JP2006021969A - Optical glass and optical element - Google Patents

Optical glass and optical element Download PDF

Info

Publication number
JP2006021969A
JP2006021969A JP2004202580A JP2004202580A JP2006021969A JP 2006021969 A JP2006021969 A JP 2006021969A JP 2004202580 A JP2004202580 A JP 2004202580A JP 2004202580 A JP2004202580 A JP 2004202580A JP 2006021969 A JP2006021969 A JP 2006021969A
Authority
JP
Japan
Prior art keywords
glass
optical
range
content
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004202580A
Other languages
Japanese (ja)
Other versions
JP4792718B2 (en
Inventor
Toshiharu Mori
登史晴 森
Akio Ogaki
昭男 大垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2004202580A priority Critical patent/JP4792718B2/en
Publication of JP2006021969A publication Critical patent/JP2006021969A/en
Application granted granted Critical
Publication of JP4792718B2 publication Critical patent/JP4792718B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Glass Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical glass which contains no lead and arsenic compounds substantially, is low in T<SB>g</SB>and T<SB>L</SB>, has excellent devitrification resistance and is suitable for press molding. <P>SOLUTION: The optical glass for press molding contains each component of 5-20% SiO<SB>2</SB>, 0-5% Al<SB>2</SB>O<SB>3</SB>, 20-40% B<SB>2</SB>O<SB>3</SB>, 8-20% Li<SB>2</SB>O (where, excluding 8%), 0-5% Na<SB>2</SB>O, 0-5% K<SB>2</SB>O, 8-20% Li<SB>2</SB>O+Na<SB>2</SB>O+K<SB>2</SB>O (where excluding 8%), 0-10% MgO, 0-20 CaO, 0-20% BaO, 0-10% SrO, 5-20% MgO+CaO+BaO+SrO, 0-10% ZnO, 0-10% Y<SB>2</SB>O<SB>3</SB>, 5-30% La<SB>2</SB>O<SB>3</SB>, 7-30% Gd<SB>2</SB>O<SB>3</SB>, 0-10% TiO<SB>2</SB>, 0-10% ZrO<SB>2</SB>, 0-10% Nb<SB>2</SB>O<SB>5</SB>, 0-10% Ta<SB>2</SB>O<SB>5</SB>, 0-5% WO<SB>3</SB>, 0-5% Bi<SB>2</SB>O<SB>3</SB>and 0-3% Sb<SB>2</SB>O<SB>3</SB>by weight. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は光学ガラス及びこの光学ガラスからなる光学素子に関し、より詳細にはプレス成形に適した光学ガラス及びこの光学ガラスからなる光学素子に関するものである。   The present invention relates to an optical glass and an optical element made of the optical glass, and more particularly to an optical glass suitable for press molding and an optical element made of the optical glass.

ガラスレンズなどの光学素子の製造法としては、屈伏温度(At)以上に加熱したガラスを、加熱した一対の上型・下型からなる成形金型を用いてプレスすることにより光学素子を直接成形を行ういわゆるプレス成形法が、従来のガラスを研磨する成形法に比べて製造工程が少なく、その結果短時間且つ安価に光学素子を製造することができることから、近年、光学素子の製造方法として広く使用されるようになっている。   As a method of manufacturing an optical element such as a glass lens, an optical element is directly molded by pressing glass heated to a temperature higher than the deformation temperature (At) using a heated molding die consisting of a pair of upper and lower molds. The so-called press-molding method, which has a smaller number of manufacturing steps than the conventional molding method for polishing glass, can produce an optical element in a short time and at a low cost. It has come to be used.

このプレス成形法は再加熱方式とダイレクトプレス方式とに大別できる。再加熱方式は、ほぼ最終製品形状を有するゴブプリフォームあるいは研磨プリフォームを作成した後、これらのプリフォームを軟化点以上に再び加熱し、加熱した上下一対の金型によりプレス成形して最終製品形状とする方式である。一方、ダイレクトプレス方式は、加熱した金型上にガラス溶融炉から溶融ガラス滴を直接滴下し、プレス成形することにより最終品形状とする方式である。これらいずれの方式のプレス成形法でもガラスを成形する場合に、プレス金型をガラス転移温度(以下「Tg」と記すことがある)近傍またはそれ以上の温度に加熱する必要がある。このため、ガラスのTgが高いほどプレス金型の表面酸化や金属組成の変化が生じやすく、金型寿命が短くなるため、生産コストの上昇を招く。窒素などの不活性ガス雰囲気下で成形を行うことにより金型劣化を抑制することもできるが、雰囲気制御をするためには成形装置が複雑化し、また不活性ガスのランニングコストも必要となるため生産コストが上昇する。したがって、プレス成形法に用いるガラスとしてはTgのできるだけ低いものが望ましい。また、耐失透性を向上させるためには液相温度(以下「TL」と記すことがある)についてもTg同様に低い方が望ましい。 This press molding method can be roughly divided into a reheating method and a direct press method. In the reheating method, gob preforms or polishing preforms having almost the final product shape are prepared, then these preforms are heated again above the softening point, and press molded with a pair of heated upper and lower molds to obtain the final product. It is a method of shape. On the other hand, the direct press method is a method in which a molten glass droplet is directly dropped from a glass melting furnace onto a heated mold and press-molded to obtain a final product shape. In any of these types of press molding methods, when molding glass, it is necessary to heat the press mold to a temperature near or above the glass transition temperature (hereinafter sometimes referred to as “Tg”). For this reason, the higher the Tg of the glass, the easier the surface oxidation of the press mold and the change of the metal composition occur, and the mold life is shortened, resulting in an increase in production cost. Mold deterioration can be suppressed by molding in an inert gas atmosphere such as nitrogen, but the molding equipment becomes complicated and the inert gas running cost is required to control the atmosphere. Production costs increase. Accordingly, it is desirable that the glass used in the press molding method has a Tg as low as possible. In order to improve the devitrification resistance, it is desirable that the liquidus temperature (hereinafter sometimes referred to as “T L ”) is as low as Tg.

ところが、Tgを低くするために従来から用いられてきた鉛化合物について人体への悪影響が近年懸念され始めた。このため鉛化合物を使用しないことが市場の強い要請となってきた。そこで鉛化合物を用いずにガラスのTgおよびTLを低くする技術が種々検討され提案されている(例えば特許文献1〜3)。
特開平5−58669号公報(特許請求の範囲) 特開平8−59282号公報(特許請求の範囲) 特開2003−176151号公報(特許請求の範囲)
However, in recent years, there have been concerns about adverse effects on the human body of lead compounds that have been conventionally used to lower Tg. For this reason, it has become a strong market demand not to use lead compounds. Thus, various techniques for reducing Tg and TL of glass without using a lead compound have been studied and proposed (for example, Patent Documents 1 to 3).
Japanese Patent Laid-Open No. 5-58669 (Claims) JP-A-8-59282 (Claims) JP 2003-176151 A (Claims)

しかしながら、特許文献1及び特許文献2の光学ガラスではTgが満足できるほどには低くない。また特許文献3の光学ガラスではTLが未だ高く耐失透性に問題がある。 However, the optical glasses of Patent Document 1 and Patent Document 2 are not low enough to satisfy Tg. Further, the optical glass of Patent Document 3 still has a high T L and has a problem in devitrification resistance.

本発明はこのような従来の問題に鑑みてなされたものであり、その目的とするところは、鉛や砒素などの化合物を実質的に含有せず、Tg及びTLが低く、耐失透性に優れ、プレス成形に適した光学ガラスを提供することにある。 The present invention has been made in view of such conventional problems, and an object, is substantially free of compounds such as lead and arsenic, Tg and T L is lower, the devitrification resistance It is to provide an optical glass which is excellent in press and suitable for press molding.

また本発明の他の目的は、所定の光学恒数を有し、鉛や砒素などの化合物を実質的に含有せず、生産性の高い光学素子を提供することにある。   Another object of the present invention is to provide an optical element having a predetermined optical constant and containing substantially no compound such as lead or arsenic and having high productivity.

本発明者は前記目的を達成すべく鋭意検討を重ねた結果、SiO2−B23系のガラス組成において、Li2Oを多く含有させることにより、所定の光学恒数を維持しながらTgを低くできること、さらにLa23とGd23とを多く含有させることにより、TLを低くできモールド成形に適した粘性が得られることを見出し本発明をなすに至った。 As a result of intensive studies to achieve the above object, the present inventor, as a result of containing a large amount of Li 2 O in the SiO 2 —B 2 O 3 glass composition, Tg while maintaining a predetermined optical constant. It has been found that, by containing La 2 O 3 and Gd 2 O 3 in a large amount, TL can be lowered and viscosity suitable for molding can be obtained.

すなわち、本発明のプレス成形用光学ガラスは、重量%で、SiO2:5〜20%、Al23:0〜5%、B23:20〜40%、Li2O:8〜20%(ただし、8%を含まない)、Na2O:0〜5%、K2O:0〜5%、ただし、Li2O+Na2O+K2O:8〜20%(ただし、8%を含まない)、MgO:0〜10%、CaO:0〜20%、BaO:0〜20%、SrO:0〜10%、ただし、MgO+CaO+BaO+SrO:5〜20%、ZnO:0〜10%、Y23:0〜10%、La23:5〜30%、Gd23:7〜30%、TiO2:0〜10%、ZrO2:0〜10%、Nb25:0〜10%、Ta25:0〜10%、WO3:0〜5%、Bi23:0〜5%、Sb23:0〜3%の各ガラス成分を有することを特徴とする。なお、以下「%」は特に断りのない限り「重量%」を意味するものとする。 That is, press-molding the optical glass of the present invention, in weight%, SiO 2: 5~20%, Al 2 O 3: 0~5%, B 2 O 3: 20~40%, Li 2 O: 8~ 20% (excluding 8%), Na 2 O: 0 to 5%, K 2 O: 0 to 5%, but Li 2 O + Na 2 O + K 2 O: 8 to 20% (however, 8% Not included), MgO: 0-10%, CaO: 0-20%, BaO: 0-20%, SrO: 0-10%, provided that MgO + CaO + BaO + SrO: 5-20%, ZnO: 0-10%, Y 2 O 3 : 0 to 10%, La 2 O 3 : 5 to 30%, Gd 2 O 3 : 7 to 30%, TiO 2 : 0 to 10%, ZrO 2 : 0 to 10%, Nb 2 O 5 : 0 ~10%, Ta 2 O 5: 0~10%, WO 3: 0~5%, Bi 2 O 3: 0~5%, Sb 2 O 3: 0~3% each glass of It characterized by having a minute. Hereinafter, “%” means “% by weight” unless otherwise specified.

ここで、屈折率(nd)が1.60〜1.70の範囲、アッベ数(νd)が50〜62の範囲、ガラス転移温度(Tg)が530℃以下であるのが好ましい。   Here, it is preferable that the refractive index (nd) is in the range of 1.60 to 1.70, the Abbe number (νd) is in the range of 50 to 62, and the glass transition temperature (Tg) is 530 ° C. or lower.

また耐失透性や成形性などの観点から、液相温度(TL)は950℃以下で、液相温度における粘性は0.5ポアズ以上であるのが好ましい。 From the viewpoint of devitrification resistance and moldability, the liquidus temperature (T L ) is preferably 950 ° C. or lower, and the viscosity at the liquidus temperature is preferably 0.5 poise or higher.

また本発明によれば、前記光学ガラスからなる光学素子が提供される。このような光学素子としてはレンズやプリズム、ミラーが好ましい。   Moreover, according to this invention, the optical element which consists of said optical glass is provided. Such an optical element is preferably a lens, a prism, or a mirror.

本発明の光学ガラスでは、所定のガラス成分を特定量含有させることにより、人体への悪影響が懸念される鉛や砒素などの化合物を用いることなく、高屈折率・低分散の光学恒数が得られ、しかもTgが低くプレス成形性に優れ、さらにはTLが低く耐失透性に優れる。 In the optical glass of the present invention, by containing a specific amount of a predetermined glass component, an optical constant having a high refractive index and a low dispersion can be obtained without using a compound such as lead or arsenic that may cause adverse effects on the human body. In addition, the Tg is low and the press formability is excellent, and the TL is low and the devitrification resistance is excellent.

また本発明の光学素子は、前記光学ガラスをプレス成形することにより作製するので、前記光学ガラスの特性を有し、また生産効率が高く低コスト化が図れる。   Further, since the optical element of the present invention is produced by press-molding the optical glass, it has the characteristics of the optical glass, has high production efficiency, and can be reduced in cost.

本発明の光学ガラスの各成分を前記のように限定した理由について以下説明する。まず、SiO2はガラス骨格を構成する成分(ガラスフォーマー)であり、その含有量が5%未満であるとガラスの耐久性が悪化する。他方、SiO2の含有量が20%を超えると耐失透性が悪化する。また屈折率の高いガラスが得られにくくなる。そこでSiO2の含有量を5〜20%の範囲と定めた。より好ましいSiO2の含有量は5〜19%の範囲である。 The reason why each component of the optical glass of the present invention is limited as described above will be described below. First, SiO 2 is a component (glass former) constituting a glass skeleton, and if the content is less than 5%, the durability of the glass deteriorates. On the other hand, when the content of SiO 2 exceeds 20%, the devitrification resistance deteriorates. Moreover, it becomes difficult to obtain a glass having a high refractive index. Therefore, the content of SiO 2 is determined to be in the range of 5 to 20%. A more preferable content of SiO 2 is in the range of 5 to 19%.

Al23はガラスの耐久性を向上させると共に、粘性を増大させる効果を奏する。Al23の含有量が5%を超えると、ガラスの耐失透性が悪化すると共に溶融性が悪化する。そこで、Al23の含有量を0〜5%の範囲とした。 Al 2 O 3 has the effect of increasing the viscosity while improving the durability of the glass. When the content of Al 2 O 3 exceeds 5%, the devitrification resistance of the glass deteriorates and the meltability deteriorates. Therefore, the content of Al 2 O 3 is set in the range of 0 to 5%.

23はSiO2と同様にガラス骨格を構成する成分であり、B23の含有量が20%未満であるとガラスが失透しやすくなる。他方、含有量が40%を超えると、屈折率が低下し所望の光学恒数が得られなくなる。そこでB23の含有量を20〜40%の範囲と定めた。より好ましい含有量は20〜38%の範囲である。 B 2 O 3 is a component that constitutes a glass skeleton in the same manner as SiO 2. If the content of B 2 O 3 is less than 20%, the glass tends to devitrify. On the other hand, if the content exceeds 40%, the refractive index is lowered and a desired optical constant cannot be obtained. Therefore, the content of B 2 O 3 is set to a range of 20 to 40%. A more preferable content is in the range of 20 to 38%.

Li2Oはガラスの軽量化と低Tg化とに大きな効果を奏する。Li2Oの含有量が8%以下であると前記効果が十分には得られない。他方、Li2Oの含有量が20%を超えるとガラスの耐久性が劣悪になるとともに屈折率が低下し、所望の光学恒数が得られなくなる。そこでLi2Oの含有量を8〜20%(ただし8%を含まない)の範囲と定めた。Li2Oのより好ましい含有量は8.5〜19%の範囲である。 Li 2 O has a great effect on reducing the weight of the glass and lowering the Tg. The effect and the Li 2 O content is not more than 8% can not be sufficiently obtained. On the other hand, if the content of Li 2 O exceeds 20%, the durability of the glass is deteriorated and the refractive index is lowered, so that a desired optical constant cannot be obtained. Therefore, the content of Li 2 O was determined to be in the range of 8 to 20% (excluding 8%). A more preferable content of Li 2 O is in the range of 8.5 to 19%.

またNa2OとK2OはTgを低下させる成分として有用であるが、それぞれ5%を超えて含有させると耐失透性が顕著に悪化する。そこでNa2OとK2Oの含有量をそれぞれ0〜5%の範囲とした。 Na 2 O and K 2 O are useful as components for lowering Tg. However, when each content exceeds 5%, the devitrification resistance is remarkably deteriorated. Therefore, the contents of Na 2 O and K 2 O were set in the range of 0 to 5%, respectively.

そして、R’2O(R’=Li,Na,K)成分の総量が8%以下であるとTgを下げる効果が十分には得られない一方、R’2O成分の総量が20%を超えると耐久性が悪化すると共に屈折率が低下し所望の光学恒数が得られなくなる。そこでR’2Oの総量を8〜20%(ただし8%を含まない)の範囲と定めた。より好ましいR’2Oの総量は8.5〜19%の範囲である。 When the total amount of R ′ 2 O (R ′ = Li, Na, K) component is 8% or less, the effect of lowering Tg cannot be obtained sufficiently, while the total amount of R ′ 2 O component is 20%. When it exceeds, durability will deteriorate and a refractive index will fall, and a desired optical constant will no longer be obtained. Therefore, the total amount of R ′ 2 O is set to a range of 8 to 20% (excluding 8%). A more preferable total amount of R ′ 2 O is in the range of 8.5 to 19%.

MgOはガラスの軽量化と屈折率の向上、さらに分散を低くする効果を奏するが、10%を超えて含有させるとガラスが不安定となって耐失透性が悪化する。そこでMgOの含有量を0〜10%の範囲とした。   MgO has the effect of reducing the weight of the glass, improving the refractive index, and lowering the dispersion, but if it exceeds 10%, the glass becomes unstable and devitrification resistance deteriorates. Therefore, the content of MgO is set to a range of 0 to 10%.

CaOは、ガラスの軽量化と、屈折率の向上、ガラスの耐久性の向上という効果を奏するが、20%を超えて含有させるとガラスが不安定となり耐失透性が悪化する。そこでCaOの含有量を0〜20%の範囲と定めた。   CaO has the effect of reducing the weight of the glass, improving the refractive index, and improving the durability of the glass. However, if it exceeds 20%, the glass becomes unstable and the devitrification resistance deteriorates. Therefore, the CaO content is set to a range of 0 to 20%.

BaOとSrOとは屈折率を調整すると共にガラスの安定性を向上させる効果を奏するが、含有量がそれぞれ20%及び10%を超えると耐失透性が悪化する。そこでBaOの含有量を0〜20%の範囲とし、SrOの含有量を0〜10%の範囲とした。   BaO and SrO have the effect of adjusting the refractive index and improving the stability of the glass. However, when the content exceeds 20% and 10%, the devitrification resistance deteriorates. Therefore, the BaO content is set to a range of 0 to 20%, and the SrO content is set to a range of 0 to 10%.

そして、RO(R=Mg,Ca,Ba,Sr)成分の総量が5%より少ないと、屈折率が低下し所望の光学恒数が得られなくなる一方、RO成分の総量が20%を超えると耐失透性が悪化する。そこでROの総量を5〜20%の範囲と定めた。より好ましいROの総量は5〜18%の範囲である。   When the total amount of RO (R = Mg, Ca, Ba, Sr) components is less than 5%, the refractive index decreases and a desired optical constant cannot be obtained. On the other hand, when the total amount of RO components exceeds 20% Devitrification resistance deteriorates. Therefore, the total amount of RO is set to a range of 5 to 20%. A more preferable total amount of RO is in the range of 5 to 18%.

ZnOはガラスの屈折率を高める効果を奏するが、含有量が10%を超えると耐失透性が悪化する。そこでZnOの含有量を0〜10%の範囲と定めた。   ZnO has the effect of increasing the refractive index of the glass, but if the content exceeds 10%, the devitrification resistance deteriorates. Therefore, the ZnO content is set to a range of 0 to 10%.

23はガラスの屈折率を高める効果を奏するが、含有量が10%を超えると耐失透性が悪化し、TLが高くなってしまう。そこでY23の含有量を0〜10%の範囲と定めた。 Y 2 O 3 has the effect of increasing the refractive index of the glass. However, if the content exceeds 10%, the devitrification resistance deteriorates and TL increases. Therefore, the content of Y 2 O 3 is set to a range of 0 to 10%.

La23はガラスの屈折率を高めると共に分散を維持する効果を奏するが、含有量が5%未満であると屈折率が低下し所望の光学恒数が得られなくなる一方、含有量が30%を超えると分相が強くなりTLが高くなってしまう。そこでLa23の含有量を5〜30%の範囲と定めた。より好ましいLa23の含有量は5〜27%の範囲である。 La 2 O 3 has the effect of increasing the refractive index of the glass and maintaining the dispersion, but if the content is less than 5%, the refractive index decreases and the desired optical constant cannot be obtained, while the content is 30. When it exceeds%, the phase separation becomes strong and TL becomes high. Therefore, the content of La 2 O 3 is set to a range of 5 to 30%. A more preferable content of La 2 O 3 is in the range of 5 to 27%.

Gd23はガラスの屈折率を高め、ガラスの耐光性を向上させ、TLを低下させる効果を奏するが、含有量が7%未満であると屈折率が低下し所望の光学恒数が得られなくなる一方、含有量が30%を超えるとガラスの耐失透性が低下する。そこでGd23の含有量を7〜30%の範囲と定めた。より好ましいGd23の含有量は7〜27%の範囲である。 Gd 2 O 3 increases the refractive index of the glass, improves the light resistance of the glass, and lowers TL. However, if the content is less than 7%, the refractive index decreases and the desired optical constant is obtained. On the other hand, when the content exceeds 30%, the devitrification resistance of the glass decreases. Therefore, the content of Gd 2 O 3 is set to a range of 7 to 30%. A more preferable content of Gd 2 O 3 is in the range of 7 to 27%.

TiO2は屈折率を高める効果を奏するが、含有量が10%を超えると耐失透性が悪化しTLが高くなる。そこで、TiO2の含有量を0〜10%の範囲とした。 TiO 2 has the effect of increasing the refractive index, but when the content exceeds 10%, the devitrification resistance is deteriorated and TL is increased. Therefore, the content of TiO 2 is set in the range of 0 to 10%.

ZrO2は屈折率を高め、ガラスの耐候性を高める効果を奏するが、含有量が10%を超えると耐失透性が悪化しTLが高くなる。そこで、ZrO2の含有量を0〜10%の範囲とした。 ZrO 2 has the effect of increasing the refractive index and increasing the weather resistance of the glass. However, if the content exceeds 10%, the devitrification resistance is deteriorated and the TL is increased. Therefore, the content of ZrO 2 is set to a range of 0 to 10%.

Nb25はガラスの屈折率を高め、ガラスの溶融性を向上させる効果を奏するが、含有量が10%を超えると所定の分散を維持できなくなる。そこでNb25の含有量を0〜10%の範囲と定めた。 Nb 2 O 5 has the effect of increasing the refractive index of the glass and improving the meltability of the glass, but if the content exceeds 10%, the predetermined dispersion cannot be maintained. Therefore, the Nb 2 O 5 content is set to a range of 0 to 10%.

Ta25はガラスの屈折率を高め、ガラスの耐候性を向上させる効果を奏するが、含有量が10%を超えると耐失透性が悪化しTLが高くなる。そこでTa25の含有量を0〜10%の範囲と定めた。 Ta 2 O 5 has the effect of increasing the refractive index of the glass and improving the weather resistance of the glass. However, if the content exceeds 10%, the devitrification resistance is deteriorated and TL is increased. Therefore, the content of Ta 2 O 5 is set to a range of 0 to 10%.

WO3とBi23とはガラスの屈折率を高める効果を奏するが、含有量が5%を超えるとガラスの着色度が悪化する。そこでWO3とBi23の含有量をそれぞれ0〜5%の範囲と定めた。 WO 3 and Bi 2 O 3 have the effect of increasing the refractive index of the glass, but if the content exceeds 5%, the degree of coloration of the glass deteriorates. Therefore, the contents of WO 3 and Bi 2 O 3 are determined to be in the range of 0 to 5%, respectively.

Sb23は、少量添加されることにより清澄作用を向上させる効果を奏する。そこで、Sb23の含有量を0〜3%の範囲とした。 Sb 2 O 3 has the effect of improving the clarification effect when added in a small amount. Therefore, the Sb 2 O 3 content is set to a range of 0 to 3%.

また、本発明の光学ガラスでは必要により、CuO、GeO2などの従来公知のガラス成分及び添加剤を本発明の効果を害しない範囲で添加してももちろん構わない。 In addition, in the optical glass of the present invention, of course, conventionally known glass components and additives such as CuO and GeO 2 may be added as long as they do not impair the effects of the present invention.

本発明の光学素子は前記光学ガラスをプレス成形することによって作製される。このプレス成形法としては、溶融したガラスをノズルから、所定温度に加熱された金型へ滴下しプレス成形するダイレクトプレス成形法、及びプリフォーム材を金型に載置してガラス軟化点以上に加熱してプレス成形する再加熱成形法が挙げられる。このような方法によれば研磨、研削工程が不要となり、生産性が向上し、また自由曲面や非球面といった加工困難な形状の光学素子を得ることができる。   The optical element of the present invention is produced by press-molding the optical glass. The press molding method includes a direct press molding method in which molten glass is dropped from a nozzle into a mold heated to a predetermined temperature and press molded, and a preform material is placed on the mold and exceeds the glass softening point. There is a reheating molding method in which heating and press molding are performed. According to such a method, polishing and grinding steps are not required, productivity is improved, and an optical element having a shape difficult to process such as a free curved surface or an aspherical surface can be obtained.

成形条件としては、ガラス成分や成形品の形状などにより異なるが一般に、金型温度は350〜600℃の範囲が好ましく、中でもガラス転移温度に近い温度域が好ましい。プレス時間は数秒〜数十秒の範囲が好ましい。またプレス圧力はレンズの形状や大きさにより200kgf/cm2〜600kgf/cm2の範囲が好ましく、高圧力でプレスするほど高精度の成形ができる。 The molding conditions vary depending on the glass component and the shape of the molded product, but generally the mold temperature is preferably in the range of 350 to 600 ° C., and the temperature range close to the glass transition temperature is particularly preferable. The pressing time is preferably in the range of several seconds to several tens of seconds. The pressing pressure is preferably in the range of 200kgf / cm 2 ~600kgf / cm 2 by the shape and size of the lens can be molded as high-precision pressing at high pressure.

本発明の光学素子は、例えばデジタルカメラのレンズやレーザービームプリンタなどのコリメータレンズ、プリズム、ミラーなどとして用いることができる。   The optical element of the present invention can be used as, for example, a digital camera lens, a collimator lens such as a laser beam printer, a prism, or a mirror.

以下に本発明を実施例により更に具体的に説明する。なお、本発明はこれら実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited to these examples.

実施例1〜10、比較例1〜3
酸化物原料、炭酸塩、硝酸塩など一般的なガラス原料を用いて、表1に示す目標組成となるように、ガラスの原料を調合し、粉末で十分に混合して調合原料とした。これを1,000〜1,300℃に加熱された溶融炉に投入し、溶融・清澄後、撹拌均質化して予め加熱された鉄製又はカーボン製の鋳型に鋳込み、徐冷して各サンプルを製造した。これら各サンプルについてのd線に対する屈折率(nd)およびアッベ数(νd)、ガラス転移温度(Tg)、液相温度(TL)、液相温度における粘性を測定した。測定結果を表1に合わせて示す。
Examples 1-10, Comparative Examples 1-3
Using general glass raw materials such as oxide raw materials, carbonates, and nitrates, glass raw materials were prepared so as to have the target composition shown in Table 1, and thoroughly mixed with powders to prepare mixed raw materials. This is put into a melting furnace heated to 1,000 to 1,300 ° C, melted and refined, homogenized with stirring, cast into a preheated iron or carbon mold, and gradually cooled to produce each sample. did. The refractive index (nd) and Abbe number (νd), glass transition temperature (Tg), liquid phase temperature (T L ), and viscosity at the liquid phase temperature for each of these samples were measured. The measurement results are shown in Table 1.

なお、比較例1は前述の特許文献1(特開平5−58669号公報)の実施例11、比較例2は特許文献2(特開平8−59282号公報)の実施例3、比較例3は特許文献3(特開2003−176151号公報)の実施例10をそれぞれ追試したものである。   Comparative Example 1 is Example 11 of Patent Document 1 (JP-A-5-58669) described above, Comparative Example 2 is Example 3 of Patent Document 2 (JP-A-8-59282), and Comparative Example 3 is Example 10 of Patent Document 3 (Japanese Patent Application Laid-Open No. 2003-176151) was retested.

上記の物性測定は日本光学硝子工業会規格(JOGIS)の試験方法に準じて行った。すなわち屈折率(nd)とアッベ数(νd)とは−30℃/時間で徐冷した時の値である。測定はカルニュー光学工業社製「KPR-200」を用いて行った。ガラス転移温度(Tg)の測定はセイコーインスツルメンツ社製の熱機械的分析装置「TMA/SS6000」を用いて毎分10℃の昇温条件で行った。液相温度(TL)の測定は、溶融炉を用いて、1,200℃で融液にしたガラスを−100℃/時間で所定の温度まで降温させ所定温度で12時間保持した後、ガラスを鋳型に流し込み室温まで冷却し、ガラス内部に失透(結晶)が確認されない温度とした。ガラス内部はオリンパス社製の光学顕微鏡「BX50」の倍率100倍を用いて観察した。粘性の測定は、アドバンテスト社製の高温粘度測定装置「TVB−20H型粘度計」を用いて測定した。 The above physical properties were measured according to the test method of Japan Optical Glass Industry Association Standard (JOGIS). That is, the refractive index (n d ) and the Abbe number (ν d ) are values when cooled slowly at −30 ° C./hour. The measurement was performed using “KPR-200” manufactured by Kalnew Optical Industry Co., Ltd. The glass transition temperature (Tg) was measured using a thermomechanical analyzer “TMA / SS6000” manufactured by Seiko Instruments Inc. under a temperature rising condition of 10 ° C./min. The liquid phase temperature (T L ) is measured by using a melting furnace to lower the glass melted at 1,200 ° C. to a predetermined temperature at −100 ° C./hour and holding it at the predetermined temperature for 12 hours. Was poured into a mold and cooled to room temperature to a temperature at which devitrification (crystals) was not confirmed inside the glass. The inside of the glass was observed using an Olympus optical microscope “BX50” at a magnification of 100 times. The viscosity was measured using a high temperature viscosity measuring device “TVB-20H viscometer” manufactured by Advantest Corporation.

Figure 2006021969
Figure 2006021969

表1から明らかなように、実施例1〜10の光学ガラスは高屈折率・低分散であって、しかもガラス転移温度(Tg)が530℃以下で、液相温度(TL)が950℃以下と低く、プレス成形性に優れていた。これに対して、比較例1〜3の光学ガラスではいずれもLi2Oが8%以下と少なかったためTgが530℃と高く、またGd23が7%より少なかったためTLが950℃より高くプレス成形性に適さないものであった。 As is apparent from Table 1, the optical glasses of Examples 1 to 10 have a high refractive index and low dispersion, and have a glass transition temperature (Tg) of 530 ° C. or lower and a liquidus temperature (T L ) of 950 ° C. It was as low as below and was excellent in press formability. On the other hand, in all the optical glasses of Comparative Examples 1 to 3, Li 2 O was as low as 8% or less, so Tg was as high as 530 ° C., and Gd 2 O 3 was less than 7%, so that T L was from 950 ° C. It was highly unsuitable for press formability.

Claims (4)

重量%で、
SiO2:5〜20%、
Al23:0〜5%、
23:20〜40%、
Li2O:8〜20%(ただし、8%を含まない)、
Na2O:0〜5%、
2O:0〜5%、
ただし、Li2O+Na2O+K2O:8〜20%(ただし、8%を含まない)、
MgO:0〜10%、
CaO:0〜20%、
BaO:0〜20%、
SrO:0〜10%、
ただし、MgO+CaO+BaO+SrO:5〜20%、
ZnO:0〜10%、
23:0〜10%、
La23:5〜30%、
Gd23:7〜30%、
TiO2:0〜10%、
ZrO2:0〜10%、
Nb25:0〜10%、
Ta25:0〜10%、
WO3:0〜5%、
Bi23:0〜5%、
Sb23:0〜3%、
の各ガラス成分を有することを特徴とするプレス成形用光学ガラス。
% By weight
SiO 2 : 5 to 20%,
Al 2 O 3 : 0 to 5%,
B 2 O 3 : 20 to 40%,
Li 2 O: 8 to 20% (excluding 8%),
Na 2 O: 0 to 5%,
K 2 O: 0 to 5%,
However, Li 2 O + Na 2 O + K 2 O: 8~20% ( but not including 8%),
MgO: 0 to 10%,
CaO: 0 to 20%,
BaO: 0 to 20%,
SrO: 0 to 10%,
However, MgO + CaO + BaO + SrO: 5-20%,
ZnO: 0 to 10%,
Y 2 O 3 : 0 to 10%,
La 2 O 3: 5~30%,
Gd 2 O 3 : 7 to 30%,
TiO 2: 0~10%,
ZrO 2 : 0 to 10%,
Nb 2 O 5 : 0 to 10%,
Ta 2 O 5 : 0 to 10%,
WO 3: 0~5%,
Bi 2 O 3 : 0 to 5%
Sb 2 O 3 : 0 to 3%,
An optical glass for press molding characterized by having each glass component.
屈折率(nd)が1.60〜1.70の範囲、アッベ数(νd)が50〜62の範囲、ガラス転移温度(Tg)が530℃以下である請求項1記載のプレス成形用光学ガラス。   The optical glass for press molding according to claim 1, wherein the refractive index (nd) is in the range of 1.60 to 1.70, the Abbe number (νd) is in the range of 50 to 62, and the glass transition temperature (Tg) is 530 ° C or lower. . 液相温度(TL)が950℃以下で、液相温度における粘性が0.5ポアズ以上である請求項1又は2記載のプレス成形用光学ガラス。 The optical glass for press molding according to claim 1 or 2, wherein the liquid phase temperature (T L ) is 950 ° C or lower and the viscosity at the liquid phase temperature is 0.5 poise or more. 請求項1〜3のいずれかに記載のプレス成形用光学ガラスからなることを特徴とする光学素子。   An optical element comprising the press-molding optical glass according to claim 1.
JP2004202580A 2004-07-09 2004-07-09 Optical glass and optical element Expired - Fee Related JP4792718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004202580A JP4792718B2 (en) 2004-07-09 2004-07-09 Optical glass and optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004202580A JP4792718B2 (en) 2004-07-09 2004-07-09 Optical glass and optical element

Publications (2)

Publication Number Publication Date
JP2006021969A true JP2006021969A (en) 2006-01-26
JP4792718B2 JP4792718B2 (en) 2011-10-12

Family

ID=35795517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004202580A Expired - Fee Related JP4792718B2 (en) 2004-07-09 2004-07-09 Optical glass and optical element

Country Status (1)

Country Link
JP (1) JP4792718B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090069162A1 (en) * 2005-04-22 2009-03-12 Ohara Inc. Glass composition
JP2010076987A (en) * 2008-09-26 2010-04-08 Canon Inc Optical glass and optical element
CN107445472A (en) * 2017-09-11 2017-12-08 成都随如科技有限公司 A kind of optical glass suitable for compression molding

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61232243A (en) * 1985-04-04 1986-10-16 Ohara Inc Glass for spectacle and optical use
JPH0337130A (en) * 1989-07-04 1991-02-18 Sumita Kogaku Glass:Kk Optical glass for precise press molding
JP2000119036A (en) * 1998-10-12 2000-04-25 Ohara Inc Optical glass for mold pressing
JP2004002178A (en) * 2002-04-25 2004-01-08 Nippon Electric Glass Co Ltd Optical glass for moulding press moldings

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61232243A (en) * 1985-04-04 1986-10-16 Ohara Inc Glass for spectacle and optical use
JPH0337130A (en) * 1989-07-04 1991-02-18 Sumita Kogaku Glass:Kk Optical glass for precise press molding
JP2000119036A (en) * 1998-10-12 2000-04-25 Ohara Inc Optical glass for mold pressing
JP2004002178A (en) * 2002-04-25 2004-01-08 Nippon Electric Glass Co Ltd Optical glass for moulding press moldings

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090069162A1 (en) * 2005-04-22 2009-03-12 Ohara Inc. Glass composition
US8507394B2 (en) * 2005-04-22 2013-08-13 Ohara Inc. Glass composition
JP2010076987A (en) * 2008-09-26 2010-04-08 Canon Inc Optical glass and optical element
CN107445472A (en) * 2017-09-11 2017-12-08 成都随如科技有限公司 A kind of optical glass suitable for compression molding

Also Published As

Publication number Publication date
JP4792718B2 (en) 2011-10-12

Similar Documents

Publication Publication Date Title
JP4810901B2 (en) Optical glass and optical element
JP5358888B2 (en) Optical glass and optical element
JP4759986B2 (en) Optical glass and optical element
US7827823B2 (en) Optical glass, precision press-molding preform, process for producing the preform, optical element and process for producing the element
JP5109488B2 (en) Optical glass and optical element produced therefrom
JP2006111482A (en) Optical glass and optical element
JP2005047732A (en) Optical glass and optical element
WO2008050591A1 (en) Optical glass
WO2011065097A1 (en) Optical glass and optical element
JP2007145615A (en) Optical glass and optical element
JP2007008761A (en) Optical glass and optical element
JP2014159343A (en) Optical glass, glass raw material for precision press-forming, optical element and method for manufacturing the same
JP4003874B2 (en) Optical glass, press-molding preforms and optical components
JP2004231501A (en) Optical glass and optical element produced from it
JP2010037154A (en) Optical glass and optical device
JP4997990B2 (en) Optical glass and optical element
US20050233890A1 (en) Optical glass and optical element
JP2008179500A (en) Optical glass and optical device
JP2002211949A (en) Optical glass for press molding, preform material for press molding and optical element using the same
JP4792718B2 (en) Optical glass and optical element
JP5713024B2 (en) Optical glass and optical element produced therefrom
JP2005053749A (en) Optical glass and optical device formed from the same
JP4442168B2 (en) Optical glass and optical element
JP2004262703A (en) Optical glass and optical element
JPWO2011093375A1 (en) Optical glass and optical element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110711

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees