JP2006016351A - Method for selective deprotection of acetal - Google Patents

Method for selective deprotection of acetal Download PDF

Info

Publication number
JP2006016351A
JP2006016351A JP2004196870A JP2004196870A JP2006016351A JP 2006016351 A JP2006016351 A JP 2006016351A JP 2004196870 A JP2004196870 A JP 2004196870A JP 2004196870 A JP2004196870 A JP 2004196870A JP 2006016351 A JP2006016351 A JP 2006016351A
Authority
JP
Japan
Prior art keywords
acetal
group
derived
compound containing
aldehyde
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004196870A
Other languages
Japanese (ja)
Other versions
JP4729752B2 (en
Inventor
Yasuyuki Kita
泰行 北
Hiromichi Fujioka
弘道 藤岡
Yoshinari Sawama
善成 澤間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chemical Soft R & D Inc
Osaka University NUC
Original Assignee
Chemical Soft R & D Inc
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemical Soft R & D Inc, Osaka University NUC filed Critical Chemical Soft R & D Inc
Priority to JP2004196870A priority Critical patent/JP4729752B2/en
Publication of JP2006016351A publication Critical patent/JP2006016351A/en
Application granted granted Critical
Publication of JP4729752B2 publication Critical patent/JP4729752B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heterocyclic Compounds That Contain Two Or More Ring Oxygen Atoms (AREA)
  • Steroid Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for selective deprotection of an acetal originated from aldehyde under a mild condition. <P>SOLUTION: The invention relates to the method for deprotection of acetal comprising conversion of acetal group originated from aldehyde group to the aldehyde group by sequentially adding an organic base and TMSOTf (Trimethylsilyl Trifluoromethanesulfonate) or TESOTf (Triethylsilyl Trifluoromethanesulfonate) to a compound having acetal group originated from aldehyde group in methylene chloride at 0°C. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、有機合成分野において特定の官能基に結合された保護基を選択的に脱保護する方法に関する。   The present invention relates to a method for selectively deprotecting a protecting group bonded to a specific functional group in the field of organic synthesis.

複数の官能基を持つ有機分子を用いて有機合成を行う場合、目的の官能基のみを選択的に反応させるために、その他のより反応性の高い官能基を保護基と呼ばれる反応性の低い原子団に変換して一時的に不活性化することが多い。これを官能基の「保護」といい、例えばカルボニル基はアセタール基に、水酸基はシリルエーテル基によってしばしば保護される。
また、保護基は対象とする官能基を安定に保護するだけでなく、必要に応じて容易に除去できることが重要である。このように、反応終了後に不要となった保護基を外すことを「脱保護」といい、合成を進める上で保護基によって不活性化した官能基のうち特定のものだけを反応させる必要が生じた際には、それらに結合した保護基を独立に除去する必要がある。従って、特定の官能基に結合した保護基のみを緩和な条件下で脱保護することは有機合成において有用である。
When organic synthesis is carried out using organic molecules with multiple functional groups, other reactive groups that are more reactive, called protective groups, are used to selectively react only the desired functional group. Often converted to a group and temporarily inactivated. This is called “protection” of a functional group. For example, a carbonyl group is often protected by an acetal group, and a hydroxyl group is often protected by a silyl ether group.
Further, it is important that the protecting group not only stably protects the target functional group, but also can be easily removed as necessary. In this way, removing a protecting group that is no longer necessary after completion of the reaction is called `` deprotection '', and it is necessary to react only a specific functional group inactivated by the protecting group in order to proceed with the synthesis. In this case, it is necessary to remove the protecting group bonded to them independently. Therefore, it is useful in organic synthesis to deprotect only a protecting group bonded to a specific functional group under mild conditions.

カルボニル基の保護基として用いられるアセタール基は、中性及び塩基性条件下で安定であり、通常、酸性条件下で加水分解により脱保護される。このとき、アルデヒド由来のアセタールよりも、安定なカチオン中間体を経るケトン由来のアセタールの方が脱保護化されてケトンへと変換されやすいことが知られている。それに対し、ケトン由来のアセタール存在下でアルデヒド由来のアセタールを選択的に脱保護する方法は未だ知られていない。
本発明はこのような課題を解決するために成されたものであり、その目的とするところは、緩和な条件下でアルデヒド由来のアセタールを選択的に脱保護する方法を提供することにある。
Acetal groups used as protecting groups for carbonyl groups are stable under neutral and basic conditions and are usually deprotected by hydrolysis under acidic conditions. At this time, it is known that an acetal derived from a ketone that passes through a stable cation intermediate is more easily deprotected and converted to a ketone than an acetal derived from an aldehyde. On the other hand, a method for selectively deprotecting an aldehyde-derived acetal in the presence of a ketone-derived acetal is not yet known.
The present invention has been made to solve such problems, and an object of the present invention is to provide a method for selectively deprotecting an acetal derived from an aldehyde under mild conditions.

本願発明者らは上記課題の解決のため鋭意研究を行った結果、有機塩基、及びトリフルオロメタンスルホン酸トリメチルシリル(TMSOTf)又はトリフルオロメタンスルホン酸トリエチルシリル(TESOTf)によってアセタール基を脱保護できることを発見し、更に該脱保護法が特にアルデヒド由来のアセタール基に対して高い選択性を有することを見いだし、本願発明に至った。   As a result of diligent research to solve the above problems, the present inventors have found that an acetal group can be deprotected with an organic base and trimethylsilyl trifluoromethanesulfonate (TMSOTf) or triethylsilyl trifluoromethanesulfonate (TESOTf). Furthermore, the inventors have found that the deprotection method has high selectivity particularly for an aldehyde-derived acetal group, and have reached the present invention.

すなわち、上記課題を解決するために成された本発明に係るアセタールの脱保護法は、アセタール基を含む化合物に対し、有機塩基、及びトリフルオロメタンスルホン酸トリメチルシリル又はトリフルオロメタンスルホン酸トリエチルシリルを加えて反応させることにより、該アセタール基をカルボニル基に変換することを特徴とする。   That is, the method for deprotecting an acetal according to the present invention made to solve the above-described problem is to add an organic base and trimethylsilyl trifluoromethanesulfonate or triethylsilyl trifluoromethanesulfonate to a compound containing an acetal group. The acetal group is converted to a carbonyl group by reacting.

また、本発明の別の態様のものは、一分子中に水酸基及びアセタール基を含む化合物、又は水酸基を含む化合物とアセタール基を含む化合物の混合物に対し、上記脱保護法を適用することにより、該アセタール基をカルボニル基に変換すると共に、該水酸基をシリル化することを特徴とする。   In another embodiment of the present invention, by applying the above deprotection method to a compound containing a hydroxyl group and an acetal group in a molecule, or a mixture of a compound containing a hydroxyl group and a compound containing an acetal group, The acetal group is converted into a carbonyl group, and the hydroxyl group is silylated.

上記の手段を用いることによりアルデヒド由来のアセタール基を選択的に脱保護することができるため、例えばアルデヒド由来のアセタール基を有する化合物とケトン由来のアセタール基を有する化合物の混合物や、一分子中にアルデヒド由来のアセタール基及びケトン由来のアセタール基を有する化合物のような、ケトン由来のアセタール存在下において、アルデヒド由来のアセタールのみを選択的に脱保護することができる。   Since the aldehyde-derived acetal group can be selectively deprotected by using the above means, for example, a mixture of a compound having an aldehyde-derived acetal group and a compound having a ketone-derived acetal group, or in one molecule In the presence of an acetal derived from a ketone such as a compound having an acetal group derived from an aldehyde and an acetal group derived from a ketone, only the acetal derived from the aldehyde can be selectively deprotected.

また、上記反応により水酸基はシリル化(トリメチルシリル化又はトリエチルシリル化)されるため、アセタールの脱保護及び水酸基の保護をワンポット(one-pot)の反応によって実現することができる。   In addition, since the hydroxyl group is silylated (trimethylsilylation or triethylsilylation) by the above reaction, acetal deprotection and hydroxyl group protection can be realized by a one-pot reaction.

また、本発明の脱保護法は非常に緩和な反応であるため、OAc, OTBS, オレフィン、アルコールやアリルアルコールなど他の官能基に影響を与えることなくアセタールの脱保護を行うことができる(但し、アルコールやアリルアルコールの水酸基はシリルエーテルになる)。   In addition, since the deprotection method of the present invention is a very mild reaction, acetal can be deprotected without affecting other functional groups such as OAc, OTBS, olefin, alcohol and allyl alcohol (however, The hydroxyl group of alcohol or allyl alcohol becomes silyl ether).

なお、上記脱保護法はアセタール基の内、特にアルデヒド由来のものを高選択的に脱保護するものであるが、反応条件を適宜選択することにより、ケトン由来のアセタール基を脱保護することもできる。   In addition, although the said deprotection method deprotects an acetal group especially highly from an aldehyde, it can also deprotect a ketone-derived acetal group by selecting reaction conditions suitably. it can.

Figure 2006016351
本発明において脱保護の対象となるアセタール化合物は特に限定されず、化学式1(化学式中のRは特に制限されない)に示すような、非環状アセタール及び環状アセタールのいずれのアセタール化合物も収率よく脱保護化することができる。
Figure 2006016351
In the present invention, the acetal compound to be deprotected is not particularly limited, and any acetal compound of acyclic acetal and cyclic acetal as shown in Chemical Formula 1 (R in the chemical formula is not particularly limited) can be removed with high yield. Can be protected.

Figure 2006016351
また、化学式2に示すような、同一分子内にケトン由来のアセタール基及びアルデヒド由来のアセタール基を併せ持つアセタール化合物ではアルデヒド由来のアセタール基を選択的に脱保護することができる。
Figure 2006016351
Further, in the acetal compound having both a ketone-derived acetal group and an aldehyde-derived acetal group in the same molecule as shown in Chemical Formula 2, the aldehyde-derived acetal group can be selectively deprotected.

Figure 2006016351
更に、化学式3のような同一分子内に水酸基を含むアセタール型化合物に本発明の脱保護法を適用した場合には、アセタール基の脱保護と水酸基のシリル化を高収率且つワンポットで行うことができる。
Figure 2006016351
Furthermore, when the deprotection method of the present invention is applied to an acetal type compound containing a hydroxyl group in the same molecule as in Chemical Formula 3, deprotection of the acetal group and silylation of the hydroxyl group should be performed in a high yield and in one pot. Can do.

Figure 2006016351
また更に、化学式4のような、同一分子内に水酸基とケトン由来のアセタール基、及びアルデヒド由来のアセタール基を含むアセタール化合物においても、高選択的なアルデヒド由来のアセタール基の脱保護と水酸基のシリル化を高収率且つワンポットで行うことができる。
Figure 2006016351
Furthermore, even in the case of an acetal compound containing a hydroxyl group, a ketone-derived acetal group, and an aldehyde-derived acetal group in the same molecule, as shown in Chemical Formula 4, highly selective aldehyde-derived acetal group deprotection and hydroxyl group silylation Can be carried out in high yield and in one pot.

Figure 2006016351
Figure 2006016351
Figure 2006016351
また、本発明の脱保護法をアセタール型アルコール保護基を含む化合物(例えば、MOMエーテル(化学式5)、THPエーテル(化学式6)、アセトニドなど(化学式7))に適用した場合、これらが脱保護されると共に、それによって生じた水酸基がシリル化される。
Figure 2006016351
Figure 2006016351
Figure 2006016351
Further, when the deprotection method of the present invention is applied to a compound containing an acetal type alcohol protecting group (for example, MOM ether (chemical formula 5), THP ether (chemical formula 6), acetonide, etc. (chemical formula 7)), these are deprotected. At the same time, the resulting hydroxyl group is silylated.

以上のように、本発明において脱保護の対象となる化合物は、アセタール基又はアセタール型アルコール保護基を含む化合物であればいかなるものでも良く、更に、同一分子内にアセタール基及び/又はアセタール型アルコール保護基と水酸基とを含む化合物に本発明を適用し、アセタールの脱保護と水酸基のシリル化をワンポットで行うようにしてもよい。なお、これらのアセタール基、アセタール型アルコール保護基、及び水酸基は必ずしも同一分子内に存在している必要はなく、これらの基を個別に含む化合物を混合したものに対して本発明の脱保護法を適用しても良い。   As described above, the compound to be deprotected in the present invention may be any compound containing an acetal group or an acetal type alcohol protecting group, and further, an acetal group and / or an acetal type alcohol in the same molecule. The present invention may be applied to a compound containing a protecting group and a hydroxyl group, and deprotection of the acetal and silylation of the hydroxyl group may be performed in one pot. The acetal group, the acetal type alcohol protecting group, and the hydroxyl group are not necessarily present in the same molecule, and the deprotection method of the present invention is applied to a mixture of compounds containing these groups individually. May be applied.

本発明の脱保護法に用いられる有機塩基としては特に限定されないが、コリジン, 2,6-ルチジン, トリエチルアミンのいずれかを用いるのが望ましい。   The organic base used in the deprotection method of the present invention is not particularly limited, but it is preferable to use one of collidine, 2,6-lutidine, and triethylamine.

反応溶媒としては、反応に悪影響を与えない限り特に制限はなく、例えば塩化メチレンなどを用いることができる。   The reaction solvent is not particularly limited as long as it does not adversely influence the reaction, and for example, methylene chloride can be used.

反応温度には特に限定はないが、0℃付近で反応を行うことが望ましい。また、反応時間は、アセタール化合物の種類や、脱保護に用いる試薬や溶媒の種類に応じて適宜選択する。   The reaction temperature is not particularly limited, but it is desirable to perform the reaction at around 0 ° C. The reaction time is appropriately selected according to the type of acetal compound and the type of reagent or solvent used for deprotection.

本発明のアセタールの脱保護法によって得られた生成物は、通常の有機化合物の単離・精製に用いられる方法により単離・精製することができる。例えば、反応混合物を食塩水又は水で処理し、ジエチルエーテル、酢酸エチル、塩化メチレンなどの有機溶媒で抽出する。抽出液を無水硫酸マグネシウム、無水硫酸ナトリウムなどで乾燥し、濃縮して得られる粗生成物を必要に応じて蒸留、クロマトグラフィー、再結晶などにより精製する。
[実施例]
The product obtained by the deprotection method of an acetal of the present invention can be isolated and purified by a method used for usual isolation and purification of organic compounds. For example, the reaction mixture is treated with brine or water and extracted with an organic solvent such as diethyl ether, ethyl acetate, methylene chloride. The extract is dried over anhydrous magnesium sulfate, anhydrous sodium sulfate, etc., and concentrated, and the crude product obtained by purification is purified by distillation, chromatography, recrystallization or the like, if necessary.
[Example]

以下に、本発明の実施例を示すが、本発明はこれらに限定されるものではない。   Examples of the present invention are shown below, but the present invention is not limited thereto.

Figure 2006016351
窒素雰囲気下、アセタール(96mg)の無水塩化メチレン溶液(0.1モル濃度)に0℃で2,6-ルチジン(0.11mL、3.0当量)とTESOTf(0.14mL, 2.0当量)を滴下し、撹拌した。1時間後、原料の消失を薄層クロマトグラフィーで確認し、水を加えて0.5時間撹拌した。反応混合物を塩化メチレンで抽出し、有機層をNa2SO4で乾燥し、減圧濃縮した。粗生成物をシリカゲルフラッシュカラムクロマトグラフィー(ヘキサン:エーテル=7:1)で精製しアルデヒド(65mg, 収率79%)を得た。
colorless oil;IR(KBr): 1724cm-1;1H NMR(300MHz, CDCl3)δ:9.77(t,J=1.8 Hz, 1H),3.94-3.92(doublet like, 4H),2.44-2.39(m, 2H),1.65-1.60(m, 2H),1.31(s, 3H),1.42-1.28(m, 16H); 13C NMR (75 MHz, CDCl3)δ:21.83, 23.45, 23.84, 28.90, 29.07, 29.23, 29.22, 29.30, 29.59, 38.93, 43.66, 64.34, 109.96, 202.72.
Figure 2006016351
Under a nitrogen atmosphere, 2,6-lutidine (0.11 mL, 3.0 equivalents) and TESOTf (0.14 mL, 2.0 equivalents) were added dropwise to an acetal (96 mg) solution in anhydrous methylene chloride (0.1 molar concentration) at 0 ° C. and stirred. After 1 hour, disappearance of the raw materials was confirmed by thin layer chromatography, water was added and the mixture was stirred for 0.5 hours. The reaction mixture was extracted with methylene chloride, and the organic layer was dried over Na 2 SO 4 and concentrated under reduced pressure. The crude product was purified by silica gel flash column chromatography (hexane: ether = 7: 1) to obtain an aldehyde (65 mg, yield 79%).
colorless oil; IR (KBr): 1724 cm -1 ; 1 H NMR (300 MHz, CDCl 3 ) δ: 9.77 (t, J = 1.8 Hz, 1 H), 3.94-3.92 (doublet like, 4H), 2.44-2.39 (m , 2H), 1.65-1.60 (m, 2H), 1.31 (s, 3H), 1.42-1.28 (m, 16H); 13 C NMR (75 MHz, CDCl 3) δ: 21.83, 23.45, 23.84, 28.90, 29.07 , 29.23, 29.22, 29.30, 29.59, 38.93, 43.66, 64.34, 109.96, 202.72.

Figure 2006016351
窒素雰囲気下、アセタール(101mg)の無水塩化メチレン溶液(3.75mL)に0℃で2,6-ルチジン(0.225mL、6.0当量)とTESOTf(0.29mL, 4.0当量)を加え、0℃で5分間撹拌した。水を加えて塩化メチレンで抽出し、有機層を飽和食塩水で洗浄後、Na2SO4で乾燥した。溶媒を減圧濃縮し、粗生成物をシリカゲルフラッシュカラムクロマトグラフィー(ヘキサン:酢酸エチル=25:1)で精製しアルデヒド(101mg, 収率82%)を得た。
colorless oil;IR(KBr): 1720cm-1;1H NMR(300MHz, CDCl3)δ:9.82(dd,J=2.7, 3.2 Hz, 1H), 5.76(dt, J=3.6, 10.0 Hz, 1H),5.57(dt, J=1.8, 10.0 Hz, 1H),3.89(dd, J=2.0, 14.5 Hz, 1H),2.63(dd, J=3.2, 15.9 Hz, 1H), 2.31(dd, J=2.7, 15.9 Hz, 1H), 2.30-2.19(m, 2H), 1.82-1.92(m, 1H), 1.54-1.64(m, 1H), 0.85-1.07(m, 18H), 0.94(t, J= 7.8 Hz, 6H), 0.88(s, 9H), 0.62(q, J=7.8 Hz, 6H), 0.08(s, 6H); 13C NMR (75 MHz, CDCl3)δ:-4.0, 7.2, 18.0, 23.1, 25.9, 28.2, 51.4, 75.8, 129.5, 130.9, 202.6.
Figure 2006016351
Under a nitrogen atmosphere, 2,6-lutidine (0.225 mL, 6.0 equivalents) and TESOTf (0.29 mL, 4.0 equivalents) were added to an acetal (101 mg) solution in anhydrous methylene chloride (3.75 mL) at 0 ° C., and then at 0 ° C. for 5 minutes. Stir. Water was added and the mixture was extracted with methylene chloride. The organic layer was washed with saturated brine and dried over Na 2 SO 4 . The solvent was concentrated under reduced pressure, and the crude product was purified by silica gel flash column chromatography (hexane: ethyl acetate = 25: 1) to obtain an aldehyde (101 mg, yield 82%).
colorless oil; IR (KBr): 1720 cm -1 ; 1 H NMR (300 MHz, CDCl 3 ) δ: 9.82 (dd, J = 2.7, 3.2 Hz, 1H), 5.76 (dt, J = 3.6, 10.0 Hz, 1H) , 5.57 (dt, J = 1.8, 10.0 Hz, 1H), 3.89 (dd, J = 2.0, 14.5 Hz, 1H), 2.63 (dd, J = 3.2, 15.9 Hz, 1H), 2.31 (dd, J = 2.7 , 15.9 Hz, 1H), 2.30-2.19 (m, 2H), 1.82-1.92 (m, 1H), 1.54-1.64 (m, 1H), 0.85-1.07 (m, 18H), 0.94 (t, J = 7.8 Hz, 6H), 0.88 (s, 9H), 0.62 (q, J = 7.8 Hz, 6H), 0.08 (s, 6H); 13 C NMR (75 MHz, CDCl 3 ) δ: -4.0, 7.2, 18.0, 23.1, 25.9, 28.2, 51.4, 75.8, 129.5, 130.9, 202.6.

以下、本発明の脱保護法に関するその他の実施例について簡単に説明する。なお、これらの実施例は以下の基本操作法に従って実施した。   Hereinafter, other examples relating to the deprotection method of the present invention will be briefly described. In addition, these Examples were implemented according to the following basic operation methods.

基本操作法:窒素雰囲気下、アセタールの無水塩化メチレン溶液(0.1モル濃度)に0℃で2,6-ルチジン(反応部位がアセタールのみの場合は3.0当量、分子内にアセタールと水酸基がある場合は4.0当量)とTMSOTf又はTESOTf(反応部位がアセタールのみの場合は2.0当量、分子内にアセタールと水酸基がある場合には3.0当量)を加え、撹拌した。原料の消失を薄層クロマトグラフィーで確認し、水を加えて塩化メチレンで抽出し、有機層をNa2SO4で乾燥、減圧濃縮した。粗生成物をシリカゲルフラッシュカラムクロマトグラフィーで精製し、生成物を得た。 Basic operation method: Acetal in anhydrous methylene chloride (0.1 molar concentration) in nitrogen atmosphere at 0 ° C, 2,6-lutidine (3.0 equivalents if the reaction site is only acetal, and if there are acetals and hydroxyl groups in the molecule) 4.0 equivalents) and TMSOTf or TESOTf (2.0 equivalents when the reaction site is only acetal, and 3.0 equivalents when there are acetals and hydroxyl groups in the molecule) were added and stirred. The disappearance of the raw materials was confirmed by thin layer chromatography, water was added and the mixture was extracted with methylene chloride. The organic layer was dried over Na 2 SO 4 and concentrated under reduced pressure. The crude product was purified by silica gel flash column chromatography to give the product.

種々のアルデヒド由来のアセタール基を含む化合物及びケトン由来のアセタール基を含む化合物に対して、本発明の脱保護法を適用した例を図1に示す。アルデヒド由来のアセタール化合物(run1-6, 9-15)では殆どの場合において高い収率でアルデヒドが得られた。
一方、ケトン由来のアセタール化合物に本発明を適用した場合(run7,8)は、TESOTfを用いた場合(run8)に殆ど脱保護が起こっておらず、本発明の脱保護法が高い選択性を持つことが分かる。但し、TMSOTfを用いた場合(run7)には、ケトン由来のアセタール基の脱保護化が見られた。
The example which applied the deprotection method of this invention with respect to the compound containing the acetal group derived from various aldehydes and the compound containing the acetal group derived from a ketone is shown in FIG. Aldehyde derived acetal compounds (run 1-6, 9-15) yielded aldehydes in high yields in most cases.
On the other hand, when the present invention is applied to a ketone-derived acetal compound (run 7, 8), almost no deprotection occurs when TESOTf is used (run 8), and the deprotection method of the present invention has high selectivity. I understand that I have it. However, when TMSOTf was used (run 7), deprotection of the ketone-derived acetal group was observed.

同一分子内に水酸基とアルデヒド由来のアセタール基を含む化合物に対して、本発明の脱保護法を適用した例を図2に示す。その結果、第1アルコール型(run 1,2)、第2アルコール型(run 3)、第3アルコール型(run 4)、及びステロイド型(run 5)のいずれのアセタール化合物においても、アセタール基が脱保護されると共に水酸基がシリル化された生成物が高い収率で得られた。   FIG. 2 shows an example in which the deprotection method of the present invention is applied to a compound containing a hydroxyl group and an aldehyde-derived acetal group in the same molecule. As a result, in any of the acetal compounds of the first alcohol type (run 1, 2), the second alcohol type (run 3), the third alcohol type (run 4), and the steroid type (run 5), the acetal group A product which was deprotected and the hydroxyl group was silylated was obtained in high yield.

本発明の脱保護法の高い選択性を証明するため、アルデヒド由来のアセタール基を含む化合物とケトン由来のアセタール基を含む化合物の混合物、及び同一分子内にアルデヒド由来のアセタール基とケトン由来のアセタール基を併せ持つ化合物に対して本発明の脱保護法を適用した。その結果、図3に示すように、どちらの場合においても、アルデヒド由来のアセタールのみが選択的に脱保護され、ケトン由来のアセタールはそのまま残っていた。
一方、同一分子内にアルデヒド由来のアセタール基とケトン由来のアセタール基を併せ持つ化合物に対して、従来の代表的なアセタールの脱保護法であるp-TsOH処理又はTMSI処理を施した場合(run 2,3)には、このような選択性は見られなかった。
In order to prove the high selectivity of the deprotection method of the present invention, a mixture of a compound containing an aldehyde-derived acetal group and a compound containing a ketone-derived acetal group, and an aldehyde-derived acetal group and a ketone-derived acetal in the same molecule The deprotection method of the present invention was applied to a compound having a group. As a result, as shown in FIG. 3, in both cases, only the aldehyde-derived acetal was selectively deprotected, and the ketone-derived acetal remained as it was.
On the other hand, when a compound having both an acetal group derived from an aldehyde and an acetal group derived from a ketone in the same molecule is subjected to p-TsOH treatment or TMSI treatment, which is a typical conventional acetal deprotection method (run 2 3) did not show such selectivity.

更に、図4に示すように、同一分子内にアルデヒド由来のアセタール基とケトン由来のアセタール基を併せ持つ種々の化合物に対して、本発明の脱保護法を適用したところ、いずれの場合もアルデヒド由来のアセタール基の選択的な脱保護が見られた。また、同一分子内のアセチル基やメトキシル基などはそのまま残っており、本発明における脱保護反応が緩和な反応であることが分かる。   Furthermore, as shown in FIG. 4, the deprotection method of the present invention was applied to various compounds having both an aldehyde-derived acetal group and a ketone-derived acetal group in the same molecule. A selective deprotection of the acetal group was observed. In addition, acetyl groups and methoxyl groups in the same molecule remain as they are, and it can be seen that the deprotection reaction in the present invention is a mild reaction.

アセタール化合物の代わりに、アセタール型アルコール保護基を含む化合物に対して本発明の脱保護法を適用したところ、図5に示すように、MOMエーテル、THPエーテル、アセトニドのいずれの保護基も脱保護されると共に、シリルエーテル化された生成物が得られた。   When the deprotection method of the present invention was applied to a compound containing an acetal type alcohol protecting group instead of an acetal compound, as shown in FIG. 5, any protecting groups of MOM ether, THP ether, and acetonide were deprotected. As a result, a silyl etherified product was obtained.

比較例1Comparative Example 1

種々のシリル化試薬を用いてアルデヒド由来アセタールの脱保護を試みた。その結果、図6に示すように、TMSOTf又はTESOTf以外ではアルデヒド由来アセタールの脱保護化は見られなかった(図中の“n.r.”は“反応なし(no reaction)”を意味する)。   Attempts were made to deprotect aldehyde-derived acetals using various silylation reagents. As a result, as shown in FIG. 6, deprotection of the aldehyde-derived acetal was not observed except for TMSOTf or TESOTf (“n.r.” in the figure means “no reaction”).

比較例2Comparative Example 2

種々の有機塩基を用いてアルデヒド由来のアセタールの脱保護を試みた結果を図7(a)に示す。その結果、2,6-ルチジン、トリエチルアミン(Et3N)の順に効果が高いことが分かった。更に、図7(b)に示すように有機塩基として2,6-ルチジンを用いた場合と、コリジンを用いた場合とで比較を行ったところ、コリジンを用いた場合の方が、より高収率でアルデヒド由来のアセタールが脱保護された生成物が得られた。 FIG. 7 (a) shows the results of attempts to deprotect aldehyde-derived acetals using various organic bases. As a result, it was found that 2,6-lutidine and triethylamine (Et 3 N) were effective in this order. Furthermore, as shown in FIG. 7 (b), when 2,6-lutidine was used as the organic base and when collidine was used, higher yields were obtained when collidine was used. A product with a deprotected aldehyde-derived acetal was obtained.

本発明の実施例3における反応条件及び結果を示す表。The table | surface which shows the reaction conditions and result in Example 3 of this invention. 本発明の実施例4における反応条件及び結果を示す表。The table | surface which shows the reaction conditions and result in Example 4 of this invention. 本発明の実施例5における反応条件及び結果を示す表。The table | surface which shows the reaction conditions and result in Example 5 of this invention. 本発明の実施例6における反応条件及び結果を示す表。The table | surface which shows the reaction conditions and result in Example 6 of this invention. 本発明の実施例7における反応条件及び結果を示す図。The figure which shows the reaction conditions and result in Example 7 of this invention. 本発明の比較例1における反応条件及び結果を示す表。The table | surface which shows the reaction conditions and result in the comparative example 1 of this invention. 本発明の比較例2における(a)種々の有機塩基を用いた場合の反応条件及び結果を示す表、(b)2,6-ルチジン及びコリジンを用いた場合の反応条件及び結果を示す図。(A) Table showing reaction conditions and results when using various organic bases in Comparative Example 2 of the present invention, (b) Diagram showing reaction conditions and results when using 2,6-lutidine and collidine.

Claims (6)

アセタール基を含む化合物に対し、有機塩基、及びトリフルオロメタンスルホン酸トリメチルシリル又はトリフルオロメタンスルホン酸トリエチルシリルを加えて反応させることにより、該アセタール基をカルボニル基に変換することを特徴とするアセタールの脱保護法。   Deprotection of an acetal characterized by converting an acetal group into a carbonyl group by reacting a compound containing an acetal group with an organic base and trimethylsilyl trifluoromethanesulfonate or triethylsilyl trifluoromethanesulfonate. Law. 一分子中に水酸基及びアセタール基を含む化合物、又は水酸基を含む化合物とアセタール基を含む化合物の混合物に対し、上記脱保護法を適用することにより、該アセタール基をカルボニル基に変換すると共に、該水酸基をシリル化することを特徴とする請求項1に記載のアセタールの脱保護法。   By applying the deprotection method to a compound containing a hydroxyl group and an acetal group in one molecule, or a mixture of a compound containing a hydroxyl group and a compound containing an acetal group, the acetal group is converted to a carbonyl group, The method for deprotecting an acetal according to claim 1, wherein the hydroxyl group is silylated. 上記アセタール基がアルデヒド由来のアセタール基であることを特徴とする請求項1又は2に記載のアセタールの脱保護法。   The method for deprotecting an acetal according to claim 1 or 2, wherein the acetal group is an acetal group derived from an aldehyde. アセタール型アルコール保護基を含む化合物に対し、有機塩基、及びトリフルオロメタンスルホン酸トリメチルシリル又はトリフルオロメタンスルホン酸トリエチルシリルを加えて反応させることにより、該アセタール型アルコール保護基を脱保護すると共に、それによって生じた水酸基をシリル化することを特徴とするアセタール型アルコール保護基の脱保護法。   A compound containing an acetal type alcohol protecting group is reacted by adding an organic base and trimethylsilyl trifluoromethanesulfonate or triethylsilyl trifluoromethanesulfonate, thereby deprotecting the acetal type alcohol protecting group and resulting A method for deprotecting an acetal-type alcohol protecting group, wherein the hydroxyl group is silylated. 一分子中に水酸基及びアセタール型アルコール保護基を含む化合物、又は水酸基を含む化合物とアセタール型アルコール保護基を含む化合物の混合物に対し、上記脱保護法を適用することにより、該水酸基をシリル化すると共に、該アセタール型アルコール保護基を脱保護し、それによって生じた水酸基をシリル化することを特徴とする請求項4に記載のアセタール型アルコール保護基の脱保護法。   By applying the above deprotection method to a compound containing a hydroxyl group and an acetal type alcohol protecting group in a molecule, or a mixture of a compound containing a hydroxyl group and a compound containing an acetal type alcohol protecting group, the hydroxyl group is silylated. The method for deprotecting an acetal type alcohol protecting group according to claim 4, wherein the acetal type alcohol protecting group is deprotected and the resulting hydroxyl group is silylated. 上記有機塩基として、コリジン, 2,6-ルチジン, 又はトリエチルアミンを用いることを特徴とする請求項1〜5のいずれかに記載の脱保護法。   6. The deprotection method according to any one of claims 1 to 5, wherein collidine, 2,6-lutidine, or triethylamine is used as the organic base.
JP2004196870A 2004-07-02 2004-07-02 Selective deprotection of acetal Expired - Lifetime JP4729752B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004196870A JP4729752B2 (en) 2004-07-02 2004-07-02 Selective deprotection of acetal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004196870A JP4729752B2 (en) 2004-07-02 2004-07-02 Selective deprotection of acetal

Publications (2)

Publication Number Publication Date
JP2006016351A true JP2006016351A (en) 2006-01-19
JP4729752B2 JP4729752B2 (en) 2011-07-20

Family

ID=35790926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004196870A Expired - Lifetime JP4729752B2 (en) 2004-07-02 2004-07-02 Selective deprotection of acetal

Country Status (1)

Country Link
JP (1) JP4729752B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021026053A (en) * 2019-07-31 2021-02-22 日東電工株式会社 Photosensitive composition, device, and method for manufacturing device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6296438A (en) * 1985-10-22 1987-05-02 Teijin Ltd 4-hydroxy-2-cyclopentenone and production thereof
JPS6393796A (en) * 1986-10-09 1988-04-25 Shin Etsu Chem Co Ltd Agent for eliminating protecting group in peptide synthesis
JP2003267930A (en) * 2002-03-14 2003-09-25 Shionogi & Co Ltd Immunopotentiater and antitumor agent

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6296438A (en) * 1985-10-22 1987-05-02 Teijin Ltd 4-hydroxy-2-cyclopentenone and production thereof
JPS6393796A (en) * 1986-10-09 1988-04-25 Shin Etsu Chem Co Ltd Agent for eliminating protecting group in peptide synthesis
JP2003267930A (en) * 2002-03-14 2003-09-25 Shionogi & Co Ltd Immunopotentiater and antitumor agent

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021026053A (en) * 2019-07-31 2021-02-22 日東電工株式会社 Photosensitive composition, device, and method for manufacturing device
JP7395278B2 (en) 2019-07-31 2023-12-11 日東電工株式会社 Photosensitive composition, device, and device manufacturing method

Also Published As

Publication number Publication date
JP4729752B2 (en) 2011-07-20

Similar Documents

Publication Publication Date Title
US5440057A (en) Access to taxol analogs
JP2009522227A (en) Epoxide intermediates in the synthesis of Tamiflu
DE69617425T2 (en) PACLITAXEL SYNTHESIS FROM PRECURSOR CONNECTIONS AND METHOD FOR THE PRODUCTION THEREOF
US20100249415A1 (en) Process for preparation of temsirolimus
JP4729752B2 (en) Selective deprotection of acetal
JP4237490B2 (en) Methods for preparing taxane derivatives
JP3878204B2 (en) Oxidation of glycoside-substituted paclitaxels leading to paclitaxel and paclitaxel precursors and novel taxane compounds formed as intermediates
Dai et al. Structures and total syntheses of the plecomacrolides
RU2326876C2 (en) Method of paclitaxel preparation
Kaburagi et al. 4-(tert-Butyldimethylsilyloxy) benzylidene acetal: a novel benzylidene-type protecting group for 1, 2-diols
Mihovilovic et al. An Efficient and Simple Procedure for the Preparation of α‐Keto‐β‐lactams
KR100796396B1 (en) Process for Preparing Discodermolide and Analogues Thereof
RU2434014C2 (en) Method of producing taxane derivatives
Tori et al. Synthesis and the absolute configuration of the sesquiterpene aldehyde tridensenal from the Taiwanese liverwort Bazzania tridens
Mahrwald et al. Prostaglandins and prostaglandin intermediates. Part 26. A novel route to PGF2α using triisopropoxy‐hept‐1‐ynyl‐titanium as precursor for the β‐side chain
JP2001322994A (en) Method for manufacturing mercapto group-containing alkoxysilane compound
JP4428086B2 (en) Method for producing 1-acetoxy-3- (3,4-methylenedioxyphenyl) propene derivative
JP3773578B2 (en) Taxol synthetic intermediate
JP3712077B2 (en) Hydroindan-4-ol derivative and method for producing the same
JP2000256244A (en) Production of 4-methyltetrafluorobenzyl alcohol derivative
Raubo et al. Enantioselective Silicon-Mediated Synthesis of Glyceraldehyde Derivatives from Propargyl Alcohol
Mallya et al. Cis-hydroxylation of cyclic vinylsilanes using cetyltrimethylammonium permanganate
JP2006206552A (en) Method for recovering silicon component in stereoselective synthesis process
JP4075923B2 (en) 1-acetoxy-3- (substituted phenyl) propene compound
JP2002308864A (en) Production method for 5-propargylfurfuryl alcohol

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100726

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110331

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4729752

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term