形シールド機によりモルタルや合成樹脂等の材料8を掘削除去し、枝線トンネル4の外周壁は本線トンネル2の外周壁に直接接触させ、二個のトンネル構造体10,10の各外周壁の一部は各逆R状の凹部7にそれぞれ接触させて、図1に示すような接触状態とする。   Next, a method for connecting the branching section between the main tunnel and the branch tunnel configured as described above will be described. While digging a three-circular tunnel with a three-circular shield machine, when the three-circular tunnel joins the main tunnel 2, the three-circular shield machine excavates and removes material 8 such as mortar and synthetic resin, The outer peripheral wall is brought into direct contact with the outer peripheral wall of the main tunnel 2 and a part of each outer peripheral wall of the two tunnel structures 10 and 10 is brought into contact with each inverted R-shaped recess 7 as shown in FIG. Keep in contact.

このような接触状態において、前記張付凍結管11a,11bに液体窒素等の低温液化ガスを送り、前記二個のトンネル構造体10,10の各外周壁の一部と前記本線トンネル2側の各逆R状の凹部7との接触部12に凍結処理を施して、開口連絡部6の開口予定領域6aを囲む領域に凍結止水ゾーンを形成する。このとき、二個のトンネル構造体10,10の各外周壁は、本線トンネル2側の各逆R状の凹部7に接触していることで、接触部12の面積が広がり、凍結止水ゾーンが増大して、開口予定領域6aをほぼ囲む領域に凍結止水ゾーンが効率的に形成される。尚、図示は省略するが、凍結によって止水ゾーンを形成するのに代えて、接触部12の周囲の地盤に地盤改良剤を注入して止水処理を行ってもよい。   In such a contact state, a low-temperature liquefied gas such as liquid nitrogen is sent to the tensioned freezing tubes 11a and 11b, and a part of each outer peripheral wall of the two tunnel structures 10 and 10 and the main tunnel 2 side. The contact portion 12 with each inverted R-shaped recess 7 is subjected to a freezing process to form a frozen water-stop zone in a region surrounding the planned opening region 6 a of the opening connecting portion 6. At this time, the outer peripheral walls of the two tunnel structures 10 and 10 are in contact with the respective reverse R-shaped concave portions 7 on the main tunnel 2 side, so that the area of the contact portion 12 is expanded, and the frozen water-stop zone Increases and a freeze-stop zone is efficiently formed in a region substantially surrounding the planned opening region 6a. In addition, although illustration is abbreviate | omitted, instead of forming a water stop zone by freezing, you may inject | pour a ground improvement agent into the ground around the contact part 12, and may perform a water stop process.

次いで、前記凍結止水ゾーン内もしくは該凍結止水ゾーンの近傍における前記本線トンネル2側のセグメント1と前記各トンネル構造体10,10側のセグメント9との間に、本線トンネル2の内側から構造部材13を打ち込んで、本線トンネル2側の各逆R状の凹部7と二個のトンネル構造体10,10の各外周壁との接触部12を強固に連結保持する処理を行い、次の開口施工時における止水性の確実な維持を図る。   Next, a structure is formed from the inside of the main tunnel 2 between the segment 1 on the main tunnel 2 side and the segment 9 on the tunnel structures 10 and 10 side in the freeze-stop zone or in the vicinity of the freeze-stop zone. The member 13 is driven to perform a process of firmly connecting and holding the contact portions 12 between the inverted R-shaped concave portions 7 on the main tunnel 2 side and the outer peripheral walls of the two tunnel structures 10 and 10, and the next opening To maintain the water stoppage during construction.

このような所要の各処理を施した後、本線トンネル2と枝線トンネル4との対向壁部及び該対向壁部間に介在する土砂等を除去することにより開口連絡部6を開口して、前記本線トンネル2に対する前記枝線トンネル4の分岐部接続を行う。尚、開口連絡部6を開口した後は、前記トンネル構造体10,10が開口した部分の補強部材として利用されることも可能である。   After performing each of the required treatments, the opening connecting portion 6 is opened by removing the opposing wall portion between the main tunnel 2 and the branch tunnel 4 and the earth and sand interposed between the opposing wall portions, A branch part connection of the branch line tunnel 4 to the main line tunnel 2 is performed. In addition, after opening the opening connection part 6, it can also be utilized as a reinforcement member of the part which the said tunnel structures 10 and 10 opened.

上述したように、本実施例に係るシールドトンネルの分岐部接続工法及びその工法によるシールドトンネル構造においては、前記二個のトンネル構造体10,10の各外周壁の一部と前記本線トンネル2側の各逆R状の凹部7との接触部12に前記張付凍結管11a,11bにより凍結処理を施して開口連絡部6の開口予定領域6aをほぼ囲む領域に凍結止水ゾーンを形成し、さらに構造部材13を打ち込んで開口連絡部6の開口施工時における止水性の確実な維持を図ったことで、本線トンネル2と枝線トンネル4との合流部分の長さLを長くとることなく、地中において必要な開口面積を持つ開口連絡部6を形成することができる。したがって止水のための補助工法を併用した地中切り拡げ工法等を用いることなく分岐部接続を行うことができて、施工時の安全性を向上させることができるとともに工期の短縮及び工費の低減を図ることができ、さらには高水圧下でも確実に施工することができる。   As described above, in the shield tunnel branch connection method according to the present embodiment and the shield tunnel structure by the method, a part of each outer peripheral wall of the two tunnel structures 10 and 10 and the main tunnel 2 side Freezing treatment is performed on the contact portions 12 with the respective inverted R-shaped concave portions 7 by the tension freezing tubes 11a and 11b to form a frozen water stop zone in a region substantially surrounding the planned opening region 6a of the opening communication portion 6; Furthermore, the structural member 13 was driven in and the water stoppage was reliably maintained at the time of opening construction of the opening communication portion 6, so that the length L of the merged portion between the main line tunnel 2 and the branch line tunnel 4 was not increased. The opening connecting part 6 having a necessary opening area in the ground can be formed. Therefore, it is possible to connect branching parts without using underground cutting and expanding methods combined with an auxiliary method for water stoppage, improving safety during construction, shortening the construction period and reducing construction costs In addition, it can be reliably constructed even under high water pressure.

なお、本実施例では、開口予定領域6aを囲む領域に凍結止水ゾーンを形成するため、各トンネル構造体10,10側のセグメント9及び本線トンネル2側のセグメント1にそれぞれ張付凍結管11a,11bを予め設置したが、張付凍結管は予め設置せずに、三円形シールド機により三円形トンネルを掘進しつつ、該三円形トンネルの本線トンネル2への合流時に、三円形シールド機側等から接触部12近傍の地中に凍結管を差し込むようにしてもよい。   In this embodiment, in order to form a frozen water stop zone in the area surrounding the planned opening area 6a, the tension freezing pipe 11a is attached to the segment 9 on each tunnel structure 10, 10 side and the segment 1 on the main tunnel 2 side. 11b is installed in advance, but the tension freezing pipe is not installed in advance, and the three-circular shield machine side is dug into the main tunnel 2 while digging the three-circular tunnel with the three-circular shield machine. For example, a freezing tube may be inserted into the ground near the contact portion 12.

また、本発明は、本発明の精神を逸脱しない限り種々の改変をなすことができ、そして、本発明が該改変されたものにも及ぶことは当然である。   Further, the present invention can be variously modified without departing from the spirit of the present invention, and the present invention naturally extends to the modified ones.

図は本発明の実施例を示すものである。
シールドトンネル構造における分岐部の開口連絡部形成前の正面断面図。 図1における本線トンネルとトンネル構造体との接触部を拡大して示す正面断面図。 本線トンネルにおける逆R状に形成した部分の拡大正面断面図。 シールドトンネル構造における分岐部の部分を模式的に示す平面図。
The figure shows an embodiment of the present invention.
Front sectional drawing before the opening connection part formation of the branch part in a shield tunnel structure. The front sectional view which expands and shows the contact part of the main line tunnel and tunnel structure in FIG. The expanded front sectional view of the part formed in the reverse R shape in the main line tunnel. The top view which shows typically the part of the branch part in a shield tunnel structure.

符号の説明Explanation of symbols

1 本線トンネルのセグメント
2 本線トンネル
3 枝線トンネルのセグメント
4 枝線トンネル
5 分岐部
6 開口連絡部
6a 開口予定領域
7 逆R状の凹部
8 モルタルや合成樹脂等の材料
9 トンネル構造体のセグメント
10 トンネル構造体
11a,11b 張付凍結管
12 接触部
13 構造部材
DESCRIPTION OF SYMBOLS 1 Main-line tunnel segment 2 Main-line tunnel 3 Branch-line tunnel segment 4 Branch-line tunnel 5 Branch part 6 Opening connection part 6a Planned opening area 7 Reverse R-shaped recessed part 8 Material such as mortar or synthetic resin 9 Tunnel structure segment 10 Tunnel structure 11a, 11b Tension freezing pipe 12 Contact part 13 Structural member

Claims (10)

本線トンネルに、断面円形の枝線トンネルを開口連絡部を介して合流させるシールドトンネルの分岐部接続工法であって、
前記枝線トンネルは、該枝線トンネルよりも小径で断面円形の二個のトンネル構造体を、前記枝線トンネル及び前記二個のトンネル構造体の各軸線が同方向で且つ、前記本線トンネルとの合流点において前記枝線トンネル及び前記二個のトンネル構造体の各外周壁の一部が前記本線トンネルの外周壁にほぼ同時に接触する位置関係となるように添設した三円形トンネルに構成し、前記本線トンネルと前記枝線トンネルとの対向壁部及び該対向壁部間に介在する土砂等を除去して前記開口連絡部を開口することを特徴とするシールドトンネルの分岐部接続工法。
A branch tunnel connection method for a shield tunnel that joins a branch tunnel with a circular cross-section to the main tunnel via an opening connecting portion,
The branch-line tunnel includes two tunnel structures having a smaller diameter and a circular cross section than the branch-line tunnel, and the axis of the branch-line tunnel and the two tunnel structures are in the same direction and the main-line tunnel. And a three-circular tunnel attached so that a part of the outer peripheral walls of the branch tunnel and the two tunnel structures are in contact with the outer peripheral wall of the main tunnel at the same time. A method for connecting a branch portion of a shield tunnel, wherein the facing connecting portion of the main tunnel and the branch tunnel and the earth and sand interposed between the facing walls are removed to open the opening connecting portion.
上記本線トンネルと上記三円形トンネルとの合流点において、上記本線トンネルの外周壁と上記二個のトンネル構造体の各外周壁との接触部に凍結処理を施した後に、上記開口連絡部を開口することを特徴とする請求項1記載のシールドトンネルの分岐部接続工法。   Freezing treatment is performed on the contact portion between the outer peripheral wall of the main tunnel and the outer peripheral walls of the two tunnel structures at the junction of the main tunnel and the three-circular tunnel, and then the opening connecting portion is opened. The method for connecting branching portions of a shield tunnel according to claim 1. 上記本線トンネルと上記三円形トンネルとの合流点において、上記本線トンネルの外周壁と上記二個のトンネル構造体の各外周壁との接触部周囲の地盤に地盤改良剤を注入して止水処理を施した後に、上記開口連絡部を開口することを特徴とする請求項1記載のシールドトンネルの分岐部接続工法。   At the confluence of the main tunnel and the three-circular tunnel, water stopping treatment is performed by injecting a ground improver into the ground around the contact portion between the outer peripheral wall of the main tunnel and the outer peripheral walls of the two tunnel structures. 2. The method for connecting branching portions of a shield tunnel according to claim 1, wherein the opening connecting portion is opened after applying. 上記二個のトンネル構造体の各外周壁の一部が上記本線トンネルの外周壁に接触する当該本線トンネルの外周壁部は、前記トンネル構造体の外周壁の形状に沿った逆R状に形成したことを特徴とする請求項1,2又は3記載のシールドトンネルの分岐部接続工法。   The outer peripheral wall portion of the main tunnel in which a part of each outer peripheral wall of the two tunnel structures contacts the outer peripheral wall of the main tunnel is formed in an inverted R shape along the shape of the outer peripheral wall of the tunnel structure. The branch tunnel connection method for a shield tunnel according to claim 1, 2, or 3. 上記本線トンネルの外周壁部に形成した上記逆R状の部分には、掘削可能な材料を埋め込んでおき、三円形シールド機による上記三円形トンネルの前記本線トンネルへの掘削合流時に、前記三円形シールド機により前記材料を掘削除去するようにしたことを特徴とする請求項4記載のシールドトンネルの分岐部接続工法。   The reverse R-shaped portion formed on the outer peripheral wall portion of the main tunnel is embedded with excavable material, and when the three-circular shield machine joins the three-circular tunnel to the main tunnel, the three-round shape is obtained. 5. The method for connecting a branch portion of a shield tunnel according to claim 4, wherein the material is excavated and removed by a shield machine. 上記本線トンネルの外周壁と上記二個のトンネル構造体の各外周壁との接触部に凍結処理を施した後で上記開口連絡部を開口する前に構造部材で連結したことを特徴とする請求項1,2,3,4又は5記載のシールドトンネルの分岐部接続工法。   The contact portion between the outer peripheral wall of the main tunnel and each outer peripheral wall of the two tunnel structures is connected with a structural member after the freezing process and before the opening connecting portion is opened. Item 6. A method for connecting a branch portion of a shield tunnel according to item 1, 2, 3, 4 or 5. 本線トンネルに、断面円形の枝線トンネルが開口連絡部を介して合流する分岐部を持つシールドトンネル構造であって、
前記枝線トンネルは、該枝線トンネルよりも小径で内周壁がセグメントで覆工された断面円形の二個のトンネル構造体が、前記枝線トンネル及び前記二個のトンネル構造体の各軸線が同方向で且つ、前記本線トンネルとの合流点において前記枝線トンネル及び前記二個のトンネル構造体の各外周壁の一部が前記本線トンネルの外周壁にほぼ同時に接触する位置関係となるように添設された三円形トンネルから成ることを特徴とするシールドトンネル構造。
The main tunnel is a shield tunnel structure having a branch portion where a branch tunnel having a circular cross section joins through an opening connecting portion,
The branch line tunnel has two tunnel structures having a smaller diameter than the branch line tunnel and a circular cross section whose inner peripheral wall is covered with a segment, and the axis lines of the branch line tunnel and the two tunnel structures are In the same direction and at a junction with the main tunnel, the branch line tunnel and a part of each outer peripheral wall of the two tunnel structures are in a positional relationship in which they are in contact with the outer peripheral wall of the main tunnel almost simultaneously. A shield tunnel structure comprising three attached circular tunnels.
上記二個のトンネル構造体の各外周壁の一部が上記本線トンネルの外周壁に接触する当該本線トンネルの外周壁部は、前記トンネル構造体の外周壁の形状に沿った逆R状に形成されていることを特徴とする請求項7記載のシールドトンネル構造。   The outer peripheral wall portion of the main tunnel in which a part of each outer peripheral wall of the two tunnel structures contacts the outer peripheral wall of the main tunnel is formed in an inverted R shape along the shape of the outer peripheral wall of the tunnel structure. The shield tunnel structure according to claim 7, wherein the shield tunnel structure is formed. 上記二個のトンネル構造体の各外周壁の一部が上記本線トンネルの外周壁に接触する部位における当該各トンネル構造体側の上記セグメント及び前記本線トンネル側の上記セグメントには、それぞれ張付凍結管を予め設置したことを特徴とする請求項7又は8記載のシールドトンネル構造。   The tension freezing pipes are respectively provided in the segment on the tunnel structure side and the segment on the main tunnel side in a portion where a part of each outer peripheral wall of the two tunnel structures contacts the outer peripheral wall of the main tunnel. The shield tunnel structure according to claim 7 or 8, wherein: is installed in advance. 上記本線トンネル側の外周壁と上記トンネル構造体側の外周壁との間が構造部材で連結されていることを特徴とする請求項7,8又は9記載のシールドトンネル構造。   10. The shield tunnel structure according to claim 7, 8 or 9, wherein an outer peripheral wall on the main line tunnel side and an outer peripheral wall on the tunnel structure side are connected by a structural member.
JP2004199650A 2004-07-06 2004-07-06 Junction connection method of shield tunnel and shield tunnel structure by that method Expired - Fee Related JP4229882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004199650A JP4229882B2 (en) 2004-07-06 2004-07-06 Junction connection method of shield tunnel and shield tunnel structure by that method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004199650A JP4229882B2 (en) 2004-07-06 2004-07-06 Junction connection method of shield tunnel and shield tunnel structure by that method

Publications (2)

Publication Number Publication Date
JP2006022503A true JP2006022503A (en) 2006-01-26
JP4229882B2 JP4229882B2 (en) 2009-02-25

Family

ID=35795973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004199650A Expired - Fee Related JP4229882B2 (en) 2004-07-06 2004-07-06 Junction connection method of shield tunnel and shield tunnel structure by that method

Country Status (1)

Country Link
JP (1) JP4229882B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198067A (en) * 2006-01-30 2007-08-09 Sato Kogyo Co Ltd Construction method of tunnel confluence part and tunnel confluence part structure
CN102242633A (en) * 2011-07-23 2011-11-16 中铁十二局集团有限公司 Method for replacing tail brush in extra large diameter shield driving under high water pressure condition
CN105626096A (en) * 2015-12-31 2016-06-01 中交一公局第三工程有限公司 Pea gravel hydraulic filling construction process for TBM
JP2018150697A (en) * 2017-03-10 2018-09-27 鹿島建設株式会社 Ground freezing method, and ground freezing apparatus
JP2020172858A (en) * 2020-08-03 2020-10-22 鹿島建設株式会社 Ground freezing method and ground freezing device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198067A (en) * 2006-01-30 2007-08-09 Sato Kogyo Co Ltd Construction method of tunnel confluence part and tunnel confluence part structure
CN102242633A (en) * 2011-07-23 2011-11-16 中铁十二局集团有限公司 Method for replacing tail brush in extra large diameter shield driving under high water pressure condition
CN105626096A (en) * 2015-12-31 2016-06-01 中交一公局第三工程有限公司 Pea gravel hydraulic filling construction process for TBM
JP2018150697A (en) * 2017-03-10 2018-09-27 鹿島建設株式会社 Ground freezing method, and ground freezing apparatus
JP2020172858A (en) * 2020-08-03 2020-10-22 鹿島建設株式会社 Ground freezing method and ground freezing device

Also Published As

Publication number Publication date
JP4229882B2 (en) 2009-02-25

Similar Documents

Publication Publication Date Title
JP4803428B2 (en) Tunnel construction method
JP4958035B2 (en) Shield roof construction method
JP4793655B2 (en) Tunnel construction method
JP2006348718A (en) Construction method of underground structure and underground structure
JP4687986B2 (en) Construction method of large section tunnel
JP2015105513A (en) Construction method for outer shell shield tunnel
JP2007009430A (en) Tunnel composition structure and its construction method
JP2017172280A (en) Body lining wall and construction method thereof
JP4584068B2 (en) Construction method of tunnel structure for junction or junction of underground road
JP2007303155A (en) Construction method of underground cavity and tunnel construction method
JP4229882B2 (en) Junction connection method of shield tunnel and shield tunnel structure by that method
JP4750568B2 (en) Tunnel junction construction method and tunnel junction structure
JP6257814B1 (en) Construction method of large section underground structure
JP2006219914A (en) Method of forming communicating section of juxtaposed shield tunnels
JP2007126878A (en) Construction method of underground cavity, and tunnel construction method
JP2942874B2 (en) How to join tunnels
JP6624441B2 (en) Construction method of the wall
JP3765048B2 (en) How to build a tunnel
JP2008255614A (en) Support structure of natural ground and support method of natural ground
JP6638907B2 (en) Waterproof structure and waterstop method
JP6764513B1 (en) How to build an underground structure
JP4665834B2 (en) Side-by-side tunnel structure and its construction method
JP2006169924A (en) Execution method of branch part or junction of sealed tunnel
JP2006152680A (en) Joining construction method for shield tunnel and structure of shield tunnel by its construction method
JP2940408B2 (en) Joining method of existing pipeline and shield tunnel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees