JP2006016724A - Oil-resistant paper material - Google Patents

Oil-resistant paper material Download PDF

Info

Publication number
JP2006016724A
JP2006016724A JP2004195689A JP2004195689A JP2006016724A JP 2006016724 A JP2006016724 A JP 2006016724A JP 2004195689 A JP2004195689 A JP 2004195689A JP 2004195689 A JP2004195689 A JP 2004195689A JP 2006016724 A JP2006016724 A JP 2006016724A
Authority
JP
Japan
Prior art keywords
oil
paper
resistant paper
resistant
inorganic fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004195689A
Other languages
Japanese (ja)
Inventor
Yoko Iwamiya
陽子 岩宮
Osamu Yagi
修 八木
Kazumi Suzuki
和参 鈴木
Tatsuhiro Shinoda
達弘 篠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAZARIICHI KK
Kazari Ichi Co Ltd
Original Assignee
KAZARIICHI KK
Kazari Ichi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAZARIICHI KK, Kazari Ichi Co Ltd filed Critical KAZARIICHI KK
Priority to JP2004195689A priority Critical patent/JP2006016724A/en
Publication of JP2006016724A publication Critical patent/JP2006016724A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide oil-resistant paper having sufficient oil resistance and bending characteristics and further excellent heat resistance by effectively filling voids in fibers and interstices between the fibers of the paper material. <P>SOLUTION: The oil-resistant paper is obtained by coating the paper material with a solution containing inorganic fine particles having ≤20 mm average particle diameter and a solution containing an organic resin. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、不織布や布等の布素材、及び、和紙や洋紙に代表される紙素材(以下、これらを包括的に、「紙素材」という。)に対して、良好な耐油性を付与した耐油紙(以下、上記「紙素材」から製造される耐油性の紙素材を含めて、単に「耐油紙」という。)に関するものである。   The present invention imparts good oil resistance to cloth materials such as nonwoven fabric and cloth, and paper materials represented by Japanese paper and Western paper (hereinafter these are comprehensively referred to as “paper materials”). The present invention relates to an oil-resistant paper (hereinafter simply referred to as “oil-resistant paper” including the oil-resistant paper material produced from the “paper material”).

耐油紙は、表面についた油が内部に浸透し、その結果いわゆる裏抜けすることにより、手などが汚れる事を防ぐ機能を持ったものであるが、近年食生活の西洋化が進み、例えば、食品包装材料等として、日常生活のいたるところで幅広く使用されるようになっている。
参考までに、日常生活において見受けられる耐油紙のほんの一例を例示しても、ファストフード分野では、フライドポテトやフライドチキン等の包装紙(箱)等として、洋菓子分野では、ドーナッツやケーキ等の包装紙(箱)等として、乳製品分野では、バターやアイスクリーム等の包装紙(箱)等として、スナック菓子分野では、ポテトチップス等の包装紙等、数々の食品の包装用に耐油紙は使用されている。またこのような食品の包装用以外にも、例えば、自動車産業分野でも、自動車等を塗装する時のマスキングシート等としても使用されており、まさに日常生活になくてはならないものとなってきている。
The oil-resistant paper has the function of preventing the hands and the like from getting dirty by penetrating the oil on the surface and, as a result, so-called through, but in recent years the westernization of eating habits has progressed, for example, As food packaging materials, etc., it is widely used everywhere in daily life.
For reference, only one example of oil-resistant paper found in daily life is illustrated as wrapping paper (boxes) such as fries and fried chicken in the fast food field, and donuts and cakes in the confectionery field. Oil-resistant paper is used for packaging of many foods such as paper (boxes), dairy products in the dairy product field, butters and ice cream wrapping paper (boxes), etc., in the snacks field, potato chips, etc. ing. In addition to such food packaging, for example, in the automobile industry, it is also used as a masking sheet for painting automobiles and the like, which has become indispensable for daily life. .

ところで、紙素材は、一般的には空隙の多い繊維自体が絡まってできているため、その表面に付着した油は、毛細管現象でその内部に浸透し易い。そこで、前記のような、日常生活において見受けられる耐油紙は、最近になるまで紙素材の表面にフッ素系化合物のコーティング層を形成して耐油性を付与したもの(以下、フッ素系耐油紙という)がほとんどであった。これは、フッ素系化合物からなる耐油処理剤が、紙を製造する際に同時に添加(内添)できることから、フッ素系耐油紙の製造工程は簡便で、結果的に安価に耐油紙を製造できる、という利点に加えて、フッ素系化合物は、それ自体が強い撥油性を示すために、油分の繊維内部への浸透を効率的に阻止でき、従って高い耐油性を有する耐油紙を製造することが可能であるという利点もあったからである。   By the way, since the paper material is generally made of entangled fibers with many voids, the oil adhering to the surface tends to penetrate into the inside due to capillary action. Therefore, the oil-resistant paper found in daily life as described above has been provided with oil resistance by forming a coating layer of a fluorine-based compound on the surface of the paper material until recently (hereinafter referred to as fluorinated oil-resistant paper). Was almost. This is because the oil-resistant treatment agent comprising a fluorine-based compound can be added (internally added) at the same time when producing paper, so the production process of fluorine-based oil-resistant paper is simple, and as a result, oil-resistant paper can be produced at low cost. In addition to the advantages, the fluorine-based compound itself exhibits strong oil repellency, so that it is possible to effectively prevent the penetration of oil into the fiber, and thus it is possible to produce oil-resistant paper with high oil resistance This is because there was also an advantage of being.

フッ素系耐油紙は、前述の通り、安価に製造可能であり、かつ、耐油性の面でも十分に高い耐油性を発揮するものであったため、最近になるまでは耐油紙の主流であり、日常的にも大量に使用されていた。
しかし、最近になって、フッ素系耐油紙についての安全性テストが実施され、その結果、フッ素系耐油紙を高温(180度程度)にまで加熱すると、低分子の蒸発物の発生が認められることが知見された。これによりフッ素系耐油紙については、この蒸発物、すなわち低分子物質の人体に対する安全性が指摘されるようになり、最終的にフッ素系耐油紙はその製造が中止されるに至った。
As mentioned above, fluorinated oil-resistant paper can be manufactured at low cost and exhibits sufficiently high oil resistance in terms of oil resistance. It was used in large quantities.
However, recently, a safety test on fluorinated oil-resistant paper has been carried out, and as a result, when fluorinated oil-resistant paper is heated to a high temperature (about 180 degrees), the generation of low-molecular evaporates is observed. Was discovered. As a result, regarding the fluorine-based oil-resistant paper, the safety of this evaporate, that is, a low-molecular substance to the human body has been pointed out, and finally the production of the fluorine-based oil-resistant paper has been stopped.

フッ素系耐油紙の製造が中止されるに至り、その代替となり得る耐熱紙の供給が急務となったが、かかる代替耐油紙として、安価かつ安全なシリコーンオイルをその表面に塗布したものを耐油紙として使用したり、いわゆるラミネート紙を耐油紙として使用することが提案されている。
ところが、シリコーンオイルをその表面に塗布した耐油紙では、紙素材に耐油性を付与するシリコーンオイルがオイル状化合物であるため、紙素材に塗布しても紙素材上にしっかりとは固定化されず、したがって紙素材に十分な耐油性を付与するためには該オイルの塗布量を増やさざるを得ないという課題があった。この技術的な課題は、実際の工業化の側面では耐油紙の製造コスト高という課題を招くことに他ならない。
The production of fluorinated oil-resistant paper was discontinued, and the supply of heat-resistant paper that could be used as an alternative became urgent. As such an alternative oil-resistant paper, an oil-resistant paper coated with inexpensive and safe silicone oil was applied to the surface. It is proposed to use so-called laminated paper as oil-resistant paper.
However, in oil-resistant paper with silicone oil applied to the surface, the silicone oil that gives oil resistance to the paper material is an oily compound, so even if it is applied to the paper material, it is not firmly fixed on the paper material. Therefore, in order to impart sufficient oil resistance to the paper material, there has been a problem that the amount of oil applied must be increased. This technical problem is none other than incurring the problem of high production cost of oil-resistant paper in terms of actual industrialization.

また、シリコーンオイルが固定化されない、つまり移行性が残存するために、紙素材にシリコーンオイルを塗布した後、これを長時間放置してしまうとオイルが移行してしまい、紙素材表面に形成させたシリコーンオイル膜にムラができて耐油性が不均一になるという課題も生じていた。
一方、ラミネート紙は、十分な耐油性を示し、しかも安価に製造することができるが、ラミネート紙は、通常、一定の寸法のものを製造した後、これを用途に応じて適宜裁断して使用することから、実際に耐油紙として使用した際に、裁断面から油が染み込んでしまうという課題や、また使用済のラミネート紙を処理するに際しては、通常の紙ゴミと分別して処理しなければならない等と、使用のし易さにおいてなおも改良されるべき課題が存在している。
In addition, since silicone oil is not fixed, that is, transferability remains, if silicone oil is applied to the paper material and then left for a long time, the oil will migrate and form on the surface of the paper material. In addition, there was a problem that the silicone oil film was uneven and the oil resistance became non-uniform.
Laminated paper, on the other hand, exhibits sufficient oil resistance and can be manufactured at a low cost. Laminated paper is usually produced with a certain size and then cut appropriately according to the intended use. Therefore, when it is actually used as oil-resistant paper, the problem of oil permeating from the cut surface, and when processing used laminated paper, it must be treated separately from normal paper waste. As such, there are still problems to be improved in terms of ease of use.

また、その他の方法として、フィルム形成能の高い樹脂の塗工・含浸が行われている。例えば、ポリ塩化ビニリデン(PVDC)、ポリビニルアルコール(PVA)、アクリロニトリルーブタジエンラバー(NBR)、カルボキシメチルセルロース(CMC)、メチルセルロース(MC)などが挙げられる。この中で、PVDCは他の樹脂では得られない結晶性の高い塗膜を形成するため、その塗工紙は優れた耐油性を示す(非特許文献1(特殊機能紙 2001、紙業タイムズ社(2001年発行)参照))。
特殊機能紙 2001、紙業タイムズ社(2001年発行)
As another method, coating / impregnation of a resin having a high film forming ability is performed. For example, polyvinylidene chloride (PVDC), polyvinyl alcohol (PVA), acrylonitrile-butadiene rubber (NBR), carboxymethyl cellulose (CMC), methyl cellulose (MC) and the like can be mentioned. Among them, PVDC forms a coating film with high crystallinity that cannot be obtained by other resins, so that the coated paper exhibits excellent oil resistance (Non-Patent Document 1 (Special Function Paper 2001, Paper Industries Times, Inc.). (See 2001))).
Special Function Paper 2001, Paper Industry Times (issued in 2001)

しかし、PVDCは燃焼時有害な塩化物特にダイオキシン発生の恐れがあるため、使用上制限が有り、大量使用に向かない樹脂となっている。
その他の樹脂はおおむね耐油用として使用できる。しかし、基本的には高分子化したポリマーを塗工するため、紙の繊維内部にまで十分にポリマーが入り込んでいない可能性がある。
紙素材は本来、繊維部分と繊維間の空隙部分から成り立っている。このような紙素材に油が付着すると、繊維間の空隙部分から裏側に浸透する場合と、繊維内の細孔を毛細管現象により通過し、裏側に浸透する場合との、2通りの浸透過程がある。
一つは有機高分子ポリマーを浸透させた耐油紙が知られている(公開公報2004−19036参照)。
特許出願公開公報第2004−19036号
However, since PVDC may cause harmful chlorides, particularly dioxins, during combustion, there are restrictions on its use and it is a resin not suitable for mass use.
Other resins can generally be used for oil resistance. However, basically, since a polymerized polymer is applied, there is a possibility that the polymer does not sufficiently enter the fiber of the paper.
A paper material originally consists of a fiber part and a gap part between the fibers. When oil adheres to such a paper material, there are two types of permeation processes: the case where it penetrates from the gap between the fibers to the back side, and the case where it passes through the pores in the fiber by capillary action and permeates the back side. is there.
One is an oil-resistant paper in which an organic polymer polymer is infiltrated (see Japanese Patent Application Publication No. 2004-19036).
Patent Application Publication No. 2004-19036

しかしながら、有機高分子ポリマーは、高分子であるがゆえに繊維間の空隙を埋める役割を果す。しかしその一方で、高分子であるがゆえに繊維の細孔内に十分に染み込むことができない性質を持っている。そのため、このような有機高分子ポリマーのみを塗工した紙素材は、例えば箱状に折り曲げた場合、その折り曲げ部分から油が浸透し、結果として十分な耐油性を示さないことがある。
また、このような有機高分子ポリマーは、有機物より成り立っているため、耐熱性が低いという致命的欠陥を持っている。最近は調理し易い素材が好まれており、調理用耐油紙容器は、電子レンジでの調理特性の良さが重要な要素となっている。
However, since the organic polymer is a polymer, it plays a role of filling gaps between fibers. However, on the other hand, since it is a polymer, it has a property that it cannot sufficiently penetrate into the pores of the fiber. Therefore, when a paper material coated only with such an organic polymer is bent into a box shape, for example, oil may permeate from the bent portion, and as a result, sufficient oil resistance may not be exhibited.
Moreover, since such an organic polymer is made of an organic material, it has a fatal defect that heat resistance is low. In recent years, materials that are easy to cook have been favored, and cooking oil-resistant paper containers are an important factor in the good cooking characteristics of microwave ovens.

以上に述べたように、フッ素系耐油紙の製造中止という事態によってその代替となる耐油紙の提供が急務とされているが、これまでに提案されてきた耐油紙にはなおも改良されるべき課題が存在しているのが現状である。そこで本願各請求項に係る発明は、簡便かつ安価に製造することができ、更には従来提案された耐油紙と比較した場合、良好な曲げ特性を実現しつつ、より高い耐油性を発揮し、しかも従来の耐油紙と比較して耐熱特性の高い、新たな耐油紙を提供することにある。   As mentioned above, there is an urgent need to provide an alternative oil-resistant paper due to the discontinuation of the production of fluorinated oil-resistant paper, but the oil-resistant paper that has been proposed so far should be improved. The current situation is that there are challenges. Therefore, the invention according to each claim of the present application can be manufactured easily and inexpensively, and further, when compared with the conventionally proposed oil-resistant paper, while exhibiting good bending characteristics, exhibits higher oil resistance, In addition, an object is to provide a new oil-resistant paper having higher heat resistance compared to conventional oil-resistant paper.

本願各請求項に係る発明は、このような耐油紙の現状を踏まえて発明されたものであり、紙素材の繊維内部及び繊維間の空隙を、共に有効に埋めることにより、十分な耐油性と折り曲げ特性を有し、しかも耐熱性にも優れた、耐油紙を提供することにある。
前記目的を達成するためになされた本願請求項1に係る耐油紙の発明は、平均粒径が20nm以下の無機微粒子を含有する溶液と、有機樹脂を含有する溶液とを、紙素材に塗布することにより得られることを特徴とする。
また前記目的を達成するためになされた本願請求項2に係る耐油紙の発明は、前記請求項に係る耐油紙において、無機微粒子が、コロイド状シリカであることを特徴とする。
そして本願請求項3に係る発明は、前記請求項1に係る耐油紙において、前記有機樹脂溶液が、アクリル系樹脂であることを特徴とする。
また、本願請求項4に係る発明は、前記請求項1に係る耐油紙において、前記有機樹脂溶液が、ウレタン系樹脂であることを特徴とする。
さらに、本願請求項5に係る発明は、前記請求項1に係る耐油紙において、前記無機微粒子溶液と前記有機樹脂を含有する溶液を混合して塗布することにより得られることを特徴とする。
そして本願請求項6に係る発明は、前記請求項1に係る耐油紙において、前記有機樹脂を含有する溶液を紙素材に塗布した後に、前記無機微粒子溶液を塗布することにより得られることを特徴とする。
The invention according to each claim of the present application was invented based on the present situation of such oil-resistant paper, and by effectively filling both the inside and inter-fiber gaps of the paper material, sufficient oil resistance can be obtained. An object of the present invention is to provide an oil-resistant paper having bending characteristics and excellent heat resistance.
The invention of the oil-resistant paper according to claim 1 of the present invention made to achieve the above object applies a solution containing inorganic fine particles having an average particle diameter of 20 nm or less and a solution containing an organic resin to a paper material. It is characterized by being obtained by this.
The invention of the oil-resistant paper according to claim 2 of the present invention made to achieve the object is characterized in that the inorganic fine particles are colloidal silica in the oil-resistant paper according to the claim.
The invention according to claim 3 of the present application is characterized in that in the oil-resistant paper according to claim 1, the organic resin solution is an acrylic resin.
The invention according to claim 4 of the present application is characterized in that, in the oil-resistant paper according to claim 1, the organic resin solution is a urethane resin.
The invention according to claim 5 of the present invention is characterized in that the oil-resistant paper according to claim 1 is obtained by mixing and applying the inorganic fine particle solution and the solution containing the organic resin.
The invention according to claim 6 of the present invention is obtained by applying the inorganic fine particle solution to the oil-resistant paper according to claim 1 after applying a solution containing the organic resin to a paper material. To do.

本願各請求項に係る発明は、無機微粒子溶液を紙素材に塗布し、毛細管現象により繊維内部に浸透そして保持させることにより、繊維内部の空隙を埋め、毛細管現象を低減させ、油分の更なる繊維内部への浸透を防ぐものである。また、有機高分子樹脂を併用することにより、繊維間の空隙を埋め、繊維間内部への油分の浸透を効果的に防ぐものである。この両方の効果により、耐油性が発揮できるとともに、折り曲げ部分の耐油性も保持できるものである。   The invention according to each claim of the present application applies an inorganic fine particle solution to a paper material, and permeates and holds the inside of the fiber by a capillary phenomenon, thereby filling a void inside the fiber, reducing the capillary phenomenon, and further increasing the amount of oil. It prevents penetration into the interior. Moreover, by using together organic polymer resin, the space | gap between fibers is filled and the penetration of the oil component to the inside between fibers is prevented effectively. By both of these effects, oil resistance can be exhibited and oil resistance of the bent portion can be maintained.

以下、本願各請求項に係る耐油紙の発明について、発明を実施するための最良の形態に基づいて詳細に説明する。
先に述べたように、紙素材は繊維内及び繊維間の空隙が多いため、付着した油分が繊維内では毛細管現象により内部に浸透し易い構造になっており、他方繊維間でも、空隙の内部に油分が浸透し易い構造になっている。
Hereinafter, the invention of the oil-resistant paper according to each claim of the present application will be described in detail based on the best mode for carrying out the invention.
As mentioned earlier, since the paper material has many voids in and between the fibers, the attached oil is easily penetrated into the fiber due to capillary action, and even between the fibers, the inside of the voids. The oil is easy to penetrate into

ここで毛細管現象は、基本的には繊維内に小さな空間が多く存在するために生じる現象である。したがって、この毛細管現象を防ぐのに有効な手段は、毛細管現象が発生しないようにし、又は、毛細管現象の度合いを低減すれば良いのであるが、このためには、毛細管現象を利用して撥油性物質を紙素材の内部に浸透させ、付着する油分の紙素材内部への浸透を抑制するようにすれば良い。   Here, the capillary phenomenon is basically a phenomenon that occurs because there are many small spaces in the fiber. Therefore, an effective means for preventing the capillary phenomenon is to prevent the capillary phenomenon from occurring or to reduce the degree of the capillary phenomenon. What is necessary is just to make it penetrate | infiltrate the inside of a paper raw material, and to suppress the penetration | invasion to the inside of paper raw material of the adhering oil.

一方、繊維間の空隙は、グラシン紙などのいわゆる叩解の進んだ紙や、表面にカレンダー加工をすることにより、減少させることが可能であるが、耐油用途に使用される紙が常に、叩解の進んだ紙やカレンダー加工された紙とは限らないため、例え繊維間空隙が大きくとも、十分にいわゆる目止め効果のある処理方法が必要となる。
すなわち、本願各請求項に係る発明の主要構成要素は、第一に、繊維内部に毛細管現象を利用し、撥油性を有する無機微粒子を浸透させることにあり、また第二に、繊維間の空隙を埋めるため、有機高分子ポリマーをその繊維間に充填することにある。
On the other hand, the gap between fibers can be reduced by so-called beating advanced paper such as glassine paper, or by calendering the surface, but paper used for oil resistance is always beating. Since the paper is not necessarily advanced paper or calendered paper, a processing method having a so-called sealing effect is required even if the inter-fiber gap is large.
That is, the main constituent elements of the invention according to each claim of the present application are firstly used to penetrate the fine particles of oil repellency by utilizing the capillary phenomenon inside the fibers, and secondly, the voids between the fibers. In order to fill the gap, an organic polymer is filled between the fibers.

本願各請求項に係る発明の主要構成要素のうち、第一の構成要素は、コロイド状シリカなどの無機微粒子溶液を紙素材に塗布し、毛細管現象により無機微粒子を繊維内部に浸透そして保持させることにより、繊維内部の空隙を埋め、毛細管現象を低減させ、油分の更なる繊維内部への浸透を防ぐものである。また、第二の構成要素であるアクリル系樹脂などの有機高分子ポリマーを、同時もしくは先立って塗工することにより繊維間の空隙を埋め、この空隙を伝わって浸透する油分を抑え、従来技術に見られる課題を解決したものである。   Among the main constituent elements of the invention according to each claim of the present application, the first constituent element is to apply an inorganic fine particle solution such as colloidal silica to a paper material, and to permeate and hold the inorganic fine particles inside the fiber by capillary action. Thus, the gap inside the fiber is filled, the capillary phenomenon is reduced, and further penetration of oil into the fiber is prevented. In addition, by applying the organic polymer polymer such as acrylic resin, which is the second component, at the same time or in advance, the gaps between the fibers are filled, and the oil that permeates through these gaps is suppressed. It solves the problems that can be seen.

第一の構成要素である無機微粒子は、繊維内部に毛細管現象で浸透すると、強い撥油性とバリアー効果を有するため、繊維内部に高い耐油性を付与することが可能なのであるが、その繊維内部へ塗布する工程は安価に実施することができる。また繊維内部へ浸透した無機微粒子は、繊維の内部で繊維と絡まって固定化される。   The inorganic fine particles, which are the first component, have strong oil repellency and barrier effect when penetrating into the fiber by capillarity, so that high oil resistance can be given to the inside of the fiber. The applying step can be performed at a low cost. Further, the inorganic fine particles that have penetrated into the fiber are entangled with the fiber and fixed inside the fiber.

さらに、本願各請求項に係る発明に基づく無機微粒子層は、繊維内部で繊維と絡み合って保持されているため、柔軟性を保持しており、本願各請求項に係る発明が提供する耐油紙は、その柔軟性においては無機微粒子層を形成していない紙素材とほぼ同様に折り曲げること等が可能であることに加えて、その使用後には、通常の紙ゴミと同様に消却処分等することも可能である。また更に加えて、本願各請求項に係る発明の耐油紙は、ラミネート紙などとは異なり、あらかじめ所定の寸法・形状に裁断した紙素材に対しては、その裁断面にもコート液を塗布してコーティング層を形成することで、裁断面からの油の染み込みも防止することが可能である。   Furthermore, since the inorganic fine particle layer based on the invention according to each claim of the present application is held entangled with the fiber inside the fiber, it retains flexibility, and the oil-resistant paper provided by the invention according to each claim of the present application is In addition to its flexibility, it can be folded almost the same as a paper material that does not have an inorganic fine particle layer, and after use, it can be disposed of in the same manner as normal paper waste. Is possible. In addition, the oil-resistant paper of the invention according to each claim of the present application is different from laminated paper and the like, and a coating liquid is also applied to the cut surface of a paper material cut into a predetermined size and shape in advance. By forming the coating layer, it is possible to prevent oil from penetrating from the cut surface.

本願各請求項に係る発明の第一の構成要素である無機微粒子は、通常使用されているものであれば特別の制限無しに使用できる。一例として、クレー、カオリン、炭酸カルシウム、タルク、炭酸バリウム、アルミナ、シリカ、チタニア、ジルコニアなどが例示できる。これらの中で、粒径がより均一なものが好ましい。好ましくは、アルミナ、シリカ、チタニア、ジルコニアなどの合成無機微粒子が良く、さらに好ましくは、安価に製造できるシリカが良い。
これらの無機微粒子の粒径は特に制限が無いが、粒径が大きすぎると繊維内部の奥深く浸透することができず、十分な耐油性が発揮できなくなる恐れがある。
The inorganic fine particles, which are the first constituent elements of the invention according to the claims of the present application, can be used without particular limitation as long as they are normally used. Examples include clay, kaolin, calcium carbonate, talc, barium carbonate, alumina, silica, titania, zirconia and the like. Among these, those having a more uniform particle size are preferred. Preferably, synthetic inorganic fine particles such as alumina, silica, titania, and zirconia are preferable, and silica that can be manufactured at low cost is more preferable.
The particle size of these inorganic fine particles is not particularly limited. However, if the particle size is too large, the fine particles cannot penetrate deep inside the fibers and there is a possibility that sufficient oil resistance cannot be exhibited.

また、粒径が大きな粒子はその分散溶液内で安定的(沈殿せず)に長期間保持することが難しい。そのため、使用する無機微粒子の粒径は、できるだけ小さい方が良く、好ましくは50nm、更に好ましくは20nm以下である。
無機微粒子は、紙素材の繊維内部に毛細管現象で浸透し、繊維と繊維の間にからまり固定化する。そのため、十分な耐油性を示すが、その他に、無機微粒子の性質である耐熱性及び耐摩耗性も同時に向上させることが可能となる。
このような無機微粒子の分散液としては、水と有機溶剤どちらでも可能であるが、分散性及び安全性から、水系が好ましい。
Further, it is difficult to keep particles having a large particle size stably (without precipitating) for a long time in the dispersion solution. Therefore, the particle size of the inorganic fine particles to be used is preferably as small as possible, preferably 50 nm, and more preferably 20 nm or less.
The inorganic fine particles penetrate into the fiber of the paper material by capillary action, and are entangled and fixed between the fibers. Therefore, although sufficient oil resistance is shown, in addition to this, the heat resistance and wear resistance, which are the properties of the inorganic fine particles, can be improved at the same time.
Such an inorganic fine particle dispersion can be either water or an organic solvent, but an aqueous system is preferred from the viewpoint of dispersibility and safety.

次に、本願各請求項に係る発明の第二の構成要素である、有機高分子ポリマー系コート液を説明する。本コート液によって塗工される有機高分子ポリマーは、繊維間の空隙を埋め、油分が繊維間を通して浸透するのを防ぐ役割を担う。この目的で使用される高分子ポリマーは、通常耐油紙用途に使用されているものが、特別の制限なしに用いることができるが、PVDCは塩素を含有しているため、使用後の燃焼時問題が発生するため、使用は好ましくない。   Next, an organic polymer coating liquid which is the second component of the invention according to each claim of the present application will be described. The organic polymer polymer applied by the coating liquid fills the gaps between the fibers and prevents oil from penetrating through the fibers. Although the high molecular polymer used for this purpose is usually used for oil-resistant paper, it can be used without any special restriction. However, since PVDC contains chlorine, there is a problem during combustion after use. This is not preferable because of the above.

一般的には、アクリル樹脂、ウレタン樹脂、PVA、NBR、CMC、MCなどが使用できる。この中で、本願各請求項に係る発明の第二の構成要素としては、特にアクリル樹脂とウレタン樹脂が好ましい。ここでいう、アクリル樹脂は主としてアクリル酸、メタクリル酸及びそれらの誘導体の重合体からなる合成樹脂をいい、実際にはアクリル酸エステル、メタクリル酸エステル、アクリルニトリルなどの重合体を示す。またこれらのものは、酢酸ビニル、スチレンなどと共重合しても良い。
また、ウレタン樹脂は、脂肪族ポリイソシアネートとテトラメチレングリコールの反応によってできる連鎖状重合物であり、通常用いられているものが特別な制限なしに用いられる。熱可塑性でも熱硬化性でも良いが、電子レンジなどの耐熱性用途での使用を考えると、熱硬化性の方が好ましい。
In general, acrylic resin, urethane resin, PVA, NBR, CMC, MC and the like can be used. Among these, acrylic resins and urethane resins are particularly preferable as the second component of the invention according to each claim of the present application. Here, the acrylic resin refers to a synthetic resin mainly composed of a polymer of acrylic acid, methacrylic acid and derivatives thereof, and actually indicates a polymer such as an acrylic ester, methacrylic ester or acrylonitrile. These may be copolymerized with vinyl acetate, styrene or the like.
The urethane resin is a chain polymer formed by a reaction between an aliphatic polyisocyanate and tetramethylene glycol, and a commonly used one is used without any particular limitation. Thermosetting or thermosetting may be used, but thermosetting is preferable in consideration of use in heat resistant applications such as a microwave oven.

本願各請求項に係る発明の第一の構成要素である無機微粒子コート液と、第二の構成要素である有機高分子ポリマー溶液とを、紙素材に塗工する方法は、二つの液を均一に混合し(いわゆる一液型)塗工する方法でも、また有機高分子ポリマー溶液を先に塗工し、その後に無機微粒子コート液を塗工してもよい。
均一に混合した液を塗工すると、無機微粒子は平均粒径が、好ましくは50nm、更に好ましくは20nm以下である微粒子であるため、優先的に毛細管現象で繊維内部に浸透する。一方、有機高分子ポリマーは、はるかに粒径の大きい高分子であるため、繊維内部の細孔には十分には浸透できず、かわりに繊維間の空隙部分で留まるため、この空隙を埋める役割を果たす。このことより上記二液を混合液として塗工することが好ましい。
The method of applying the inorganic fine particle coating liquid, which is the first constituent element of the invention according to each claim of the present application, and the organic polymer polymer solution, which is the second constituent element, to a paper material is a uniform two liquids The organic polymer polymer solution may be applied first and then the inorganic fine particle coating solution may be applied.
When a uniformly mixed solution is applied, the inorganic fine particles are fine particles having an average particle diameter of preferably 50 nm, more preferably 20 nm or less, and thus preferentially penetrate into the fiber by capillary action. On the other hand, the organic polymer is a polymer with a much larger particle size, so it cannot fully penetrate into the pores inside the fiber, but instead stays in the voids between the fibers. Fulfill. From this, it is preferable to apply the two liquids as a mixed liquid.

また、先に有機高分子ポリマーを塗工し、その後に無機微粒子を塗工することも可能である。この方法では、高分子ポリマーは繊維内部には十分には浸透できないため、その部分に、後から塗工された無機微粒子化合物が浸透し、結果としては一液型と同程度の耐油性が得られる。
しかし、その一方で、無機微粒子液を先に塗工すると、無機微粒子が繊維内部だけでなく、繊維間にも塗工されるため、十分に繊維内部に行き渡る無機微粒子が不足する。それで十分な耐油性が出なくなる可能性がある。そのため塗工方法は、一液型もしくは有機高分子ポリマー液を塗工した後に、無機微粒子液剤を塗工することが望ましい。
It is also possible to apply the organic polymer polymer first and then apply the inorganic fine particles. In this method, since the high molecular weight polymer cannot sufficiently penetrate into the inside of the fiber, the inorganic fine particle compound applied later penetrates into the portion, and as a result, oil resistance comparable to that of the one-pack type is obtained. It is done.
On the other hand, however, when the inorganic fine particle liquid is applied first, the inorganic fine particles are applied not only inside the fibers but also between the fibers, so that the inorganic fine particles that sufficiently reach the inside of the fibers are insufficient. As a result, sufficient oil resistance may not be obtained. For this reason, it is desirable to apply an inorganic fine particle liquid after applying a one-pack type or organic polymer liquid.

本願各請求項に係る発明による耐油紙の製造方法では、まず、任意の紙素材を、任意の寸法・形状に切断、加工し、これに前記した本願各請求項に係る発明のコート液を塗布する。具体的な塗布の方法は、特に制限されないが、例えば、コート液に紙素材を浸漬したり、コート液を紙素材に塗りつけたり、或いはコート液を紙素材に吹き付けたりすることにより行うことが可能である。
本願各請求項に係る発明では、例えば樹皮の繊維を漉いて乾燥したもの、手漉きによる高級和紙、機械漉きされた普通和紙、洋紙又は友禅紙等、不織布を用いた繊維、通常の布等を紙素材として、耐油紙素材を製造することができる。これらの紙素材は、コート液の種類や濃度を変えることで、通常制限無しに使用できる。
In the method for producing oil-resistant paper according to the invention according to the claims of the present application, first, an arbitrary paper material is cut and processed into an arbitrary size and shape, and the coating liquid of the invention according to the claims of the application is applied thereto. To do. The specific application method is not particularly limited. For example, it can be performed by immersing the paper material in the coating liquid, applying the coating liquid to the paper material, or spraying the coating liquid onto the paper material. It is.
In the invention according to each claim of the present application, for example, dried bark fiber, handmade high-grade Japanese paper, machined plain Japanese paper, Western paper or Yuzen paper, non-woven fiber, normal cloth, etc. An oil-resistant paper material can be manufactured as the material. These paper materials can usually be used without limitation by changing the type and concentration of the coating liquid.

従来用いられているアクリル系樹脂などの有機高分子系耐油剤は、紙素材の表面に均一に塗工すれば、それなりの耐油性を示す。しかし、折り曲げ部分からの油分の浸透という問題があった。これは折り曲げ時、繊維内部が変形するために起きる現象である。有機高分子系樹脂は、繊維間を埋める役割をするが、繊維内部までは十分に浸透していない。そのため、折り曲げ時繊維部分が変形することに伴い、その変形部分から油分が内部に浸透し、耐油性が低下する。このため、有機高分子系耐油剤のみを用いると、耐油紙を箱型にして使用する場合、耐油性の低下という問題があった。   Conventionally used organic polymer oil proofing agents such as acrylic resins show a certain level of oil resistance when uniformly coated on the surface of a paper material. However, there has been a problem of permeation of oil from the bent portion. This is a phenomenon that occurs because the inside of the fiber is deformed during bending. The organic polymer resin serves to fill between the fibers, but does not sufficiently penetrate into the inside of the fibers. Therefore, along with the deformation of the fiber part at the time of bending, the oil component penetrates into the inside from the deformed part, and the oil resistance decreases. For this reason, when only the organic polymer-based oil proofing agent is used, there is a problem that the oil resistance is lowered when the oil-proof paper is used in a box shape.

しかし、本願各請求項に係る発明の実施例紙素材は、繊維内部に無機微粒子が毛細管現象で浸透し、繊維にからまり固定化するため、紙素材を折り曲げても、折り曲げ部分の変形が少なくなる。また、たとえ変形して繊維内部に空間が生じても、その部分の毛細管現象の発生が抑えられているため、結果的には、折り曲げ部分からの油分の浸透が防げることになる。   However, in the paper material of the invention according to the claims of the present application, the inorganic fine particles penetrate into the fiber by capillary action and are entangled and fixed to the fiber, so that even when the paper material is folded, deformation of the folded portion is small Become. Further, even if a space is generated inside the fiber due to deformation, the occurrence of capillary action at that portion is suppressed, and as a result, permeation of oil from the bent portion can be prevented.

以下、本願各請求項に係る発明を実施例に基づいて更に詳細に説明するが、この実施例はあくまで一例であって、本願各請求項に係る発明を限定するものではない。   Hereinafter, the invention according to each claim of the present application will be described in more detail based on examples, but this example is only an example, and does not limit the invention according to each claim of the present application.

実施例1
無機微粒子溶液として、コロイダルシリカ IPA−ST(30%液。平均粒径10−20nm、日産化学(株)製、イソプロピルアルコール溶液)、アクリル樹脂溶液として、アクリル(メタクリル)酸エステル共重合体約20%含有イソプロピルアルコール溶液(互応化学工業製)を用い、コロイダルシリカ溶液100gとアクリル樹脂溶液200gを均一に混合し塗工液とした。
次に、紙素材として、晒クラフト紙(中越パルプ(株)製、坪量70g/m)を用意し、バーコータを用いて、6.8g/mの塗布量(乾燥前重量)にて前記コート液を塗布し、10分間室温にて乾燥し、アルコールを蒸発させた後、150℃の乾燥機内で10分間加熱し、耐油紙を製造した。
Example 1
Colloidal silica IPA-ST (30% solution, average particle size 10-20 nm, manufactured by Nissan Chemical Co., Ltd., isopropyl alcohol solution) as an inorganic fine particle solution, and acrylic (methacrylic) ester copolymer about 20 as an acrylic resin solution A 100% colloidal silica solution and 200 g of an acrylic resin solution were uniformly mixed using a% -containing isopropyl alcohol solution (manufactured by Reciprocal Chemical Co., Ltd.) to obtain a coating solution.
Next, bleached kraft paper (manufactured by Chuetsu Pulp Co., Ltd., basis weight 70 g / m 2 ) is prepared as a paper material, and is applied at a coating amount (weight before drying) of 6.8 g / m 2 using a bar coater. The coating solution was applied and dried at room temperature for 10 minutes to evaporate the alcohol, and then heated in a dryer at 150 ° C. for 10 minutes to produce oil-resistant paper.

このようにして得られた耐油紙についての撥油性テストは、JAPAN TAPPI 紙パルプ試験方法NO.41:2000に示された「紙及び板紙―はつ油度試験方法―キット値」に基づいて行った。撥油性テストの実施に際しては、まず、ヒマシ油、トルエン及びヘプタンを所定の割合で混合してキットナンバー1〜12の試験液を調整した。次に、50mm×50mm程度の大きさに切断した耐油紙を試験片として5枚以上用意し、撥油性テストを行った。なお折り曲げ部分の撥油性テストは、同紙片を90度に折り曲げ、その部分でテストを行った。その結果を表1に示す。   The oil repellency test for the oil-resistant paper obtained in this manner was conducted using the JAPAN TAPPI paper pulp test method NO. 41: 2000, “Paper and paperboard—oil repellency test method—kit value”. In conducting the oil repellency test, first, cast oil, toluene and heptane were mixed at a predetermined ratio to prepare test solutions of kit numbers 1 to 12. Next, 5 or more oil-resistant paper cut into a size of about 50 mm × 50 mm was prepared as a test piece, and an oil repellency test was performed. In the oil repellency test of the bent portion, the paper piece was bent at 90 degrees, and the test was performed at that portion. The results are shown in Table 1.

Figure 2006016724
Figure 2006016724

比較例1
前記コロイダルシリカ溶液を塗布せず、アクリル樹脂溶液(前記記載に同じ)のみを塗布した、概ね同一寸法の晒クラフト紙を用意し、前記同様の撥油性テストを実施した。結果を表2に示す。
Comparative Example 1
A bleached kraft paper having substantially the same dimensions, in which only the acrylic resin solution (same as described above) was applied without applying the colloidal silica solution, was prepared, and the same oil repellency test was performed. The results are shown in Table 2.

Figure 2006016724
Figure 2006016724

実施例2〜6
紙素材以外は、実施例1と同様にして耐油紙を製造し、同様に耐油性テストを実施した。結果を表1に示す。
比較例2〜6
前記コロイダルシリカ溶液を塗布せず、アクリル樹脂溶液(前記記載に同じ)のみを塗布した、概ね同一寸法の、実施例2〜6示す紙素材を用意し、前記同様の撥油性テストを実施した。結果を表2に示す。
Examples 2-6
Except for the paper material, an oil resistant paper was produced in the same manner as in Example 1, and an oil resistance test was conducted in the same manner. The results are shown in Table 1.
Comparative Examples 2-6
Paper materials shown in Examples 2 to 6 having substantially the same dimensions, in which only the acrylic resin solution (the same as described above) was applied without applying the colloidal silica solution, were prepared, and the same oil repellency test was performed. The results are shown in Table 2.

実施例7
紙素材として、晒クラフト紙(中越パルプ(株)製、坪量70g/m)を用意し、バーコータを用いて、6.8g/mの塗布量(乾燥前重量)にて前記アクリル樹脂溶液を塗布し、10分間室温にて乾燥し、アルコールを蒸発させた後、105℃の乾燥機内で10分間加熱した。その後、上記コロイダルシリカ溶液をイソプロピルアルコールで2倍に希釈したものを、バーコータを用いて、6.8g/mの塗布量(乾燥前重量)にて塗工し、同様に室温にて10分間乾燥させ、アルコールを蒸発させ、更に150℃の乾燥機内で10分間加熱し、耐油紙を製造した。その後、実施例1と同様に耐油性テストを実施した。結果を表1に示す。
実施例8〜12
紙素材以外は実施例7と同様にして耐油紙を製造し、同様に耐油性テストを実施した。結果を表1に示す。
実施例13
アクリル樹脂溶液の替わりに、ウレタン樹脂(第一工業製薬(株)製、固形分約20%水溶液)とした以外は実施例7と同様にして耐油紙を製造し、同様に耐油性テストを実施した。結果を表2に示す。
Example 7
Bleached kraft paper (manufactured by Chuetsu Pulp Co., Ltd., basis weight 70 g / m 2 ) is prepared as a paper material, and the acrylic resin is applied at a coating amount (weight before drying) of 6.8 g / m 2 using a bar coater. The solution was applied and dried at room temperature for 10 minutes to evaporate the alcohol, and then heated in a dryer at 105 ° C. for 10 minutes. Thereafter, a solution obtained by diluting the colloidal silica solution twice with isopropyl alcohol was applied at a coating amount (weight before drying) of 6.8 g / m 2 using a bar coater, and similarly at room temperature for 10 minutes. It was dried, the alcohol was evaporated, and further heated in a dryer at 150 ° C. for 10 minutes to produce an oil-resistant paper. Thereafter, an oil resistance test was conducted in the same manner as in Example 1. The results are shown in Table 1.
Examples 8-12
Except for the paper material, an oil-resistant paper was produced in the same manner as in Example 7, and an oil resistance test was conducted in the same manner. The results are shown in Table 1.
Example 13
Oil-resistant paper was produced in the same manner as in Example 7 except that urethane resin (made by Daiichi Kogyo Seiyaku Co., Ltd., solid content of about 20% aqueous solution) was used instead of the acrylic resin solution, and the oil resistance test was conducted in the same manner. did. The results are shown in Table 2.

表1及び表2から明らかなように、比較のために実施した、従来より耐油剤として用いられているアクリル樹脂をコートした耐油紙は、その耐油度(KIT値)は全て6以下であった。一方、本願各請求項に係る発明の耐油紙ではキット値は全て10以上であり、約2倍の耐油性が認められた。
また折り曲げ部分の耐油性は、平滑部分より多少劣るが、それでもKIT値8以上は保持しており、十分な耐油性を示している。
As is apparent from Tables 1 and 2, the oil resistance paper (KIT value) of the oil resistant paper coated with an acrylic resin conventionally used as an oil resistant agent was 6 or less for comparison. . On the other hand, in the oil-resistant paper of the invention according to each claim of the present application, the kit values were all 10 or more, and oil resistance of about twice was recognized.
The oil resistance of the bent portion is slightly inferior to that of the smooth portion, but still retains a KIT value of 8 or more, indicating sufficient oil resistance.

Claims (6)

平均粒径が20nm以下の無機微粒子を含有する溶液と、有機樹脂を含有する溶液とを、紙素材に塗布することにより得られる耐油紙。 An oil-resistant paper obtained by applying a solution containing inorganic fine particles having an average particle size of 20 nm or less and a solution containing an organic resin to a paper material. 無機微粒子が、コロイド状シリカであることを特徴とする、請求項1記載の耐油紙。 2. The oil-resistant paper according to claim 1, wherein the inorganic fine particles are colloidal silica. 有機樹脂溶液が、アクリル系樹脂であることを特徴とする、請求項1記載の耐油紙。 The oil-resistant paper according to claim 1, wherein the organic resin solution is an acrylic resin. 有機樹脂溶液が、ウレタン系樹脂であることを特徴とする、請求項1記載の耐油紙。 The oil-resistant paper according to claim 1, wherein the organic resin solution is a urethane resin. 上記無機微粒子溶液と有機樹脂を含有する溶液を混合して塗布することにより得られる、請求項1記載の耐油紙。 The oil-resistant paper according to claim 1, which is obtained by mixing and applying a solution containing the inorganic fine particle solution and an organic resin. 上記有機樹脂を含有する溶液を紙素材に塗布した後に、上記無機微粒子溶液を塗布することにより得られる、請求項1記載の耐油紙。 The oil-resistant paper according to claim 1, obtained by applying the inorganic fine particle solution after applying the solution containing the organic resin to a paper material.
JP2004195689A 2004-07-01 2004-07-01 Oil-resistant paper material Pending JP2006016724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004195689A JP2006016724A (en) 2004-07-01 2004-07-01 Oil-resistant paper material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004195689A JP2006016724A (en) 2004-07-01 2004-07-01 Oil-resistant paper material

Publications (1)

Publication Number Publication Date
JP2006016724A true JP2006016724A (en) 2006-01-19

Family

ID=35791256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004195689A Pending JP2006016724A (en) 2004-07-01 2004-07-01 Oil-resistant paper material

Country Status (1)

Country Link
JP (1) JP2006016724A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020241709A1 (en) * 2019-05-28 2020-12-03 ダイキン工業株式会社 Oil-resistant agent for paper

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5135711A (en) * 1974-09-24 1976-03-26 Komatsu Shoichi Taisui hatsuyuseiojusurukami narabini sonoseizoho
JPH0384134U (en) * 1989-12-15 1991-08-27
JPH06191553A (en) * 1992-12-25 1994-07-12 Tokai Pulp Kk Easy-to-disaggregate converted paper
JPH11100797A (en) * 1997-09-22 1999-04-13 Toyo Ink Mfg Co Ltd Converted paper
JP2000016000A (en) * 1998-07-06 2000-01-18 Oji Paper Co Ltd Oil painting canvas sheet made of paper board
JP2003155824A (en) * 2001-07-12 2003-05-30 Sonoco Development Inc Pipe made of liquid-resistive cardboard and method for treating pipe made of cardboard
JP2004019036A (en) * 2002-06-14 2004-01-22 Daio Paper Corp Oil-resistant paper
JP2004076189A (en) * 2002-08-15 2004-03-11 Mitsubishi Corp Oilproof paper and method for producing the same
JP2005089932A (en) * 2003-09-19 2005-04-07 Dainippon Printing Co Ltd Coated paper

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5135711A (en) * 1974-09-24 1976-03-26 Komatsu Shoichi Taisui hatsuyuseiojusurukami narabini sonoseizoho
JPH0384134U (en) * 1989-12-15 1991-08-27
JPH06191553A (en) * 1992-12-25 1994-07-12 Tokai Pulp Kk Easy-to-disaggregate converted paper
JPH11100797A (en) * 1997-09-22 1999-04-13 Toyo Ink Mfg Co Ltd Converted paper
JP2000016000A (en) * 1998-07-06 2000-01-18 Oji Paper Co Ltd Oil painting canvas sheet made of paper board
JP2003155824A (en) * 2001-07-12 2003-05-30 Sonoco Development Inc Pipe made of liquid-resistive cardboard and method for treating pipe made of cardboard
JP2004019036A (en) * 2002-06-14 2004-01-22 Daio Paper Corp Oil-resistant paper
JP2004076189A (en) * 2002-08-15 2004-03-11 Mitsubishi Corp Oilproof paper and method for producing the same
JP2005089932A (en) * 2003-09-19 2005-04-07 Dainippon Printing Co Ltd Coated paper

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020241709A1 (en) * 2019-05-28 2020-12-03 ダイキン工業株式会社 Oil-resistant agent for paper
JPWO2020241709A1 (en) * 2019-05-28 2020-12-03
CN113891972A (en) * 2019-05-28 2022-01-04 大金工业株式会社 Oil proofing agent for paper
EP3978683A4 (en) * 2019-05-28 2023-05-10 Daikin Industries, Ltd. Oil-resistant agent for paper
JP7299526B2 (en) 2019-05-28 2023-06-28 ダイキン工業株式会社 Oil resistant agent for paper

Similar Documents

Publication Publication Date Title
JP6234654B1 (en) Paper barrier material
Lavoine et al. Microfibrillated cellulose coatings as new release systems for active packaging
US8137789B2 (en) Composition for matte layer formation, release sheet using the same, and synthetic leather produced using said release sheet
JP2016000526A (en) Paper or paperboard substrate, process for production of the substrate and package formed of the substrate
JP5187873B2 (en) Oil-resistant sheet
SE0950819A1 (en) A coated substrate, a process for producing a coated substrate, a package and a dispersion coating
JP2014524523A (en) Method for imparting a barrier to a surface and substrate produced by the method
JP2011074535A (en) Oil-resistant paper
CN106833139A (en) A kind of preparation of cellulose nano-fibrous base oil fat barrier coat and its application process
JP2023523852A (en) Coated paper substrate suitable for metallization
JP4864331B2 (en) Oil-resistant sheet
JP5215638B2 (en) Water and oil resistant paper and method for producing the same
JP2014196580A (en) Water-resistant oil-resistant paper and production method of the same
JP2019173258A (en) Paper-made barrier material
JP2019183370A (en) Paper-made barrier material
JP2006016724A (en) Oil-resistant paper material
JP2006316367A (en) Oilproof paper for food packaging
JP2019173259A (en) Paper-made barrier material
JP2016074998A (en) Transparent paper and method for producing the same
CN211420724U (en) Barrier type oil-proof paper
WO2021251449A1 (en) Vapor-deposition paper base material
CN113373726A (en) Latex and preparation method and application thereof
JP2005171390A (en) Oilproof paper
JPWO2019187717A1 (en) Method for manufacturing paper barrier substrate
KR102589321B1 (en) Paper having barrier properties against moisture and oxygen and method for preparing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070621

RD02 Notification of acceptance of power of attorney

Effective date: 20081015

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090930

A131 Notification of reasons for refusal

Effective date: 20091006

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100323