JP2006018243A - Method for manufacturing wavelength converting element - Google Patents

Method for manufacturing wavelength converting element Download PDF

Info

Publication number
JP2006018243A
JP2006018243A JP2005158708A JP2005158708A JP2006018243A JP 2006018243 A JP2006018243 A JP 2006018243A JP 2005158708 A JP2005158708 A JP 2005158708A JP 2005158708 A JP2005158708 A JP 2005158708A JP 2006018243 A JP2006018243 A JP 2006018243A
Authority
JP
Japan
Prior art keywords
electrode
forming
comb
thin film
optical wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005158708A
Other languages
Japanese (ja)
Other versions
JP4639963B2 (en
Inventor
Keiichi Takahashi
慶一 高橋
Hiroyuki Kurotake
弘至 黒竹
Kiminori Mizuuchi
公典 水内
Tomoya Sugita
知也 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005158708A priority Critical patent/JP4639963B2/en
Publication of JP2006018243A publication Critical patent/JP2006018243A/en
Application granted granted Critical
Publication of JP4639963B2 publication Critical patent/JP4639963B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a wavelength converting element having a large light wavelength conversion efficiency and low transmission loss of light, with high accuracy so as to control a periodically polarization-inversion structure for stably manufacturing a wavelength converting element having a periodical polling inversion structure in an optical waveguide. <P>SOLUTION: In a step of forming an interdigital electrode 25 comprising periodical strip electrodes 23 and a common electrode 24 on a first surface 22 of a ferroelectric substrate in a single domain, having the first surface 22 and a second surface 27 facing each other, the pattern of the interdigital electrode 25 is formed and is further subjected to overetching to produce level difference on the surface of the ferroelectric substrate 21 and an insulating thin film 26 is formed on the first surface 22. Then an electric field is applied between the interdigital electrode 25 and a counter electrode 28 to form a periodically polarization-inverted region 29. Thus, a SHG (second harmonic generation) device with high conversion efficiency can be realized. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、非線形電気光学効果を有する強誘電体を用いた光導波路を一体に形成した光第2高調波発生導波路素子などの光波長変換素子の製造方法に関するものである。   The present invention relates to a method of manufacturing an optical wavelength conversion element such as an optical second harmonic generation waveguide element in which an optical waveguide using a ferroelectric material having a nonlinear electro-optic effect is integrally formed.

近年、DVDなどの光記録媒体用のレーザー光発生手段としては、レーザーダイオードなどの発光デバイスが用いられるが、さらなる高密度化の要求のために小型短波長のコヒーレント光源として、光第2高調波発生素子(以下、光第2高調波発生素子をSHG素子と略記する)を用いたレーザー光が注目されている。   In recent years, a light emitting device such as a laser diode is used as a laser beam generating means for an optical recording medium such as a DVD. However, as a small and short wavelength coherent light source for the demand for higher density, an optical second harmonic wave is used. A laser beam using a generation element (hereinafter, an optical second harmonic generation element is abbreviated as an SHG element) has attracted attention.

このSHG素子は、ニオブ酸リチウムやタンタル酸リチウムなどの無機酸化物からなり、いずれも大きな非線形光学定数を有している。このSHG素子に入射させる光の入力波と出力波との波数を擬似的に整合させることにより、出てくる光の出力を増幅させる手法として、周期分極反転構造を利用する方法が提案されている。   This SHG element is made of an inorganic oxide such as lithium niobate or lithium tantalate, and has a large nonlinear optical constant. As a technique for amplifying the output of the light that comes out by artificially matching the wave numbers of the input wave and the output wave of light incident on the SHG element, a method using a periodically poled structure has been proposed. .

この周期分極反転構造を作製する方法として、光導波路の一部分にある周期ごとに(1)チタン(Ti)を成膜形成し、高温熱処理により拡散させる方法、(2)プロトン交換処理をして、急熱急冷する方法、(3)コロナ放電を利用する方法、(4)櫛型電極に高電圧印加する方法、などが知られている。   As a method for producing this periodically poled structure, (1) a method of forming a titanium (Ti) film for each period in a part of the optical waveguide and diffusing it by high-temperature heat treatment, (2) a proton exchange treatment, A method of rapid heating and quenching, (3) a method of using corona discharge, (4) a method of applying a high voltage to a comb-shaped electrode, and the like are known.

この中で(4)の高電圧印加方法はプロセス上工程が少なく、バルク材料に応用可能であるので、最も、有望視されている。   Among them, the high voltage application method (4) is most promising because it has few steps in the process and can be applied to a bulk material.

しかし、この方法で高電圧を櫛型電極などの微細パターンに印加する場合、電極先端より分極反転領域が成長するため、先端部ほど反転領域幅が広くなってしまい、短周期の分極反転構造で領域境界が反転領域長のほぼ全領域にわたり平行な直線状で十分長い分極反転領域をもった分極反転構造を形成することができていなかった。そのため、特に波長の短い紫外や青色光の発生について、その発生するSHG波の効率が大きいSHG素子が得られていなかった。   However, when a high voltage is applied to a fine pattern such as a comb-shaped electrode by this method, the domain-inverted region grows from the tip of the electrode. It has not been possible to form a domain-inverted structure having a domain-inverted region that has a sufficiently long linear domain-inverted region that is parallel to the entire region of the inversion region length. For this reason, an SHG element having high efficiency of the generated SHG wave has not been obtained particularly for generation of ultraviolet or blue light having a short wavelength.

なお、この出願の発明に関連する先行技術文献情報としては、例えば特許文献1が知られている。
特開平4−335620号公報
As prior art document information related to the invention of this application, for example, Patent Document 1 is known.
JP-A-4-335620

導波路内に周期的分極反転領域を設けてSHG素子を形成する場合、理想的には、導波路内のどの位置においてもデューティー比が0.5になっていることが望ましい。しかしながら、櫛型電極を用いて高電圧を印加することにより、光導波路部に周期的分極反転構造を作製する場合、通常分極反転領域の形成のために一様な電界を、その所望する領域に印加しなければならないが、そのとき、所望の領域以外の電極が無い領域にまで、漏れ電界の影響により分極反転領域が形成されてしまう。これは櫛型電極からはみ出した領域にも分極反転領域が成長していってしまうためで、これまでその成長を抑制できていなかったため形成される分極反転構造を制御することが困難であり、非直線的な成長パターンを示した分極反転境界をもつ素子しか得られていなかった。   When an SHG element is formed by providing a periodic domain-inverted region in a waveguide, ideally, the duty ratio is desirably 0.5 at any position in the waveguide. However, when a periodic domain-inverted structure is produced in the optical waveguide portion by applying a high voltage using a comb-shaped electrode, a uniform electric field is usually applied to the desired region to form the domain-inverted region. However, at that time, a domain-inverted region is formed due to the influence of the leakage electric field up to a region where there is no electrode other than the desired region. This is because the domain-inverted region grows also in the region protruding from the comb-shaped electrode. Since the growth has not been suppressed so far, it is difficult to control the domain-inverted structure formed. Only devices with a domain-inverted boundary showing a linear growth pattern were obtained.

このことにより、導波路を第1の面に対して垂直かつ導波方向に平行な断面において、導波路厚さ方向の分極反転境界が、中央が膨らんだような曲線になる。このような反転境界を持つ素子は、中央付近と端に近い部分とでは、導波方向に対して分極反転されている長さが異なる(即ちデューティー比が異なる)ため、SHG増幅効果のバラツキが大きく、その値も小さいもので、SHG変換効率の大きいSHG素子が作製しにくいという課題を有していた。   As a result, in the cross section perpendicular to the first surface and parallel to the waveguide direction, the polarization reversal boundary in the waveguide thickness direction becomes a curve whose center is swollen. In an element having such an inversion boundary, the length of polarization inversion in the waveguide direction is different between the vicinity of the center and the portion near the end (that is, the duty ratio is different). It has a problem that it is difficult to produce an SHG element that is large and small in value and has high SHG conversion efficiency.

本発明は上記課題を鑑みてなされたものであり、その目的とするところは、変換効率が大きな光波長変換素子の製造方法を提供することである。   This invention is made | formed in view of the said subject, The place made into the objective is to provide the manufacturing method of an optical wavelength conversion element with large conversion efficiency.

本発明による光波長変換素子の製造方法は、互いに対向する第1の面と第2の面とを有する単分域化された強誘電体基板の第1の面に周期的ストリップ電極と共通電極とからなる櫛型電極を形成する工程と、第2の面に対向電極を形成する工程と、第1の面に絶縁体薄膜を形成する工程と、櫛型電極と対向電極との間に電界を印加することにより周期分極反転領域を形成する工程と、絶縁体薄膜と櫛型電極を除去する工程とを備えた光波長変換素子の製造方法であって、櫛型電極のパターンを形成する工程においてドライエッチングを用い、櫛型電極のパターンを形成した後、さらにオーバーエッチングを行うことにより、強誘電体基板表面に段差を設けるものであり、強誘電体基板に形成される分極反転領域の境界をほぼ領域全長にわたって平行な直線状にし、分極反転領域の幅とその周期の比であるデューティー比の反転形成領域内での位置依存性を少なくしたものである。   The method of manufacturing an optical wavelength conversion device according to the present invention includes a periodic strip electrode and a common electrode on a first surface of a monodomain ferroelectric substrate having a first surface and a second surface facing each other. A step of forming a comb electrode comprising: a step of forming a counter electrode on the second surface; a step of forming an insulator thin film on the first surface; and an electric field between the comb electrode and the counter electrode A method of manufacturing an optical wavelength conversion device comprising a step of forming a periodic domain-inverted region by applying a step, and a step of removing the insulator thin film and the comb-shaped electrode, wherein the pattern of the comb-shaped electrode is formed After forming a comb-shaped electrode pattern using dry etching and performing over-etching, a step is provided on the surface of the ferroelectric substrate, and the boundary of the domain-inverted regions formed on the ferroelectric substrate Over almost the entire region The parallel straight, but with a reduced position dependency of an inversion forming region of the duty ratio which is the ratio of the width and the period of the domain inversion regions.

本発明による分極反転構造を光導波路内部にもつ光波長変換素子は、短波長のSHG素子としての利用に関して、その充分な大きさの分極反転領域境界をほぼ反転領域全長にわたって平行な直線状にもつことにより、反転領域に対する導波路形成位置のバラツキによらず、デューティー比の反転形成領域内での位置依存性の少ない優れたSHG素子を作製することができ、SHG素子の変換効率を向上させることができる。   An optical wavelength conversion element having a domain-inverted structure in an optical waveguide according to the present invention has a sufficiently large domain-inverted region boundary in a straight line parallel to the entire length of the domain-inverted region when used as a short wavelength SHG device. As a result, an excellent SHG element with little position dependency in the inversion formation region of the duty ratio can be manufactured regardless of variations in the waveguide formation position with respect to the inversion region, and the conversion efficiency of the SHG element can be improved. Can do.

(実施の形態)
以下、本発明の実施の形態における光波長変換素子の製造方法について、図面を参照しながら説明する。
(Embodiment)
Hereinafter, the manufacturing method of the optical wavelength conversion element in embodiment of this invention is demonstrated, referring drawings.

図1は本発明によるSHG素子の構成図であり、分極反転領域29を形成した強誘電体基板21と支持基板13とを直接接合領域14および非直接接合領域15を有した主面により貼り合わせた接合基板において形成された光導波路16をもつ構成である。以上の様に構成する光波長変換素子の製造方法について詳細に説明する。図2は、本発明の実施形態の製造方法の主要部を説明するための図である。   FIG. 1 is a configuration diagram of an SHG element according to the present invention, in which a ferroelectric substrate 21 having a domain-inverted region 29 and a support substrate 13 are bonded together by a main surface having a direct bonding region 14 and a non-direct bonding region 15. In this configuration, the optical waveguide 16 is formed on the bonded substrate. A manufacturing method of the optical wavelength conversion element configured as described above will be described in detail. FIG. 2 is a diagram for explaining a main part of the manufacturing method according to the embodiment of the present invention.

まず、Z方向に分極された5°YカットのMgOをドープしたニオブ酸リチウムの基板を強誘電体基板21として用い、この強誘電体基板21の第1の面22に、厚さ約150nmのアルミニウム膜を形成し、さらにその上にフォトリソグラフィー技術により、レジストパターンを形成した後、ドライエッチングにより、ストリップ電極23および共通電極24からなる櫛型電極25を形成する。ドライエッチングには、Cl2およびBCl3の混合ガスを用いて、櫛型電極パターンが形成された後もさらにオーバーエッチングを行い、電極以外の部分を約10nm削る。オーバーエッチングは、アルミニウムのエッチングと同じ条件で時間を延ばすだけで行っても良いが、イオン性エッチングの割合を上げるようにBCl3の割合を増やす、あるいはAr等のガスを用いても良い。 First, a lithium niobate substrate doped with 5 ° Y-cut MgO polarized in the Z direction is used as the ferroelectric substrate 21, and the first surface 22 of the ferroelectric substrate 21 has a thickness of about 150 nm. An aluminum film is formed, a resist pattern is formed thereon by photolithography, and then a comb-shaped electrode 25 including a strip electrode 23 and a common electrode 24 is formed by dry etching. For dry etching, a mixed gas of Cl 2 and BCl 3 is used to perform further over-etching even after the comb-shaped electrode pattern is formed, and parts other than the electrode are shaved by about 10 nm. Overetching is under the same conditions as aluminum etching may be performed only by extending the time, increasing the proportion of BCl 3 to increase the proportion of ionic etching, or may be used gases such as Ar.

次にレジストを除去した後、第1の面22に酸化シリコンからなる絶縁体薄膜26を厚さ約100nmで形成する。このようにすることにより、第1の面22表面の絶縁体薄膜26が付着している部分の応力状態を、約150MPaの圧縮応力状態にすることができる。   Next, after removing the resist, an insulator thin film 26 made of silicon oxide is formed on the first surface 22 with a thickness of about 100 nm. By doing in this way, the stress state of the portion where the insulator thin film 26 on the surface of the first surface 22 is adhered can be made a compressive stress state of about 150 MPa.

第1の面22に絶縁体薄膜26を付着させた状態で、共通電極24と第2の面27に設けた対向電極28との間に、約5kVのパルス電圧をMgO:LN基板の自発分極の正側を正電位になるように、負側を負電位になるように絶縁オイル中で印加し、ストリップ電極23の先端付近から、Z軸方向に分極反転領域29を成長させる。なお、第2の面に対向電極28を設ける工程は、パルス電圧を印加する以前のどの段階でも構わない。   With the insulator thin film 26 attached to the first surface 22, a pulse voltage of about 5 kV is applied between the common electrode 24 and the counter electrode 28 provided on the second surface 27 to spontaneous polarization of the MgO: LN substrate. Application is made in insulating oil so that the positive side becomes positive potential and the negative side becomes negative potential, and a domain-inverted region 29 is grown in the Z-axis direction from the vicinity of the tip of the strip electrode 23. Note that the step of providing the counter electrode 28 on the second surface may be performed at any stage before the pulse voltage is applied.

このあと、絶縁体薄膜26および櫛型電極25を除去した後、第1の面22側と支持基板16とを接合し、第2の面27側を所定の厚さに研磨した後、さらにリッジ加工することにより、図1のような光導波路内に周期分極反転を有する光波長変換素子を得ることができる。   Thereafter, after the insulator thin film 26 and the comb-shaped electrode 25 are removed, the first surface 22 side and the support substrate 16 are joined, the second surface 27 side is polished to a predetermined thickness, and then the ridge is further removed. By processing, an optical wavelength conversion element having periodic polarization inversion in the optical waveguide as shown in FIG. 1 can be obtained.

本発明の効果を確認するために、図2のようにしてパルス電圧を印加し、分極反転領域29を形成した後、後の工程で光導波路16を形成する位置で、導波方向に平行で、第1の面22に対して垂直な面(図2のC−C)で切断研磨し、エッチング処理を施すことにより、分極反転領域29の形状を確認した。図3(a)は、本発明の実施の形態によって形成された分極反転領域29の断面図であり、分極反転領域29の境界の形状が、第1の面22の直下で水平にほぼ直線状に伸び、第1の面22に対して垂直な方向の分極反転領域境界も直線に近くなっている。これは、第1の面22の段差および絶縁体薄膜26により分極反転領域29の成長が規制されて、直線状に成長したことによるものと考えられる。一方図3(b)は、従来の方法によって形成されたもので、分極反転領域29境界が丸くなった形状となっている。なお、これらの図の水平方向が導波方向となる。図3(a)及び図3(b)で、分極周期をP、中央付近の分極反転領域29の幅をWとすると、W/Pがデューティー比となるが、それぞれの第1の面22に近い部分での分極判定領域29の幅をW1、W2とすると、従来の方法による図3(b)では、W2/PとW/Pとでは異なっているのに対し、本発明の実施形態による図3(a)では、W1/PとW/Pとはほとんど変わらないため、どの位置を通る光に対してもデューティー比が一定となっているため、SHG素子としての変換効率を向上させることができる。   In order to confirm the effect of the present invention, a pulse voltage is applied as shown in FIG. 2 to form the domain-inverted region 29, and then at a position where the optical waveguide 16 is formed in a later step, parallel to the waveguide direction. The shape of the domain-inverted region 29 was confirmed by cutting and polishing the surface perpendicular to the first surface 22 (CC in FIG. 2) and performing etching. FIG. 3A is a cross-sectional view of the domain-inverted region 29 formed according to the embodiment of the present invention, and the shape of the boundary of the domain-inverted region 29 is a straight line that is horizontally straight under the first surface 22. The domain-inverted region boundary in the direction perpendicular to the first surface 22 is also close to a straight line. This is considered to be because the growth of the domain-inverted region 29 is regulated by the step of the first surface 22 and the insulator thin film 26 and grows linearly. On the other hand, FIG. 3B is formed by a conventional method and has a shape in which the boundary of the domain-inverted region 29 is rounded. Note that the horizontal direction in these figures is the waveguide direction. 3A and 3B, if the polarization period is P and the width of the polarization inversion region 29 near the center is W, W / P is a duty ratio. If the width of the polarization determination region 29 in the near part is W1 and W2, in FIG. 3B according to the conventional method, W2 / P and W / P are different, but according to the embodiment of the present invention. In FIG. 3A, since W1 / P and W / P are almost the same, the duty ratio is constant for light passing through any position, so that the conversion efficiency as an SHG element is improved. Can do.

以上のようにして得られたSHG素子の約50mWの光を入力することで、約3.5mWのSHG出力が得られ、従来の方法で作成したものでの約2.8mWの出力に対し、約20%の変換効率の向上がみられた。   By inputting about 50 mW light of the SHG element obtained as described above, an SHG output of about 3.5 mW is obtained, and for an output of about 2.8 mW produced by a conventional method, The conversion efficiency was improved by about 20%.

ここで本発明のような効果が得られる理由について説明する。発明者らは、強誘電体表面を圧縮応力状態にしておくと、分極反転が成長しにくくなることを確認した。ストリップ電極23の周囲に絶縁体薄膜26を形成することにより、ストリップ電極23以外の部分の強誘電体表面を圧縮応力状態にし、さらに櫛型電極25以外の部分をオーバーエッチングにより削り、ストリップ電極23のある部分とない部分で、強誘電体基板21の表面に段差を設けているので、ストリップ電極23直下から成長した分極反転領域29は、この段差により周囲に広がるのを妨げられるので、直線状に成長しやすくなる。これにより、分極反転領域境界の基板厚さ方向の直線性を向上させ、変換効率を向上させることができる。   Here, the reason why the effect of the present invention can be obtained will be described. The inventors have confirmed that when the surface of the ferroelectric material is kept in a compressive stress state, the polarization inversion becomes difficult to grow. By forming the insulator thin film 26 around the strip electrode 23, the ferroelectric surface other than the strip electrode 23 is brought into a compressive stress state, and the portions other than the comb-shaped electrode 25 are shaved by over-etching. Since the step is provided on the surface of the ferroelectric substrate 21 in the portion with and without the portion, the domain-inverted region 29 grown from directly under the strip electrode 23 is prevented from spreading to the periphery by this step, so that it is linear. Easy to grow. Thereby, the linearity in the substrate thickness direction at the domain-inverted region boundary can be improved, and the conversion efficiency can be improved.

本発明の効果と強誘電体基板21の表面の段差との関係を調べると、段差が5nmより小さくなると、その効果が小さくなり、分極反転領域境界の基板厚さ方向の直線性が悪くなった。また、100nmより大きくなると、直線性の劣化はないが、分極反転領域29の成長が妨げられるので好ましくない。また、分極反転領域29を成長させた後、第1の面22を研磨して支持基板13と直接接合するが、強誘電体基板21の表面の段差が100nmより大きくなると、研磨に時間がかかったり、基板が反りやすくなったりするため好ましくない。以上により、強誘電体基板21の表面の段差は、5nm〜100nmの間で形成するのが好ましい。   When the relationship between the effect of the present invention and the step on the surface of the ferroelectric substrate 21 was examined, when the step was smaller than 5 nm, the effect was reduced and the linearity in the substrate thickness direction at the domain-inverted region boundary was deteriorated. . On the other hand, when the thickness is larger than 100 nm, the linearity is not deteriorated, but the growth of the domain-inverted regions 29 is hindered, which is not preferable. Further, after the domain-inverted region 29 is grown, the first surface 22 is polished and bonded directly to the support substrate 13. However, if the step of the surface of the ferroelectric substrate 21 is larger than 100 nm, it takes time to polish. Or the substrate tends to warp. As described above, the step on the surface of the ferroelectric substrate 21 is preferably formed between 5 nm and 100 nm.

また、圧縮応力の強さについても調べると、100MPaより小さくなると、その効果が小さくなり、分極反転領域境界の基板厚さ方向の直線性が悪くなった。また、200MPaより大きくなると、分極反転領域29の形状自体が他の反転領域とは異なり、エッジ付近のみが反転領域となるように変形してしまい、所望の反転形状が得られなかった。以上により、圧縮応力の強さは、100MPa〜200MPaの間で形成するのが好ましい。   Further, when the strength of the compressive stress was also examined, when the pressure was less than 100 MPa, the effect was reduced, and the linearity of the domain-inverted region boundary in the substrate thickness direction was deteriorated. On the other hand, when the pressure is higher than 200 MPa, the shape of the domain-inverted region 29 itself is different from the other invertible regions, and is deformed so that only the vicinity of the edge becomes the inverted region, and a desired inverted shape cannot be obtained. As described above, it is preferable that the compressive stress is formed between 100 MPa and 200 MPa.

なお、圧縮応力は分極反転を成長させにくくするためのものであり、分極反転を成長させるストリップ電極23の直下は、圧縮応力状態になっていないことが望ましい。図4は本発明の別の実施形態を説明するための図である。第1の面22の全体に酸化シリコン薄膜からなる絶縁体薄膜26を形成した後、レジストパターンを形成し、CF4とO2の混合ガスを用いてストリップ電極23上の一部の酸化シリコンを除去したものであり、このようにすることにより、ストリップ電極23直下の強誘電体基板21の表面の応力を緩和することができ、より好ましい。通常青色の光を出すSHG素子では、分極反転周期は約4.6μmとなる。ストリップ電極23の幅はおよそその半分くらいとなるため、レジストパターンの重ね合わせ精度を考慮しても、通常のフォトリソグラフィー技術で十分対応可能となる。 The compressive stress is intended to make it difficult to grow the polarization inversion, and it is desirable that the compressive stress is not in a compressive stress state immediately below the strip electrode 23 on which the polarization inversion is grown. FIG. 4 is a diagram for explaining another embodiment of the present invention. After forming an insulator thin film 26 made of a silicon oxide thin film on the entire first surface 22, a resist pattern is formed, and a part of silicon oxide on the strip electrode 23 is removed using a mixed gas of CF 4 and O 2. This is more preferable because the stress on the surface of the ferroelectric substrate 21 immediately below the strip electrode 23 can be relaxed. In an SHG element that normally emits blue light, the polarization inversion period is about 4.6 μm. Since the width of the strip electrode 23 is about half that of the strip electrode 23, even if the overlay accuracy of the resist pattern is taken into consideration, it can be sufficiently handled by a normal photolithography technique.

また、図2では、第1の面22に櫛型電極25を、第2の面27のストリップ電極23の延伸方向に対向電極28を設け、この間にパルス電圧を印加し、分極反転を形成したが、これに限定されるものではなく、図5のように、第1の面22に櫛型電極25及びその延伸方向に浮き電極53を設け、第2の面27の櫛型電極25及び浮き電極53両方にわたって対向するように対向電極28を設け、櫛型電極25と対向電極28との間にパルス電圧を印加するようにしても構わない。対向電極28に印加された電圧によって浮き電極53に電荷が誘起され、これによって櫛型電極25と浮き電極53との間に電界が生じ、対向電極28と櫛型電極25との間に生じる電界と合成されて斜め方向の電界となり、これにより分極反転領域29を成長させることができる。このようにすることにより、図2の方法では櫛型電極25と対向電極28の距離をとる必要があったのに対し、この距離を短くでき、分極反転領域29を形成するための面積を小さくすることができる。この場合でも、浮き電極53はフォトリソグラフィーにより、櫛型電極25と同時に形成することができるので、特に工程を追加する必要はない。   In FIG. 2, a comb-shaped electrode 25 is provided on the first surface 22 and a counter electrode 28 is provided in the extending direction of the strip electrode 23 on the second surface 27, and a pulse voltage is applied therebetween to form polarization reversal. However, the present invention is not limited to this. As shown in FIG. 5, the comb electrode 25 and the floating electrode 53 are provided on the first surface 22 in the extending direction, and the comb electrode 25 and the floating surface on the second surface 27 are provided. The counter electrode 28 may be provided so as to face both the electrodes 53, and a pulse voltage may be applied between the comb electrode 25 and the counter electrode 28. Electric charges are induced in the floating electrode 53 by the voltage applied to the counter electrode 28, whereby an electric field is generated between the comb electrode 25 and the floating electrode 53, and an electric field generated between the counter electrode 28 and the comb electrode 25. And an electric field in an oblique direction, whereby the domain-inverted region 29 can be grown. In this way, the method of FIG. 2 requires a distance between the comb electrode 25 and the counter electrode 28, but this distance can be shortened and the area for forming the domain-inverted region 29 can be reduced. can do. Even in this case, the floating electrode 53 can be formed at the same time as the comb-shaped electrode 25 by photolithography, so that it is not necessary to add a process.

本発明にかかる光波長変換素子の製造方法は、強誘電体基板に形成される分極反転領域の境界をほぼ領域全長にわたって平行な直線状にし、分極反転領域の幅とその周期の比であるデューティー比の反転形成領域内での位置依存性を少なくしたものであり、光波長変換素子の高効率化が図れる。   In the method of manufacturing an optical wavelength conversion element according to the present invention, the boundary of a domain-inverted region formed on a ferroelectric substrate is made to be a straight line that is substantially parallel to the entire region, and a duty that is a ratio of the width of the domain-inverted region and its period The position dependency in the ratio inversion formation region is reduced, and the efficiency of the optical wavelength conversion element can be increased.

本発明によるSHG素子の構成図Configuration diagram of SHG element according to the present invention 本発明の一実施形態の製造方法の主要部を説明するための図The figure for demonstrating the principal part of the manufacturing method of one Embodiment of this invention. 本発明と従来例との分極反転領域形状を比較するための図The figure for comparing the polarization inversion area | region shape of this invention and a prior art example 本発明の別の実施形態を説明するための図The figure for demonstrating another embodiment of this invention 本発明の別の実施形態の製造方法の主要部を説明するための図The figure for demonstrating the principal part of the manufacturing method of another embodiment of this invention.

符号の説明Explanation of symbols

13 支持基板
14 直接接合領域
15 非直接接合領域
16 光導波路
21 強誘電体基板
22 第1の面
23 ストリップ電極
24 共通電極
25 櫛型電極
26 絶縁体薄膜
27 第2の面
28 対向電極
29 分極反転領域
53 浮き電極
DESCRIPTION OF SYMBOLS 13 Support substrate 14 Direct bonding area | region 15 Non-direct bonding area | region 16 Optical waveguide 21 Ferroelectric board | substrate 22 1st surface 23 Strip electrode 24 Common electrode 25 Comb-shaped electrode 26 Insulator thin film 27 2nd surface 28 Counter electrode 29 Polarization inversion Region 53 Floating electrode

Claims (6)

互いに対向する第1の面と第2の面とを有する単分域化された強誘電体基板の前記第1の面に周期的ストリップ電極と共通電極とからなる櫛型電極を形成する工程と、前記第2の面に対向電極を形成する工程と、前記第1の面に絶縁体薄膜を形成する工程と、前記櫛型電極と前記対向電極との間に電界を印加することにより周期分極反転領域を形成する工程と、前記絶縁体薄膜と前記櫛型電極を除去する工程とを備えた光波長変換素子の製造方法であって、前記櫛型電極のパターンを形成する工程においてドライエッチングを用い、前記櫛型電極のパターンを形成した後、さらにオーバーエッチングを行うことにより、強誘電体基板表面に段差を設ける光波長変換素子の製造方法。 Forming a comb-shaped electrode composed of a periodic strip electrode and a common electrode on the first surface of a monodomain ferroelectric substrate having a first surface and a second surface facing each other; Forming a counter electrode on the second surface; forming an insulator thin film on the first surface; and applying an electric field between the comb electrode and the counter electrode to periodically polarize A method of manufacturing an optical wavelength conversion device, comprising: a step of forming an inversion region; and a step of removing the insulator thin film and the comb electrode, wherein dry etching is performed in the step of forming a pattern of the comb electrode. A method for manufacturing an optical wavelength conversion element, wherein a step is formed on the surface of a ferroelectric substrate by performing over-etching after forming the pattern of the comb-shaped electrode. 強誘電体基板表面の段差が5nm〜100nmの間で形成された請求項2記載の光波長変換素子の製造方法。 The method for producing an optical wavelength conversion element according to claim 2, wherein the step on the surface of the ferroelectric substrate is formed between 5 nm and 100 nm. 絶縁体薄膜が形成されている部分の強誘電体基板表面は圧縮応力状態となっている状態で、櫛型電極と対向電極との間に電界を印加することにより周期分極反転領域を形成する請求項1記載の光波長変換素子の製造方法。 A part of the ferroelectric substrate where the insulator thin film is formed is in a state of compressive stress, and an electric field is applied between the comb electrode and the counter electrode to form a periodically poled region. Item 2. A method for producing an optical wavelength conversion element according to Item 1. 圧縮応力の大きさが100〜200MPaの状態である請求項3記載の光波長変換素子の製造方法。 The method for producing an optical wavelength conversion element according to claim 3, wherein the compressive stress is in a state of 100 to 200 MPa. 櫛型電極を形成する工程において、同時にストリップ電極の延伸方向の第1の面上に浮き電極を形成する請求項1記載の光波長変換素子の製造方法。 2. The method of manufacturing an optical wavelength conversion element according to claim 1, wherein in the step of forming the comb-shaped electrode, a floating electrode is simultaneously formed on the first surface in the extending direction of the strip electrode. 第1の面に絶縁体薄膜を形成する工程において、第1の面全面に絶縁体薄膜を形成した後、少なくともストリップ電極上の前記絶縁体薄膜の一部を除去する請求項1記載の光波長変換素子の製造方法。 2. The optical wavelength according to claim 1, wherein in the step of forming the insulator thin film on the first surface, after forming the insulator thin film on the entire first surface, at least a part of the insulator thin film on the strip electrode is removed. A method for manufacturing a conversion element.
JP2005158708A 2004-05-31 2005-05-31 Manufacturing method of optical wavelength conversion element Expired - Fee Related JP4639963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005158708A JP4639963B2 (en) 2004-05-31 2005-05-31 Manufacturing method of optical wavelength conversion element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004161012 2004-05-31
JP2005158708A JP4639963B2 (en) 2004-05-31 2005-05-31 Manufacturing method of optical wavelength conversion element

Publications (2)

Publication Number Publication Date
JP2006018243A true JP2006018243A (en) 2006-01-19
JP4639963B2 JP4639963B2 (en) 2011-02-23

Family

ID=35792546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005158708A Expired - Fee Related JP4639963B2 (en) 2004-05-31 2005-05-31 Manufacturing method of optical wavelength conversion element

Country Status (1)

Country Link
JP (1) JP4639963B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007232826A (en) * 2006-02-28 2007-09-13 Matsushita Electric Ind Co Ltd Manufacturing method of wavelength conversion element
JP2008216868A (en) * 2007-03-07 2008-09-18 Matsushita Electric Ind Co Ltd Manufacturing method of optical element
JP2008310308A (en) * 2007-05-15 2008-12-25 Panasonic Corp Laser wavelength conversion device, method for forming polarization reversed structure, and image display device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08220578A (en) * 1994-08-31 1996-08-30 Matsushita Electric Ind Co Ltd Manufacture of polarization inversion area, and light wavelength converting element utilizing that and its manufacture
JP2001066652A (en) * 1999-08-27 2001-03-16 Matsushita Electric Ind Co Ltd Method for formation of polarization inverted structure and production of wavelength converting device using the same
WO2004081647A1 (en) * 2003-03-14 2004-09-23 Mitsubishi Cable Industries Ltd. Method of manufacturing domain inverted crystal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08220578A (en) * 1994-08-31 1996-08-30 Matsushita Electric Ind Co Ltd Manufacture of polarization inversion area, and light wavelength converting element utilizing that and its manufacture
JP2001066652A (en) * 1999-08-27 2001-03-16 Matsushita Electric Ind Co Ltd Method for formation of polarization inverted structure and production of wavelength converting device using the same
WO2004081647A1 (en) * 2003-03-14 2004-09-23 Mitsubishi Cable Industries Ltd. Method of manufacturing domain inverted crystal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007232826A (en) * 2006-02-28 2007-09-13 Matsushita Electric Ind Co Ltd Manufacturing method of wavelength conversion element
JP2008216868A (en) * 2007-03-07 2008-09-18 Matsushita Electric Ind Co Ltd Manufacturing method of optical element
JP2008310308A (en) * 2007-05-15 2008-12-25 Panasonic Corp Laser wavelength conversion device, method for forming polarization reversed structure, and image display device

Also Published As

Publication number Publication date
JP4639963B2 (en) 2011-02-23

Similar Documents

Publication Publication Date Title
JP4639963B2 (en) Manufacturing method of optical wavelength conversion element
US8101099B2 (en) Optical waveguide substrate manufacturing method
JP5155385B2 (en) Wavelength conversion element
JP2002040502A (en) Optical waveguide element
JP2009222963A (en) Harmonics generating devices
JP2010156787A (en) Method for manufacturing optical functional element
JP4114694B2 (en) Optical wavelength conversion element and short wavelength light generator
JP4400816B2 (en) Method for manufacturing periodically poled structure and optical device
JP4657228B2 (en) Wavelength conversion element
JP4899948B2 (en) Optical element manufacturing method
JPH06265956A (en) Optical wavelength conversion method
JP4854187B2 (en) Method for manufacturing polarization reversal part
JP2008216869A (en) Manufacturing method of optical element
JP2002372731A (en) Element for waveguide conversion and element for optical operation
JP2010197908A (en) Method of manufacturing shg element
JP4675006B2 (en) Method for forming periodic domain-inverted structure
US7394588B2 (en) Wavelength converter structure and method for preparing the same
JP2001330866A (en) Method for manufacturing optical wavelength conversion element
JP3316987B2 (en) Method of forming domain-inverted grating and optical waveguide
JP3842427B2 (en) Optical waveguide component and manufacturing method thereof
JP4114693B2 (en) Manufacturing method of polarization reversal
JP2014211538A (en) Wavelength conversion element
JPH11282036A (en) Production of optical wavelength conversion element
JP2973642B2 (en) Manufacturing method of optical wavelength conversion element
JP3006217B2 (en) Optical wavelength conversion element and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080418

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080513

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101115

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees