JP2006017589A - Surface temperature measuring method and device of steel product, and manufacturing method of steel product - Google Patents

Surface temperature measuring method and device of steel product, and manufacturing method of steel product Download PDF

Info

Publication number
JP2006017589A
JP2006017589A JP2004195914A JP2004195914A JP2006017589A JP 2006017589 A JP2006017589 A JP 2006017589A JP 2004195914 A JP2004195914 A JP 2004195914A JP 2004195914 A JP2004195914 A JP 2004195914A JP 2006017589 A JP2006017589 A JP 2006017589A
Authority
JP
Japan
Prior art keywords
measured
temperature
steel material
water
radiation thermometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004195914A
Other languages
Japanese (ja)
Other versions
JP4151022B2 (en
Inventor
Tatsuro Honda
達朗 本田
Chihiro Uematsu
千尋 植松
Yasuhiko Takee
康彦 武衛
Kazuhisa Fujino
和久 藤野
Hisayoshi Tachibana
久好 橘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2004195914A priority Critical patent/JP4151022B2/en
Publication of JP2006017589A publication Critical patent/JP2006017589A/en
Application granted granted Critical
Publication of JP4151022B2 publication Critical patent/JP4151022B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Radiation Pyrometers (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress a temperature measurement error caused by scattering of thermal radiation light or the like generated by disturbance water existing between the surface of a steel product whose temperature is to be measured and a radiation thermometer. <P>SOLUTION: In this method, the surface temperature of the steel product M whose temperature is to be measured is measured by detecting the thermal radiation light radiated from the surface of the steel product M whose temperature is to be measured by the radiation thermometer arranged oppositely to the steel product M whose temperature is to be measured. The method is characterized by setting at 75° or more. the minimum expansion angle θ of the edge part E of the steel product M whose temperature is to be measured based on an intersection point between an interface between an optical path stable domain S1 in a domain where an optical path of the thermal radiation light detected by the radiation thermometer and an optical path unstable domain S2, and the optical axis of the radiation thermometer. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、鋼材の表面温度を放射測温によって測定する方法及び装置並びにこの方法によって表面温度を測定することにより鋼材を製造する方法に関する。本発明は、特に、鋼材に熱処理を施す際に用いる冷却水の他、圧延機や搬送ロールに対する冷却水などによって放射測温が阻害される問題を解決し、このような環境下でも精度良く鋼材の表面温度を測定できる表面温度測定方法及び装置並びにこの方法によって表面温度を測定することにより鋼材を製造する方法に関する。   The present invention relates to a method and apparatus for measuring the surface temperature of a steel material by radiation temperature measurement, and a method for manufacturing a steel material by measuring the surface temperature by this method. In particular, the present invention solves the problem that radiation temperature measurement is hindered by cooling water used for heat treatment of steel materials, cooling water for rolling mills and transport rolls, etc., and even in such an environment, the steel materials are accurate. The present invention relates to a surface temperature measuring method and apparatus capable of measuring the surface temperature of steel, and a method for producing a steel material by measuring the surface temperature by this method.

鋼材の熱間圧延ラインや熱処理・冷却ラインなどにおいて、搬送中の鋼材の表面温度を放射温度計を用いて測定する際には、被測温鋼材と放射温度計との間に湯気が存在したり、冷却水が飛散してきたり、或いは、被測温鋼材表面が水膜に覆われたり、水没したりすることが甚だしい。このような環境下では、被測温鋼材から放射された熱放射光が、水蒸気、湯気、冷却水等に吸収され或いは散乱されることにより、測温値に誤差が生じたり、測定できない場合が生じたりすることもある。また、このような環境下では、冷却水に含まれる不純物、被測温鋼材から剥離したスケール、工場内に浮遊する粉塵等によって、放射温度計の熱放射を取り込むための光学窓に汚れが生じ、これによって放射測温精度が劣化することもある。従って、このような環境下での放射測温は、不安定であり信頼性に乏しいものである。   When measuring the surface temperature of steel materials being transferred using a radiation thermometer in a hot rolling line, heat treatment / cooling line, etc., there is steam between the steel material to be measured and the radiation thermometer. Or the cooling water splashes, or the surface of the steel material to be measured is covered with a water film or submerged. Under such circumstances, the thermal radiation emitted from the temperature-measured steel material may be absorbed or scattered by water vapor, steam, cooling water, etc., resulting in an error in the temperature measurement value or inability to measure. It may occur. Also, in such an environment, the optical window for taking in heat radiation of the radiation thermometer is contaminated by impurities contained in the cooling water, scales peeled off from the steel material to be measured, dust floating in the factory, etc. As a result, the radiation temperature measurement accuracy may be deteriorated. Therefore, radiation temperature measurement in such an environment is unstable and unreliable.

そこで、上記のような要因によって生じる測温誤差を低減し、安定した放射測温を可能とするべく、従来より、鋼材表面に向けてノズルからパージ用の水を噴出することにより放射温度計と鋼材表面との間に水柱を形成し、当該水柱を介して鋼材から放射される放射エネルギーを検出することにより鋼材表面温度を測定する方法が種々提案されている。   Therefore, in order to reduce temperature measurement errors caused by the above factors and enable stable radiation temperature measurement, a radiation thermometer has been conventionally used by ejecting purge water from a nozzle toward the steel surface. Various methods have been proposed for measuring the surface temperature of a steel material by forming a water column between the surface of the steel material and detecting radiant energy radiated from the steel material through the water column.

より具体的に説明すれば、例えば、放射温度計によって検出する放射エネルギーの内、前記水柱によって吸収される放射エネルギー分を水柱の厚み測定値に基づいて補正演算することにより測温する方法が提案されている(例えば、特許文献1参照)。   More specifically, for example, a method for measuring temperature by correcting the radiant energy absorbed by the water column out of the radiant energy detected by a radiation thermometer based on the measured value of the thickness of the water column is proposed. (For example, refer to Patent Document 1).

特許文献1に記載の方法によれば、放射温度計と鋼材表面との間に水柱が形成されるため、水蒸気や飛散水などの外乱水によって生じ得る測温誤差を抑制可能であるという利点を有する。また、水柱を清浄水によって形成することにより、冷却水に含まれる不純物、鋼材から剥離したスケール、工場内に浮遊する粉塵等による光学窓の汚れも抑制可能である。   According to the method described in Patent Document 1, since a water column is formed between the radiation thermometer and the steel material surface, it is possible to suppress a temperature measurement error that may be caused by disturbance water such as water vapor or scattered water. Have. Moreover, by forming the water column with clean water, it is possible to suppress contamination of the optical window due to impurities contained in the cooling water, scales peeled off from the steel material, dust floating in the factory, and the like.

しかしながら、特許文献1に記載の方法では、放射温度計と鋼材表面との間に水蒸気や飛散水が侵入しないように、ノズルから相当勢いよく水を噴出させることになる。そのため、斯かるパージ水によって鋼材表面が冷却され、当該冷却された部分の表面温度が測定されることになるため、測温値の代表性が損なわれるという問題がある。また、鋼材が部分的に冷却されるので、鋼材に冷却むらが生じて材質が不均一になるという問題もある。   However, according to the method described in Patent Document 1, water is ejected from the nozzle with considerable force so that water vapor and scattered water do not enter between the radiation thermometer and the steel material surface. Therefore, the steel material surface is cooled by such purge water, and the surface temperature of the cooled portion is measured, so that there is a problem that the representativeness of the temperature measurement value is impaired. In addition, since the steel material is partially cooled, there is a problem that unevenness of cooling occurs in the steel material and the material becomes non-uniform.

斯かる特許文献1に記載の方法における問題点を改善した方法として、被測定物から放射された放射エネルギーに基づいて該被測定物の表面温度を測定する放射温度計と前記被測定物との間に水柱を形成し、該被測定物から放射された放射エネルギーの内、前記水柱が吸収した放射エネルギーの分を補正しながら、前記放射温度計を用いて前記被測定物の表面温度を測定する温度測定方法において、前記水柱を形成するに当たり、該水柱の温度を60℃以上にすることを特徴とする温度測定方法が提案されている(例えば、特許文献2参照)。   As a method for improving the problems in the method described in Patent Document 1, there is provided a radiation thermometer for measuring the surface temperature of the object to be measured based on the radiation energy radiated from the object to be measured, and the object to be measured. A water column is formed between them, and the surface temperature of the object to be measured is measured using the radiation thermometer while correcting the amount of radiant energy absorbed by the water column among the radiant energy radiated from the object to be measured. In the temperature measurement method, a temperature measurement method is proposed in which the temperature of the water column is set to 60 ° C. or higher when the water column is formed (see, for example, Patent Document 2).

特許文献2に記載の方法によれば、特許文献1に記載の方法と同様に、放射温度計と被測定物との間に水柱が形成されるため、水柱が形成された部分には水蒸気や飛散水が侵入し難く、これら水蒸気や飛散水による放射エネルギーの吸収や散乱に起因した測温誤差を低減することが可能である。さらに、特許文献2に記載の方法は、水柱の温度を60℃以上にする構成であり、水柱が接触している被測定物表面に沸騰膜が形成され易くなるため、これにより被測定物の表面温度低下を抑制し、測温値の代表性を損なうこともなく、被測定物の冷却むらも低減できるという利点を有する。   According to the method described in Patent Document 2, as in the method described in Patent Document 1, a water column is formed between the radiation thermometer and the object to be measured. It is difficult for scattered water to enter, and it is possible to reduce temperature measurement errors due to absorption and scattering of radiant energy caused by these water vapor and scattered water. Furthermore, the method described in Patent Document 2 is a configuration in which the temperature of the water column is set to 60 ° C. or more, and a boiling film is easily formed on the surface of the object to be measured which is in contact with the water column. It has the advantage that the surface temperature drop is suppressed, the representativeness of the temperature measurement value is not impaired, and the cooling unevenness of the object to be measured can be reduced.

しかしながら、特許文献2に記載の方法では、水柱の温度を60℃以上に上昇させるための加熱装置が必要であり、水を昇温させるためのエネルギーコストが掛かるという問題がある。また、特許文献1に記載の方法にも共通する問題点として、水柱の厚みを測定するための厚み測定装置(例えば、超音波方式)が必要であるため、装置全体の寸法が大きくなり、鋼材の搬送ロール間等の狭いスペースには設置し難いという問題がある。さらに、厚み測定装置をたとえ設置できたとしても、着脱に手間を要するなど保全性を阻害したり、厚み測定装置の故障による測温値の安定性・信頼性の低下が問題となる。   However, the method described in Patent Document 2 requires a heating device for raising the temperature of the water column to 60 ° C. or higher, and there is a problem that it takes energy cost to raise the temperature of water. Further, as a problem common to the method described in Patent Document 1, since a thickness measuring device (for example, an ultrasonic method) for measuring the thickness of the water column is required, the overall size of the device increases, and the steel material There is a problem that it is difficult to install in a narrow space such as between transport rolls. Further, even if the thickness measuring device can be installed, there is a problem in that the maintenance is hindered such as requiring labor for attaching and detaching, and the stability and reliability of the temperature measurement value is lowered due to the failure of the thickness measuring device.

また、被測温鋼板と放射温度計との間に水柱を形成し、当該水柱を介して被測温鋼板表面からの放射光を前記放射温度計で受光することにより、被測温鋼板の表面温度を測定する方法であって、前記水柱を形成する温水の温度を70℃以上とし、前記温水の水圧を1気圧以下に設定することを特徴とする鋼板の表面温度測定方法が提案されている(例えば、特許文献3参照)。   Further, by forming a water column between the temperature-measured steel plate and the radiation thermometer, and receiving radiation light from the surface of the temperature-measured steel plate through the water column with the radiation thermometer, the surface of the temperature-measured steel plate A method for measuring the surface temperature of a steel sheet, characterized in that the temperature of hot water forming the water column is set to 70 ° C. or higher and the water pressure of the hot water is set to 1 atm or lower is proposed. (For example, refer to Patent Document 3).

特許文献3に記載の方法によっても、特許文献2に記載の方法と同様の利点を得ることができる。しかしながら、特許文献2に記載の方法と同様に、水柱の温度を70℃以上に上昇させるための加熱装置が必要であり、水を昇温させるためのエネルギーコストが掛かるという問題がある。
特公平3−69974号公報 特開平8−295950号公報 特開2003−185501号公報
Also by the method described in Patent Document 3, advantages similar to those of the method described in Patent Document 2 can be obtained. However, similarly to the method described in Patent Document 2, a heating device for raising the temperature of the water column to 70 ° C. or higher is necessary, and there is a problem that the energy cost for raising the temperature of the water is increased.
Japanese Patent Publication No. 3-69974 JP-A-8-295950 JP 2003-185501 A

以上に説明した内容を纏めると、従来、鋼材の表面温度を放射測温によって測定するに際しては、主として以下の3つの課題があると言える。すなわち、
<第1の課題>
被測温鋼材表面と放射温度計との間に存在する冷却水や湯気や水蒸気など(以下、適宜これらを総称して、外乱水という)による熱放射光の散乱に起因した測温誤差(以下、適宜散乱誤差という)を抑制すること。
<第2の課題>
測温のためのパージ水(水柱)を昇温させることなく、鋼材表面の冷却による測温誤差(以下、適宜冷却誤差という)を抑制すること。
<第3の課題>
外乱水による熱放射光の吸収に起因した測温誤差(以下、適宜吸収誤差という)を抑制すること(水柱の厚み測定を不要とすることも含む)。
Summarizing the contents described above, it can be said that there are mainly the following three problems in measuring the surface temperature of a steel material by radiation temperature measurement. That is,
<First issue>
Temperature measurement error due to scattering of thermal radiation due to cooling water, steam, water vapor, etc. existing between the surface of the steel material to be measured and the radiation thermometer (hereinafter collectively referred to as disturbance water) (Referred to as scattering error as appropriate).
<Second problem>
To suppress temperature measurement error (hereinafter referred to as cooling error as appropriate) due to cooling of the steel surface without raising the temperature of purge water (water column) for temperature measurement.
<Third issue>
Suppressing temperature measurement errors (hereinafter referred to as absorption errors as appropriate) caused by absorption of thermal radiation by disturbance water (including the need for measuring the thickness of the water column).

散乱誤差は、水滴や湯気などの水分と空気との界面が、放射温度計で検出すべき熱放射光の光路中に存在すると、当該熱放射光が屈折又は散乱し、光路が変化することによって生じる。斯かる光路の変化には、熱放射光のビーム全体が曲げられることや、全体的に又は部分的にビームが広がったり収束したりする場合も含まれる。一般的には、このような光路の変化により、放射温度計で測定しようとしている被測温鋼材表面内の測定領域の位置や面積が変化したり、部分的に測定領域以外の領域からの熱放射光を検出することになったりして、測温誤差が生じる。斯かる散乱誤差は、被測温鋼材と放射温度計との間に存在する外乱水のみによって生じるとは限らず、外乱水によってパージが乱されることによりパージ内の検出すべき熱放射光の光路が乱される場合や、パージ自体の性能によりパージ内又はパージ界面において検出すべき熱放射光の光路が乱される場合もある。   Scattering error is caused when the interface between water and air such as water droplets or steam is present in the optical path of the thermal radiation to be detected by the radiation thermometer, and the thermal radiation is refracted or scattered and the optical path changes. Arise. Such a change in the optical path includes a case where the entire beam of the thermal radiation light is bent, and a case where the beam is expanded or converged in whole or in part. In general, due to such a change in the optical path, the position and area of the measurement region on the surface of the steel material to be measured that is to be measured by the radiation thermometer change, or heat from a region other than the measurement region partially. Temperature detection error occurs due to detection of synchrotron radiation. Such a scattering error is not necessarily caused only by the disturbance water existing between the steel material to be measured and the radiation thermometer, but the disturbance of the purge by the disturbance water causes the thermal radiation light to be detected in the purge. The optical path may be disturbed, or the optical path of the thermal radiation to be detected in the purge or at the purge interface may be disturbed depending on the performance of the purge itself.

ここで、本発明の発明者らが鋭意検討したところによれば、被測温鋼材表面がある程度の等温面の広がりを有している場合、パージによる熱放射光の光路安定領域が必ずしも被測温鋼材表面まで到達している必要はないことを見出した。すなわち、外乱水などによって被測温鋼材表面近傍で光路が乱される場合であっても、この光路の乱れが被測温鋼材表面近傍に限られ、且つ被測温鋼材表面がある程度等温とみなせる広がりを有しておれば、主にこの等温面内からの熱放射光を検出することになり、測温誤差すなわち散乱誤差は抑制されることを見出した。より具体的に説明すれば、例えば、図1に示すように、パージ用のノズル内など外乱水等によって光路が乱されることのない光路安定領域を測定対象である被測温鋼材にある程度近づければ(光路不安定領域を被測温鋼材表面近傍に抑制しさえすれば)、散乱誤差を問題のない程度に抑制できることを見出した。本発明は、斯かる本発明の発明者らの知見に基づき完成されたものである。   Here, the inventors of the present invention have intensively studied that when the surface of the steel material to be measured has a certain extent of isothermal surface, the optical path stability region of the heat radiation light due to the purge is not necessarily measured. It has been found that it is not necessary to reach the surface of the hot steel material. In other words, even when the optical path is disturbed near the surface of the steel material to be measured due to disturbance water or the like, the disturbance of the optical path is limited to the vicinity of the surface of the steel material to be measured, and the surface of the steel material to be measured can be regarded as being isothermal to some extent. It has been found that if there is a spread, the thermal radiation light from this isothermal surface is mainly detected, and the temperature measurement error, that is, the scattering error is suppressed. More specifically, for example, as shown in FIG. 1, an optical path stable region where the optical path is not disturbed by disturbance water or the like such as in a purge nozzle is brought close to a temperature-measured steel material to be measured to some extent. It was found that the scattering error can be suppressed to the extent that there is no problem if the optical path instability region is suppressed in the vicinity of the surface of the steel material to be measured. The present invention has been completed based on the knowledge of the inventors of the present invention.

すなわち、前記第1の課題を解決するべく、本発明は、特許請求の範囲の請求項1に記載の如く、被測温鋼材表面から放射された熱放射光を被測温鋼材に対向配置した放射温度計で検出することにより、被測温鋼材の表面温度を測定する方法であって、前記放射温度計で検出される熱放射光の光路が通る領域における光路安定領域と光路不安定領域との界面と前記放射温度計の光軸との交点を基準とした被測温鋼材エッジ部の最小の拡がり角を75°以上に設定することを特徴とする鋼材の表面温度測定方法を提供するものである。   That is, in order to solve the first problem, according to the present invention, the heat radiation emitted from the surface of the steel material to be measured is arranged opposite to the steel material to be measured, as described in claim 1 of the claims. A method of measuring a surface temperature of a steel material to be measured by detecting with a radiation thermometer, wherein an optical path stable region and an optical path unstable region in a region through which an optical path of thermal radiation detected by the radiation thermometer passes A method for measuring the surface temperature of a steel material is characterized in that the minimum spread angle of the edge portion of the steel material to be measured is set to 75 ° or more with reference to the intersection between the interface of the radiation thermometer and the optical axis of the radiation thermometer. It is.

斯かる発明によれば、光路不安定領域が被測温鋼材表面近傍に抑制され、散乱誤差を問題のない程度に抑制することが可能である。なお、「光路安定領域」とは、放射温度計で検出される熱放射光の光路が通る領域のうち、光路の変動が生じない領域を意味する。「光路不安定領域」とは、逆に、光路の変動が生じる領域を意味する。また、「交点を基準とした被測温鋼材エッジ部の最小の拡がり角」とは、光路安定領域と光路不安定領域との界面と前記放射温度計の光軸との交点から被測温鋼材表面に下ろした垂線と、前記交点と被測温鋼材エッジ部とを結ぶ直線との成す角度のうち、最も小さい角度を意味する。   According to such an invention, the optical path instability region is suppressed in the vicinity of the surface of the steel material to be measured, and the scattering error can be suppressed to the extent that there is no problem. The “optical path stable region” means a region where the optical path does not vary among regions through which the optical path of the thermal radiation detected by the radiation thermometer passes. In contrast, the “optical path unstable region” means a region where the optical path fluctuates. The “minimum divergence angle of the temperature-measured steel edge with respect to the intersection” refers to the temperature-measured steel from the intersection of the interface between the optical path stable region and the optical path unstable region and the optical axis of the radiation thermometer. It means the smallest angle among the angles formed by the perpendicular line dropped on the surface and the straight line connecting the intersection and the temperature-measured steel material edge.

なお、より具体的に説明すれば、「光路安定領域」は、例えば、液体又は気体を噴射するパージ用のノズル先端から放射温度計の受光面までの領域(逆に、光路不安定領域は、ノズル先端から被測温鋼材表面までの領域)とみなすことができる場合がある。この場合において、散乱誤差を問題のない程度に抑制するには、ノズル先端を基準とした被測温鋼材エッジ部の最小の拡がり角を75°以上に設定すればよい。また、「光路安定領域」は、パージ用のノズルから噴射した液体又は気体のポテンシャルコア先端から放射温度計の受光面までの領域(逆に、光路不安定領域は、ポテンシャルコア先端から被測温鋼材表面までの領域)とみなしてもよい。この場合において、散乱誤差を問題のない程度に抑制するには、ポテンシャルコア先端を基準とした被測温鋼材エッジ部の最小の拡がり角を75°以上に設定すればよい。さらに、光ファイバー等の導波路を介して熱放射光を検出する構成を採用する場合、「光路安定領域」は、導波路先端から放射温度計の受光面までの領域(逆に、光路不安定領域は、導波路先端から被測温鋼材表面までの領域)と考えることも可能である。この場合において、散乱誤差を問題のない程度に抑制するには、導波路先端を基準とした被測温鋼材エッジ部の最小の拡がり角を75°以上に設定すればよい。   More specifically, the “optical path stable region” is, for example, a region from the tip of a purge nozzle that ejects liquid or gas to the light receiving surface of the radiation thermometer (in contrast, the optical path unstable region is The region from the nozzle tip to the surface of the steel material to be measured may be considered. In this case, in order to suppress the scattering error to the extent that there is no problem, the minimum spread angle of the temperature-measured steel material edge portion with the nozzle tip as a reference may be set to 75 ° or more. The “optical path stable region” is the region from the tip of the liquid or gas potential core ejected from the purge nozzle to the light receiving surface of the radiation thermometer (in contrast, the optical path unstable region is the temperature measured from the tip of the potential core. It may be regarded as a region up to the steel surface. In this case, in order to suppress the scattering error to the extent that there is no problem, the minimum spread angle of the temperature-measured steel material edge portion with respect to the potential core tip may be set to 75 ° or more. Furthermore, when adopting a configuration for detecting thermal radiation light through a waveguide such as an optical fiber, the “optical path stability region” is the region from the waveguide tip to the light receiving surface of the radiation thermometer (inversely, the optical path instability region). Can also be considered as a region from the tip of the waveguide to the surface of the steel material to be measured. In this case, in order to suppress the scattering error to the extent that there is no problem, the minimum divergence angle of the temperature-measured steel material edge portion with respect to the waveguide tip may be set to 75 ° or more.

次に、本発明の発明者らは、特に被測温鋼材の下面について放射測温する場合、より具体的には、被測温鋼材下面から放射された熱放射光を、被測温鋼材下面に向けてノズルから噴射したパージ水を介して被測温鋼材の下方に対向配置した放射温度計で検出することにより、被測温鋼材の表面温度を測定する場合において、前記第1の課題を解決するべく鋭意検討した。その結果、外乱水がノズル直上に落下してきた場合を考えると、ノズル先端における外乱水の流速がパージ水の流速に比べ大き過ぎると、外乱水によるパージ水の乱れがノズル内にまで及び、光路不安定領域が広がってしまうことにより、測温誤差(散乱誤差)が大きくなってしまう場合のあることを見出した。これを防止するには、ノズル先端におけるパージ水の流速を外乱水の流速と同等程度乃至それ以上にすればよいが、この外乱水の落下方向の最大速度はパスラインからノズル先端までの距離で決まる。従って、上記のような散乱誤差を抑制するには、およそパスライン近傍の高さまで吹き上げるエネルギーをパージ水に付与すればよいということが分かる。   Next, the inventors of the present invention, in particular, when performing radiation temperature measurement on the lower surface of the measured temperature steel material, more specifically, the thermal radiation emitted from the lower surface of the measured temperature steel material, the lower surface of the measured temperature steel material In the case of measuring the surface temperature of the steel material to be measured by detecting with a radiation thermometer disposed below the steel material to be measured through the purge water jetted from the nozzle toward the first, the first problem is We studied earnestly to solve it. As a result, considering that the disturbance water has fallen directly above the nozzle, if the disturbance water flow rate at the nozzle tip is too large compared to the purge water flow rate, the disturbance of the purge water due to the disturbance water extends into the nozzle. It has been found that the temperature measurement error (scattering error) may increase due to the spread of the unstable region. To prevent this, the flow rate of the purge water at the nozzle tip should be about the same as or higher than the flow rate of the disturbance water, but the maximum velocity in the direction of the disturbance water drop is the distance from the pass line to the nozzle tip. Determined. Therefore, it can be seen that in order to suppress the scattering error as described above, it is sufficient to apply energy to the purge water to blow up to a height in the vicinity of the pass line.

また、本発明の発明者らは、前述のように、被測温鋼材下面から放射された熱放射光を、被測温鋼材下面に向けてノズルから噴射したパージ水を介して被測温鋼材の下方に対向配置した放射温度計で検出することにより、被測温鋼材の表面温度を測定する場合において、前記第2の課題を解決するべく鋭意検討した。その結果、被測温鋼材下面にパージ水が衝突すると衝突した領域が冷却されるものの、この衝突圧を所定値以下に低く抑えると、パージ水がたとえ常温であっても、冷却は抑制されることを見出した。   In addition, as described above, the inventors of the present invention provide the temperature-measured steel material via the purge water sprayed from the nozzle toward the temperature-measured steel material lower surface with the heat radiation emitted from the temperature-measured steel material lower surface. In the case where the surface temperature of the steel material to be measured is measured by detecting with a radiation thermometer arranged oppositely below, a intensive study was made to solve the second problem. As a result, when the purge water collides with the lower surface of the temperature-measured steel material, the collided area is cooled, but if this collision pressure is kept below a predetermined value, cooling is suppressed even if the purge water is at room temperature. I found out.

本発明は、以上に説明した本発明の発明者らの知見を、ベルヌーイの式から導き出され、速度ヘッド、圧力ヘッド及び位置ヘッドの和で定義される全ヘッド(total head)という概念で整理することにより、完成されたものである。すなわち、前記第1及び第2の課題を解決するべく、本発明は、特許請求の範囲の請求項2に記載の如く、被測温鋼材下面から放射された熱放射光を、被測温鋼材下面に向けてノズルから噴射したパージ水を介して被測温鋼材の下方に対向配置した放射温度計で検出することにより、被測温鋼材の表面温度を測定する方法であって、被測温鋼材のパスラインを位置基準とした前記パージ水の全ヘッドHt(m)が以下の式(1)を満足することを特徴とする鋼材の表面温度測定方法を提供するものである。
−0.36Hg<Ht<0.05 ・・・(1)
ただし、Hg(m)は、パスライン(被測温鋼材の下面が取り得る最も下部の位置)とノズル先端との離間距離を意味する。
なお、より好ましくは、−0.36Hg<Ht<0.01とされる。
The present invention arranges the findings of the inventors of the present invention described above with the concept of a total head derived from Bernoulli's equation and defined by the sum of velocity head, pressure head and position head. As a result, it was completed. That is, in order to solve the first and second problems, as described in claim 2 of the present invention, the present invention uses heat radiated light emitted from the lower surface of the measured temperature steel material as the measured temperature steel material. A method for measuring a surface temperature of a steel material to be measured by detecting with a radiation thermometer disposed below the steel material to be measured through purge water jetted from a nozzle toward the bottom surface. The present invention provides a method for measuring the surface temperature of a steel material, characterized in that all the heads Ht (m) of the purge water satisfying the following formula (1) with respect to the position of the pass line of the steel material.
-0.36Hg <Ht <0.05 (1)
However, Hg (m) means the separation distance between the pass line (the lowest position that the lower surface of the steel material to be measured can take) and the tip of the nozzle.
More preferably, −0.36Hg <Ht <0.01.

斯かる発明によれば、パージ水の全ヘッドHtを−0.36Hgよりも大きくすることにより、外乱水がノズル直上に落下してきた場合であっても、当該外乱水によるパージ水の乱れがノズル内にまであまり及ばず、測温誤差(散乱誤差)が大きくならない。一方、パージ水の全ヘッドHtを0.05より小さくする(より好ましくは0.01より小さくする)ことにより、被測温鋼材下面に対するパージ水の衝突圧が抑制され、パージ水がたとえ常温であっても冷却を抑制することが可能である。なお、「被測温鋼材のパスラインを位置基準とした」とは、パスラインにおけるパージ水の位置ヘッド(potential head)を0(m)にすることを意味する。   According to such an invention, by setting the total head Ht of purge water to be larger than −0.36 Hg, the disturbance of the purge water due to the disturbance water is caused by the disturbance water even when the disturbance water has fallen directly above the nozzle. The temperature measurement error (scattering error) does not increase. On the other hand, by making the total head Ht of the purge water smaller than 0.05 (more preferably smaller than 0.01), the collision pressure of the purge water against the lower surface of the steel material to be measured is suppressed, and the purge water is kept at room temperature. Even if it exists, it is possible to suppress cooling. Note that “using the pass line of the steel material to be measured as a position reference” means that the position head (potential head) of the purge water in the pass line is set to 0 (m).

吸収誤差は、外乱水によって検出すべき熱放射光が吸収されることに起因して生じる誤差である。換言すれば、冷却水の条件や、被測温鋼材のパスライン変動(被測温鋼材下面の上下方向の位置変動)、周囲温度・湿度の変化に伴う湯気の発生有無等により、被測温鋼材と放射温度計との間に存在する外乱水の量(厚み)が変化し、これに伴って外乱水による熱放射光の吸収・減衰の程度が変化し、検出される熱放射光の光量が変動することによって誤差が生じる。   An absorption error is an error caused by absorption of thermal radiation to be detected by disturbance water. In other words, the temperature to be measured depends on the conditions of the cooling water, fluctuations in the pass line of the steel to be measured (position fluctuation in the vertical direction on the bottom surface of the steel to be measured), presence or absence of steam due to changes in ambient temperature and humidity, etc. The amount (thickness) of disturbance water existing between the steel material and the radiation thermometer changes, and the degree of absorption and attenuation of thermal radiation by the disturbance water changes accordingly. An error occurs due to fluctuations.

ここで、本発明の発明者らが鋭意検討したところによれば、放射温度計で検出する熱放射光の波長を所定値以下に制限すれば、外乱水の厚みが変化することによって生じる測温誤差を低減できると共に、水柱を介して放射測温する場合においても水柱の厚み測定装置を不要とすることが可能であることを見出した。本発明は、斯かる本発明の発明者らの知見に基づき完成されたものである。   Here, the inventors of the present invention have intensively studied that, if the wavelength of the thermal radiation detected by the radiation thermometer is limited to a predetermined value or less, the temperature measurement caused by the change in the thickness of the disturbance water. It has been found that the error can be reduced and the thickness measuring device for the water column can be made unnecessary even when the radiation temperature is measured through the water column. The present invention has been completed based on the knowledge of the inventors of the present invention.

すなわち、さらに前記第3の課題を解決するべく、本発明は、特許請求の範囲の請求項3に記載の如く、前記放射温度計で検出する熱放射光の波長を0.9μm以下とするのが好ましい。   That is, in order to further solve the third problem, according to the present invention, the wavelength of the thermal radiation detected by the radiation thermometer is 0.9 μm or less as described in claim 3. Is preferred.

斯かる発明によれば、後述するように、外乱水の厚みの変化に伴う測温誤差を低減することが可能である。なお、より好ましくは、放射温度計で検出する熱放射光の波長は0.85μm以下とされる。   According to such an invention, as will be described later, it is possible to reduce a temperature measurement error associated with a change in the thickness of disturbance water. More preferably, the wavelength of the thermal radiation detected by the radiation thermometer is 0.85 μm or less.

なお、本発明は、特許請求の範囲の請求項4に記載の如く、被測温鋼材に対向配置された放射温度計を備え、被測温鋼材表面から放射された熱放射光を前記放射温度計で検出することにより、被測温鋼材の表面温度を測定する装置であって、前記放射温度計で検出される熱放射光の光路が通る領域における光路安定領域と光路不安定領域との界面と前記放射温度計の光軸との交点を基準とした被測温鋼材エッジ部の最小の拡がり角を75°以上に設定することを特徴とする鋼材の表面温度測定装置としても提供される。   In addition, this invention is equipped with the radiation thermometer arrange | positioned facing temperature-measured steel materials as described in Claim 4 of a claim, The thermal radiation light radiated | emitted from the surface of temperature-measured steel materials is said radiation temperature. An apparatus for measuring a surface temperature of a steel material to be measured by detecting with a meter, and an interface between an optical path stable region and an optical path unstable region in a region through which an optical path of thermal radiation detected by the radiation thermometer passes Further, the present invention is also provided as a steel surface temperature measuring device in which the minimum spread angle of the temperature-measured steel material edge portion based on the intersection of the radiation thermometer and the optical axis of the radiation thermometer is set to 75 ° or more.

また、本発明は、特許請求の範囲の請求項5に記載の如く、被測温鋼材下面に対向配置された放射温度計と、被測温鋼材下面と前記放射温度計との間にパージ水を噴射するノズルとを備え、被測温鋼材下面から放射された熱放射光を前記パージ水を介して前記放射温度計で検出することにより、被測温鋼材の表面温度を測定する装置であって、被測温鋼材のパスラインを位置基準とした前記パージ水の全ヘッドHt(m)が以下の式(1)を満足することを特徴とする鋼材の表面温度測定装置としても提供される。
−0.36Hg<Ht<0.05 ・・・(1)
ただし、Hg(m)は、パスラインとノズル先端との離間距離を意味する。
なお、より好ましくは、−0.36Hg<Ht<0.01とされる。
Further, according to the present invention, as set forth in claim 5, the radiation thermometer disposed opposite to the lower surface of the steel material to be measured, and the purge water between the lower surface of the steel material to be measured and the radiation thermometer. A device for measuring the surface temperature of the steel material to be measured by detecting thermal radiation emitted from the bottom surface of the steel material to be measured by the radiation thermometer through the purge water. In addition, all the heads Ht (m) of the purge water with the pass line of the steel material to be measured as a position reference satisfy the following formula (1), and the steel surface temperature measuring device is also provided. .
-0.36Hg <Ht <0.05 (1)
However, Hg (m) means a separation distance between the pass line and the nozzle tip.
More preferably, −0.36Hg <Ht <0.01.

好ましくは、特許請求の範囲の請求項6に記載の如く、前記鋼材の表面温度測定装置は、被測温鋼材と前記放射温度計の検出素子との間に、0.9μmよりも長い波長の光を遮断する光学フィルタを備えるように構成される。   Preferably, as described in claim 6, the steel surface temperature measuring device has a wavelength longer than 0.9 μm between the steel material to be measured and the detection element of the radiation thermometer. An optical filter that blocks light is provided.

また、本発明は、特許請求の範囲の請求項7に記載の如く、請求項1から3のいずれかに記載の方法によって表面温度を測定することを特徴とする鋼材の製造方法としても提供される。   The present invention is also provided as a method for producing a steel material, characterized in that the surface temperature is measured by the method according to any one of claims 1 to 3 as described in claim 7. The

本発明(請求項1に係る発明)によれば、放射温度計で検出される熱放射光の光路が通る領域における光路安定領域と光路不安定領域との界面と前記放射温度計の光軸との交点を基準とした被測温鋼材エッジ部の最小の拡がり角を75°以上に設定することにより、光路不安定領域が被測温鋼材表面近傍に抑制され、散乱誤差を問題のない程度に抑制することが可能である。また、本発明(請求項2に係る発明)によれば、パージ水の全ヘッドHtを−0.36Hgよりも大きくすることにより、外乱水がノズル直上に落下してきた場合であっても、当該外乱水によるパージ水の乱れがノズル内にまであまり及ばず、測温誤差(散乱誤差)が大きくならない。一方、パージ水の全ヘッドHtを0.05より小さくする(より好ましくは0.01より小さくする)ことにより、被測温鋼材下面に対するパージ水の衝突圧が抑制され、パージ水がたとえ常温であっても冷却を抑制することが可能である。   According to the present invention (the invention according to claim 1), the interface between the optical path stable region and the optical path unstable region in the region through which the optical path of the thermal radiation detected by the radiation thermometer passes, the optical axis of the radiation thermometer, By setting the minimum divergence angle of the temperature-measured steel edge relative to the intersection of the above to 75 ° or more, the optical path instability region is suppressed in the vicinity of the surface of the temperature-measured steel and the scattering error is not problematic. It is possible to suppress. Further, according to the present invention (the invention according to claim 2), even if the disturbance water falls directly above the nozzle by making all the heads Ht of the purge water larger than -0.36Hg, The disturbance of the purge water due to the disturbance water does not reach the nozzle so much, and the temperature measurement error (scattering error) does not increase. On the other hand, by making the total head Ht of the purge water smaller than 0.05 (more preferably smaller than 0.01), the collision pressure of the purge water against the lower surface of the steel material to be measured is suppressed, and the purge water is kept at room temperature. Even if it exists, it is possible to suppress cooling.

以下、添付図面を適宜参照しつつ、本発明の実施形態について説明する。
<第1の実施形態>
本実施形態に係る表面温度測定装置は、図2に概略構成を示すように、被測温鋼材(本実施形態では鋼板M)に対向配置された放射温度計1を備え、鋼板M表面から放射された熱放射光を放射温度計1で検出することにより、鋼板Mの表面温度を測定する装置である。また、本実施形態に係る表面温度測定装置は、鋼板M表面に向けてパージ用の液体又は気体を噴射するためのノズル2を備えており、放射温度計1の光軸がノズル2内を通るように構成されている。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings as appropriate.
<First Embodiment>
As shown in FIG. 2, the surface temperature measuring apparatus according to the present embodiment includes a radiation thermometer 1 disposed opposite to a steel material to be measured (a steel plate M in the present embodiment), and radiates from the surface of the steel plate M. This is a device for measuring the surface temperature of the steel sheet M by detecting the emitted thermal radiation light with the radiation thermometer 1. Moreover, the surface temperature measuring apparatus according to the present embodiment includes a nozzle 2 for injecting a purging liquid or gas toward the surface of the steel sheet M, and the optical axis of the radiation thermometer 1 passes through the nozzle 2. It is configured as follows.

放射温度計1は、図3に示すように、測温ヘッド11と、測温ヘッド11の先端部に取り付けられた光学窓12と、測温ヘッド11内に収納され光学窓12を介して鋼板Mからの熱放射光を受光する受光光学系(検出視野を調整するための光学系であり、レンズや視野絞り等によって構成される)13と、制御盤14と、受光光学系13によって受光された熱放射光を制御盤14に伝送するための光ファイバ15とを備えている。制御盤14内には、光ファイバ15によって伝送された熱放射光を光電変換して光量に応じた電流を出力するSiホトダイオード等の検出素子が配設された検出部141と、検出部141からの出力電流を増幅した後に、電流電圧変換及びAD変換を施し、温度に換算する演算部142と、演算部142で換算された温度データを外部に出力するための出力部143とが配置されている。   As shown in FIG. 3, the radiation thermometer 1 includes a temperature measuring head 11, an optical window 12 attached to the tip of the temperature measuring head 11, and a steel plate housed in the temperature measuring head 11 through the optical window 12. A light receiving optical system (which is an optical system for adjusting a detection field of view and configured by a lens, a field stop, etc.) 13, a control panel 14, and a light receiving optical system 13 that receives thermal radiation from M. And an optical fiber 15 for transmitting the heat radiation light to the control panel 14. In the control panel 14, a detection unit 141 including a detection element such as a Si photodiode that photoelectrically converts heat radiation light transmitted by the optical fiber 15 and outputs a current corresponding to the amount of light, and the detection unit 141. After the output current is amplified, a calculation unit 142 that performs current-voltage conversion and AD conversion and converts it to temperature, and an output unit 143 for outputting the temperature data converted by the calculation unit 142 to the outside are arranged. Yes.

ノズル2は、測温ヘッド11の先端に接続され、外部からパージ水やエア等を流入することにより、先端から鋼板M表面に向けてパージ水やエア等を噴射するように構成されている。   The nozzle 2 is connected to the tip of the temperature measuring head 11 and is configured to inject purge water, air, or the like from the tip toward the surface of the steel sheet M by flowing purge water, air, or the like from the outside.

なお、放射温度計1やノズル2については、公知の構成を種々適用可能であるため、より詳細な構成についてはその説明を省略する。   In addition, about the radiation thermometer 1 and the nozzle 2, since a well-known structure is applicable variously, the description is abbreviate | omitted about a more detailed structure.

ここで、本実施形態に係る表面温度測定装置は、前記放射温度計で検出される熱放射光の光路が通る領域における光路安定領域S1と光路不安定領域S2との界面と前記放射温度計の光軸との交点Pを基準とした鋼板Mのエッジ部Eの最小の拡がり角θを75°以上に設定している点に特徴を有する。より具体的に説明すれば、本実施形態に係る表面温度測定装置のノズル2近傍は、図1、図4及び図5の何れかに示す態様となる。図1に示す態様(ノズル2先端からパージ水を噴射する態様)の場合、光路安定領域S1は、ノズル2の先端から放射温度計の受光面までの領域となり、光路不安定領域S2は、ノズル2先端から鋼板M表面までの領域であると考えることができる。また、図4に示す態様(ノズル2先端からエアを噴射する態様)の場合、光路安定領域S1は、ノズル2から噴射したエアの生成するポテンシャルコアCと称される安定したパージ領域の先端から放射温度計の受光面までの領域となり、光路不安定領域S2は、ポテンシャルコアC先端から鋼板M表面までの領域であると考えることができる。さらに、図5に示す態様は、ノズル2先端から鋼板Mに向けて突設された光ファイバー等の導波路Fを介して熱放射光を検出する構成(より具体的には、例えば、図3に示す光学窓12の代わりに、ノズル2先端から突き出る長さの石英ロッドが設置された構成)であり、この場合の光路安定領域S1は、導波路F先端から放射温度計の受光面までの領域となり、光路不安定領域S2は、導波路F先端から鋼板M表面までの領域であると考えることができる。図1、図4及び図5のいずれの場合も、交点Pを基準とした鋼板Mエッジ部Eの最小の拡がり角θとは、交点Pから鋼板M表面に下ろした垂線と、交点Pと鋼板Mのエッジ部Eとを結ぶ直線との成す角度のうち、最も小さい角度を意味する。   Here, the surface temperature measuring apparatus according to the present embodiment includes an interface between the optical path stable region S1 and the optical path unstable region S2 in the region through which the optical path of the thermal radiation detected by the radiation thermometer passes, and the radiation thermometer. It is characterized in that the minimum spread angle θ of the edge portion E of the steel plate M with respect to the intersection point P with the optical axis is set to 75 ° or more. More specifically, the vicinity of the nozzle 2 of the surface temperature measuring apparatus according to the present embodiment is in the form shown in any of FIGS. In the case shown in FIG. 1 (injecting purge water from the tip of the nozzle 2), the optical path stability region S1 is a region from the tip of the nozzle 2 to the light receiving surface of the radiation thermometer, and the optical path unstable region S2 is the nozzle. 2 It can be considered that the region extends from the tip to the surface of the steel plate M. Further, in the case shown in FIG. 4 (injecting air from the tip of the nozzle 2), the optical path stable region S1 is from the tip of a stable purge region called a potential core C generated by the air injected from the nozzle 2. It becomes a region to the light receiving surface of the radiation thermometer, and the optical path unstable region S2 can be considered to be a region from the tip of the potential core C to the surface of the steel plate M. Furthermore, the mode shown in FIG. 5 is a configuration that detects thermal radiation light via a waveguide F such as an optical fiber that protrudes from the tip of the nozzle 2 toward the steel plate M (more specifically, for example, in FIG. In this case, the optical path stability region S1 is a region from the front end of the waveguide F to the light receiving surface of the radiation thermometer. Thus, the optical path unstable region S2 can be considered as a region from the front end of the waveguide F to the surface of the steel plate M. 1, 4, and 5, the minimum spread angle θ of the steel plate M edge portion E with respect to the intersection P is a perpendicular line from the intersection P to the surface of the steel plate M, and the intersection P and the steel plate. It means the smallest angle among the angles formed by the straight line connecting the edge portion E of M.

以下、前記最小の拡がり角θを決定するために実施した試験について説明する。図6に試験の概要を示すように、均一な輝度の平面光源Lを測定対象である被測温鋼材と考え、平面光源Lと放射温度計との間をノズル2から噴射させた水でパージし、当該パージ水を側方から噴射させた外乱水によって乱す試験を実施した。そして、この乱す位置(ノズル2先端の位置)と平面光源Lとの位置関係を種々変更しつつ、外乱水を噴射する前後での放射温度計の出力変化を調査した。   Hereinafter, a test carried out to determine the minimum divergence angle θ will be described. As shown in the outline of the test in FIG. 6, the plane light source L with uniform brightness is considered as the steel material to be measured, and purged with water sprayed from the nozzle 2 between the plane light source L and the radiation thermometer. Then, a test was conducted in which the purge water was disturbed by disturbance water jetted from the side. And the output change of the radiation thermometer before and behind injecting disturbance water was investigated, changing the positional relationship of this disorder | damaging position (position of nozzle 2 front-end | tip) and the planar light source L variously.

図7に試験結果を示す。ここで、図7の横軸はノズル2先端から平面光源Lまでの領域を光路不安定領域S2とした場合の拡がり角θをプロットし、縦軸は外乱水を噴射する前後での放射温度計の出力変化を測温誤差としてプロットした。図7に示すように、拡がり角θを75°以上に設定すれば、測温誤差を10℃以下に抑制できることが分かった。従って、前述した図1、図4及び図5に示す態様についても、それぞれ拡がり角θを75°以上に設定することにしたものである。   FIG. 7 shows the test results. Here, the horizontal axis of FIG. 7 plots the spread angle θ when the region from the tip of the nozzle 2 to the flat light source L is the optical path unstable region S2, and the vertical axis is a radiation thermometer before and after injecting disturbance water. Was plotted as a temperature measurement error. As shown in FIG. 7, it has been found that if the spread angle θ is set to 75 ° or more, the temperature measurement error can be suppressed to 10 ° C. or less. Therefore, also in the embodiment shown in FIGS. 1, 4 and 5, the spread angle θ is set to 75 ° or more.

以上に説明した本実施形態に係る表面温度測定装置によれば、放射温度計で検出される熱放射光の光路が通る領域における光路安定領域S1と光路不安定領域S2との界面と前記放射温度計の光軸との交点Pを基準とした鋼板Mエッジ部Eの最小の拡がり角を75°以上に設定することにより、光路不安定領域S2が鋼板M表面近傍に抑制され、散乱誤差を問題のない程度(測温誤差10℃以下)に抑制することが可能である。   According to the surface temperature measuring apparatus according to the present embodiment described above, the interface between the optical path stable region S1 and the optical path unstable region S2 in the region through which the optical path of the thermal radiation detected by the radiation thermometer passes, and the radiation temperature. By setting the minimum divergence angle of the steel plate M edge E based on the intersection point P with the optical axis of the meter to 75 ° or more, the optical path unstable region S2 is suppressed in the vicinity of the surface of the steel plate M, and scattering errors are a problem. (The temperature measurement error is 10 ° C. or less).

なお、本実施形態では、被測温鋼材としての鋼板Mの下面から放射された熱放射光を鋼板Mに対向配置した放射温度計で検出する構成について説明したが、本発明はこれに限るものではなく、被測温鋼材としての鋼板Mの上面から放射された熱放射光を鋼板Mに対向配置した放射温度計で検出する構成とすることも無論可能である。また、鋼板Mが鉛直方向に搬送されるような製造ラインにおいて、鋼板M表面から放射された熱放射光を当該鋼板M表面に対向配置した放射温度計で検出する構成とすることも可能である。さらには、鋼管や形鋼などの被測温鋼材側面から放射された熱放射光を当該被測温鋼材側面に対向配置した放射温度計で検出する構成とすることも可能である。   In addition, although this embodiment demonstrated the structure which detects the thermal radiation light radiated | emitted from the lower surface of the steel plate M as a to-be-measured steel material with the radiation thermometer arrange | positioned facing the steel plate M, this invention is limited to this. Instead, it is of course possible to adopt a configuration in which the thermal radiation emitted from the upper surface of the steel plate M as the temperature-measured steel material is detected by a radiation thermometer disposed opposite to the steel plate M. Further, in a production line in which the steel plate M is conveyed in the vertical direction, it is also possible to adopt a configuration in which heat radiation light radiated from the surface of the steel plate M is detected by a radiation thermometer disposed opposite to the surface of the steel plate M. . Furthermore, it is also possible to adopt a configuration in which heat radiation light radiated from the side surface of the temperature-measured steel material such as a steel pipe or a shape steel is detected by a radiation thermometer disposed opposite to the side surface of the temperature-measured steel material.

<第2の実施形態>
本実施形態に係る表面温度測定装置も、前述した図1〜図5に示す構成と同様の構成であり、被測温鋼材(本実施形態では鋼板M)の下面に対向配置された放射温度計1と、鋼板Mの下面と放射温度計1との間にパージ水を噴射するノズル2とを備え、鋼板Mの下面から放射された熱放射光を前記パージ水を介して放射温度計1で検出することにより、鋼板Mの表面温度を測定する装置である。ただし、本実施形態に係る表面温度測定装置は、鋼板Mのパスラインを位置基準とした前記パージ水の全ヘッドHt(m)が以下の式(1)を満足するようにパージ水を噴射する構成となっている点に特徴を有する。
−0.36Hg<Ht<0.05 ・・・(1)
ただし、Hg(m)は、パスラインとノズル先端との離間距離を意味する。また、「鋼板Mのパスラインを位置基準とした」とは、パスラインにおけるパージ水の位置ヘッド(potential head)を0(m)にすることを意味する。なお、より好ましくは、−0.36Hg<Ht<0.01とされる。
<Second Embodiment>
The surface temperature measuring apparatus according to the present embodiment is also similar in configuration to the above-described configurations shown in FIGS. 1 to 5, and a radiation thermometer disposed opposite to the lower surface of the steel material to be measured (steel plate M in the present embodiment). 1 and a nozzle 2 for injecting purge water between the lower surface of the steel plate M and the radiation thermometer 1, and the radiation thermometer 1 radiates heat radiation emitted from the lower surface of the steel plate M through the purge water. It is a device that measures the surface temperature of the steel sheet M by detecting it. However, the surface temperature measuring apparatus according to the present embodiment injects the purge water so that all the purge water heads Ht (m) satisfying the following formula (1) with the pass line of the steel plate M as a position reference. It is characterized by the configuration.
-0.36Hg <Ht <0.05 (1)
However, Hg (m) means a separation distance between the pass line and the nozzle tip. Further, “using the pass line of the steel plate M as a position reference” means that the position head (potential head) of purge water in the pass line is set to 0 (m). More preferably, −0.36Hg <Ht <0.01.

以下、ノズル2から噴射するパージ水が上記式(1)の条件を満足するように設定した理由について説明する。   Hereinafter, the reason why the purge water ejected from the nozzle 2 is set so as to satisfy the condition of the above formula (1) will be described.

まず、ノズル2から噴射するパージ水の水温及び流量の条件を適宜変更して、走行中(鋼板速度600mpm〜1200mpm)の鋼板Mの表面温度低下を調査する試験を実施した。なお、鋼板Mの表面温度低下は、鋼板Mの上面に対向配置した通常の放射温度計(パージ水無し)による測温値と、鋼板Mの下面に対向配置された本実施形態に係る放射温度計1によるパージ水を介した測温値との差によって算出した。図8に試験結果を示す。ここで、図8の横軸は鋼板Mのパスラインにおけるパージ水の衝突圧力(パージ水の流量及びノズル先端とパスラインとの距離から算出される計算値)を対数でプロットし、縦軸は鋼板M表面の温度低下量(冷却誤差に相当)をプロットした。図8に示すように、衝突圧力が0の場合(すなわち、パージ水が鋼板Mの下面に接触しない場合)には、鋼板Mの下面は冷却されないが、衝突圧力が増加するにつれて、温度低下量すなわち冷却誤差も増加することが分かる。この測温誤差の増加量は、パージ水の水温が低い方が顕著である。ただし、パージ水の鋼板Mの下面への衝突圧力が0.5KPa以下であれば、水温の影響は乏しく、常温(20℃)であっても冷却誤差は10℃以下となる(より好ましくは、衝突圧力が0.1KPa以下であれば、冷却誤差は5℃以下となる)ことが分かった。   First, the conditions of the water temperature and flow rate of the purge water injected from the nozzle 2 were changed as appropriate, and a test for investigating the surface temperature drop of the steel plate M during running (steel plate speed 600 mpm to 1200 mpm) was performed. In addition, the surface temperature fall of the steel plate M is the temperature measured by the normal radiation thermometer (without purge water) arranged opposite to the upper surface of the steel plate M and the radiation temperature according to the present embodiment arranged opposite to the lower surface of the steel plate M. It was calculated by the difference from the temperature measurement value via purge water by the total 1. FIG. 8 shows the test results. Here, the horizontal axis of FIG. 8 plots the collision pressure of purge water in the pass line of the steel plate M (calculated value calculated from the flow rate of purge water and the distance between the nozzle tip and the pass line) logarithmically, and the vertical axis represents The amount of temperature drop on the surface of the steel sheet M (corresponding to cooling error) was plotted. As shown in FIG. 8, when the collision pressure is 0 (that is, when the purge water does not contact the lower surface of the steel plate M), the lower surface of the steel plate M is not cooled, but the amount of temperature decrease is increased as the collision pressure increases. That is, it can be seen that the cooling error also increases. The increase in the temperature measurement error is more remarkable when the temperature of the purge water is lower. However, if the impact pressure of the purge water on the lower surface of the steel plate M is 0.5 KPa or less, the influence of the water temperature is poor, and even at room temperature (20 ° C.), the cooling error is 10 ° C. or less (more preferably, It was found that if the collision pressure is 0.1 KPa or less, the cooling error is 5 ° C. or less).

一方、ノズル2の先端における、ノズル2から噴射するパージ水の流速とノズル2の直上に落下してきた外乱水の流速との比(以下、適宜流速比という)を適宜変更して、鋼板Mの測温誤差(外乱水が無い場合を基準とした測温誤差)に及ぼす影響を調査する試験を実施した。より具体的には、前述した第1の実施形態と同様に、図6に示す均一な輝度の平面光源Lを測定対象である鋼板Mと考え、平面光源Lと放射温度計との間をノズル2から噴射させた水でパージしながら測温した。そして、外乱水を平面光源Lの下面(パスラインに相当)からノズル2の先端に向けて落下させると共に、ノズル2先端の位置を鉛直方向に適宜変更する(これによってノズル2先端における外乱水の流速が変わることになる)ことによって流速比を変更し、当該流速比と鋼板M(平面光源Lで模擬)の測温誤差との関係を調査した。図9に試験結果を示す。ここで、図9の横軸はパージ水の流速と外乱水の流速との比をプロットし、縦軸は測温誤差(散乱誤差に相当)をプロットした。図9に示すように、パージ水と外乱水との流速比を0.8以上とすれば、測温誤差(散乱誤差)が10℃以下となることが分かった。   On the other hand, the ratio of the flow rate of the purge water sprayed from the nozzle 2 and the flow rate of the disturbance water that has fallen directly above the nozzle 2 (hereinafter referred to as a flow rate ratio as appropriate) at the tip of the nozzle 2 is changed as appropriate. A test was conducted to investigate the effect on temperature measurement error (temperature measurement error based on the absence of disturbance water). More specifically, as in the first embodiment described above, the flat light source L with uniform brightness shown in FIG. 6 is considered as the steel plate M to be measured, and a nozzle is provided between the flat light source L and the radiation thermometer. The temperature was measured while purging with water jetted from 2. Then, the disturbance water is dropped from the lower surface of the planar light source L (corresponding to the pass line) toward the tip of the nozzle 2 and the position of the nozzle 2 tip is appropriately changed in the vertical direction (thereby causing disturbance water at the tip of the nozzle 2). The flow rate ratio was changed by changing the flow rate), and the relationship between the flow rate ratio and the temperature measurement error of the steel plate M (simulated by the flat light source L) was investigated. FIG. 9 shows the test results. Here, the horizontal axis of FIG. 9 plots the ratio of the flow rate of purge water to the flow rate of disturbance water, and the vertical axis plots temperature measurement error (corresponding to scattering error). As shown in FIG. 9, it was found that the temperature measurement error (scattering error) becomes 10 ° C. or less when the flow rate ratio between the purge water and the disturbance water is 0.8 or more.

次に、図8及び図9に示す結果を全ヘッド(total head)に換算して整理した。図10に整理した結果を示す。ここで、図10の横軸は鋼板Mのパスラインを位置基準としたパージ水の全ヘッドHtをプロットし、縦軸は測温誤差をプロットした。なお、図10において、「×」でプロットしたデータは、図8における水温20℃〜60℃の全データについて各衝突圧力毎に冷却誤差(温度低下量)の最大値を抽出した後、各衝突圧力を鋼板Mのパスラインを位置基準としたパージ水の全ヘッドHtに換算し、当該換算した全ヘッドHtに対応する前記抽出した冷却誤差の最大値をプロットしたものである。つまり、「×」でプロットしたデータは、全ヘッドHtと冷却誤差との関係を示すデータである。なお、図8に示す各衝突圧力を全ヘッドHtに換算する方法としては、鋼板Mが走行していないときに、前記各衝突圧力の得られたパージ水が到達する高さ(パスラインを位置基準とした高さ)を測定し、当該高さを前記各衝突圧力に対応した全ヘッドHtとする方法を用いた。これは、鋼板Mが走行していないときにパージ水が到達する高さ(到達高さ)においては、速度ヘッド及び圧力ヘッドが共に0となるため、位置ヘッドである前記到達高さが全ヘッドHtに相当することになるからである。また、図10において、「×」でプロットしたデータの内、全ヘッドHtが0未満であるデータは、図8から直接得られるデータではない。全ヘッドHtが0未満であるということは、パージ水と鋼板Mとが接触していないことを意味するため、当然に冷却誤差(温度低下量)が0になることからプロットしたものである。   Next, the results shown in FIGS. 8 and 9 were arranged in terms of the total head. The organized results are shown in FIG. Here, the horizontal axis of FIG. 10 plots all the heads Ht of the purge water with the pass line of the steel plate M as a reference, and the vertical axis plots the temperature measurement error. In FIG. 10, the data plotted with “x” is obtained by extracting the maximum value of the cooling error (temperature decrease amount) for each collision pressure with respect to all the data of the water temperature 20 ° C. to 60 ° C. in FIG. The pressure is converted into all the heads Ht of the purge water with the pass line of the steel plate M as the position reference, and the maximum value of the extracted cooling error corresponding to the converted all heads Ht is plotted. That is, the data plotted with “×” is data indicating the relationship between all the heads Ht and the cooling error. In addition, as a method of converting each collision pressure shown in FIG. 8 to all the heads Ht, when the steel plate M is not running, the height at which the purge water from which each collision pressure is obtained reaches (position of the pass line) The height (reference height) was measured, and the height was used as the total head Ht corresponding to each collision pressure. This is because the speed head and the pressure head are both zero at the height at which the purge water reaches when the steel plate M is not running (the reached height), and therefore the reached height as the position head is the total head. This is because it corresponds to Ht. In FIG. 10, data in which all heads Ht are less than 0 among data plotted with “x” is not data obtained directly from FIG. 8. The fact that all the heads Ht are less than 0 means that the purge water and the steel plate M are not in contact with each other, so that the cooling error (temperature decrease amount) is naturally zero, and is plotted.

また、「□」でプロットしたデータは、図9に示す流速比と散乱誤差(測温誤差)との関係を近似した折れ線ABCに基づきプロットしたものである。つまり、折れ線ABCに沿った各流速比を鋼板Mのパスラインを位置基準としたパージ水の全ヘッドHtに換算し、当該換算した全ヘッドHtの内、「×」でプロットしたデータと同一の全ヘッドHtのみを抽出し、当該抽出した全ヘッドHtに対応する散乱誤差をプロットしたものである。なお、図9に示す各流速比を全ヘッドHtに換算する方法としては、平面光源L(鋼板Mを模擬)がないときに、前記各流速比の得られたパージ水が到達する高さ(パスライン(平面光源Lの下面)を位置基準とした高さ)を測定し、当該高さを前記各流速比に対応する全ヘッドHtとする方法を用いた。   The data plotted with “□” is plotted based on a polygonal line ABC approximating the relationship between the flow rate ratio and the scattering error (temperature measurement error) shown in FIG. That is, each flow rate ratio along the polygonal line ABC is converted into all the heads Ht of purge water with the pass line of the steel plate M as a position reference, and the same data as the data plotted with “x” among all the converted heads Ht. Only all heads Ht are extracted, and scattering errors corresponding to the extracted all heads Ht are plotted. In addition, as a method of converting each flow rate ratio shown in FIG. 9 to all the heads Ht, when there is no flat light source L (simulating the steel plate M), the height at which the purge water obtained by each flow rate ratio reaches ( A method was used in which a pass line (height with respect to the lower surface of the planar light source L) as a position reference was measured and the height was set to all the heads Ht corresponding to the respective flow rate ratios.

さらに、「●」でプロットしたデータは、各全ヘッドHtについての冷却誤差(「×」でプロットしたデータ)と散乱誤差(「□」でプロットしたデータ)との二乗和の平方根をプロットしたものである。   Furthermore, the data plotted with “●” is a plot of the square root of the square sum of the cooling error (data plotted with “×”) and the scattering error (data plotted with “□”) for each head Ht. It is.

図10に示すように、パージ水の全ヘッドHtが−0.0144<Ht<0.05の条件を満足する場合、測温誤差(「●」でプロットしたデータ)が10℃以下となることが分かった。より具体的に説明すれば、パージ水の全ヘッドHtを−0.0144(図10においてDで示す境界線)よりも大きくすることにより、外乱水がパスラインからノズル2直上に落下してきた場合であっても、当該外乱水によるパージ水の乱れがノズル2内にまであまり及ばず、測温誤差(散乱誤差)を10℃以下にすることができる。一方、パージ水の全ヘッドHtを0.05(図10においてEで示す境界線)より小さくする(より好ましくは、0.01(図10においてFで示す境界線)より小さくする)ことにより、鋼板M下面に対するパージ水の衝突圧が抑制され、測温誤差(冷却誤差)を抑制することが可能である。   As shown in FIG. 10, when all the heads Ht of the purge water satisfy the condition of −0.0144 <Ht <0.05, the temperature measurement error (data plotted by “●”) is 10 ° C. or less. I understood. More specifically, when disturbance water falls from the pass line directly above the nozzle 2 by making all the heads Ht of the purge water larger than −0.0144 (boundary line indicated by D in FIG. 10). Even so, the disturbance of the purge water due to the disturbance water does not reach the nozzle 2 so much, and the temperature measurement error (scattering error) can be 10 ° C. or less. On the other hand, by making the total head Ht of purge water smaller than 0.05 (boundary line indicated by E in FIG. 10) (more preferably, smaller than 0.01 (boundary line indicated by F in FIG. 10)), The collision pressure of the purge water against the lower surface of the steel plate M is suppressed, and a temperature measurement error (cooling error) can be suppressed.

なお、全ヘッドHtの下限を規定する−0.0144の値は、パスラインとノズル先端との離間距離Hgが0.04(m)のときの値であって、一般的には、−0.36Hgで規定されると考えて良い。これは、パージ水と外乱水との流速比がノズル2の先端において0.8(図9参照)となるときには、ノズル2の先端からパスラインまでの距離とノズル2の先端からパージ水の頂部までの距離との比が0.64となり、当該頂部におけるパージ水の位置ヘッドはパスラインを基準として−0.36Hg(圧力ヘッド及び速度ヘッドは共に0)で表されるからである。また、全ヘッドHtの上限を規定する0.05の値は、パージ水の頂部がパスラインから50mm上方に位置するように噴射した場合の全ヘッドの値に相当し、このとき当該パージ水のパスライン位置での衝突圧力は0.5KPaとなる(全ヘッドHtのより好ましい上限を規定する0.01の値は、パージ水の頂部がパスラインから10mm上方に位置するように噴射した場合の全ヘッドの値に相当し、このとき当該パージ水のパスライン位置での衝突圧力は0.1KPaとなる)。熱間圧延ラインにおける鋼板M下面の位置は、通常パスライン(搬送される鋼板Mの下面が取り得る最も下部の位置であり、搬送ロールの頂部位置がこれに相当する)を下限として、そこから上方に30mm程度の範囲内で変動するため、全ヘッドHtの上限を0.05で規定することにより、前記変動範囲内におけるパージ水の衝突圧力は0.5kPa以下となり(より好ましい態様として、全ヘッドHtの上限を0.01で規定すれば、前記変動範囲内におけるパージ水の衝突圧力は0.1kPa以下となり)、冷却誤差を低減することが可能である(図8参照)。   The value of −0.0144 that defines the lower limit of all the heads Ht is a value when the separation distance Hg between the pass line and the nozzle tip is 0.04 (m), and is generally −0. It can be considered that it is defined by .36 Hg. This is because when the flow rate ratio between purge water and disturbance water is 0.8 (see FIG. 9) at the tip of the nozzle 2, the distance from the tip of the nozzle 2 to the pass line and the top of the purge water from the tip of the nozzle 2 This is because the position head of the purge water at the top is represented by −0.36 Hg (both the pressure head and the velocity head are 0) based on the pass line. The value 0.05 defining the upper limit of all the heads Ht corresponds to the value of all the heads when the top of the purge water is jetted so as to be located 50 mm above the pass line. The collision pressure at the pass line position is 0.5 KPa (a value of 0.01 that defines a more preferable upper limit of all the heads Ht is the value when the top of the purge water is jetted 10 mm above the pass line. This corresponds to the value of all the heads, and at this time, the collision pressure at the pass line position of the purge water is 0.1 KPa). The position of the lower surface of the steel plate M in the hot rolling line is a normal pass line (the lowermost position that can be taken by the lower surface of the steel plate M to be transported, and the top position of the transport roll corresponds to this) as a lower limit. Since it fluctuates within a range of about 30 mm upward, the upper limit of all heads Ht is regulated to 0.05, so that the collision pressure of purge water within the fluctuating range becomes 0.5 kPa or less (as a more preferable aspect, If the upper limit of the head Ht is defined as 0.01, the collision pressure of purge water within the fluctuation range becomes 0.1 kPa or less), and the cooling error can be reduced (see FIG. 8).

なお、以上に説明した第1及び第2の実施形態の構成を組み合わせ(第2の実施形態の構成において、放射温度計で検出される熱放射光の光路が通る領域における光路安定領域と光路不安定領域との界面と放射温度計の光軸との交点を基準とした被測温鋼材エッジ部の最小の拡がり角を75°以上に設定する)れば、散乱誤差及び冷却誤差の双方を低減できる点で好ましい。また、以上に説明した第1及び第2の実施形態においては、鋼板Mと放射温度計の検出素子(ホトダイオード等)との間に、0.9μmよりも長い波長の光を遮断する光学フィルタ(より好ましくは、0.85μmよりも長い波長の光を遮断する光学フィルタ)を備えるように構成するのが好ましい。より具体的には、制御盤14内に配設された検出部141と光ファイバ15の出力端との間に前記光学フィルタを備えることが好ましい。以下、その理由について説明する。   It should be noted that the configurations of the first and second embodiments described above are combined (in the configuration of the second embodiment, the optical path stability region and the optical path in the region through which the optical path of the thermal radiation detected by the radiation thermometer passes). Both the scattering error and the cooling error can be reduced by setting the minimum spread angle of the edge of the steel material to be measured to 75 ° or more based on the intersection of the interface with the stable region and the optical axis of the radiation thermometer. It is preferable in that it can be performed. In the first and second embodiments described above, an optical filter that blocks light having a wavelength longer than 0.9 μm between the steel plate M and the detection element (photodiode, etc.) of the radiation thermometer. More preferably, the optical filter is preferably provided with an optical filter that blocks light having a wavelength longer than 0.85 μm. More specifically, the optical filter is preferably provided between the detection unit 141 disposed in the control panel 14 and the output end of the optical fiber 15. The reason will be described below.

鋼材の圧延・冷却過程において、一般的な鋼材の管理温度は、常温〜1200℃であり、特に低合金鋼材などにおいては、500℃〜1200℃の温度履歴が重要な場合がある。このような温度範囲を対象とした放射測温においては、波長0.65μm〜1.1μmの光を検出するSiホトダイオードを用いた放射温度計が一般的によく用いられる。   In the rolling / cooling process of a steel material, a general steel material management temperature is from room temperature to 1200 ° C., and particularly in a low alloy steel material, a temperature history of 500 ° C. to 1200 ° C. may be important. In radiation temperature measurement for such a temperature range, a radiation thermometer using a Si photodiode that detects light having a wavelength of 0.65 μm to 1.1 μm is generally used.

図11は、水の分光吸収特性を測定した結果を示す。図11に示すように、Siホトダイオードの実効的な検出波長範囲である0.65〜1.1μmにおいては、およそ長い波長ほど強く吸収される。一方、黒体からの熱放射光は、長波長で極端に熱放射光の強度が高く、例えば、600〜700℃、或いはそれ以下の温度において、波長0.9μmよりも短い波長に比べ、長い波長で強く放射されている。従って、放射温度計で検出される光エネルギーは、そもそも長波長の光の寄与が大きく、水の吸収による影響を強く受ける。これは、Siホトダイオード以外の検出器を用いた放射温度計においても、実効的な検出波長が0.65〜1.1μmの範囲にあれば同様である。   FIG. 11 shows the results of measuring the spectral absorption characteristics of water. As shown in FIG. 11, in an effective detection wavelength range of Si photodiode, which is 0.65 to 1.1 μm, a longer wavelength is more strongly absorbed. On the other hand, the heat radiation light from the black body has a long wavelength and extremely high intensity of the heat radiation light, and is longer than, for example, a wavelength shorter than 0.9 μm at a temperature of 600 to 700 ° C. or lower. Strongly radiated at a wavelength. Therefore, the light energy detected by the radiation thermometer is largely influenced by light of a long wavelength, and is strongly influenced by the absorption of water. The same applies to a radiation thermometer using a detector other than a Si photodiode if the effective detection wavelength is in the range of 0.65 to 1.1 μm.

図12は、約700℃の被測温鋼材において、放射温度計と被測温鋼材との間に存在する水の実効的厚みが30mm変動した場合の測温値の変動(測温誤差)を測定した結果を示す。なお、熱延鋼板や厚鋼板の製造ラインにおいて、定常の製造状態では、鋼板のパスライン変動(鋼板下面の上下方向の位置変動)は最大で30mm程度を考えればよい。   FIG. 12 shows a change in temperature measurement value (temperature measurement error) when the effective thickness of water existing between the radiation thermometer and the temperature-measured steel material varies by 30 mm in the temperature-measured steel material of about 700 ° C. The measurement results are shown. In a production line for hot-rolled steel plates and thick steel plates, in a steady production state, the maximum variation in the pass line of the steel plate (the positional variation in the vertical direction of the lower surface of the steel plate) may be about 30 mm.

ここで、図12の横軸は放射温度計と被測温鋼材との間に存在する水の厚みをプロットし、縦軸は測温誤差をプロットした。図12に示すように、「フィルタ無し」の場合(長波長成分を遮断せずに全波長の光を検出する場合)には、例えば、基準となる水の厚み200mmに対して30mmだけ厚みが変動すると、約14℃の測温誤差が生じる(測温値が約14℃変化する)。また、長波長成分を遮断しない場合、基準となる水の厚みを大きくすると、測温誤差が小さくなるものの、例えば10℃以下の測温誤差とするためには、400mm以上の水の厚みが必要となる。なお、被測温鋼材の表面温度が高くなると、この測温誤差は大きくなり、さらに水の厚みを大きくする必要がある。しかしながら、水の厚みを厚くするための装置は、むやみに大きくなってしまうので、設置条件を大きく制限することが問題となる。   Here, the horizontal axis of FIG. 12 plots the thickness of water existing between the radiation thermometer and the steel material to be measured, and the vertical axis plots the temperature measurement error. As shown in FIG. 12, in the case of “no filter” (when light of all wavelengths is detected without blocking the long wavelength component), for example, the thickness is 30 mm with respect to the reference thickness of 200 mm. If it fluctuates, a temperature measurement error of about 14 ° C. occurs (the temperature measurement value changes by about 14 ° C.). In addition, when the long wavelength component is not cut off, if the thickness of the reference water is increased, the temperature measurement error is reduced. However, in order to obtain a temperature measurement error of 10 ° C. or less, for example, a water thickness of 400 mm or more is necessary. It becomes. In addition, when the surface temperature of the steel material to be measured increases, this temperature measurement error increases, and it is necessary to further increase the thickness of water. However, since the device for increasing the thickness of water becomes unnecessarily large, there is a problem in greatly restricting the installation conditions.

一方、図12に示すように、「遮断波長0.85μm」の場合(波長0.85μmよりも長い波長の光を遮断して検出する場合)には、基準となる水の厚みに関わらず、厚みが30mm変動しても6℃程度の測温誤差に抑えることが可能である。   On the other hand, as shown in FIG. 12, in the case of a “cutoff wavelength of 0.85 μm” (when detecting light with a wavelength longer than the wavelength of 0.85 μm), regardless of the thickness of the reference water, Even if the thickness varies by 30 mm, it is possible to suppress the temperature measurement error to about 6 ° C.

図13は、700℃の被測温鋼材に対して、基準となる水の厚みを50mm〜300mmとし、各基準となる水の厚みに対して30mmだけ厚みを変動させた場合の各遮断波長(放射温度計で検出する波長の上限)に応じた測温誤差(吸収誤差)を測定した結果を示す。また、図14は、基準となる水の厚みを200mmとし、被測温鋼材の温度を500℃〜1000℃に変えて、水の厚みを30mmだけ変動させた場合の各遮断波長に応じた測温誤差(吸収誤差)を測定した結果を示す。図13又は図14に示すように、遮断波長が0.90μmより長くなると、測温誤差は増大し始める。また、図14に示すように、0.90μm以下の波長の光を検出する場合には、被測温鋼材が1000℃の場合でも、測温誤差を12℃程度に抑制できる(0.85μm以下の波長の光を検出する場合には、測温誤差を10℃以下に抑制できる)点で有効である。以上の理由により、第1及び第2の実施形態においては、鋼板Mと放射温度計の検出素子との間に、0.9μmよりも長い波長の光を遮断する光学フィルタ(より好ましくは、0.85μmよりも長い波長の光を遮断する光学フィルタ)を備えるように構成するのが好ましい。   FIG. 13 shows each cutoff wavelength (when the thickness of water used as a reference is 50 mm to 300 mm and the thickness is changed by 30 mm with respect to the thickness of water used as a reference for a steel material to be measured at 700 ° C. The result of measuring the temperature measurement error (absorption error) according to the upper limit of the wavelength detected by the radiation thermometer is shown. Moreover, FIG. 14 shows the measurement corresponding to each cutoff wavelength when the thickness of the reference water is 200 mm, the temperature of the steel material to be measured is changed from 500 ° C. to 1000 ° C., and the water thickness is changed by 30 mm. The result of measuring the temperature error (absorption error) is shown. As shown in FIG. 13 or FIG. 14, when the cutoff wavelength is longer than 0.90 μm, the temperature measurement error starts to increase. As shown in FIG. 14, when detecting light having a wavelength of 0.90 μm or less, even when the temperature-measured steel material is 1000 ° C., the temperature measurement error can be suppressed to about 12 ° C. (0.85 μm or less). In the case of detecting light of a wavelength of (2), it is effective in that the temperature measurement error can be suppressed to 10 ° C. or less. For the above reasons, in the first and second embodiments, an optical filter (more preferably, 0 mm) that blocks light having a wavelength longer than 0.9 μm between the steel plate M and the detection element of the radiation thermometer. It is preferable to provide an optical filter that blocks light having a wavelength longer than .85 μm.

なお、前記0.9μmよりも長い波長(より好ましくは0.85μmよりも長い波長)の光を遮断する光学フィルタとは、0.9μm(或いは0.85μm)よりも長い波長の光を完全に遮断(つまり、透過率が0%)するフィルタのみを意味するものではなく、当該長波長の光に対する透過率が2〜3%よりも小さく設定されたフィルタを意味する。   The optical filter that blocks light having a wavelength longer than 0.9 μm (more preferably, longer than 0.85 μm) is a filter that completely blocks light having a wavelength longer than 0.9 μm (or 0.85 μm). It does not mean only a filter that cuts off (that is, the transmittance is 0%), but a filter that has a transmittance set to be smaller than 2 to 3% for light of the long wavelength.

以上に説明した好ましい構成は、水をパージとして用いる場合に限らず、エアーなどの気体をパージとして用いる場合にも適用できる。エアーによるパージの場合、ある程度外乱水がパージ領域に浸入する可能性があるが、光路中での水の実効厚みの変動が30mm以下であるならば、検出波長を0.9μm以下とすることにより(好ましくは、0.85μm以下とすることにより)、外乱水による吸収誤差を抑制可能である。また、パージとは無関係に鋼板M表面に水膜が形成されている場合など、被測定鋼材近傍に限って水が存在する際にも、その水膜の影響を抑制することが可能である。   The preferred configuration described above can be applied not only when water is used as a purge but also when a gas such as air is used as a purge. In the case of purging with air, disturbance water may enter the purge area to some extent, but if the variation in the effective thickness of water in the optical path is 30 mm or less, the detection wavelength is set to 0.9 μm or less. Absorption errors due to disturbance water can be suppressed (preferably by setting it to 0.85 μm or less). Further, even when water is present only in the vicinity of the steel material to be measured, such as when a water film is formed on the surface of the steel plate M regardless of the purge, it is possible to suppress the influence of the water film.

上記好ましい構成によれば、従来のような水柱の厚み測定装置は不要であるため、表面温度測定装置の寸法や重量を低減できる(図3に示す構成は、上記好ましい構成を採用した場合の模式図である)のみならず、取り外し容易で保守性に優れ、さらには厚み測定装置の故障の心配もないことから信頼性が高まるという利点を有する。   According to the above preferred configuration, since a conventional water column thickness measuring device is not required, the size and weight of the surface temperature measuring device can be reduced (the configuration shown in FIG. 3 is a schematic diagram when the preferred configuration is adopted). As well as easy removal and excellent maintainability, and further, there is no concern about the failure of the thickness measuring device, thereby increasing the reliability.

以下、本発明に係る表面温度測定装置を熱延鋼板の製造ラインに適用して、熱延鋼板を製造する方法について説明する。   Hereinafter, a method for producing a hot-rolled steel sheet by applying the surface temperature measuring device according to the present invention to a production line for the hot-rolled steel sheet will be described.

図15は、熱延鋼板の製造ラインの概略構成例を示す模式図である。
図15に示すように、熱延鋼板を製造するに際しては、まず加熱炉3でスラブを1000〜1200℃に加熱昇温する。次に、昇温加熱したスラブをその幅を決定すると共に、仕上圧延機6で圧延可能な厚みまで粗圧延機4で圧延し、粗バーと称される中間部材にまで圧延する。次に、必要に応じて、再加熱装置5において、誘導加熱等により粗バーを再加熱する。次に、仕上圧延機6において、粗バーを目標とする熱延鋼板の厚みになるまで圧延する。なお、仕上圧延機6における仕上圧延後の鋼板の温度はおよそ700〜1000℃、厚みは1mm前後〜十数mm程度、板速度は600mpmから1500mpmである。
FIG. 15 is a schematic diagram illustrating a schematic configuration example of a production line for hot-rolled steel sheets.
As shown in FIG. 15, when manufacturing a hot-rolled steel sheet, first, the slab is heated to 1000 to 1200 ° C. in the heating furnace 3. Next, the width of the heated and heated slab is determined, and the slab is rolled to a thickness that can be rolled by the finish rolling mill 6 and then rolled to an intermediate member called a coarse bar. Next, if necessary, the coarse bar is reheated by induction heating or the like in the reheating device 5. Next, the finish rolling mill 6 performs rolling until the thickness of the hot-rolled steel sheet targeted for the rough bar is reached. In addition, the temperature of the steel plate after finish rolling in the finish rolling mill 6 is about 700 to 1000 ° C., the thickness is about 1 mm to about several tens of mm, and the plate speed is 600 mpm to 1500 mpm.

仕上圧延機6による圧延後の鋼板は、第1冷却帯7又は第2冷却帯8において目標温度にまで冷却され、ダウンコイラー9によってコイル状に巻き取られる。或いは、第1冷却帯7、第2冷却帯8及びその中間に位置する非冷却ゾーンを利用して、冷却履歴を制御する場合もある。第1冷却帯7、第2冷却帯8では、冷却水を噴出するミスト冷却又はラミナー冷却と称される多数の冷却用ノズルが配置されており、その内の適当な本数のノズルから水を噴出して鋼板を冷却する。噴出するノズル本数や位置などの冷却条件は、セットアップ学習やダイナミックフィードバックなどを利用して制御される。   The steel sheet after rolling by the finish rolling mill 6 is cooled to the target temperature in the first cooling zone 7 or the second cooling zone 8 and is wound in a coil shape by the down coiler 9. Alternatively, the cooling history may be controlled by using the first cooling zone 7, the second cooling zone 8, and the non-cooling zone located in the middle thereof. In the first cooling zone 7 and the second cooling zone 8, a large number of cooling nozzles called mist cooling or laminar cooling for jetting cooling water are arranged, and water is jetted from an appropriate number of nozzles. To cool the steel plate. Cooling conditions such as the number and position of nozzles to be ejected are controlled using setup learning, dynamic feedback, and the like.

以上に説明した熱延鋼板の製造ラインにおいて、本発明に係る表面温度測定装置は、例えば、従来測温が困難であった第1冷却帯7又は第2冷却帯8の下面の温度を測定するために用いることができる(図15の適用1)。なお、厚みの薄い鋼板の場合には、下面からの測温値が、おおよそ鋼板の厚み方向の代表温度を示すと考えて問題ない。   In the production line for hot-rolled steel sheets described above, the surface temperature measuring device according to the present invention measures, for example, the temperature of the lower surface of the first cooling zone 7 or the second cooling zone 8 that has conventionally been difficult to measure. (Application 1 in FIG. 15). In the case of a thin steel plate, there is no problem considering that the temperature measurement value from the lower surface roughly represents the representative temperature in the thickness direction of the steel plate.

また、第1冷却帯7又は第2冷却帯8の前後に本発明に係る表面温度測定装置を設置し、従来の温度計の代わりに用いることも可能である(図15の適用2)。従来の温度計は、特にコイルの先端部で湯気の影響により出力値が小さくなることがあるが、本発明に係る表面温度測定装置を適用すれば、コイルの最先端部から測温可能である。   Moreover, it is also possible to install the surface temperature measuring device according to the present invention before and after the first cooling zone 7 or the second cooling zone 8 and use it instead of the conventional thermometer (application 2 in FIG. 15). Conventional thermometers may have a low output value due to the influence of steam, particularly at the tip of the coil, but if the surface temperature measuring device according to the present invention is applied, the temperature can be measured from the most advanced part of the coil. .

また、第1冷却帯7又は第2冷却帯8において、鋼板上方に本発明に係る表面温度測定装置を設置し、測温することも可能である(図15の適用3)。スプレーやラミナー冷却水が鋼板に衝突している領域を除けば、鋼板上面に冷却水が乗っている状態でも当該水乗りを介して測温することが可能である。   Moreover, in the 1st cooling zone 7 or the 2nd cooling zone 8, it is also possible to install the surface temperature measuring apparatus based on this invention above a steel plate, and to measure temperature (application 3 of FIG. 15). Except for the region where the spray or laminar cooling water collides with the steel plate, the temperature can be measured through the water ride even when the cooling water is on the upper surface of the steel plate.

また、仕上圧延機6の近傍、或いは、仕上圧延機6の各スタンド間に、本発明に係る表面温度測定装置を設置し、測温することも可能である(図15の適用4)。斯かる場所でも、仕上圧延機6の冷却水や、スタンド間スプレーと称される冷却水が外乱水として存在することになるが、外乱水の影響を低減して測温することが可能である。斯かる場所での鋼板温度を測定することにより、重要な管理指標である圧延直後の温度の管理・制御に用いることができる。   Moreover, it is also possible to install the surface temperature measuring device according to the present invention in the vicinity of the finishing mill 6 or between the stands of the finishing mill 6 to measure the temperature (application 4 in FIG. 15). Even in such a place, the cooling water of the finishing mill 6 and the cooling water called inter-stand spray exist as disturbance water, but it is possible to measure the temperature while reducing the influence of the disturbance water. . By measuring the steel plate temperature at such a location, it can be used for management and control of the temperature immediately after rolling, which is an important management index.

さらに、搬送ロールの冷却水などが外乱水として存在するような場所に、本発明に係る表面温度測定装置を設置して測温すれば、有用な温度管理を行うことができる(図15の適用5、6)。   Further, if the surface temperature measuring device according to the present invention is installed and measured at a place where the cooling water of the transport roll exists as disturbance water, useful temperature management can be performed (application of FIG. 15). 5, 6).

以上に説明したように、本発明に係る表面温度測定装置は、熱延鋼板の製造ラインにおいて、図15の適用1〜6で示すような箇所に設置することができる。この内、鋼板の品質制御に特に重要であるのは、適用1〜4で示す箇所の温度管理であるため、当該箇所に測温精度の高い本発明に係る表面温度測定装置を設置するのが好ましい。   As described above, the surface temperature measuring device according to the present invention can be installed at a location as indicated by applications 1 to 6 in FIG. Among these, what is particularly important for the quality control of the steel sheet is the temperature management of the places shown in Applications 1 to 4, and therefore, it is necessary to install the surface temperature measuring device according to the present invention with high temperature measurement accuracy in the places. preferable.

図1は、本発明の一実施形態に係る表面温度測定装置におけるパージ用ノズル近傍の構成を示す模式図である。FIG. 1 is a schematic diagram showing a configuration in the vicinity of a purge nozzle in a surface temperature measuring apparatus according to an embodiment of the present invention. 図2は、本発明の一実施形態に係る表面温度測定装置の概略構成を示す模式図である。FIG. 2 is a schematic diagram showing a schematic configuration of a surface temperature measuring apparatus according to an embodiment of the present invention. 図3は、図2に示す表面温度測定装置の内部構成を示す模式図である。FIG. 3 is a schematic diagram showing an internal configuration of the surface temperature measuring apparatus shown in FIG. 図4は、本発明の一実施形態に係る表面温度測定装置におけるパージ用ノズル近傍の他の構成を示す模式図である。FIG. 4 is a schematic diagram showing another configuration in the vicinity of the purge nozzle in the surface temperature measuring apparatus according to one embodiment of the present invention. 図5は、本発明の一実施形態に係る表面温度測定装置におけるパージ用ノズル近傍のさらに他の構成を示す模式図である。FIG. 5 is a schematic diagram showing still another configuration in the vicinity of the purge nozzle in the surface temperature measuring apparatus according to one embodiment of the present invention. 図6は、外乱水による光路の乱れが測温値に及ぼす影響を調査するための試験概要を説明する説明図である。FIG. 6 is an explanatory diagram for explaining an outline of a test for investigating the influence of disturbance of the optical path caused by disturbance water on the temperature measurement value. 図7は、図6に示す試験の結果を示すグラフである。FIG. 7 is a graph showing the results of the test shown in FIG. 図8は、パージ水の水温及び衝突圧力が測温値に及ぼす影響を示すグラフである。FIG. 8 is a graph showing the influence of the temperature of the purge water and the collision pressure on the temperature measurement value. 図9は、パージ水の流速と外乱水の流速との比が測温値に及ぼす影響を示すグラフである。FIG. 9 is a graph showing the influence of the ratio of the purge water flow rate to the disturbance water flow rate on the temperature measurement value. 図10は、パージ水の全ヘッドが測温値に及ぼす影響を示すグラフである。FIG. 10 is a graph showing the influence of all the purge water heads on the temperature measurement value. 図11は、水の分光吸収特性を測定した結果を示す。FIG. 11 shows the results of measuring the spectral absorption characteristics of water. 図12は、水の厚みと測温誤差との関係を示すグラフである。FIG. 12 is a graph showing the relationship between water thickness and temperature measurement error. 図13は、遮断波長と測温誤差との関係を示すグラフである。FIG. 13 is a graph showing the relationship between the cutoff wavelength and the temperature measurement error. 図14は、遮断波長と測温誤差との関係を示す他のグラフである。FIG. 14 is another graph showing the relationship between the cutoff wavelength and the temperature measurement error. 図15は、熱延鋼板の製造ラインの概略構成例を示す模式図である。FIG. 15 is a schematic diagram illustrating a schematic configuration example of a production line for hot-rolled steel sheets.

符号の説明Explanation of symbols

1・・・放射温度計
2・・・ノズル
M・・・被測温鋼材
θ・・・鋼材エッジ部の最小の拡がり角
S1・・・光路安定領域
S2・・・光路不安定領域
DESCRIPTION OF SYMBOLS 1 ... Radiation thermometer 2 ... Nozzle M ... Temperature-measured steel material (theta) ... Minimum spreading angle of steel material edge part S1 ... Optical path stable area S2 ... Optical path unstable area

Claims (7)

被測温鋼材表面から放射された熱放射光を被測温鋼材に対向配置した放射温度計で検出することにより、被測温鋼材の表面温度を測定する方法であって、
前記放射温度計で検出される熱放射光の光路が通る領域における光路安定領域と光路不安定領域との界面と前記放射温度計の光軸との交点を基準とした被測温鋼材エッジ部の最小の拡がり角を75°以上に設定することを特徴とする鋼材の表面温度測定方法。
It is a method for measuring the surface temperature of a temperature-measured steel material by detecting the thermal radiation emitted from the surface of the temperature-measured steel material with a radiation thermometer arranged opposite to the temperature-measured steel material,
The edge of the temperature-measured steel material based on the intersection of the optical axis of the radiation thermometer and the interface between the optical path stable region and the optical path unstable region in the region through which the optical path of the thermal radiation detected by the radiation thermometer passes A method for measuring the surface temperature of a steel material, wherein the minimum spread angle is set to 75 ° or more.
被測温鋼材下面から放射された熱放射光を、被測温鋼材下面に向けてノズルから噴射したパージ水を介して被測温鋼材の下方に対向配置した放射温度計で検出することにより、被測温鋼材の表面温度を測定する方法であって、
被測温鋼材のパスラインを位置基準とした前記パージ水の全ヘッドHt(m)が以下の式(1)を満足することを特徴とする鋼材の表面温度測定方法。
−0.36Hg<Ht<0.05 ・・・(1)
ただし、Hg(m)は、パスラインとノズル先端との離間距離を意味する。
By detecting the thermal radiation emitted from the lower surface of the measured temperature steel material with a radiation thermometer arranged oppositely to the lower side of the measured temperature steel material through the purge water sprayed from the nozzle toward the lower surface of the measured temperature steel material, A method for measuring the surface temperature of a steel material to be measured,
A method for measuring the surface temperature of a steel material, wherein all the heads Ht (m) of the purge water satisfying the following formula (1) with the pass line of the steel material to be measured as a position reference.
-0.36Hg <Ht <0.05 (1)
However, Hg (m) means a separation distance between the pass line and the nozzle tip.
前記放射温度計で検出する熱放射光の波長を0.9μm以下とすることを特徴とする請求項1又は2に記載の鋼材の表面温度測定方法。   The method for measuring the surface temperature of a steel material according to claim 1 or 2, wherein the wavelength of the thermal radiation detected by the radiation thermometer is 0.9 µm or less. 被測温鋼材に対向配置された放射温度計を備え、被測温鋼材表面から放射された熱放射光を前記放射温度計で検出することにより、被測温鋼材の表面温度を測定する装置であって、
前記放射温度計で検出される熱放射光の光路が通る領域における光路安定領域と光路不安定領域との界面と前記放射温度計の光軸との交点を基準とした被測温鋼材エッジ部の最小の拡がり角を75°以上に設定することを特徴とする鋼材の表面温度測定装置。
A device that measures the surface temperature of the steel material to be measured by detecting the thermal radiation emitted from the surface of the steel material to be measured with the radiation thermometer. There,
The edge of the temperature-measured steel material based on the intersection of the optical axis of the radiation thermometer and the interface between the optical path stable region and the optical path unstable region in the region through which the optical path of the thermal radiation detected by the radiation thermometer passes An apparatus for measuring the surface temperature of steel, wherein the minimum spread angle is set to 75 ° or more.
被測温鋼材下面に対向配置された放射温度計と、被測温鋼材下面と前記放射温度計との間にパージ水を噴射するノズルとを備え、被測温鋼材下面から放射された熱放射光を前記パージ水を介して前記放射温度計で検出することにより、被測温鋼材の表面温度を測定する装置であって、
被測温鋼材のパスラインを位置基準とした前記パージ水の全ヘッドHt(m)が以下の式(1)を満足することを特徴とする鋼材の表面温度測定装置。
−0.36Hg<Ht<0.05 ・・・(1)
ただし、Hg(m)は、パスラインとノズル先端との離間距離を意味する。
A radiation thermometer disposed opposite to the surface of the steel to be measured, and a nozzle for injecting purge water between the surface of the steel to be measured and the radiation thermometer, and heat radiation radiated from the surface of the steel to be measured An apparatus for measuring the surface temperature of a steel material to be measured by detecting light with the radiation thermometer through the purge water,
An apparatus for measuring the surface temperature of a steel material, wherein all the heads Ht (m) of the purge water satisfying the following formula (1) with the pass line of the steel material to be measured as a position reference.
-0.36Hg <Ht <0.05 (1)
However, Hg (m) means a separation distance between the pass line and the nozzle tip.
被測温鋼材と前記放射温度計の検出素子との間に、0.9μmよりも長い波長の光を遮断する光学フィルタを備えることを特徴とする請求項4又は5に記載の鋼材の表面温度測定装置。   6. The surface temperature of the steel material according to claim 4, further comprising an optical filter that blocks light having a wavelength longer than 0.9 μm between the steel material to be measured and the detection element of the radiation thermometer. measuring device. 請求項1から3のいずれかに記載の方法によって表面温度を測定することを特徴とする鋼材の製造方法。   A surface temperature is measured by the method in any one of Claim 1 to 3, The manufacturing method of the steel materials characterized by the above-mentioned.
JP2004195914A 2004-07-01 2004-07-01 Steel surface temperature measuring method, surface temperature measuring device, and steel manufacturing method Expired - Lifetime JP4151022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004195914A JP4151022B2 (en) 2004-07-01 2004-07-01 Steel surface temperature measuring method, surface temperature measuring device, and steel manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004195914A JP4151022B2 (en) 2004-07-01 2004-07-01 Steel surface temperature measuring method, surface temperature measuring device, and steel manufacturing method

Publications (2)

Publication Number Publication Date
JP2006017589A true JP2006017589A (en) 2006-01-19
JP4151022B2 JP4151022B2 (en) 2008-09-17

Family

ID=35792018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004195914A Expired - Lifetime JP4151022B2 (en) 2004-07-01 2004-07-01 Steel surface temperature measuring method, surface temperature measuring device, and steel manufacturing method

Country Status (1)

Country Link
JP (1) JP4151022B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007199039A (en) * 2006-01-30 2007-08-09 Sumitomo Metal Ind Ltd Surface temperature measuring device
JP2012021827A (en) * 2010-07-13 2012-02-02 Sumitomo Metal Ind Ltd Surface temperature measuring device and surface temperature measuring method of steel member and method for manufacturing steel member
WO2014030661A1 (en) 2012-08-22 2014-02-27 新日鐵住金株式会社 Surface temperature measurement device and surface temperature measurement method
CN109182724A (en) * 2018-10-09 2019-01-11 北京首钢冷轧薄板有限公司 A kind of pyrometer mounting structure and method
KR20220029743A (en) 2019-08-21 2022-03-08 제이에프이 스틸 가부시키가이샤 Steel plate manufacturing equipment and manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007199039A (en) * 2006-01-30 2007-08-09 Sumitomo Metal Ind Ltd Surface temperature measuring device
JP2012021827A (en) * 2010-07-13 2012-02-02 Sumitomo Metal Ind Ltd Surface temperature measuring device and surface temperature measuring method of steel member and method for manufacturing steel member
WO2014030661A1 (en) 2012-08-22 2014-02-27 新日鐵住金株式会社 Surface temperature measurement device and surface temperature measurement method
RU2593923C1 (en) * 2012-08-22 2016-08-10 Ниппон Стил Энд Сумитомо Метал Корпорейшн Device for measuring surface temperature and method of measuring surface temperature
US9523611B2 (en) 2012-08-22 2016-12-20 Nippon Steel & Sumitomo Metal Corporation Surface temperature measuring apparatus and surface temperature measuring method
CN109182724A (en) * 2018-10-09 2019-01-11 北京首钢冷轧薄板有限公司 A kind of pyrometer mounting structure and method
CN109182724B (en) * 2018-10-09 2020-07-17 北京首钢冷轧薄板有限公司 Pyrometer mounting structure and method
KR20220029743A (en) 2019-08-21 2022-03-08 제이에프이 스틸 가부시키가이샤 Steel plate manufacturing equipment and manufacturing method

Also Published As

Publication number Publication date
JP4151022B2 (en) 2008-09-17

Similar Documents

Publication Publication Date Title
JP4735784B1 (en) Hot rolled steel sheet manufacturing apparatus and hot rolled steel sheet manufacturing method
KR100780503B1 (en) Controllable cooling method for thick steel plate and cooling device for the thick steel plate
US9308563B2 (en) Manufacturing method of hot-rolled steel sheet
JP5459459B1 (en) Method and apparatus for measuring surface temperature of slab
JP4151022B2 (en) Steel surface temperature measuring method, surface temperature measuring device, and steel manufacturing method
JP4924952B2 (en) Hot-rolled steel sheet cooling method and cooling equipment
Weaver et al. Inert gas flow speed measurements in laser powder bed fusion additive manufacturing
JP4569873B2 (en) Steel surface temperature measuring method, surface temperature measuring device, and steel manufacturing method
JP4954932B2 (en) Manufacturing method of hot-rolled steel sheet
JP5333933B2 (en) Surface temperature measuring method and steel material manufacturing method
JP3818501B2 (en) Method and apparatus for measuring surface temperature of steel sheet
JP5206155B2 (en) Method for controlling cooling of hot-rolled metal strip using near-infrared camera in hot rolling and manufacturing method of hot-rolled metal strip
JP2005066614A (en) Rolling mill and rolling method
JP5915374B2 (en) Method for measuring surface temperature of continuous cast slab and continuous casting method using this method
JP5622084B2 (en) Steel surface temperature measuring device, surface temperature measuring method, and steel manufacturing method
KR101403240B1 (en) Apparatus and method of controlling coiling temperature of hot rolled steel plate using in-plate learning
JP2007199039A (en) Surface temperature measuring device
JP5239852B2 (en) Manufacturing method of hot-rolled steel strip
JP2012171002A (en) Measuring method of cast slab surface temperature in continuous casting machine
KR101060947B1 (en) Preventing nozzle clogging and prevention method during accelerated cooling of thick plate rolling process
Honda et al. Newly developed Fountain pyrometer for a running hot strip in the cooling banks of a hot strip mill
JP4848984B2 (en) Manufacturing method and manufacturing apparatus for hot-rolled steel sheet
JP2014050875A (en) Cooling device, manufacturing apparatus and manufacturing method of hot rolled steel sheet
Honda et al. Fountain Pyrometer for Strip Temperature Measurement in Cooling Banks of a Hot Strip Mill
JP3955009B2 (en) Controlled cooling system for hot steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080606

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080619

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4151022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term