JP2006019322A - Magnetic circuit incorporating rare-earth permanent magnet - Google Patents

Magnetic circuit incorporating rare-earth permanent magnet Download PDF

Info

Publication number
JP2006019322A
JP2006019322A JP2004192514A JP2004192514A JP2006019322A JP 2006019322 A JP2006019322 A JP 2006019322A JP 2004192514 A JP2004192514 A JP 2004192514A JP 2004192514 A JP2004192514 A JP 2004192514A JP 2006019322 A JP2006019322 A JP 2006019322A
Authority
JP
Japan
Prior art keywords
magnet
yoke
magnetic circuit
metal material
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004192514A
Other languages
Japanese (ja)
Inventor
Sukehito Doi
祐仁 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2004192514A priority Critical patent/JP2006019322A/en
Publication of JP2006019322A publication Critical patent/JP2006019322A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic circuit wherein the breakage of an adhesive layer due to a difference in coefficient of thermal expansion between a magnet and a yoke can be prevented. <P>SOLUTION: The magnetic circuit has incorporated an R-Fe-B (R: element selected from rare-earth elements including Sc and Y) rare-earth permanent magnet and a yoke, and it is provided with a metallic material between the permanent magnet and the yoke. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、R−Fe−B(Rは、ScとYを含む希土類元素から選ばれる元素を表す。)系希土類永久磁石を組み込んだ磁気回路に関する。   The present invention relates to a magnetic circuit incorporating an R—Fe—B (R represents an element selected from rare earth elements including Sc and Y) series rare earth permanent magnets.

近年、Nd−Fe−B系希土類磁石に代表される強力な永久磁石が開発され、コンピューター部品であるハードディスクドライブのヘッド駆動装置に利用されたり、医療診断装置であるMRIに利用されるなど、産業上の利用分野が拡大している。これらは、永久磁石単体で使用されることは稀で、永久磁石をヨークと呼ばれるものに組み込んだ形(磁気回路)で使用されている。   In recent years, powerful permanent magnets typified by Nd-Fe-B rare earth magnets have been developed and used in head drive devices for hard disk drives, which are computer components, and in MRI, which is a medical diagnostic device. The above fields of use are expanding. These are rarely used as a single permanent magnet, and are used in a form (magnetic circuit) in which the permanent magnet is incorporated in what is called a yoke.

Nd−Fe−B系希土類永久磁石は金属間化合物であり、粉末冶金法にて製造されるいわゆるセラミックスである。そのため、硬脆材料となり、ネジ穴の加工は不可能であり、ヨークへの固定は接着に頼っているのが実状である。したがって、永久磁石を固定するためには、接着剤の使用が必須となって、ヨークと接着して磁気回路を製造している。
一方、Nd−Fe−B系希土類磁石は、温度によって磁石の歪みが異なり、Nd−Fe−B系希土類磁石に接着剤を介しヨークを貼り付けただけでは、磁石とヨークとの材質の違いにより、応力が接着剤にかかり、接着剤が破壊され、磁石がヨークから剥がれてしまうという問題が発生していた。
上記の問題点は、特にNd−Fe−B系希土類磁石が磁化方向によって伸縮があることによるものであると考えられている。
本発明は、該伸縮する希土類磁石を用いることが、従来から用いられていた希土類磁石、接着剤、ヨーク部材を用いながらも接着剤の破壊を防止した磁気回路を提供しようと考えるものである。
The Nd—Fe—B rare earth permanent magnet is an intermetallic compound and is a so-called ceramic produced by a powder metallurgy method. Therefore, it becomes a hard and brittle material, and it is impossible to machine a screw hole, and the actual situation is that fixing to the yoke relies on adhesion. Therefore, in order to fix the permanent magnet, it is essential to use an adhesive, and the magnetic circuit is manufactured by being bonded to the yoke.
On the other hand, Nd-Fe-B rare earth magnets have different magnet distortion depending on the temperature. By simply attaching a yoke to the Nd-Fe-B rare earth magnet with an adhesive, the difference between the materials of the magnet and the yoke The stress is applied to the adhesive, the adhesive is destroyed, and the magnet is peeled off from the yoke.
The above problem is considered to be caused by the expansion and contraction of the Nd-Fe-B rare earth magnet depending on the magnetization direction.
The present invention intends to provide a magnetic circuit that uses the expanding and contracting rare earth magnet to prevent the breakage of the adhesive while using the rare earth magnet, the adhesive, and the yoke member that have been conventionally used.

本発明は、上記の課題を鋭意検討した結果、見出されたものである。
本発明者らは、磁石が接着されるヨーク材との間に金属部材を介することにより接着剤層の破壊を防止できることを見出した。
したがって、本発明は、R−Fe−B(Rは、ScとYを含む希土類元素から選ばれる元素を表す。)系希土類永久磁石とヨークを組み込んだ磁気回路であって、該永久磁石と該ヨークとの間に金属材料を含んでなる磁気回路を提供する。
The present invention has been found as a result of extensive studies of the above problems.
The inventors of the present invention have found that the destruction of the adhesive layer can be prevented by interposing a metal member between the yoke material to which the magnet is bonded.
Accordingly, the present invention provides a magnetic circuit incorporating an R—Fe—B (R represents an element selected from rare earth elements including Sc and Y) series rare earth permanent magnets and a yoke, Provided is a magnetic circuit including a metal material between a yoke and a yoke.

本発明によれば、温度上昇によってヨーク材が膨張しても、磁石と接着されている部分は金属材料であり、接着層に働く応力を軽減することができ、該応力による歪やたわみにより、磁石の剥離、寸法安定を保持することが可能となる。
本発明によれば、磁石とヨーク間の接着破壊を防止する磁気回路を製作することが可能になる。
According to the present invention, even if the yoke material expands due to a temperature rise, the portion bonded to the magnet is a metal material, and the stress acting on the adhesive layer can be reduced. It becomes possible to maintain magnet peeling and dimensional stability.
According to the present invention, it is possible to manufacture a magnetic circuit that prevents adhesion failure between a magnet and a yoke.

本発明に用いるR−Fe−B系希土類磁石は、通常、5〜40質量%のR(式中、RはScとYを含む希土類元素から選択される1種または2種以上の元素を表す。)、50〜90質量%のFe、及び0.2〜8質量%のBを含んでなる。
磁気特性を改善するために、好ましくは、C、Al、Si、Ti、V、Cr、Mn、Co、Ni、Cu、Zn、Ga、Zr、Nb、Mo、Ag、Sn、Hf、Ta及びWなどからなる一群から選ばれる一以上の元素を加えることが多い。これらの好ましい添加量は、RとFeとBの合計質量に対して、Coの場合30質量%以下、その他の元素の場合には8質量%以下である。
The R—Fe—B rare earth magnet used in the present invention is usually 5 to 40% by mass of R (wherein R represents one or more elements selected from rare earth elements including Sc and Y). .), 50 to 90 mass% Fe, and 0.2 to 8 mass% B.
In order to improve the magnetic properties, preferably C, Al, Si, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, Zr, Nb, Mo, Ag, Sn, Hf, Ta and W Often, one or more elements selected from a group consisting of such as are added. These preferable addition amounts are 30% by mass or less in the case of Co and 8% by mass or less in the case of other elements with respect to the total mass of R, Fe and B.

本発明では、希土類磁石に金属材料を介在させてヨークに固定することを特徴としている。その理由は、金属材料であれば、希土類磁石も金属間化合物であることから、両方に強固に接着する接着剤が得易いためである。例えば、樹脂材の場合は、樹脂と金属の両方に強固に接着する接着剤は稀である。また、金属材料は機械加工が容易なため、ネジ穴加工等を行うことで容易にヨークに固定することが可能となる。セラミックス材料は機械加工が困難なことも多く、この点でも金属材料の方が優れている。
希土類磁石とヨーク材との間に介在させる金属材料としては、接着剤の応力を緩和させる金属であれば、特に問題はないが、磁性材及び非磁性材からなる金属材料を用いればよい。そのなかでもインバーと呼ばれる合金がよいが、さらに磁気回路を目的とするならば、磁性材料からなるインバーがよい。
具体的にインバーとしては、Fe−Ni系、Fe−Ni−Co系、Ni−Mo−Fe系、Cr−Fe−Mn系、Mn−Ge系等が挙げられる。例えば、Fe:64.6質量%とNi:35.4質量%からなる合金、Fe:64.2質量%とNi:31.0質量%とCo:4.8質量%からなるスーパーインバー、非磁性材料としては、Fe:5.5質量%とCr:94.0質量%とGe:0.5質量%からなる合金、Fe:5.0質量%とMn:75.0質量%とGe:20.0質量%からなる合金等が挙げられる。
さらに、接着剤に応力歪がかからないようにするためにも、磁石との熱膨張係数の差を10×10−6以下、好ましくは、磁石は非磁化方向が熱膨張係数が負であるから、−3×10−6以上8×10−6(1/K)以下になるような金属材料を選択することが望ましい。熱膨張率が大きすぎる金属材料を用いると、接着層が熱により破壊されて、磁石が剥離したり、ヨークと磁石との間に応力歪が生じて、磁気回路としての機能が低下する場合がある。
また、インバーの形状は、好ましくは、磁石寸法、ヨーク寸法のいずれかと同じ、又は磁石とヨークの間の寸法とすることにより、更に応力が緩和される。
The present invention is characterized in that a rare earth magnet is fixed to the yoke by interposing a metal material. The reason is that, in the case of a metal material, since the rare earth magnet is also an intermetallic compound, it is easy to obtain an adhesive that firmly adheres to both. For example, in the case of a resin material, an adhesive that firmly adheres to both a resin and a metal is rare. Further, since the metal material is easy to machine, it can be easily fixed to the yoke by performing screw hole machining or the like. Ceramic materials are often difficult to machine, and metal materials are also superior in this respect.
The metal material interposed between the rare earth magnet and the yoke material is not particularly limited as long as it is a metal that relieves stress of the adhesive, but a metal material made of a magnetic material and a nonmagnetic material may be used. Among them, an alloy called invar is preferable, but invar made of a magnetic material is preferable for the purpose of a magnetic circuit.
Specific examples of the invar include Fe—Ni, Fe—Ni—Co, Ni—Mo—Fe, Cr—Fe—Mn, and Mn—Ge. For example, an alloy composed of Fe: 64.6% by mass and Ni: 35.4% by mass, a super invar composed of Fe: 64.2% by mass, Ni: 31.0% by mass and Co: 4.8% by mass, Magnetic materials include Fe: 5.5% by mass, Cr: 94.0% by mass and Ge: 0.5% by mass, Fe: 5.0% by mass, Mn: 75.0% by mass, and Ge: An alloy composed of 20.0% by mass is exemplified.
Further, in order to prevent the stress from being applied to the adhesive, the difference in thermal expansion coefficient from the magnet is 10 × 10 −6 or less, preferably, the magnet has a non-magnetization direction and a negative thermal expansion coefficient. It is desirable to select a metal material that is −3 × 10 −6 or more and 8 × 10 −6 (1 / K) or less. If a metal material with an excessively high coefficient of thermal expansion is used, the adhesive layer may be destroyed by heat, causing the magnet to peel off or causing stress strain between the yoke and the magnet, which may reduce the function as a magnetic circuit. is there.
Further, the stress is further relaxed by making the shape of the invar preferably the same as either the magnet size or the yoke size, or the size between the magnet and the yoke.

本発明では、金属材料の磁石に固定する場合は、接着剤を用いることが好ましく、金属材料部のヨークへの固定はネジ止めまたは接着のいずれの方法も可能である。接着剤で固定した場合は、金属材料部を介することで、磁石−金属材料部間、金属材料部−ヨーク間の接着層に働く熱応力、歪応力を小さくすることができ、さらに熱膨張率を加味することにより、応力をさらに小さくでき、対剥離性が向上できるものである。
金属材料部の厚さは、ヨークに固定するためのネジの長さまたはネジの径と同じ程度にすることが望ましい。ネジの径の大きさは、磁石と接着した金属材料を固定するために必要な強度によるが、好ましくは、5〜10mm、大きなものでは20mm程度である。また、ヨークとネジ止めするに際し、金属材料には予めネジ穴等の加工処理を施すことが好ましい。ネジとめする場合には、ヨークと金属材料の端部に穴あけして固定される。
In the present invention, when the metal material is fixed to the magnet, it is preferable to use an adhesive, and the metal material portion can be fixed to the yoke by either screwing or bonding. When fixed with an adhesive, thermal stress and strain stress acting on the adhesive layer between the magnet and the metal material part and between the metal material part and the yoke can be reduced through the metal material part, and the coefficient of thermal expansion is further reduced. By taking into account, the stress can be further reduced and the peelability can be improved.
It is desirable that the thickness of the metal material portion be approximately the same as the length of the screw or the diameter of the screw for fixing to the yoke. The size of the screw diameter depends on the strength required to fix the metal material bonded to the magnet, but is preferably about 5 to 10 mm, and about 20 mm for larger ones. Further, when screwing to the yoke, the metal material is preferably subjected to processing such as screw holes in advance. When fastening with screws, the yoke and the end of the metal material are drilled and fixed.

本発明によれば、磁石と金属材料を貼りあわせた構成物をヨークに固定することにより磁気回路を形成する。磁気回路の剥離・歪を防止するためにも金属材料の中でもインバー合金を用いることが望ましい。   According to the present invention, a magnetic circuit is formed by fixing a structure in which a magnet and a metal material are bonded to a yoke. It is desirable to use an Invar alloy among metal materials in order to prevent peeling and distortion of the magnetic circuit.

磁石と金属材料の間に介する接着剤としては、特に限定するものではなく、耐熱性接着剤であればよく、具体的には、エポキシ樹脂、シリコーン樹脂、アクリル樹脂、ポリイミド樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリビニルアルコール系等が挙げられ、接着剤としてだけでなく、フィルム状の接着フィルムを用いてもよい。
接着剤は、金属材料または磁石のどちらに塗布してもよく、必要により、加熱及び加圧処理して、半硬化、硬化させて、対面する材料を貼り合わせて磁気回路を製作することができる。
The adhesive interposed between the magnet and the metal material is not particularly limited and may be any heat-resistant adhesive. Specifically, epoxy resin, silicone resin, acrylic resin, polyimide resin, polyester resin, polyamide Resins, polyvinyl alcohols and the like can be mentioned, and not only an adhesive but also a film-like adhesive film may be used.
The adhesive may be applied to either a metal material or a magnet, and if necessary, it can be heated and pressurized, semi-cured and cured, and the facing material can be bonded to produce a magnetic circuit. .

本願に用いるヨーク材料としては、鉄(低炭素鋼、SUS等)やアルミ等の一般的に用いられる材料であり、ネジとめ等の加工がしやすい材料を選択するとよい。また、該ヨーク材用の表面はメッキ等の表面処理がなされていてもよい。   The yoke material used in the present application is a generally used material such as iron (low carbon steel, SUS, etc.), aluminum, etc., and a material that can be easily processed, such as screwing, may be selected. The surface for the yoke material may be subjected to a surface treatment such as plating.

本願の磁気回路は、磁石が組み込まれた装置であるが、磁気ヘッド製造プロセス用、MRI用、挿入光源用、半導体製造装置用の磁気回路等応用が広く利用される。   The magnetic circuit of the present application is a device in which a magnet is incorporated, but applications such as magnetic circuits for magnetic head manufacturing processes, MRI, insertion light sources, and semiconductor manufacturing devices are widely used.

図1のような形状の台形のセグメント磁石(Nd−Fe−B系磁石)を組み込んだダイポールリング型磁気回路を製作した。これは、リングを構成する磁石に形状は同じ台形であるが磁化方向が異なる複数の種類の磁石1を使用し、枠のアルミ製ヨーク3に組み付けされており、磁化方向の違いによる熱膨張係数の影響が出易い磁気回路である。
実施例として、磁石(磁化方向の熱膨張係数7.8×10−6、非磁化方向の熱膨張係数−1.5×10−6、台形の高さ50mm)と接着される金属材料のプレート2にCr−Fe−Mn系の材料(Fe5.5、Cr94.0、Mn0.5で熱膨張係数1.0×10−6、厚さ6mm)を使用したものを製作した。磁石と金属材料のプレートの接着には二液性室温硬化型エポキシ接着剤を使用、外側のヨーク枠についてはアルミ(熱膨張係数22×10−6)を使用し、プレートに設けたネジ穴でヨーク枠に磁石を固定した。比較例として、図2に示すように、金属プレートを使用せずに、直接磁石11をヨーク枠13に接着したものを製作した。
A dipole ring type magnetic circuit incorporating a trapezoidal segment magnet (Nd—Fe—B magnet) shaped as shown in FIG. 1 was manufactured. This is because the magnets constituting the ring have the same trapezoidal shape, but use a plurality of types of magnets 1 with different magnetization directions, and are assembled to the aluminum yoke 3 of the frame. It is a magnetic circuit that is susceptible to
As an example, a plate of a metal material to be bonded to a magnet (thermal expansion coefficient 7.8 × 10 −6 in the magnetization direction, thermal expansion coefficient −1.5 × 10 −6 in the non-magnetization direction, trapezoidal height 50 mm) 2 using a Cr—Fe—Mn material (Fe 5.5, Cr 94.0, Mn 0.5, thermal expansion coefficient 1.0 × 10 −6 , thickness 6 mm) was prepared. Two-part room-temperature curing epoxy adhesive is used to bond the magnet and the metal material plate, and aluminum (thermal expansion coefficient 22 × 10 −6 ) is used for the outer yoke frame, with screw holes provided on the plate. A magnet was fixed to the yoke frame. As a comparative example, as shown in FIG. 2, the magnet 11 was directly bonded to the yoke frame 13 without using a metal plate.

磁化方向を含む接着面と磁化方向が平行な磁石では、磁石の熱膨張係数に磁化方向の熱膨張係数7.8×10−6が接着面と磁化方向のなす角の余弦成分として加わることになる。一方、磁石の磁化方向が接着面に対し垂直の磁石では、磁石の接着面の熱膨張係数が非磁化方向の−1.5×10−6となる。比較例の直接アルミヨークに磁石を接着させたものでは、磁石の磁化方向が接着面に対し垂直のものでアルミの正の熱膨張に対して磁石が負の熱膨張を持つことから接着層に応力が発生し接着剥がれが生じたが、金属材料(Cr−Fe−Mn)を磁石とヨークの間に挿入した磁気回路では、金属材料の熱膨張係数がほぼ0に近いため応力が小さく接着剥がれが発生しないで問題なかった。 In a magnet having a magnetization direction parallel to the adhesion surface including the magnetization direction, a thermal expansion coefficient of 7.8 × 10 −6 of the magnetization direction is added to the thermal expansion coefficient of the magnet as a cosine component of an angle formed by the adhesion surface and the magnetization direction. Become. On the other hand, when the magnet has a magnetization direction perpendicular to the bonding surface, the coefficient of thermal expansion of the bonding surface of the magnet is −1.5 × 10 −6 in the non-magnetization direction. In the comparative example in which the magnet is directly bonded to the aluminum yoke, the magnet has a magnetization direction perpendicular to the bonding surface, and the magnet has a negative thermal expansion relative to the positive thermal expansion of the aluminum. Stress was generated and adhesion peeling occurred. However, in a magnetic circuit in which a metal material (Cr-Fe-Mn) is inserted between a magnet and a yoke, the thermal expansion coefficient of the metal material is almost zero, so the stress is small and the adhesion peels off. There was no problem with not occurring.

台形のセグメント磁石(Nd−Fe−B系磁石)を組み込んだダイポールリング型磁気回路を示す図1(a)と、当該図中のA−A断面を示す図1(b)である。It is FIG. 1A which shows the dipole ring type | mold magnetic circuit incorporating the trapezoidal segment magnet (Nd-Fe-B type magnet), and FIG. 1B which shows the AA cross section in the said figure. 金属プレートを使用せずに、直接磁石をヨーク枠に接着した磁気回路を示す図2(a)と、当該図中のB−B断面を示す図2(b)である。It is FIG. 2A which shows the magnetic circuit which adhere | attached the magnet directly on the yoke frame, without using a metal plate, and FIG. 2B which shows the BB cross section in the said figure.

符号の説明Explanation of symbols

1 磁石
2 プレート
3 ヨーク
11 磁石
13 ヨーク
1 Magnet 2 Plate 3 Yoke 11 Magnet 13 Yoke

Claims (3)

R−Fe−B(Rは、ScとYを含む希土類元素から選ばれる元素を表す。)系希土類永久磁石とヨークを組み込んだ磁気回路であって、該永久磁石と該ヨークとの間に金属材料を含んでなる磁気回路。   R-Fe-B (R represents an element selected from rare earth elements including Sc and Y) A magnetic circuit incorporating a rare earth permanent magnet and a yoke, and a metal between the permanent magnet and the yoke A magnetic circuit comprising a material. 上記金属材料が、インバーである請求項1に記載の磁気回路。   The magnetic circuit according to claim 1, wherein the metal material is Invar. 上記永久磁石と上記金属材料の間に、接着剤をさらに含んでなる請求項1又は請求項2に記載の磁気回路。   The magnetic circuit according to claim 1, further comprising an adhesive between the permanent magnet and the metal material.
JP2004192514A 2004-06-30 2004-06-30 Magnetic circuit incorporating rare-earth permanent magnet Pending JP2006019322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004192514A JP2006019322A (en) 2004-06-30 2004-06-30 Magnetic circuit incorporating rare-earth permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004192514A JP2006019322A (en) 2004-06-30 2004-06-30 Magnetic circuit incorporating rare-earth permanent magnet

Publications (1)

Publication Number Publication Date
JP2006019322A true JP2006019322A (en) 2006-01-19

Family

ID=35793337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004192514A Pending JP2006019322A (en) 2004-06-30 2004-06-30 Magnetic circuit incorporating rare-earth permanent magnet

Country Status (1)

Country Link
JP (1) JP2006019322A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007262342A (en) * 2006-03-30 2007-10-11 Dainippon Printing Co Ltd Adhesive for permanent magnet, adhesive sheet for permanent magnet and method of joining permanent magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007262342A (en) * 2006-03-30 2007-10-11 Dainippon Printing Co Ltd Adhesive for permanent magnet, adhesive sheet for permanent magnet and method of joining permanent magnet

Similar Documents

Publication Publication Date Title
TWI227587B (en) Motor and its rotor
JP2011023670A (en) Anisotropic thermally-conductive element, and method of manufacturing the same
TW200803116A (en) Motor and rotor structure thereof
JP6979263B2 (en) Diffusion treatment method of heavy rare earth elements for Nd-Fe-B based magnetic material with arc cross section
WO2016121149A1 (en) Magnet adhesive member
JP2007180368A (en) Method for manufacturing magnetic circuit part
JP4204978B2 (en) Method of joining magnetic target and backing plate and magnetic target
JP2004328927A (en) Yoke with permanent magnet and manufacturing method therefor, permanent magnet type rotary electric machine, and linear motor
US20090021097A1 (en) Permanent magnet rotator and motor using the same
JP2006019322A (en) Magnetic circuit incorporating rare-earth permanent magnet
JP2008187854A (en) Spindle motor
JPH08339916A (en) Permanent-magnet magnetic circuit
JP4363480B2 (en) Rare earth permanent magnet
US7482688B2 (en) Attaching heat sinks to integrated circuit packages
KR100651296B1 (en) Coupling structure and method of the permanent magnet of a motor
US20110151587A1 (en) Method of producing an integrated micromagnet sensor assembly
JP2003169453A (en) Rotor arrangement
JPH07176427A (en) Magnetic circuit unit for microspeaker and its production
JP2003264963A (en) Rotor and manufacturing method therefor
JPH01171215A (en) Manufacture of rare earth-fe-b magnet lamination member
JPH0993845A (en) Surface magnet type rotor
WO2004077413A1 (en) In-magnetic-field heat-treating device
JP3007561B2 (en) Method of joining R-Fe-B permanent magnet and yoke
JP2005295684A (en) Magnetic core and method for manufacturing magnetic core and core winding group and method for manufacturing core winding group
JP6318811B2 (en) Superconducting bulk magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081030

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090609