JP2006016142A - Controller for electromagnetic vibration type conveyance device and metering device having conveyance device provided with controller - Google Patents

Controller for electromagnetic vibration type conveyance device and metering device having conveyance device provided with controller Download PDF

Info

Publication number
JP2006016142A
JP2006016142A JP2004195393A JP2004195393A JP2006016142A JP 2006016142 A JP2006016142 A JP 2006016142A JP 2004195393 A JP2004195393 A JP 2004195393A JP 2004195393 A JP2004195393 A JP 2004195393A JP 2006016142 A JP2006016142 A JP 2006016142A
Authority
JP
Japan
Prior art keywords
frequency
electromagnet
vibration type
natural frequency
induced electromotive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004195393A
Other languages
Japanese (ja)
Inventor
Takuyu Kubo
拓右 久保
Takeshi Shimizu
健 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishida Co Ltd
Original Assignee
Ishida Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishida Co Ltd filed Critical Ishida Co Ltd
Priority to JP2004195393A priority Critical patent/JP2006016142A/en
Publication of JP2006016142A publication Critical patent/JP2006016142A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a controller for an electromagnetic vibration type conveyance device capable of speedily determining driving frequency desired for a conveyance part and to provide a metering device having the conveyance device provided with the controller. <P>SOLUTION: This controller for the electromagnetic vibration type conveyance device has a main body part provided with an electromagnet, the conveyance part provided with a magnetic substance supported on the main body part through an elastic member so as to vibrate and attracted when carrying current to the electromagnet, and a control means for vibrating the conveyance part by applied driving frequency by carrying current to the electromagnet intermittently. This controller is further provided with a means for vibrating the conveyance part freely, a measuring means for measuring induced electromotive force generated in the electromagnet when the conveyance part vibrates freely, and a natural frequency setting means for setting frequency of the induced electromotive force measured by the measuring means as natural frequency of the conveyance part. The control means sets driving frequency based on the natural frequency set by the natural frequency setting means. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、物品を搬送する搬送装置、より詳しくは、電磁的方法で物品の搬送部を振動させて物品を搬送する機能を有する電磁振動式搬送装置の制御装置及びその制御装置を備えた搬送装置を有する計量装置に関し、物品搬送の技術分野に属する。   The present invention relates to a conveying device for conveying an article, and more specifically, a control device for an electromagnetic vibration type conveying device having a function of conveying an article by vibrating an article conveying portion by an electromagnetic method, and a conveyance provided with the control device. The present invention relates to a weighing device having a device and belongs to the technical field of article conveyance.

従来、物品を搬送する搬送装置において、物品を載置するトラフ等の搬送部を物品の搬送のために電磁的な方法で振動させる機能を有した各種フィーダが知られている。例えば、計量装置等に物品を分散供給するフィーダとしては、装置本体に板バネを介して振動可能に支持されていると共に、磁性体が設けられたトラフを有し、装置本体側に設けられた電磁石に間欠的に通電して物品搬送を行うものがある。これは、電磁石に通電させて前記磁性体を吸引させた後、通電を停止させて前記板バネを反発力で復元させることを繰り返してトラフを所定の周波数で振動させて、物品を搬送するものである。   2. Description of the Related Art Conventionally, various feeders having a function of vibrating a transport unit such as a trough for placing an article by an electromagnetic method for conveying the article are known in a transport apparatus that transports the article. For example, as a feeder that supplies and supplies articles to a weighing device or the like, it is supported on the apparatus main body through a leaf spring so as to vibrate, and has a trough provided with a magnetic body, and is provided on the apparatus main body side. Some electromagnets carry articles by intermittently energizing them. This means that after energizing an electromagnet to attract the magnetic body, the energization is stopped and the leaf spring is restored by a repulsive force, and the trough is vibrated at a predetermined frequency to convey the article. It is.

ここで、図4は、電磁石に印加する電力パルスの発生周波数(以下、駆動周波数fという)を変化(周波数スイープ)させたときの搬送部の振幅Aの変化曲線を示す。搬送部の振動の振幅Aは、駆動周波数f及び電磁石へ印加する電力により決定される。この曲線の極大値Arをとる周波数が搬送部の共振周波数frであり、共振周波数frと搬送部の固有振動数fとはほぼ一致する値をとる。そして、図5に示すように振幅Aに対して変化することが知られている。駆動周波数fは、大きな振幅Aを得るために共振周波数frまたは固有振動数fの近傍に設定されることがある。また、図4に示したように、所望の振幅A′を実現するためには、f′−f(=Δf)が確定する。そして、Δfが決まった上で、f′を決定するためにはf′=f+Δfに従ってfを知る必要がある。 Here, FIG. 4 shows a change curve of the amplitude A of the transport unit when the generation frequency (hereinafter referred to as drive frequency f) of the power pulse applied to the electromagnet is changed (frequency sweep). The vibration amplitude A of the transport unit is determined by the drive frequency f and the power applied to the electromagnet. The frequency at which the maximum value Ar of this curve is taken is the resonance frequency fr of the transport unit, and the resonance frequency fr and the natural frequency f 0 of the transport unit take values that substantially coincide. And it is known that it changes with respect to the amplitude A as shown in FIG. The drive frequency f may be set in the vicinity of the resonance frequency fr or the natural frequency f 0 in order to obtain a large amplitude A. Further, as shown in FIG. 4, in order to realize the desired amplitude A ′, f′−f 0 (= Δf) is determined. Then, after determining Δf, it is necessary to know f 0 according to f ′ = f 0 + Δf in order to determine f ′.

ところで、駆動周波数を共振周波数の近傍に設定する方法として特許文献1または特許文献2に開示された方法がある。すなわち、特許文献1に開示された方法は、搬送部の駆動周波数に対する振動加速度つまり振幅と消費電力との変化曲線が相似形であることに着目し、印加電圧を一定にした状態で駆動周波数を変化させ、印加電力が最大になる周波数を共振周波数としている。また、特許文献2においては、ある駆動周波数で電磁石に通電させながら、所定周期ごとに一時的に通電を休止させ、この休止期間中に慣性で振動を続ける搬送部により電磁石のコイルに発生した誘導起電圧を測定し、これを所定周波数の範囲内で変化させながら繰り返し、測定した誘導起電圧が最大となったときの駆動周波数を共振周波数としている。   Incidentally, as a method for setting the drive frequency in the vicinity of the resonance frequency, there is a method disclosed in Patent Document 1 or Patent Document 2. That is, the method disclosed in Patent Document 1 pays attention to the fact that the change curve of vibration acceleration, that is, amplitude and power consumption, with respect to the driving frequency of the conveyance unit is similar, and the driving frequency is set with a constant applied voltage. The frequency at which the applied power is maximized is the resonance frequency. Further, in Patent Document 2, induction is generated in the coil of an electromagnet by a conveying unit that temporarily ceases energization at predetermined intervals while energizing an electromagnet at a certain drive frequency, and continues to vibrate with inertia during this pause period. The electromotive voltage is measured, and this is repeated while changing within a predetermined frequency range, and the drive frequency when the measured induced electromotive voltage becomes maximum is set as the resonance frequency.

一方、駆動周波数を固有振動数の近傍に設定する方法として特許文献3に開示された方法がある。これによると、駆動電流を測定し、コイルに流れる電流が予め設定された基準電流値を超えている時間幅に基づいて駆動周波数を設定し、この時間幅が基準幅を超えたときに駆動周波数を固有振動数に近いものとして実動周波数に設定している。   On the other hand, there is a method disclosed in Patent Document 3 as a method of setting the drive frequency in the vicinity of the natural frequency. According to this, the drive current is measured, the drive frequency is set based on the time width in which the current flowing in the coil exceeds the preset reference current value, and the drive frequency when this time width exceeds the reference width Is set to the actual frequency as being close to the natural frequency.

なお、前記特許文献1〜3には共振周波数または固有振動数近傍の駆動周波数で搬送部を振動させる方法について開示されているが、前述のように所望される振幅A′を得る目的で駆動周波数fをΔfずらす他、搬送部に物品が載置されたときに物品の重量により搬送部の共振周波数または固有振動数が変化して振幅が急激に減少することがあり、これを抑制するために敢えて駆動周波数を共振周波数または固有振動数からずらすことや、逆に、搬送する物品の重量に応じて、共振周波数または固有振動数が得られるように駆動周波数を予めずらして設定することもある。   In addition, although Patent Documents 1 to 3 disclose a method of vibrating the conveying unit at a resonance frequency or a drive frequency near the natural frequency, the drive frequency is used for the purpose of obtaining a desired amplitude A ′ as described above. In addition to shifting f by Δf, in order to suppress this, the resonance frequency or the natural frequency of the transport unit may change due to the weight of the product when the product is placed on the transport unit, and the amplitude may rapidly decrease. The drive frequency may be intentionally shifted from the resonance frequency or the natural frequency, or conversely, the drive frequency may be set in advance so as to obtain the resonance frequency or the natural frequency according to the weight of the article to be conveyed.

特許第2770295号公報Japanese Patent No. 2770295 特開2002−128261号公報JP 2002-128261 A 特開2002−145436号公報JP 2002-145436 A

ところで、前記特許文献1〜3に記載の方法は、いずれも駆動周波数を所定範囲内で変化させながら電力や電圧を測定しており、所望される駆動周波数の設定作業に長い時間を要する。さらに、所定範囲内に共振周波数または固有振動数が存在しない場合もある。従って、特に複数のフィーダが備えられている計量装置等の場合には、各フィーダの駆動周波数の設定に時間を要し、作業効率の大幅な低下が懸念される。   By the way, all of the methods described in Patent Documents 1 to 3 measure power and voltage while changing the drive frequency within a predetermined range, and it takes a long time to set the desired drive frequency. Further, there may be no resonance frequency or natural frequency within a predetermined range. Therefore, particularly in the case of a weighing device or the like provided with a plurality of feeders, it takes time to set the driving frequency of each feeder, and there is a concern that work efficiency may be significantly reduced.

そこで、本発明は、搬送部に所望される駆動周波数を迅速に決定することができる電磁振動式搬送装置の制御装置及びその制御装置を備えた搬送装置を有する計量装置を提供することを課題とする。   SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a control device for an electromagnetic vibration type transport device that can quickly determine a drive frequency desired for a transport unit, and a weighing device having a transport device including the control device. To do.

前記課題を解決するため、本発明は次のように構成したことを特徴とする。   In order to solve the above problems, the present invention is configured as follows.

まず、請求項1に記載の発明は、電磁石が設けられた本体部と、該本体部に対して弾性部材を介して振動可能に支持されて前記電磁石の通電時に吸引される磁性体が設けられた搬送部と、前記電磁石に間欠的に通電することにより前記搬送部を印加した駆動周波数で振動させる制御手段とを有する電磁振動式搬送装置の制御装置であって、前記搬送部を自由振動させる手段と、搬送部の自由振動時に前記電磁石に発生する誘導起電力を測定する測定手段と、該測定手段により測定された誘導起電力の振動数を前記搬送部の固有振動数とする固有振動数設定手段とが備えられ、かつ、前記制御手段は、前記固有振動数設定手段で設定された固有振動数に基いて駆動周波数を設定することを特徴とする。   First, the invention according to claim 1 is provided with a main body provided with an electromagnet, and a magnetic body that is supported so as to vibrate via an elastic member with respect to the main body and is attracted when the electromagnet is energized. A control unit for an electromagnetic vibration type conveying apparatus that vibrates the conveying unit at a driving frequency applied by intermittently energizing the electromagnet, and freely vibrates the conveying unit. Means, a measuring means for measuring the induced electromotive force generated in the electromagnet at the time of free vibration of the transport section, and a natural frequency having the vibration frequency of the induced electromotive force measured by the measuring means as the natural frequency of the transport section. Setting means, and the control means sets the drive frequency based on the natural frequency set by the natural frequency setting means.

次に、請求項2に記載の発明は、前記請求項1に記載の電磁振動式搬送装置の制御装置において、前記自由振動を発生させる手段は、前記搬送部に衝撃を与えることを特徴とする。   Next, according to a second aspect of the present invention, in the control device for the electromagnetic vibration type conveying device according to the first aspect, the means for generating the free vibration applies an impact to the conveying unit. .

次に、請求項3に記載の発明は、前記請求項2に記載の電磁振動式搬送装置の制御装置において、前記搬送部に与える衝撃は、電気的なインパルス信号による電磁力であることを特徴とする。   Next, according to a third aspect of the present invention, in the control device for the electromagnetic vibration type conveying apparatus according to the second aspect, the impact applied to the conveying unit is an electromagnetic force generated by an electrical impulse signal. And

次に、請求項4に記載の発明は、前記請求項2に記載の電磁振動式搬送装置の制御装置において、前記搬送部に与える衝撃は、物理的な外力であることを特徴とする。   Next, the invention according to claim 4 is the control device for the electromagnetic vibration type transfer device according to claim 2, wherein the impact applied to the transfer unit is a physical external force.

次に、請求項5に記載の発明は、前記請求項1から請求項4のいずれかに記載の電磁振動式搬送装置の制御装置において、所定時間内に誘導起電力がゼロになる回数、または誘導起電力がゼロになる時間間隔を検出することによって誘導起電力の振動数が演算されることを特徴とする。   Next, in the control device of the electromagnetic vibration type conveying device according to any one of claims 1 to 4, the invention according to claim 5 is the number of times that the induced electromotive force becomes zero within a predetermined time, or The frequency of the induced electromotive force is calculated by detecting a time interval at which the induced electromotive force becomes zero.

次に、請求項6に記載の発明は、前記請求項1から請求項5のいずれかに記載の電磁振動式搬送装置の制御装置において、前記制御手段は、測定された固有振動数を補正し、補正された値に基づいて駆動周波数を設定することを特徴とする。   Next, according to a sixth aspect of the present invention, in the control device for an electromagnetic vibration transfer device according to any one of the first to fifth aspects, the control means corrects the measured natural frequency. The drive frequency is set based on the corrected value.

そして、請求項7に記載の発明は、物品を計量する計量装置であって、電磁石が設けられた本体部と、該本体部に対して弾性部材を介して振動可能に支持されて前記電磁石の通電時に吸引される磁性体が設けられた搬送部と、前記電磁石に間欠的に通電することにより前記搬送部を印加した駆動周波数で振動させる制御手段とを有する電磁振動式搬送装置と、請求項1から請求項6のいずれかに記載の電磁振動式搬送装置の制御装置と、前記電磁振動式搬送装置によって搬送された物品を受け入れ計量する計量手段とが備えられていることを特徴とする。   The invention according to claim 7 is a weighing device for weighing an article, and a main body provided with an electromagnet, and supported by the main body so as to vibrate via an elastic member. An electromagnetic vibration type conveying apparatus comprising: a conveying unit provided with a magnetic body that is attracted when energized; and a control unit that causes the conveying unit to vibrate at an applied drive frequency by energizing the electromagnet intermittently. A control device for an electromagnetic vibration type conveying device according to any one of claims 1 to 6, and a weighing means for receiving and weighing an article conveyed by the electromagnetic vibration type conveying device.

搬送部は、自由振動時には所定の固有振動数で振動し、固有振動数fは共振周波数frに非常に近い値である。ここで、搬送部の固有振動数は数式により算出することができるが、搬送部は板バネや本体側への振動伝達を遮断するコイルスプリング等を有する多自由度系である上、非線形性の要因となる板バネの材質などを含むので、数式によってこれを算出することは困難である。そのため、一般に搬送部の固有振動数を求める際には、インパルスを入力したときの振動を各種アナライザ、例えば加速度検出器などにより検出した波形などに基づいてFFT(フーリエ変換)を行うことにより算出することになる。また、固有振動数は振幅に対して変化するので、正確に求めるためには振幅も同時に測定し補正をしなければならない。 The conveying unit vibrates at a predetermined natural frequency during free vibration, and the natural frequency f 0 is very close to the resonance frequency fr. Here, although the natural frequency of the conveyance unit can be calculated by a mathematical formula, the conveyance unit is a multi-degree-of-freedom system having a leaf spring, a coil spring that interrupts vibration transmission to the main body side, and the like. Since it includes the material of the leaf spring that is a factor, it is difficult to calculate this by mathematical formulas. Therefore, in general, when obtaining the natural frequency of the transport unit, the vibration when the impulse is input is calculated by performing FFT (Fourier transform) based on the waveform detected by various analyzers such as an acceleration detector. It will be. In addition, since the natural frequency changes with respect to the amplitude, the amplitude must be measured and corrected at the same time in order to obtain it accurately.

そこで、請求項1に記載の発明によれば、搬送部を自由振動させて、このときに電磁石のコイルに発生する誘導起電力を測定し、測定した誘導起電力の振動数を搬送部の固有振動数とし、この固有振動数に基いて駆動周波数を設定することにより、駆動周波数を迅速に所望する周波数に設定することができる。すなわち、自由振動により発生する誘導起電力の振動数は、搬送部の固有振動数と一致している。さらに、振幅の小さな状態でこれを行えば振幅による変化を小さくして固有振動数を得ることができる。このように簡単かつ迅速に搬送部の固有振動数を知ることができる。このとき、測定した誘導起電力は、精度良いFFTを行うために十分な波形を確保することができるので、これに基づいて設定した駆動周波数は精度が良い。   Therefore, according to the first aspect of the present invention, the conveyance unit is freely vibrated, the induced electromotive force generated in the coil of the electromagnet at this time is measured, and the frequency of the measured induced electromotive force is determined by the inherent characteristic of the conveyance unit. By setting the drive frequency based on the natural frequency as the frequency, the drive frequency can be quickly set to a desired frequency. In other words, the frequency of the induced electromotive force generated by the free vibration matches the natural frequency of the transport unit. Furthermore, if this is performed in a state where the amplitude is small, the natural frequency can be obtained by reducing the change due to the amplitude. In this way, the natural frequency of the transport unit can be known easily and quickly. At this time, since the measured induced electromotive force can secure a sufficient waveform for performing accurate FFT, the drive frequency set based on this has high accuracy.

次に、請求項2に記載の発明によれば、搬送部の自由振動においては、図5にあるように、振幅Aが小さいほどずれが小さく、搬送部の自由振動は、振動部に衝撃を与えることによって発生させるので、振幅の小さい状態での測定が可能となり、精度の良い固有振動数を得ることができる。   Next, according to the second aspect of the present invention, in the free vibration of the transport unit, as shown in FIG. 5, the smaller the amplitude A, the smaller the deviation, and the free vibration of the transport unit impacts the vibration unit. Therefore, the measurement can be performed in a state where the amplitude is small, and a natural frequency with high accuracy can be obtained.

次に、請求項3に記載の発明によれば、搬送部に与える衝撃を電気的なインパルス信号(短時間かつ高電圧の信号)により発生する電磁石の電磁力により得るので、既存の電気回路を用いてこれを行うことができ、測定手順及び装置の簡素化を図ることができる。   Next, according to the third aspect of the present invention, the impact applied to the transport unit is obtained by the electromagnetic force of the electromagnet generated by the electrical impulse signal (short-time and high-voltage signal). This can be used to simplify the measurement procedure and apparatus.

次に、請求項4に記載の発明によれば、搬送部に与える衝撃を物理的な外力により発生させることによって、簡単に搬送部を自由振動させることができる。このとき、物理的な外力は、ハンマリング装置等を用いて機械的に行うものや、手動でハンマリングを行うものが挙げられる。特に、手動によりハンマリングを行う構成は、誰でも簡単にこれを行うことができると共に、装置の簡素化を図ることができる。   Next, according to the fourth aspect of the present invention, it is possible to easily vibrate the transport unit by generating an impact applied to the transport unit by a physical external force. At this time, the physical external force may be mechanically performed using a hammering device or the like, or may be manually hammered. In particular, the configuration in which the hammering is performed manually can be easily performed by anyone, and the device can be simplified.

次に、請求項5に記載の発明によれば、所定時間内に誘導起電力がゼロになる回数を求め、これに基いて誘導起電力の振動数を演算することができ、または誘導起電力がゼロになる時間間隔を検出することによって振動の周期を求め、この周期の逆数をとることにより誘導起電力の振動数の値が得られる。これら方法によると、誘導起電力の波形を厳密に検出するような複雑な検出回路及びFFTを用いることなく、精度よく誘導起電力の振動数を演算することができる。   Next, according to the invention described in claim 5, the number of times that the induced electromotive force becomes zero within a predetermined time can be obtained, and based on this, the frequency of the induced electromotive force can be calculated, or the induced electromotive force can be calculated. The period of vibration is obtained by detecting the time interval at which becomes zero, and the value of the frequency of the induced electromotive force is obtained by taking the reciprocal of this period. According to these methods, the frequency of the induced electromotive force can be accurately calculated without using a complicated detection circuit and FFT that strictly detect the waveform of the induced electromotive force.

次に、請求項6に記載の発明によれば、搬送部上の物品の重量や、図4を基にして測定時の振幅に従って固有振動数の加減等の補正を行うことによって、より正確な固有振動数を求めることができる。重いものを搬送する場合はワークの重量に基づいて固有振動数を補正することも有効である。   Next, according to the invention described in claim 6, more accurate correction can be performed by correcting the natural frequency according to the weight of the article on the transport unit and the amplitude at the time of measurement based on FIG. 4. The natural frequency can be obtained. When conveying a heavy object, it is also effective to correct the natural frequency based on the weight of the workpiece.

そして、請求項7に記載の発明によれば、前記請求項1〜6に記載の電磁振動式搬送装置と該搬送装置の制御装置とを有する計量装置は、搬送部の駆動周波数を所望の周波数に迅速に設定することができ、作業効率を向上することができる。   According to the seventh aspect of the present invention, the weighing device having the electromagnetic vibration type conveying device according to any one of the first to sixth aspects and the control device of the conveying device sets the driving frequency of the conveying unit to a desired frequency. Can be set quickly, and work efficiency can be improved.

そして、それぞれの搬送部は、その個体差により、図4に示す曲線をほぼ横軸方向にずらしたものとして駆動周波数に応じた振幅の特性が表される。ここで、複数の電磁振動式搬送装置及び計量手段が備えられた組合せ計量装置等の場合は、各搬送部に対して前記のように固有振動数を求めて、各固有振動数に同じ数値で加減等を行うことによって、簡単に各搬送部の振動の振幅を統一的に制御することができる。これによって、各搬送部の駆動周波数を決定するための装置構成を簡素化することができ、作業効率が向上する。   Then, each of the transport units has an amplitude characteristic corresponding to the drive frequency, assuming that the curve shown in FIG. 4 is substantially shifted in the horizontal axis direction due to the individual difference. Here, in the case of a combination weighing device equipped with a plurality of electromagnetic vibration type conveying devices and weighing means, the natural frequency is obtained for each conveying unit as described above, and the same numerical value is used for each natural frequency. By performing adjustment or the like, it is possible to easily control the amplitude of vibration of each transport unit in a unified manner. Thereby, the apparatus configuration for determining the driving frequency of each transport unit can be simplified, and the working efficiency is improved.

以下、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

図1は、電磁フィーダ1を備えた組合せ計量装置2の概略の構成を示す。この組合せ計量装置2には、機台3の中央に加振機4を介して設置され、上方の筒状の投入シュート5から投下された物品を周囲に分散する分散テーブル6と、その周囲にそれぞれ加振機7…7を介して放射状に配設され、物品を搬送する複数のトラフ8…8と、これらのトラフ8…8の先端部下方にそれぞれ位置するように円形に配設された複数のプールホッパ9…9と、それぞれのプールホッパ9…9の下方に配設された計量ホッパ10…10とが設けられている。ここで、電磁フィーダ1は、前記加振機7及びトラフ8を含む。   FIG. 1 shows a schematic configuration of a combination weighing device 2 provided with an electromagnetic feeder 1. The combination weighing device 2 is installed in the center of the machine base 3 via a vibration exciter 4 and disperses the articles dropped from the upper cylindrical charging chute 5 to the periphery, and the periphery thereof. A plurality of troughs 8... 8 are arranged radially through the vibrators 7... 7 and are arranged in a circular shape so as to be respectively positioned below the front ends of these troughs 8. A plurality of pool hoppers 9 ... 9 and weighing hoppers 10 ... 10 disposed below the respective pool hoppers 9 ... 9 are provided. Here, the electromagnetic feeder 1 includes the vibration exciter 7 and the trough 8.

そして、前記機台3の内部には、これらのプールホッパ9…9のゲート9a…9a及び計量ホッパ10…10のゲート10a…10aの開閉を制御するゲート開閉装置11…11が配設されている。このゲート開閉装置11は、モータ(図示せず)により駆動され、物品排出指令を受けたときに、図示しない駆動手段により計量ホッパ10内の物品を集合シュート12内に排出させ、空になった該計量ホッパ10内にプールホッパ9内の物品を投入させるように動作する。また、この計量ホッパ10には、図示しない重量検出器が機台3内で連設されており、計量ホッパ10内の物品の重量を計量する。   In the machine base 3, gate opening / closing devices 11 ... 11 for controlling the opening / closing of the gates 9a ... 9a of the pool hoppers 9 ... 9 and the gates 10a ... 10a of the weighing hoppers 10 ... 10 are arranged. Yes. The gate opening / closing device 11 is driven by a motor (not shown), and when an article discharge command is received, the articles in the weighing hopper 10 are discharged into the collecting chute 12 by driving means (not shown), and the gate opening / closing device 11 becomes empty. The weighing hopper 10 operates so as to put the articles in the pool hopper 9 into the weighing hopper 10. In addition, a weight detector (not shown) is connected to the weighing hopper 10 in the machine base 3 to measure the weight of articles in the weighing hopper 10.

前記電磁フィーダ1の加振機7は、図2に示すように、前記機台3に複数のコイルスプリング21…21を介して設置されるベース部材22と、該ベース部材22の上面に設置された電磁石23と、前記ベース部材22の後部側(図面左側)及び前部側(図面右側)にボルト24…24によって後傾姿勢で取り付けられた一対の板バネ25,25とを有する。これら両板バネ25,25の上部には、前記トラフ8のブラケット8aがボルト26…26で固定されている。また、該ブラケット8aにおける前記電磁石23の磁力発生面23aに対向する面には、磁性体27が取り付けられている。前記電磁石23には、後述する制御手段32を介して間欠的に通電される。   As shown in FIG. 2, the vibration exciter 7 of the electromagnetic feeder 1 is installed on the base 3 via a plurality of coil springs 21... 21, and is installed on the upper surface of the base member 22. And a pair of leaf springs 25 and 25 attached to the rear side (left side in the drawing) and the front side (right side in the drawing) of the base member 22 by bolts 24. A bracket 8a of the trough 8 is fixed to the upper portions of the two leaf springs 25, 25 with bolts 26. A magnetic body 27 is attached to a surface of the bracket 8a that faces the magnetic force generation surface 23a of the electromagnet 23. The electromagnet 23 is energized intermittently via a control means 32 described later.

これによれば、電磁石23に通電すると、前記磁力発生面23aと磁性体27との間に電磁力(吸引)が作用し、この結果、前後の板バネ25,25が後方にさらに後傾しながら、またこれと同時にトラフ8がやや沈み込みながら、後方に(図面左側に)変位することとなる。一方、電磁石23への通電が停止されると、前記磁力発生面23aと磁性体27との間の電磁力(吸引)が消失し、前記トラフ8が、板バネ25,25の弾性復元力により上方へやや浮き上がりながら前方に(図面右側に)変位することとなる。すなわち、前記電磁石23に間欠的に繰り返し通電すれば、間欠的に電磁力が発生し、トラフ8が前後方向に振動し、もってトラフ8上の物品は前方に搬送されることとなる。   According to this, when the electromagnet 23 is energized, an electromagnetic force (attraction) acts between the magnetic force generating surface 23a and the magnetic body 27. As a result, the front and rear leaf springs 25, 25 are further tilted backward. At the same time, however, the trough 8 is slightly sunk and displaced backward (to the left in the drawing). On the other hand, when the energization to the electromagnet 23 is stopped, the electromagnetic force (attraction) between the magnetic force generation surface 23a and the magnetic body 27 disappears, and the trough 8 is caused by the elastic restoring force of the leaf springs 25 and 25. It will be displaced forward (to the right side of the drawing) while slightly rising upward. That is, if the electromagnet 23 is repeatedly energized, electromagnetic force is intermittently generated, the trough 8 vibrates in the front-rear direction, and the articles on the trough 8 are conveyed forward.

図3は、トラフ8の振動を制御する制御系統を示すブロック図である。すなわち、この制御系統には、前記電磁石23の電力供給源としての直流電源30と、制御パルスが印加されている期間に導通状態となって直流電源を電磁石に通電させるFET(電界効果型トランジスタ)等で構成されるスイッチング回路31と、該スイッチング回路31による通電の発生周期やパルス幅等を制御する制御手段32と、電磁石23に発生した誘導起電力Eを検出する電圧検出回路33と、誘導起電力Eがゼロになる(正負が反転する)時刻を検出するゼロクロス検出手段34と、該ゼロクロス検出手段34で検出した電圧がゼロになる時刻に基いて誘導起電力Eの振動数fを算出すると共にこの振動数fをトラフ8の固有振動数fとして前記制御手段32に入力する振動数算出手段35とが備えられている。 FIG. 3 is a block diagram showing a control system for controlling the vibration of the trough 8. That is, the control system includes a DC power source 30 as a power supply source of the electromagnet 23, and a FET (field effect transistor) that conducts the DC power source through the electromagnet while the control pulse is applied. A control circuit 32 for controlling the generation period and pulse width of energization by the switching circuit 31, a voltage detection circuit 33 for detecting the induced electromotive force E 0 generated in the electromagnet 23, Zero cross detection means 34 for detecting the time when the induced electromotive force E 0 becomes zero (positive and negative are reversed), and the frequency of the induced electromotive force E 0 based on the time when the voltage detected by the zero cross detection means 34 becomes zero. have the frequency f E is the frequency calculating unit 35 to be input to the control unit 32 as the natural frequency f 0 of the trough 8 is provided to calculate the f E .

ところで、トラフ8の振動の振幅Aは、駆動周波数f及び電磁石23へ印加する電力の大きさにより決定される。そして、図4に示すようにこの曲線の極大値Arをとる周波数が共振周波数frであり、この共振周波数frでトラフ8を振動させたときに最も大きな振幅Arが得られる。   By the way, the amplitude A of the vibration of the trough 8 is determined by the driving frequency f and the magnitude of the power applied to the electromagnet 23. As shown in FIG. 4, the frequency at which the maximum value Ar of this curve is taken is the resonance frequency fr, and the maximum amplitude Ar is obtained when the trough 8 is vibrated at this resonance frequency fr.

固有振動数fは、トラフ8の自由振動時の振動数であり、これは共振周波数frとほぼ一致するパラメータである。 Natural frequency f 0 is a frequency at the time of free vibration of the trough 8, which is a parameter that substantially coincides with the resonance frequency fr.

以下、本発明に係るフィーダ7における固有振動数fを求める手順を図6に示すフローチャート及び図7に示すタイムチャートを用いて説明する。 Hereinafter, the procedure for obtaining the natural frequency f 0 in the feeder 7 according to the present invention will be described with reference to the flowchart shown in FIG. 6 and the time chart shown in FIG.

まず、ステップS1で電磁石23に短時間の高電圧を印加することによってインパルス入力を行い、トラフ8を自由振動させる。図7に示すように、時刻tでインパルス入力が行われた後、自由振動によるトラフ8の変位量の時間的変化は、正弦波の減衰曲線で表される。次に、ステップS2で、トラフ8の自由振動により電磁石23に発生する誘導起電力Eを電圧検出回路33により検出する。 First, impulse input is performed by applying a high voltage for a short time to the electromagnet 23 in step S1, and the trough 8 is freely vibrated. As shown in FIG. 7, after impulse input is performed at time t 0 , the temporal change in the amount of displacement of the trough 8 due to free vibration is represented by a sinusoidal attenuation curve. Next, in step S 2, the voltage detection circuit 33 detects the induced electromotive force E 0 generated in the electromagnet 23 due to the free vibration of the trough 8.

Figure 2006016142
Figure 2006016142

そして電圧検出回路33では、図7に示すような誘導起電力Eの振動曲線が得られる。この曲線は、ステップS1でインパルス入力が行われた後の、正弦波の減衰曲線として表される。なお、誘導起電力Eの振動の位相は、トラフ8の変位量の位相をコイルの特性に従ってある一定角度遅らせたものになり(図7参照)、誘導起電力Eとトラフ8の変位量は、同一周波数で振動することになる。 Then, in the voltage detection circuit 33, oscillation curve of the induced electromotive force E 0 as shown in FIG. 7 can be obtained. This curve is represented as an attenuation curve of a sine wave after the impulse input is performed in step S1. The phase of vibration of the induced electromotive force E 0 is obtained by delaying the phase of the displacement amount of the trough 8 by a certain angle according to the characteristics of the coil (see FIG. 7), and the displacement amount of the induced electromotive force E 0 and the trough 8. Vibrate at the same frequency.

次に、ステップS3において、前記ステップS2で測定した誘導起電力Eがゼロになる時刻t…tをゼロクロス検出手段34により検出する。 Next, in step S3, the time t 1 ... T n at which the induced electromotive force E 0 measured in step S2 becomes zero is detected by the zero cross detecting means 34.

そして、ステップS4において、誘導起電力Eの振動数fを演算する。ここで、前記ステップS3で検出したゼロクロス時刻t…tのうちで振動の減衰により誘導起電力Eの振幅が測定可能範囲内になったときのゼロクロス時刻tkー1、tk+1を選択して、これに基いて誘導起電力Eの振動周期Tを演算する。そして、この周期Tの逆数をとることにより誘導起電力Eの振動数fを算出する。そして、ステップS5で、ステップS4で演算した誘導起電力Eの振動数fをトラフの固有振動数fとして決定する。なお、ステップS2〜S5の手順は、アナログ信号による検出、AD変換器を用いたデジタル信号による検出のいずれの手段においても実現することができる。 Then, in step S4, and calculates the frequency f E of the induced electromotive force E 0. Here, among the zero cross times t 1 ... T n detected in the step S3, zero cross times t k−1 and t k + 1 when the amplitude of the induced electromotive force E 0 falls within the measurable range due to the attenuation of the vibrations. Based on this selection, the vibration period T of the induced electromotive force E 0 is calculated based on this. Then, to calculate the frequency f E of the induced electromotive force E 0 by taking the inverse of the period T. Then, in step S5, it determines the frequency f E of the induced electromotive force E 0 calculated in step S4 as the natural frequency f 0 of the trough. Note that the procedure of steps S2 to S5 can be realized by any means of detection using an analog signal and detection using a digital signal using an AD converter.

そして、同様の方法で他のトラフ8…8についても固有振動数fを求め、全てのトラフ8…8について所望の振幅Aが得られるように、駆動周波数fを調整する。すなわち、トラフ8の振幅Aは、図4に示したような特性を有しているので、任意のトラフ8において、固有振動数fを算出した後、駆動周波数fを駆動周波数f′に調整し、所望の振幅A′が得られたときに、そのときの駆動周波数f′と固有振動数fとの差Δfを測定する。そして、他のトラフ8…8においてもそれぞれの固有振動数fから前記と同様の差Δfになる駆動周波数fに設定する。あるいは、あるトラフで所望のA′が得られたときにΔf=f′/fを求めておき、他のトラフでfにΔfを乗じてf′を設定してもよい。その他の実現方法は、周知慣用技術の範囲で可能である。 Then, a natural frequency f 0 for the other trough 8 ... 8 in a similar manner, such that the desired amplitude A for all of the troughs 8 ... 8 obtained, adjusting the drive frequency f. That is, since the amplitude A of the trough 8 has the characteristics shown in FIG. 4, after calculating the natural frequency f 0 in any trough 8, the drive frequency f is adjusted to the drive frequency f ′. When the desired amplitude A ′ is obtained, the difference Δf between the driving frequency f ′ and the natural frequency f 0 at that time is measured. And also set the driving frequency f from the natural frequency f 0 of respectively the difference Δf similar to the aforementioned in another trough 8 ... 8. Alternatively, Δf = f ′ / f 0 may be obtained when a desired A ′ is obtained in a certain trough, and f ′ may be set by multiplying f 0 by Δf in another trough. Other implementation methods are possible within the scope of well-known and conventional techniques.

例えば、図8に示すように、例えば第1トラフにおいて前記の手順で求めた固有振動数が50Hzで、これを正の方向に2Hzずらした駆動周波数(52Hz)としたときに、所望のトラフの振幅(2mm)が得られた場合を考える。第2トラフの固有振動数は55Hzで、これを同様に正の方向に2Hzずらした駆動周波数(57Hz)としたときに、ほぼ振幅2mmの振動が得られる。これは各トラフ8…8の個体差が、駆動周波数fに対する振幅特性を示す曲線をほぼ横軸方向にずらしたものとして表されるからである。このように、全てのトラフ8…8において、それぞれの駆動周波数fをそれぞれの固有振動数から第1トラフでずらした値2Hz分増加させて設定することにより、全てのトラフ8…8の振動の振幅Aを統一的にほぼ2mmに制御することができる。   For example, as shown in FIG. 8, when the natural frequency obtained by the above procedure is 50 Hz and the driving frequency is shifted by 2 Hz in the positive direction (52 Hz) as shown in FIG. Consider a case where an amplitude (2 mm) is obtained. The natural frequency of the second trough is 55 Hz. Similarly, when the driving frequency is shifted by 2 Hz in the positive direction (57 Hz), vibration with an amplitude of approximately 2 mm is obtained. This is because the individual difference between the troughs 8... 8 is expressed as a curve indicating an amplitude characteristic with respect to the drive frequency f substantially shifted in the horizontal axis direction. In this way, in each trough 8... 8, by setting each drive frequency f by a value 2 Hz shifted from the natural frequency by the first trough, the vibrations of all troughs 8. The amplitude A can be uniformly controlled to approximately 2 mm.

以上のように、トラフ8を自由振動させて、このときに電磁石23のコイルに発生する誘導起電力Eを測定し、測定した誘導起電力Eの振動数fをトラフ8の固有振動数fとし、この固有振動数fに基いて駆動周波数fを設定することにより、駆動周波数fを迅速に所望の周波数に設定することができる。このとき、トラフ8を振幅の小さな状態で自由振動させることにより生じる誘導起電力Eにより測定される固有振動数fは、振幅が小さければわずかな補正で済む。このように簡単かつ迅速にトラフ8の固有振動数fを知ることができる。そして、駆動周波数fをトラフ8の固有振動数fに基いて設定することによって、物品搬送の効率化を図ることができる。振幅の小さな自由振動では、測定した誘導起電力Eは、精度良いFFTを行うために十分な波形を確保することができるので、これに基づいて設定した駆動周波数fは精度が良い。 As described above, the trough 8 by free vibration, this time the induced electromotive force E 0 generated in the coil of the electromagnet 23 is measured, the natural frequency of the measured frequency f E of the induced electromotive force E 0 trough 8 be the number f 0, by setting the drive frequency f based on the natural frequency f 0, the driving frequency f can be set quickly to the desired frequency. At this time, the natural frequency f 0 measured by the induced electromotive force E 0 generated by freely vibrating the trough 8 with a small amplitude can be corrected slightly if the amplitude is small. Such easy and fast it is possible to know the natural frequency f 0 of the trough 8. Then, by setting the drive frequency f based on the natural frequency f 0 of the trough 8, the efficiency of article conveyance can be improved. In the free vibration with a small amplitude, the measured induced electromotive force E 0 can secure a sufficient waveform for performing an accurate FFT, and the drive frequency f set based on this has good accuracy.

一方、トラフ8の自由振動は、トラフ8に衝撃を与えることによって発生させるので、振幅Aの小さい状態での測定が可能となり、精度の良い固有振動数fの値を得ることができる。 On the other hand, the free vibration of the trough 8, so is generated by impacting the trough 8, it is possible to measure the small state amplitude A, it is possible to obtain a good value of natural frequency f 0 precision.

また、トラフ8に与える衝撃は、電気的なインパルス信号(短期間かつ高電圧)により発生する電磁石23の電磁力により得られるので、既存の電気回路を用いてこれを行うことができ、測定手順及び装置の簡素化を図ることができる。   Further, since the impact applied to the trough 8 is obtained by the electromagnetic force of the electromagnet 23 generated by an electrical impulse signal (short period and high voltage), this can be performed using an existing electric circuit, and the measurement procedure In addition, simplification of the apparatus can be achieved.

なお、トラフ8に与える衝撃を物理的な外力により発生させることによって、簡単にトラフ8を自由振動させることもできる。物理的な外力は、ハンマリング装置等を用いて機械的に行うものや、手動でハンマリングを行うものが挙げられる。特に、手動によりハンマリングを行う構成は、誰でも簡単にこれを行うことができると共に、装置の簡素化を図ることができるという利点を有する。   The trough 8 can be easily vibrated freely by generating an impact applied to the trough 8 by a physical external force. Examples of the physical external force include those that are mechanically performed using a hammering device or the like, and those that are manually hammered. In particular, the configuration in which hammering is performed manually has the advantage that anyone can easily do this, and the apparatus can be simplified.

一方、前記のように、ゼロクロス検出手段34により誘導起電力Eのゼロクロス時刻を検出し、この時刻に基いて誘導起電力Eの周期Tを求め、この周期Tの逆数をとることによって簡単に誘導起電力Eの振動数fを算出することができる。その結果、誘導起電力Eの波形を厳密に検出するような複雑な検出回路またはFFTを用いることなく、精度よく誘導起電力Eの振動数fを算出することができる。なお、所定時間内に誘導起電力Eがゼロになる回数を検出し、これに基いて誘導起電力Eの振動数fを算出することもできる。すなわち、検出したゼロクロス回数を所定時間で除算して、1秒間にゼロクロスする回数に基いて誘導起電力Vの振動数fを算出することができる。 On the other hand, as described above, the zero cross time of the induced electromotive force E 0 is detected by the zero cross detecting means 34, the period T of the induced electromotive force E 0 is obtained based on this time, and the reciprocal of this period T is taken. The frequency f E of the induced electromotive force E 0 can be calculated. As a result, without using a complicated detection circuit or FFT as strictly detect the waveform of the induced electromotive force E 0, it is possible to calculate the frequency f E of accurately induced electromotive force E 0. Incidentally, detecting the number of induced electromotive force E 0 becomes zero within a predetermined time, it is also possible to calculate the frequency f E of the induced electromotive force E 0 based on this. That is, the frequency f E of the induced electromotive force V 0 can be calculated based on the number of zero crossings per second by dividing the detected number of zero crossings by a predetermined time.

また、トラフ8上の物品の重量や、図4を基にして測定時の振幅Aに従って固有振動数fの加減等の補正を行うことによって、より正確な固有振動数fを求めることができる。重いものを搬送する場合はワークの重量に基づいて固有振動数fを補正することも有効である。 Further, by correcting the natural frequency f 0 according to the weight of the article on the trough 8 and the amplitude A at the time of measurement based on FIG. 4, it is possible to obtain a more accurate natural frequency f 0. it can. When transporting heavy objects it is also effective for correcting the natural frequency f 0 based on the weight of the workpiece.

さらに、本実施の形態のように、複数の電磁フィーダ1…1が備えられた組合せ計量装置2の場合は、各トラフ8に対して前記のように固有振動数fを求めて、各固有振動数fに同じ数値の加減等を行うことによって、簡単に各トラフ8の振幅Aを統一的に制御することができる。これによって、各トラフ8の駆動周波数fを設定するための装置構成簡素化することができ、作業効率が向上する。 Further, in the case of the combination weighing device 2 provided with the plurality of electromagnetic feeders 1... 1 as in the present embodiment, the natural frequency f 0 is obtained for each trough 8 as described above, and By adding or subtracting the same numerical value to the frequency f 0 , the amplitude A of each trough 8 can be easily controlled uniformly. As a result, the configuration of the apparatus for setting the drive frequency f of each trough 8 can be simplified, and the working efficiency is improved.

本発明は、搬送部に所望される駆動周波数を迅速に決定することができる電磁振動式搬送装置の制御装置及びその制御装置を備えた搬送装置を有する計量装置を提供する。本発明は、物品を搬送する搬送装置、より詳しくは、電磁的方法で物品の搬送部を振動させて物品を搬送する機能を有する電磁振動式搬送装置の制御装置及びその制御装置を備えた搬送装置を有する計量装置に関し、物品搬送の技術分野に広く好適である。   The present invention provides a control device for an electromagnetic vibration type transport device capable of quickly determining a drive frequency desired for a transport unit, and a weighing device having a transport device including the control device. The present invention relates to a conveying device for conveying an article, and more specifically, a control device for an electromagnetic vibration type conveying device having a function of conveying an article by vibrating an article conveying portion by an electromagnetic method, and a conveyance provided with the control device. The weighing device having the apparatus is widely suitable for the technical field of article conveyance.

本発明の実施の形態に係る組合せ計量装置の概略側面図である。1 is a schematic side view of a combination weighing device according to an embodiment of the present invention. 同電磁フィーダの側面図である。It is a side view of the electromagnetic feeder. 同電磁フィーダの制御系統を示すブロック図である。It is a block diagram which shows the control system of the same electromagnetic feeder. トラフの駆動周波数に対する振幅特性を示す図である。It is a figure which shows the amplitude characteristic with respect to the drive frequency of a trough. 振動と共振周波数・固有振動数の関係を示す図である。It is a figure which shows the relationship between a vibration, a resonant frequency, and a natural frequency. 固有振動数の決定手順を示すフローチャートである。It is a flowchart which shows the determination procedure of a natural frequency. インパルス入力により発生するトラフの変位量及び誘導起電力の変化を示すタイムチャートである。5 is a time chart showing changes in trough displacement and induced electromotive force generated by impulse input. トラフの振幅制御の説明図である。It is explanatory drawing of amplitude control of a trough.

符号の説明Explanation of symbols

1 電磁振動式搬送装置(電磁フィーダ)
2 組合せ計量装置
3 本体部(架台)
8 搬送部(トラフ)
23 電磁石
25 弾性部材(板バネ)
27 磁性体
32 制御手段
33 測定手段(電圧検出回路)
35 固有振動数設定手段(振動数算出手段)
1 Electromagnetic vibration transfer device (electromagnetic feeder)
2 Combination Weighing Device 3 Main Body (Stand)
8 Transport section (trough)
23 Electromagnet 25 Elastic member (leaf spring)
27 Magnetic body 32 Control means 33 Measuring means (voltage detection circuit)
35 Natural frequency setting means (frequency calculation means)

Claims (7)

電磁石が設けられた本体部と、該本体部に対して弾性部材を介して振動可能に支持されて前記電磁石の通電時に吸引される磁性体が設けられた搬送部と、前記電磁石に間欠的に通電することにより前記搬送部を印加した駆動周波数で振動させる制御手段とを有する電磁振動式搬送装置の制御装置であって、前記搬送部を自由振動させる手段と、搬送部の自由振動時に前記電磁石に発生する誘導起電力を測定する測定手段と、該測定手段により測定された誘導起電力の振動数を前記搬送部の固有振動数とする固有振動数設定手段とが備えられ、かつ、前記制御手段は、前記固有振動数設定手段で設定された固有振動数に基いて駆動周波数を設定することを特徴とする電磁振動式搬送装置の制御装置。   A main body provided with an electromagnet, a conveyance part provided with a magnetic body supported by the main body so as to vibrate via an elastic member and attracted when the electromagnet is energized, and intermittently on the electromagnet A control device for an electromagnetic vibration type conveying apparatus having a control means for vibrating the conveying section at an applied drive frequency when energized, wherein the electromagnet is configured to freely vibrate the conveying section and the free vibration of the conveying section. Measuring means for measuring the induced electromotive force generated in the vehicle, and natural frequency setting means for setting the frequency of the induced electromotive force measured by the measuring means to the natural frequency of the transport unit, and the control The means sets the drive frequency based on the natural frequency set by the natural frequency setting means. 前記自由振動を発生させる手段は、前記搬送部に衝撃を与えることを特徴とする請求項1に記載の電磁振動式搬送装置の制御装置。   The control device of the electromagnetic vibration type conveying apparatus according to claim 1, wherein the means for generating the free vibration applies an impact to the conveying unit. 前記搬送部に与える衝撃は、電気的なインパルス信号による電磁力であることを特徴とする請求項2に記載の電磁振動式搬送装置の制御装置。   The control device for an electromagnetic vibration type conveying apparatus according to claim 2, wherein the impact applied to the conveying unit is an electromagnetic force generated by an electrical impulse signal. 前記搬送部に与える衝撃は、物理的な外力であることを特徴とする請求項2に記載の電磁振動式搬送装置の制御装置。   The control device for an electromagnetic vibration type conveying apparatus according to claim 2, wherein the impact applied to the conveying unit is a physical external force. 所定時間内に誘導起電力がゼロになる回数、または誘導起電力がゼロになる時間間隔を検出することによって誘導起電力の振動数が演算されることを特徴とする請求項1から請求項4のいずれかに記載の電磁振動式搬送装置の制御装置。   5. The frequency of the induced electromotive force is calculated by detecting the number of times that the induced electromotive force becomes zero within a predetermined time or the time interval when the induced electromotive force becomes zero. The control apparatus of the electromagnetic vibration type conveying apparatus in any one of. 前記制御手段は、測定された固有振動数を補正し、補正された値に基づいて駆動周波数を設定することを特徴とする請求項1から請求項5のいずれかに記載の電磁振動式搬送装置の制御装置。   6. The electromagnetic vibration type conveying apparatus according to claim 1, wherein the control unit corrects the measured natural frequency and sets the drive frequency based on the corrected value. Control device. 物品を計量する計量装置であって、電磁石が設けられた本体部と、該本体部に対して弾性部材を介して振動可能に支持されて前記電磁石の通電時に吸引される磁性体が設けられた搬送部と、前記電磁石に間欠的に通電することにより前記搬送部を印加した駆動周波数で振動させる制御手段とを有する電磁振動式搬送装置と、請求項1から請求項6のいずれかに記載の電磁振動式搬送装置の制御装置と、前記電磁振動式搬送装置によって搬送された物品を受け入れ計量する計量手段とが備えられていることを特徴とする計量装置。
A weighing device for weighing an article, comprising: a main body provided with an electromagnet; and a magnetic body supported by the main body so as to vibrate via an elastic member and attracted when the electromagnet is energized. The electromagnetic vibration type conveying apparatus having a conveying unit and a control unit that vibrates the conveying unit at a driving frequency applied by intermittently energizing the electromagnet, and any one of claims 1 to 6. A weighing device comprising: a control device for an electromagnetic vibration type conveying device; and weighing means for receiving and weighing an article conveyed by the electromagnetic vibration type conveying device.
JP2004195393A 2004-07-01 2004-07-01 Controller for electromagnetic vibration type conveyance device and metering device having conveyance device provided with controller Pending JP2006016142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004195393A JP2006016142A (en) 2004-07-01 2004-07-01 Controller for electromagnetic vibration type conveyance device and metering device having conveyance device provided with controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004195393A JP2006016142A (en) 2004-07-01 2004-07-01 Controller for electromagnetic vibration type conveyance device and metering device having conveyance device provided with controller

Publications (1)

Publication Number Publication Date
JP2006016142A true JP2006016142A (en) 2006-01-19

Family

ID=35790734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004195393A Pending JP2006016142A (en) 2004-07-01 2004-07-01 Controller for electromagnetic vibration type conveyance device and metering device having conveyance device provided with controller

Country Status (1)

Country Link
JP (1) JP2006016142A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009038164A1 (en) * 2007-09-20 2009-03-26 Ulvac, Inc. Stop detecting method for conveyor apparatus
JP2011085442A (en) * 2009-10-14 2011-04-28 Yamato Scale Co Ltd Monitoring method for electric power consumption amount of combination scale
US8314586B2 (en) 2006-10-31 2012-11-20 Koninklijke Philipes Electronics N.V. System for adapting the resonant operation of a personal care appliance during the lifetime thereof
KR20180076999A (en) * 2016-12-28 2018-07-06 신포니아 테크놀로지 가부시끼가이샤 Work conveying apparatus and adjustment method in work conveying apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8314586B2 (en) 2006-10-31 2012-11-20 Koninklijke Philipes Electronics N.V. System for adapting the resonant operation of a personal care appliance during the lifetime thereof
WO2009038164A1 (en) * 2007-09-20 2009-03-26 Ulvac, Inc. Stop detecting method for conveyor apparatus
US8390230B2 (en) 2007-09-20 2013-03-05 Ulvac, Inc. Method of detecting stop of transport apparatus
JP5188503B2 (en) * 2007-09-20 2013-04-24 株式会社アルバック Stop detection method for transfer device
JP2011085442A (en) * 2009-10-14 2011-04-28 Yamato Scale Co Ltd Monitoring method for electric power consumption amount of combination scale
KR20180076999A (en) * 2016-12-28 2018-07-06 신포니아 테크놀로지 가부시끼가이샤 Work conveying apparatus and adjustment method in work conveying apparatus
KR102433050B1 (en) 2016-12-28 2022-08-17 신포니아 테크놀로지 가부시끼가이샤 Work conveying apparatus and adjustment method in work conveying apparatus

Similar Documents

Publication Publication Date Title
JP2001128487A (en) Vibration-type linear actuator
JP6595489B2 (en) Distributed supply device and combination weighing device
US11820602B2 (en) Vibration conveyor and method for regulating a vibration drive of a vibration conveyor
JP3418507B2 (en) Piezoelectric vibration control method
JP2019531994A5 (en)
JP5362525B2 (en) Vibration conveying apparatus and combination weigher using the same
JP2006016142A (en) Controller for electromagnetic vibration type conveyance device and metering device having conveyance device provided with controller
JP5606036B2 (en) Vibration feeder control method, vibration feeder device and combination weigher
TW523429B (en) Method and device for controlling part feeder
CA2918433A1 (en) Sensor device for providing at least one operating parameter of an oscillating conveyor, and oscillating conveyor
US20090107733A1 (en) Method and device for weighing products
JP5271780B2 (en) Digital scale feeder and digital scale equipped with the same
JP5297745B2 (en) Vibration conveying apparatus and combination weigher using the same
JPH11193002A (en) Vibration type transfer device of article
JP2879267B2 (en) Vibration device
JP3836969B2 (en) Vibratory conveying device for goods
JP6005400B2 (en) Vibration conveying apparatus, combination weigher, and driving method of vibration conveying apparatus
JP3881608B2 (en) Electromagnetic feeder and weighing device equipped with the same
JP2007045601A (en) Carrying device and combined metering device
JPH11227717A (en) Oscillatory carrying apparatus
US20040173031A1 (en) Mass flow measurement
JP2001039527A (en) Vibrating conveyor
JPH0843185A (en) Mass measuring method and device
JP2006160404A (en) Transport device and metering device
JP2004191172A (en) Sample oscillating type magnetometer, and magnetic characteristic measuring method by same