JPH11282036A - Production of optical wavelength conversion element - Google Patents

Production of optical wavelength conversion element

Info

Publication number
JPH11282036A
JPH11282036A JP8344998A JP8344998A JPH11282036A JP H11282036 A JPH11282036 A JP H11282036A JP 8344998 A JP8344998 A JP 8344998A JP 8344998 A JP8344998 A JP 8344998A JP H11282036 A JPH11282036 A JP H11282036A
Authority
JP
Japan
Prior art keywords
substrate
wavelength conversion
electrode
conversion element
optical wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8344998A
Other languages
Japanese (ja)
Other versions
JP3526206B2 (en
Inventor
Shinichiro Sonoda
慎一郎 園田
Isao Tsuruma
功 鶴間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP08344998A priority Critical patent/JP3526206B2/en
Publication of JPH11282036A publication Critical patent/JPH11282036A/en
Application granted granted Critical
Publication of JP3526206B2 publication Critical patent/JP3526206B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/3558Poled materials, e.g. with periodic poling; Fabrication of domain inverted structures, e.g. for quasi-phase-matching [QPM]

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the mass productivity and to uniformly form periodic polarization inversion structures with respect to a method to produce an optical wavelength conversion element where an optical waveguide extended along one surface of a ferroelectric crystal substrate is formed on this substrate having a nonlinear optical effect and polarization inversion parts, where the direction of spontaneous polarization of the substrate is inverted, are periodically formed in this optical waveguide and a fundamental wave guided in the array direction of polarization inversion parts in the optical waveguide has the wavelength converted. SOLUTION: Plural voltage applying parts 13 consisting of an electrode 11 of a prescribed pattern corresponding to the pattern of polarization inversion parts to be formed and another electrode 12 facing this electrode 11 with a gap apart from the electrode 11 are formed on one surface of a ferroelectric crystal substrate 10 singly polarized, and grooves 15 which are extended between voltage applying parts 13 to isolate voltage applying parts 13 from each other on the surface are formed on a surface 10a of the substrate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、基本波を第2高調
波等に変換する光導波路型の光波長変換素子、特に詳細
には、光導波路基板として強誘電体結晶基板を用い、光
導波路部分に周期分極反転構造を形成してなる光波長変
換素子を作製する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical waveguide type optical wavelength converter for converting a fundamental wave into a second harmonic or the like, and more particularly, to an optical waveguide using a ferroelectric crystal substrate as an optical waveguide substrate. The present invention relates to a method for manufacturing an optical wavelength conversion element having a periodically poled structure formed in a portion.

【0002】[0002]

【従来の技術】非線形光学効果を有する強誘電体の自発
分極(ドメイン)を周期的に反転させた領域を設けた光
波長変換素子を用いて、基本波を第2高調波に波長変換
する方法が既にBleombergenらによって提案されている
(Phys.Rev.,vol.127,No.6,1918(1962)参照)。
この方法においては、分極反転部の周期Λを、 Λc=2π/{β(2ω)−2β(ω)} ただしβ(2ω)は第2高調波の伝搬定数 β(ω)は基本波の伝搬定数 で与えられるコヒーレント長Λcの整数倍になるように
設定することで、基本波と第2高調波との位相整合(い
わゆる疑似位相整合)を取ることができる。
2. Description of the Related Art A method of wavelength-converting a fundamental wave into a second harmonic using an optical wavelength conversion element provided with a region in which spontaneous polarization (domain) of a ferroelectric material having a nonlinear optical effect is periodically inverted. Has already been proposed by Bleombergen et al. (See Phys. Rev., vol. 127, No. 6, 1918 (1962)).
In this method, the period 分 極 of the domain-inverted portion is given by: c = 2π / {β (2ω) -2β (ω)} where β (2ω) is the propagation constant of the second harmonic and β (ω) is the propagation of the fundamental wave. By setting the coherent length to be an integral multiple of the coherent length 定 数 c given by the constant, the fundamental wave and the second harmonic can be phase-matched (so-called quasi-phase matching).

【0003】そして、例えば特開平5−29207号に
示されるように、非線形光学材料からなる光導波路を有
し、そこを導波させた基本波を波長変換する光導波路型
の光波長変換素子において、上述のような周期分極反転
構造を形成して、効率良く位相整合を取る試みもなされ
ている。
For example, as shown in Japanese Patent Application Laid-Open No. 5-29207, an optical waveguide type optical wavelength conversion element having an optical waveguide made of a non-linear optical material and converting the wavelength of a fundamental wave guided therethrough is used. Attempts have been made to form a periodically poled structure as described above to achieve efficient phase matching.

【0004】[0004]

【発明が解決しようとする課題】このように周期分極反
転構造を形成した光導波路型の光波長変換素子は、例え
ば特開平9−218431号に示される方法によって形
成することができる。この方法は、単分極化された強誘
電体結晶基板の一表面上に、形成しようとする分極反転
部のパターンに対応した所定パターンの電極と、この電
極と間隔を置いて向かい合う電極とを形成し、これらの
電極を介して基板に電圧を印加して周期的に繰り返す分
極反転部を形成し、その後これらの分極反転部が導波方
向に並ぶように光導波路を形成するものである。
The optical waveguide type optical wavelength conversion element having the periodically poled structure thus formed can be formed, for example, by the method disclosed in Japanese Patent Application Laid-Open No. 9-218431. According to this method, an electrode having a predetermined pattern corresponding to a pattern of a domain-inverted portion to be formed and an electrode facing the electrode at an interval are formed on one surface of a monopolarized ferroelectric crystal substrate. Then, a voltage is applied to the substrate via these electrodes to form periodically repeated domain-inverted portions, and then an optical waveguide is formed so that these domain-inverted portions are arranged in the waveguide direction.

【0005】ところで、この光導波路型の光波長変換素
子を量産性良く作製するために、1つの基板上に、上記
所定パターンの電極とそれに向かい合う電極との組を複
数一括して形成し、それらを用いて該基板上に周期分極
反転構造を複数組形成することが考えられる。
By the way, in order to manufacture this optical waveguide type optical wavelength conversion element with good mass productivity, a plurality of pairs of the above-mentioned electrode of the predetermined pattern and the electrode facing the same are collectively formed on one substrate. It is conceivable that a plurality of sets of periodically poled structures are formed on the substrate by using.

【0006】すなわち、図4および5に示すように、単
分極化された強誘電体結晶基板1の表面に、形成しよう
とする分極反転部のパターンに対応した所定パターンの
電極(例えば櫛形電極)2と、この電極2と間隔を置い
て向かい合う電極3との組を複数一括して形成する。次
いで電源4から、電極2および3を介して基板1に電圧
を印加すると、櫛形電極2の各電極指と電極3との間に
おいて自発分極が反転して、周期分極反転構造が形成さ
れる。各電極2、3の組からなる電圧印加部においてそ
れぞれこの電圧印加を行なえば、基板1上に周期分極反
転構造が複数形成される。なおこの電圧印加は、各組同
時になされてもよいし、順次なされてもよい。
That is, as shown in FIGS. 4 and 5, an electrode having a predetermined pattern (for example, a comb-shaped electrode) corresponding to the pattern of the domain-inverted portion to be formed is formed on the surface of the monopolarized ferroelectric crystal substrate 1. 2 and a plurality of pairs of electrodes 3 facing the electrodes 2 at intervals. Next, when a voltage is applied from the power supply 4 to the substrate 1 via the electrodes 2 and 3, the spontaneous polarization is inverted between each electrode finger of the comb-shaped electrode 2 and the electrode 3, and a periodic polarization inversion structure is formed. If this voltage application is performed in a voltage application section composed of a set of each of the electrodes 2 and 3, a plurality of periodically poled structures are formed on the substrate 1. This voltage application may be performed simultaneously for each group or sequentially.

【0007】以上のようにして複数組の周期分極反転構
造を形成したならば、各周期分極反転構造毎に光導波路
を形成し、最後にそれらを個別に分けるように基板を切
断すれば、複数の導波路型光波長変換素子が一挙に得ら
れる。
When a plurality of sets of periodically poled structures are formed as described above, an optical waveguide is formed for each of the periodically poled structures, and finally, the substrate is cut so as to separate them individually. Can be obtained all at once.

【0008】ところが本発明者の研究によると、上述の
ようにして複数の導波路型光波長変換素子を作製する場
合は、櫛形電極2の各電極指と電極3との間において分
極反転が起こらない箇所が多く発生しやすく、均一な
(つまり、所定部分のいずれにおいても同じように分極
反転部が形成されている)周期分極反転構造を形成する
のが難しいという問題が認められる。
However, according to the study of the present inventor, when a plurality of waveguide-type optical wavelength conversion elements are manufactured as described above, polarization inversion occurs between each electrode finger of the comb-shaped electrode 2 and the electrode 3. There is a problem that it is difficult to form a periodic domain-inverted structure that is likely to occur in many non-existent portions and that is uniform (that is, the domain-inverted portions are formed in any of the predetermined portions in the same manner).

【0009】より具体的に、本発明者の実験によると、
MgOがドープされた厚さ400μmのLiNbO3
板1を用い、基板長さつまり図5のW寸法をそれぞれ
2、4、10、25mmとしたときの周期反転性は、下
の表1の通りとなった。なおこの場合、櫛形電極2の各
電極指と電極3との間のギャップGはいずれも400μ
mとした。また基板1は、3°Yカット基板(Y軸をY
Z面内でZ軸側に3°回転させた軸に対して垂直な面で
カットした基板)を用いた。また各場合において、電極
2、3からなる複数の電圧印加部は、互いに同程度の距
離を置くように配置した。
More specifically, according to the experiments of the present inventors,
Periodic reversibility when the MgO-doped LiNbO 3 substrate 1 having a thickness of 400 μm is used and the substrate length, that is, the W dimension in FIG. 5 is set to 2, 4, 10, and 25 mm, respectively, is as shown in Table 1 below. became. In this case, the gap G between each electrode finger of the comb-shaped electrode 2 and the electrode 3 is 400 μm.
m. The substrate 1 is a 3 ° Y-cut substrate (Y axis is Y
A substrate cut in a plane perpendicular to an axis rotated by 3 ° toward the Z axis in the Z plane) was used. Further, in each case, the plurality of voltage applying sections composed of the electrodes 2 and 3 were arranged so as to be at the same distance from each other.

【0010】[0010]

【表1】 [Table 1]

【0011】ここで、(表1)中の周期反転性が「良
好」というものは、図6に示すように基板1に分極反転
部5が所定周期で並んで形成されたものを示し、「悪
い」というものは、図7に示すように分極反転部5が一
部しか形成されなかったものを示している。また、電圧
印加部が複数ある場合は、それらを1つずつ用いて順次
電圧印加を行なった。
Here, "good" in the period reversibility in Table 1 means that the domain-inverted portions 5 are formed on the substrate 1 at predetermined intervals as shown in FIG. "Poor" indicates that the domain-inverted portion 5 was only partially formed as shown in FIG. Further, when there were a plurality of voltage applying units, the voltage was sequentially applied by using one of them.

【0012】本発明は上記の事情に鑑みてなされたもの
であり、1つの基板に周期分極反転構造を複数一括して
それぞれ均一に形成することができる、光波長変換素子
の作製方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides a method of manufacturing an optical wavelength conversion element in which a plurality of periodically poled structures can be collectively and uniformly formed on one substrate. The purpose is to:

【0013】[0013]

【課題を解決するための手段】本発明による光波長変換
素子の作製方法は、前述したような所定パターンの電極
と、この電極と間隔を置いて向かい合う電極とから構成
される電圧印加部を基板表面上に複数形成し、これらの
電極を介して基板に電圧を印加して、周期分極反転構造
を基板に複数一括して形成するようにした光波長変換素
子の作製方法において、電圧印加に先立って上記の基板
表面に、電圧印加部のそれぞれの間を延びて、該表面上
において各電圧印加部を互いに隔絶する溝を形成してお
くことを特徴とするものである。
According to the present invention, there is provided a method of manufacturing an optical wavelength conversion device, comprising the steps of: providing a voltage applying portion comprising an electrode having a predetermined pattern as described above and an electrode facing the electrode at an interval. In a method for manufacturing an optical wavelength conversion element in which a plurality of periodic domain-inverted structures are collectively formed on a substrate by applying a voltage to the substrate via these electrodes by forming a plurality of periodic polarization inversion structures on the surface, prior to applying a voltage, A groove is formed on the surface of the substrate so as to extend between each of the voltage applying portions, and a groove is formed on the surface to separate the voltage applying portions from each other.

【0014】なおこの本発明による光波長変換素子の作
製方法において、好ましくは、上記電圧印加部における
2つの電極を、基板の自発分極の向きが基板表面に投射
された方向に互いに離して形成する。また上記所定パタ
ーンの電極としては、各電極指先端が他方の電極側を向
く櫛形電極が好適に用いられる。
In the method of manufacturing an optical wavelength conversion element according to the present invention, preferably, the two electrodes in the voltage applying section are formed apart from each other in a direction in which the direction of spontaneous polarization of the substrate is projected on the substrate surface. . As the electrodes of the predetermined pattern, a comb-shaped electrode in which the tip of each electrode finger faces the other electrode is preferably used.

【0015】また上記の基板としては、単分極化された
非線形光学効果を有する強誘電体結晶を、その自発分極
の向きに対して角度θ(0°<θ<90°)をなす面でカ
ットして形成した基板が用いられる。そしてこのような
基板としてより具体的には、強誘電体結晶を、そのY軸
をYZ面内でZ軸側に3°回転させた軸に対して垂直な
面でカットして形成した基板や、Z軸をZX面内でX軸
側に87°回転させた軸に対して垂直な面でカットして形
成した基板を用いるのが望ましい。
Further, as the above substrate, a monopolarized ferroelectric crystal having a nonlinear optical effect is cut on a plane forming an angle θ (0 ° <θ <90 °) with respect to the direction of spontaneous polarization. The substrate formed is used. More specifically, as such a substrate, a substrate formed by cutting a ferroelectric crystal by a plane perpendicular to an axis rotated by 3 ° in the YZ plane toward the Z axis in the YZ plane, It is preferable to use a substrate formed by cutting the Z axis in a plane perpendicular to the axis rotated 87 ° in the ZX plane toward the X axis.

【0016】そしてこの基板材料となる強誘電体結晶と
しては、LiNbx Ta1-x 3 (0≦x≦1)または
それにMgO、ZnOあるいはScがドープされたもの
が好適に用いられる。
As the ferroelectric crystal serving as the substrate material, LiNb x Ta 1 -x O 3 (0 ≦ x ≦ 1) or a material doped with MgO, ZnO or Sc is preferably used.

【0017】他方、上述のような溝は、ダイシングソー
によって刻設する等によって形成することができる。
On the other hand, the grooves as described above can be formed by engraving with a dicing saw or the like.

【0018】[0018]

【発明の効果】本発明者の研究によると、1つの基板上
に複数組の周期分極反転構造を形成する際に、各周期分
極反転構造を均一に形成するのが難しいという問題は、
以下のことに起因していると推察される。
According to the study of the present inventors, when a plurality of sets of periodically poled structures are formed on one substrate, it is difficult to uniformly form each periodically poled structure.
It is presumed to be due to the following.

【0019】すなわち、基板長さつまり図5のW寸法が
より大きいほど、電圧印加部に多くのイオンが集まるの
で、電圧印加直後はイオンの電荷に補償されて、電極間
にかかる実効電圧が低下する。電極間では、電圧印加直
後に反転核が発生して分極反転部が成長するが、上述の
理由で電圧が低下していると、反転核の発生が起こらな
い。その一方で、印加電圧を上げると、絶縁破壊が起き
て結晶の弱い部分が破壊されるという事情があるので、
均一に分極反転させ得る適当な電圧値を設定することが
できず、その結果、均一な周期分極反転構造を形成する
のが困難になるのである。
That is, as the length of the substrate, that is, the dimension W in FIG. 5, is larger, more ions are gathered in the voltage application section. Therefore, immediately after the voltage is applied, the charge of the ions is compensated, and the effective voltage applied between the electrodes is reduced. I do. Between the electrodes, an inversion nucleus is generated immediately after the voltage is applied, and the domain-inverted portion grows. However, if the voltage is reduced for the above-described reason, no inversion nucleus is generated. On the other hand, when the applied voltage is increased, dielectric breakdown occurs and the weak part of the crystal is destroyed.
It is not possible to set an appropriate voltage value that enables uniform polarization inversion, and as a result, it becomes difficult to form a uniform periodic polarization inversion structure.

【0020】本発明による光波長変換素子の作製方法で
は、基板表面に各電圧印加部を互いに隔絶する溝を形成
しておくことにより、基板表面近傍で考えれば、比較的
長さの短い基板が複数集まった形となる。したがって、
電圧印加部に多くのイオンが集まらなくなり、電極間に
かかる実効電圧を比較的高く保てるようになる。そこ
で、反転核の発生が促されて、均一な周期分極反転構造
を形成可能となる。
In the method of manufacturing an optical wavelength conversion element according to the present invention, a groove having a relatively short length is considered in the vicinity of the substrate surface by forming a groove on the substrate surface for isolating the voltage applying portions from each other. It is a form of multiple gatherings. Therefore,
Many ions are not collected at the voltage application section, and the effective voltage applied between the electrodes can be kept relatively high. Therefore, generation of inversion nuclei is promoted, and a uniform periodic polarization inversion structure can be formed.

【0021】[0021]

【発明の実施の形態】以下図面を参照して、本発明の実
施の形態を説明する。図1および2は、本発明の一実施
の形態により光波長変換素子を作製する工程を示すもの
である。
Embodiments of the present invention will be described below with reference to the drawings. FIGS. 1 and 2 show steps of manufacturing an optical wavelength conversion element according to an embodiment of the present invention.

【0022】本例では、非線形光学効果を有する強誘電
体である、MgOが5mol %ドープされたLiNbO3
(MgO:LN)の3°Yカット基板10(Y軸をYZ面
内でZ軸側に3°回転させた軸に対して垂直な面でカッ
トした基板:寸法は25mm×25mm)を用いた。ま
ずこの基板10の表面10aにフォトリソグラフィーにより
電極パターンを形成し、Crを真空蒸着後リフトオフを
行なって、櫛型電極11および平板電極12の組を複数形成
した。なお図3に、櫛型電極11および平板電極12の形状
を示す。また、両電極11、12間のギャップG=400μ
mである。
In this embodiment, LiNbO 3 doped with 5 mol% of MgO, which is a ferroelectric substance having a nonlinear optical effect, is used.
A (MgO: LN) 3 ° Y-cut substrate 10 (substrate cut on a plane perpendicular to an axis rotated by 3 ° in the YZ plane toward the Z axis in the YZ plane: dimensions: 25 mm × 25 mm) was used. . First, an electrode pattern was formed on the surface 10a of the substrate 10 by photolithography, and Cr was vacuum-deposited and lift-off was performed to form a plurality of sets of comb-shaped electrodes 11 and plate electrodes 12. FIG. 3 shows the shapes of the comb electrode 11 and the flat plate electrode 12. The gap G between the two electrodes 11 and 12 is 400 μm.
m.

【0023】次にダイシングソー14により、1対の電極
11、12からなる電圧印加部13のそれぞれの間に、溝15を
形成した。ここでダイシングソー14の刃の厚みは50μ
m、溝15の深さは50μm、100μm、150μmの
3通りとし、溝15と溝15との間の距離は4mmとした。
Next, a pair of electrodes is
A groove 15 was formed between each of the voltage application sections 13 composed of 11 and 12. Here, the thickness of the blade of the dicing saw 14 is 50 μm.
m, the depth of the groove 15 was 50 μm, 100 μm, and 150 μm, and the distance between the grooves 15 was 4 mm.

【0024】次いで図示しない電源から上記櫛型電極11
および平板電極12を介して、それらの間の基板部分にパ
ルス電圧を印加した。電圧は1〜3kV(2.5〜7.
5kV/cm)で、印加時間は0.1〜10秒とした。
なお本例では上述の通り電極11、12間のギャップG=4
00μmであるが、このギャップGを変化させても、印
加電界強度が一定となるように電圧を変化させれば、本
質的に同じ結果が得られる。
Next, a comb-shaped electrode 11 is supplied from a power source (not shown).
Then, a pulse voltage was applied to the substrate portion between them via the plate electrode 12. The voltage is 1 to 3 kV (2.5 to 7.
5 kV / cm) and the application time was 0.1 to 10 seconds.
In this example, the gap G between the electrodes 11 and 12 is 4 as described above.
Even if the gap G is changed, essentially the same result can be obtained by changing the voltage so that the applied electric field intensity is constant.

【0025】この電圧印加後に電極11、12をエッチング
により除去し、基板表面10aをフッ酸と硝酸の混合液で
エッチングしてから、そこを光学顕微鏡で観察した。な
お周知の通り、フッ酸と硝酸の混合液によるエッチング
では、MgO:LNの+Y方位と−Y方位のエッチング
レートが異なるため、このエッチング後に基板表面10
aの分極反転構造を観察可能となる。
After the application of the voltage, the electrodes 11 and 12 were removed by etching, the substrate surface 10a was etched with a mixed solution of hydrofluoric acid and nitric acid, and then observed with an optical microscope. As is well known, in the etching with a mixed solution of hydrofluoric acid and nitric acid, the etching rates of the + Y direction and the -Y direction of MgO: LN are different.
The domain-inverted structure of “a” can be observed.

【0026】この観察により、溝15の深さが50μ
m、100μm、150μmのいずれの場合も、溝を形
成しなかった場合と比べて、周期分極反転構造がより均
一に形成されていることが確認された。
According to this observation, the depth of the groove 15 was 50 μm.
In any of m, 100 μm, and 150 μm, it was confirmed that the periodically poled structure was formed more uniformly than in the case where no groove was formed.

【0027】次に上記MgO:LN基板10に、以下のよ
うにしてチャンネル光導波路を形成した。まず、通常の
フォトリソグラフィーにより、レジストパターンを形成
し、Taをスパッタ製膜してリフトオフし、光導波路作
製のためのイオン交換用マスクを形成した。このマスク
の幅は5〜10μmとした。また光導波路の作製位置
は、櫛型電極11の先端から10μm以内の位置とした。
Next, a channel optical waveguide was formed on the MgO: LN substrate 10 as follows. First, a resist pattern was formed by ordinary photolithography, Ta was formed by sputtering, lift-off was performed, and an ion exchange mask for manufacturing an optical waveguide was formed. The width of this mask was 5 to 10 μm. The optical waveguide was prepared at a position within 10 μm from the tip of the comb-shaped electrode 11.

【0028】上記マスクを形成したMgO:LN基板10
をピロリン酸中に浸漬し、160℃×64分の条件でイ
オン交換を行ない、その後大気中で1時間アニール処理
をしてチャンネル光導波路を形成した。次にこのチャン
ネル光導波路の端面を含む基板10の−X面および+X面
を光学研磨し、それらの端面のうち、基本波入射端面と
する一端面には基本波波長=950nmに対する単層の
SiOxからなる無反射コートを施し、第2高調波出射
端面とする他端面には第2高調波波長=475nmに対
する単層のSiOxからなる無反射コートを施した。な
おこのような無反射コートについては、本出願人による
特願平9−207882号明細書に詳しい開示がなされ
ている。
MgO: LN substrate 10 on which the above mask is formed
Was immersed in pyrophosphoric acid, ion-exchanged at 160 ° C. for 64 minutes, and then annealed in air for 1 hour to form a channel optical waveguide. Next, the −X face and the + X face of the substrate 10 including the end face of the channel optical waveguide are optically polished, and one of the end faces, which is the fundamental wave incident end face, is a single-layer SiOx for the fundamental wave wavelength = 950 nm. The second non-reflection coating made of SiOx for the second harmonic wavelength = 475 nm was applied to the other end surface as the second harmonic emission end surface. Such anti-reflection coating is disclosed in detail in Japanese Patent Application No. 9-207882 by the present applicant.

【0029】以上の処理により、図8に示すように、櫛
型電極11の各電極指に対応して周期的に並ぶ分極反転部
21と、これらの分極反転部21の並び方向に沿って該分極
反転部21の中を延びるチャンネル光導波路22とを備えて
なる光波長変換素子20が完成する。
By the above processing, as shown in FIG. 8, the domain-inverted portions periodically arranged corresponding to each electrode finger of the comb-shaped electrode 11 are formed.
The optical wavelength conversion element 20 including the component 21 and the channel optical waveguide 22 extending in the domain-inverted portion 21 along the direction in which the domain-inverted portions 21 are arranged is completed.

【0030】この光波長変換素子20のチャンネル光導波
路22に、上記一端面側から波長950nmの基本波とし
てのレーザビーム25を入射させると、上記他端面側か
ら、波長が1/2すなわち475nmの第2高調波26が
出射する。このとき、周期的に並ぶ分極反転部21の作用
により、いわゆる疑似位相整合が取られる。
When a laser beam 25 as a fundamental wave having a wavelength of 950 nm is incident on the channel optical waveguide 22 of the optical wavelength conversion element 20 from the one end face side, the wavelength is す な わ ち, that is, 475 nm, from the other end face side. The second harmonic wave 26 is emitted. At this time, a so-called quasi-phase matching is achieved by the action of the domain-inverted portions 21 arranged periodically.

【0031】以上説明した光波長変換素子20の性能を調
べたところ、換算効率が300%/Wcm2以上であ
り、前述した特開平9−218431号に示される方法
により1つの基板に1つずつ周期分極反転構造を形成す
る場合と比べて、同等以上の性能が得られていることが
確認された。
When the performance of the optical wavelength conversion element 20 described above was examined, the conversion efficiency was 300% / Wcm 2 or more, and one on one substrate was obtained by the method described in the above-mentioned JP-A-9-218431. It was confirmed that performance equal to or higher than that in the case of forming the periodically poled structure was obtained.

【0032】なお以上説明した実施形態においては、2
5mm×25mmの基板10に縦1列に複数の周期分極反
転構造を形成しているが、図9に概略図示するように、
例えば3インチの円形基板50に縦横に溝15を刻設し、こ
れらの溝15により画成された領域に1つずつ周期分極反
転構造を形成する等により、基板上に縦横とも複数ずつ
周期分極反転構造を形成すれば、量産性をさらに高める
ことができる。
In the embodiment described above, 2
A plurality of periodically poled structures are formed in a single column on a 5 mm × 25 mm substrate 10, as schematically shown in FIG.
For example, grooves 15 are engraved vertically and horizontally on a 3-inch circular substrate 50, and a periodic polarization inversion structure is formed one by one in the region defined by these grooves 15, so that a plurality of periodic polarizations are formed on the substrate both vertically and horizontally. If the inverted structure is formed, mass productivity can be further improved.

【0033】また以上説明した実施形態では3°Yカッ
ト基板10を用いているが、その他に例えば87°カット基
板(Z軸をZX面内でX軸側に87°回転させた軸に垂直
となる面で結晶をカットした基板)や、さらには従来か
ら良く知られているXカット基板、Yカット基板を用い
る場合でも、本発明によれば前述と同様の効果が得られ
る。
In the embodiment described above, the 3 ° Y-cut substrate 10 is used. Alternatively, for example, an 87 ° cut substrate (the Z-axis may be perpendicular to the axis rotated 87 ° toward the X-axis in the ZX plane). According to the present invention, the same effects as described above can be obtained even when a substrate in which a crystal is cut on a certain surface) or an X-cut substrate or a Y-cut substrate which is well known in the art is used.

【0034】また基板材料としては、MgO:LNに限
らず、その他ノンドープのLN、ZnOあるいはScが
ドープされたLN、さらにはMgO:LT(MgOがド
ープされたLiTaO3 )、ノンドープのLT、ZnO
あるいはScがドープされたLT等を用いることもでき
る。
The substrate material is not limited to MgO: LN, but also other non-doped LN, ZnO or LN doped with Sc, further MgO: LT (MgO-doped LiTaO 3 ), non-doped LT, ZnO
Alternatively, LT doped with Sc or the like can be used.

【0035】一方、1つの基板に形成された複数の電圧
印加部においてそれぞれ電圧を印加するには、先に述べ
たように順次印加するのみならず、各電圧印加部で同時
に印加するようにしてもよい。しかし、絶縁破壊の可能
性が低くなるという点を考慮すると、順次印加するのが
望ましい。
On the other hand, in order to apply a voltage to each of a plurality of voltage applying sections formed on one substrate, not only the voltage is applied sequentially as described above, but also the voltage is applied simultaneously at each voltage applying section. Is also good. However, considering that the possibility of dielectric breakdown is reduced, it is desirable to apply the voltages sequentially.

【0036】また、基板に形成する溝は、前述のように
ダイシングソーによって刻設する他、イオンミリングや
RIE(反応性イオンエッチング)等によって形成する
ことも可能である。
The grooves formed in the substrate can be formed by ion milling, RIE (reactive ion etching), or the like, in addition to being cut by a dicing saw as described above.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一つの実施形態により光波長変換素子
を作製する様子を示す概略図
FIG. 1 is a schematic view showing a state in which an optical wavelength conversion element is manufactured according to one embodiment of the present invention.

【図2】上記光波長変換素子を作製する工程途中にある
基板の平面図
FIG. 2 is a plan view of a substrate in the process of manufacturing the optical wavelength conversion element.

【図3】上記光波長変換素子を作製するために用いられ
る電圧印加用電極の平面図
FIG. 3 is a plan view of a voltage application electrode used for manufacturing the light wavelength conversion element.

【図4】従来方法により光波長変換素子を作製する様子
を示す概略図
FIG. 4 is a schematic view showing a state in which an optical wavelength conversion element is manufactured by a conventional method.

【図5】従来方法で光波長変換素子を作製するために用
いられる基板の平面図
FIG. 5 is a plan view of a substrate used for manufacturing an optical wavelength conversion element by a conventional method.

【図6】従来方法により形成された周期分極反転構造の
例を示す概略図
FIG. 6 is a schematic view showing an example of a periodically poled structure formed by a conventional method.

【図7】従来方法により形成された周期分極反転構造の
別の例を示す概略図
FIG. 7 is a schematic view showing another example of a periodically poled structure formed by a conventional method.

【図8】本発明の方法により作製された光波長変換素子
の概略斜視図
FIG. 8 is a schematic perspective view of an optical wavelength conversion device manufactured by the method of the present invention.

【図9】本発明の別の実施形態により光波長変換素子を
作製する様子を示す斜視図
FIG. 9 is a perspective view showing a state in which an optical wavelength conversion element is manufactured according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10 MgO:LN基板 10a 基板の表面 11 櫛形電極 12 平板電極 13 電圧印加部 14 ダイシングソー 15 溝 20 光波長変換素子 21 分極反転部 22 チャンネル光導波路 50 円形基板 10 MgO: LN substrate 10 a Surface of substrate 11 Comb-shaped electrode 12 Plate electrode 13 Voltage application part 14 Dicing saw 15 Groove 20 Optical wavelength conversion element 21 Polarization inversion part 22 Channel optical waveguide 50 Circular substrate

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 非線形光学効果を有する強誘電体結晶基
板に、その一表面に沿って延びる光導波路が形成される
とともに、この光導波路に基板の自発分極の向きを反転
させた分極反転部が周期的に形成されてなり、 該光導波路において分極反転部の並び方向に導波する基
本波を波長変換する光波長変換素子を作製する方法にお
いて、 単分極化された強誘電体結晶基板の一表面上に、形成し
ようとする分極反転部のパターンに対応した所定パター
ンの電極と、この電極と間隔を置いて向かい合う別の電
極とから構成される電圧印加部を複数形成するととも
に、 前記表面上に、これらの電圧印加部のそれぞれの間を延
びて、該表面上において各電圧印加部を互いに隔絶する
溝を形成し、 各電圧印加部において前記電極を介して基板に電圧を印
加して、周期的に繰り返す分極反転部を形成することを
特徴とする光波長変換素子の作製方法。
An optical waveguide extending along one surface of a ferroelectric crystal substrate having a non-linear optical effect is formed, and a polarization inversion portion obtained by inverting the direction of spontaneous polarization of the substrate is formed in the optical waveguide. A method for producing an optical wavelength conversion element, which is formed periodically and converts the wavelength of a fundamental wave guided in the direction in which the domain-inverted portions are arranged in the optical waveguide, comprises the steps of: On the surface, while forming a plurality of voltage applying portions composed of an electrode of a predetermined pattern corresponding to the pattern of the domain-inverted portion to be formed, and another electrode facing the electrode at an interval, Extending between each of these voltage applying sections, forming a groove on the surface to isolate each voltage applying section from each other, and applying a voltage to the substrate via the electrode at each voltage applying section. Te, a method for manufacturing an optical wavelength conversion device, which comprises forming the polarization inversion unit cyclically repeated.
【請求項2】 前記電圧印加部における2つの電極を、
基板の自発分極の向きが前記基板表面に投射された方向
に互いに離して形成することを特徴とする請求項1記載
の光波長変換素子の作製方法。
2. The two electrodes in the voltage applying section,
2. The method according to claim 1, wherein the directions of spontaneous polarization of the substrate are separated from each other in a direction projected onto the surface of the substrate.
【請求項3】 前記所定パターンの電極が、各電極指先
端が他方の電極側を向く櫛形電極であることを特徴とす
る請求項1または2記載の光波長変換素子の作製方法。
3. The method of manufacturing an optical wavelength conversion element according to claim 1, wherein the electrodes of the predetermined pattern are comb-shaped electrodes, each electrode finger tip facing the other electrode side.
【請求項4】 前記基板として、単分極化された非線形
光学効果を有する強誘電体結晶を、その自発分極の向き
に対して角度θ(0°<θ<90°)をなす面でカットし
て形成した基板を用いることを特徴とする請求項1から
3いずれか1項記載の光波長変換素子の作製方法。
4. A monopolar ferroelectric crystal having a non-linear optical effect is cut as a plane at an angle θ (0 ° <θ <90 °) with respect to the direction of spontaneous polarization. The method for manufacturing an optical wavelength conversion element according to claim 1, wherein a substrate formed by using is used.
【請求項5】 前記強誘電体結晶を、そのY軸をYZ面
内でZ軸側に3°回転させた軸に対して垂直な面でカッ
トして形成した基板を用いることを特徴とする請求項4
記載の光波長変換素子の作製方法。
5. A substrate formed by cutting the ferroelectric crystal in a plane perpendicular to an axis whose Y axis is rotated by 3 ° in the YZ plane toward the Z axis side. Claim 4
A method for producing the optical wavelength conversion element according to the above.
【請求項6】 前記強誘電体結晶を、そのZ軸をZX面
内でX軸側に87°回転させた軸に対して垂直な面でカッ
トして形成した基板を用いることを特徴とする請求項4
記載の光波長変換素子の作製方法。
6. A substrate formed by cutting the ferroelectric crystal on a plane perpendicular to an axis rotated by 87 ° in the ZX plane to the X axis side in the ZX plane is used. Claim 4
A method for producing the optical wavelength conversion element according to the above.
【請求項7】 前記強誘電体結晶基板として、LiNb
x Ta1-x 3(0≦x≦1)またはそれにMgO、Z
nOあるいはScがドープされたものからなる基板を用
いることを特徴とする請求項1から6いずれか1項記載
の光波長変換素子の作製方法。
7. The method according to claim 7, wherein the ferroelectric crystal substrate is LiNb.
x Ta 1-x O 3 (0 ≦ x ≦ 1) or MgO, Z
7. The method of manufacturing an optical wavelength conversion device according to claim 1, wherein a substrate made of a material doped with nO or Sc is used.
【請求項8】 前記溝をダイシングソーによって刻設す
ることを特徴とする請求項1から7いずれか1項記載の
光波長変換素子の作製方法。
8. The method for manufacturing an optical wavelength conversion element according to claim 1, wherein said groove is cut by a dicing saw.
JP08344998A 1998-03-30 1998-03-30 Manufacturing method of optical wavelength conversion element Expired - Fee Related JP3526206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08344998A JP3526206B2 (en) 1998-03-30 1998-03-30 Manufacturing method of optical wavelength conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08344998A JP3526206B2 (en) 1998-03-30 1998-03-30 Manufacturing method of optical wavelength conversion element

Publications (2)

Publication Number Publication Date
JPH11282036A true JPH11282036A (en) 1999-10-15
JP3526206B2 JP3526206B2 (en) 2004-05-10

Family

ID=13802759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08344998A Expired - Fee Related JP3526206B2 (en) 1998-03-30 1998-03-30 Manufacturing method of optical wavelength conversion element

Country Status (1)

Country Link
JP (1) JP3526206B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100410798C (en) * 2004-03-24 2008-08-13 松下电器产业株式会社 Optical device and method for forming polarization-reversed region

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102568796B1 (en) * 2018-06-15 2023-08-21 삼성전자주식회사 Optical modulating device and apparatus including the same
KR102574503B1 (en) * 2020-08-21 2023-09-06 한국과학기술원 Parametric device comprising optical materials spatiotemporally varying permittivity

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100410798C (en) * 2004-03-24 2008-08-13 松下电器产业株式会社 Optical device and method for forming polarization-reversed region

Also Published As

Publication number Publication date
JP3526206B2 (en) 2004-05-10

Similar Documents

Publication Publication Date Title
EP0532969B1 (en) Process for fabricating an optical device for generating a second harmonic optical beam
US5522973A (en) Fabrication of ferroelectric domain reversals
JPH10503602A (en) Fabrication of patterned polarized dielectric structures and devices
EP1566689B1 (en) Polarization reversal structure constructing method
JP4926700B2 (en) Optical element and method for forming domain-inverted region
JPH08220578A (en) Manufacture of polarization inversion area, and light wavelength converting element utilizing that and its manufacture
JPH09218431A (en) Light wavelength conversion element and its formation as well as light wavelength conversion module
JP3332363B2 (en) Method of manufacturing domain-inverted region, optical wavelength conversion element using the same, and method of manufacturing the same
US5382334A (en) Process for forming polarization inversion layer
JP3526206B2 (en) Manufacturing method of optical wavelength conversion element
JP3303346B2 (en) Method for controlling polarization of lithium niobate and lithium tantalate, method for manufacturing optical waveguide device using the same, and optical waveguide device
KR101363782B1 (en) Device manufacturing method
JP4756706B2 (en) Method for manufacturing domain-inverted structure
JP4081398B2 (en) Optical wavelength conversion element
JPH10246900A (en) Production of microstructure of ferroelectric single crystal substrate
JP4400816B2 (en) Method for manufacturing periodically poled structure and optical device
JP2002031826A (en) Method for manufacturing polarization reversal part
JP3946092B2 (en) Method for forming periodically poled structure
JP2001330866A (en) Method for manufacturing optical wavelength conversion element
JPH10206810A (en) Ridge type optical waveguide element and its manufacture
US6762874B2 (en) Polarization inversion method of ferroelectrics and fabrication method of optical wavelength conversion device
JP2002214655A (en) Polarization inverting method for ferroelectric and manufacturing method for light-wavelength converting element
US7394588B2 (en) Wavelength converter structure and method for preparing the same
JP3429502B2 (en) Method for manufacturing domain-inverted region
JP3398144B2 (en) Method for manufacturing domain-inverted region

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040210

A61 First payment of annual fees (during grant procedure)

Effective date: 20040212

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080227

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080227

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090227

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100227

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100227

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees